1
|
Banday M, Kaur K. A cross-sectional study to evaluate responses generated by two AI software programs for common patient queries about laparoscopic repair of inguinal hernia. Updates Surg 2025; 77:583-588. [PMID: 40042731 DOI: 10.1007/s13304-025-02158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
This study aimed to evaluate the quality and accuracy of responses provided by two user-interactive AI chatbots, namely ChatGPT and ChatSonic, in response to patient queries regarding laparoscopic repair of inguinal hernias, and additionally determine the suitability of these chatbots in addressing patient queries related to inguinal hernia repair. Ten questions regarding laparoscopic repair of inguinal hernias were developed and presented to ChatGPT 4.0 and ChatSonic. Responses were evaluated by two experienced surgeons blinded to the source, using the Global Quality Score (GQS) and modified DISCERN Score to gauge response quality and reliability. ChatGPT demonstrated high-quality responses (GQS = 4 & 5) for all ten questions according to one evaluator, and for seven out of ten questions according to the other. Similarly, ChatGPT showed high reliability (DISCERN = 4 & 5) for nine responses according to one evaluator, and for three responses according to the other, with only slight agreement between evaluators for both GQS (kappa = 0.20) and modified DISCERN scores (kappa = 0.08). ChatSonic also provided high-quality and reliable responses for a majority of questions, albeit to a lesser extent than ChatGPT, and both demonstrating limited concordance in responses (p > 0.05). Overall, Both ChatGPT and ChatSonic demonstrated potential utility in providing responses to patient queries about hernia surgery. However, due to inconsistencies in reliability and quality, ongoing refinement and validation of AI generated medical information remain necessary before widespread clinical adoption.
Collapse
Affiliation(s)
- Meeran Banday
- General and Minimal Invasive Surgery, Sher I Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, India.
| | - Kirat Kaur
- Al-Falah School of Medical Science and Research Center, Dhauj, Faridabad, Haryana, India
| |
Collapse
|
2
|
Sethi V, Verma C, Gupta A, Mukhopadhyay S, Gupta B. Infection-Resistant Polypropylene Hernia Mesh: Vision & Innovations. ACS APPLIED BIO MATERIALS 2025; 8:1797-1819. [PMID: 39943674 DOI: 10.1021/acsabm.4c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
The surgical repair of hernias, a prevalent condition affecting millions worldwide, has traditionally relied on polypropylene (PP) mesh due to its favorable mechanical properties and biocompatibility. However, postoperative infections remain a significant complication, underscoring the need for the development of infection-resistant hernia meshes. This study provides a comprehensive analysis of current advancements and innovative strategies aimed at enhancing the infection resistance of PP mesh. It presents an overview of various research efforts focused on the integration of antimicrobial agents, surface modifications, and the development of bioactive coatings to prevent bacterial colonization and biofilm formation. Additionally, the synergistic effects of novel material designs and the role of nanotechnology in optimizing the anti-infective properties of PP mesh are explored. Recent clinical outcomes and in vitro studies are critically examined, highlighting challenges and potential future directions in the development of next-generation hernia meshes. Emphasis is placed on the importance of interdisciplinary approaches in advancing surgical materials with the ultimate goal of improving patient outcomes in hernia repair.
Collapse
Affiliation(s)
- Vipula Sethi
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Chetna Verma
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Amlan Gupta
- Department of Histopathology and Transfusion Medicine, Jay Prabha Medanta Hospital, Patna 800020, Bihar, India
| | - Samrat Mukhopadhyay
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Bhuvanesh Gupta
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
3
|
Qi Y, Li C, Gao X, Zhang F. Causal relationship between circulating inflammatory cytokines and the risk of hernia: a bidirectional Mendelian randomization study. J Int Med Res 2025; 53:3000605251315923. [PMID: 39956620 PMCID: PMC11831628 DOI: 10.1177/03000605251315923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/09/2025] [Indexed: 02/18/2025] Open
Abstract
OBJECTIVE Observational studies suggest a link between hernia and inflammatory cytokines, but randomized trials are limited by ethical and cost constraints. In this study, we used bidirectional Mendelian randomization (MR) to investigate the causal relationship between inflammatory cytokines and five types of hernia, aiming to inform preventive and therapeutic strategies. METHODS We selected 41 inflammatory factors and five types of hernia as instrumental variables, using data from the IEU Open GWAS database including individuals of European descent. The primary analysis used the inverse variance weighted method with false discovery rate (FDR) adjustment. Additional MR methods and sensitivity analyses ensured robustness. Reverse MR was used to assess potential reverse causality. RESULTS After FDR adjustment, stem cell growth factor beta (SCGFb) was causally associated with diaphragmatic hernia (odds ratio = 0.884, 95% confidence interval: 0.819-0.955). Reverse MR indicated that diaphragmatic hernia may increase interferon gamma-induced protein 10 (IP10) and monokine induced by interferon-gamma (MIG), and ventral hernia may elevate macrophage inflammatory protein-1b (MIP1b). Sensitivity analyses confirmed robustness. CONCLUSION SCGFb may protect against diaphragmatic hernia, and IP10, MIG, and MIP1b are involved in hernia development, suggesting the therapeutic potential of targeting these cytokines. Further studies are needed.
Collapse
Affiliation(s)
- Yaqin Qi
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People’s Hospital, Hangzhou, China
| | - Changjiu Li
- Department of Urology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Xingyue Gao
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou Third People’s Hospital, Hangzhou, China
| | - Fangjie Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People’s Hospital, Hangzhou, China
| |
Collapse
|
4
|
Liu Y, Zheng Z, Liu Y, Song S, Li R, Song L, Zhao Y, Ren H, Wang P. A bionic 3D-printed hydrogel microneedle of composite mesh for abdominal wall defect repair. RSC Adv 2025; 15:2571-2581. [PMID: 39871985 PMCID: PMC11770410 DOI: 10.1039/d4ra08008d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025] Open
Abstract
The use of mesh repair is a frequently employed technique in the clinical management of abdominal wall defects. However, for intraperitoneal onlay mesh (IPOM), the traditional mesh requires additional fixation methods, and these severely limit its application in the repair of abdominal wall defects. We drew inspiration from the adhesion properties of mussels for the present study, functionalized carboxymethyl cellulose (CMC) with dopamine (DA), and added polyvinyl alcohol (PVA) to the composite to further improve the wet adhesive ability of hydrogels. The CMC-DA/PVA hydrogel microneedles (MNs) were fabricated using an inverse molding technique, incorporating a 3D-printed thermoplastic polyurethane mesh to enhance mechanical strength. The tensile test and porcine skin adhesion test demonstrated that the hydrogel mesh exhibited satisfactory mechanical properties and adhesion in vitro, thus replacing the traditional fixed mesh in the treatment of rat full-thickness abdominal wall defects. The results of animal experiments revealed that the hydrogel mesh promoted the growth of new granulation tissue and inhibited inflammatory responses, thereby paving the way for a novel approach in treating full-thickness abdominal wall defects.
Collapse
Affiliation(s)
- Yangyang Liu
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 P. R. China
| | - Zhiqiang Zheng
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 P. R. China
| | - Yutong Liu
- Medical Records Management Center, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 P. R. China
| | - Shurui Song
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 P. R. China
| | - Ruojing Li
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 P. R. China
| | - Lei Song
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 P. R. China
| | - Yeying Zhao
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 P. R. China
| | - Huajian Ren
- Lab for Trauma and Surgical Infections, Department of Surgery, Jinling Hospital, Affiliated to Nanjing University 305 East Zhongshan Road Nanjing 210002 P. R. China
| | - Peige Wang
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 P. R. China
| |
Collapse
|
5
|
Shiroud Heidari B, Dodda JM, El-Khordagui LK, Focarete ML, Maroti P, Toth L, Pacilio S, El-Habashy SE, Boateng J, Catanzano O, Sahai N, Mou L, Zheng M. Emerging materials and technologies for advancing bioresorbable surgical meshes. Acta Biomater 2024; 184:1-21. [PMID: 38879102 DOI: 10.1016/j.actbio.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024]
Abstract
Surgical meshes play a significant role in the treatment of various medical conditions, such as hernias, pelvic floor issues, guided bone regeneration, and wound healing. To date, commercial surgical meshes are typically made of non-absorbable synthetic polymers, notably polypropylene and polytetrafluoroethylene, which are associated with postoperative complications, such as infections. Biological meshes, based on native tissues, have been employed to overcome such complications, though mechanical strength has been a main disadvantage. The right balance in mechanical and biological performances has been achieved by the advent of bioresorbable meshes. Despite improvements, recurrence of clinical complications associated with surgical meshes raises significant concerns regarding the technical adequacy of current materials and designs, pointing to a crucial need for further development. To this end, current research focuses on the design of meshes capable of biomimicking native tissue and facilitating the healing process without post-operative complications. Researchers are actively investigating advanced bioresorbable materials, both synthetic polymers and natural biopolymers, while also exploring the performance of therapeutic agents, surface modification methods and advanced manufacturing technologies such as 4D printing. This review seeks to evaluate emerging biomaterials and technologies for enhancing the performance and clinical applicability of the next-generation surgical meshes. STATEMENT OF SIGNIFICANCE: In the ever-transforming landscape of regenerative medicine, the embracing of engineered bioabsorbable surgical meshes stands as a key milestone in addressing persistent challenges and complications associated with existing treatments. The urgency to move beyond conventional non-absorbable meshes, fraught with post-surgery complications, emphasises the necessity of using advanced biomaterials for engineered tissue regeneration. This review critically examines the growing field of absorbable surgical meshes, considering their potential to transform clinical practice. By strategically combining mechanical strength with bioresorbable characteristics, these innovative meshes hold the promise of mitigating complications and improving patient outcomes across diverse medical applications. As we navigate the complexities of modern medicine, this exploration of engineered absorbable meshes emerges as a promising approach, offering an overall perspective on biomaterials, technologies, and strategies adopted to redefine the future of surgical meshes.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Jagan Mohan Dodda
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| | | | - Maria Letizia Focarete
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Italy. Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| | - Peter Maroti
- University of Pecs, Medical School, 3D Printing and Visualization Centre, Hungary, University of Pecs, Medical Skills Education and Innovation Centre, Hungary
| | - Luca Toth
- University of Pecs, Medical School, Institute for Translational Medicine, Hungary, University of Pecs, Medical School, Department of Neurosurgery, Hungary
| | - Serafina Pacilio
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Italy. Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy; Department of Biomedical and Neuromotor Sciences DIBINEM, Alma Mater Studiorum-University of Bologna, Italy
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Joshua Boateng
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, UK
| | - Ovidio Catanzano
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Nitin Sahai
- University of Pecs, Medical School, 3D Printing and Visualization Centre, Hungary, University of Pecs, Medical Skills Education and Innovation Centre, Hungary; Department of Biomedical Engineering, North Eastern Hill University, Meghalaya, India
| | - Lingjun Mou
- WA Liver and Kidney Transplant Department, Sir Charles Gairdner Hospital, Western Australia, Australia
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| |
Collapse
|
6
|
He P, Wang D, Zheng R, Wang H, Fu L, Tang G, Shi Z, Wu Y, Yang G. An antibacterial biologic patch based on bacterial cellulose for repair of infected hernias. Carbohydr Polym 2024; 333:121942. [PMID: 38494213 DOI: 10.1016/j.carbpol.2024.121942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
Infection-associated complications and repair failures and antibiotic resistance have emerged as a formidable challenge in hernia repair surgery. Consequently, the development of antibiotic-free antibacterial patches for hernia repair has become an exigent clinical necessity. Herein, a GBC/Gel/LL37 biological patch (biopatch) with exceptional antibacterial properties is fabricated by grafting 2-Methacryloyloxyethyl trimethylammonium chloride (METAC), a unique quaternary ammonium salt with vinyl, onto bacterial cellulose (GBC), followed by compounding with gelatin (Gel) and LL37. The GBC/Gel/LL37 biopatch exhibits stable swelling capacity, remarkable mechanical properties, flexibility, and favorable biocompatibility. The synergistic effect of METAC and LL37 confers upon the GBC/Gel/LL37 biopatch excellent antibacterial efficacy against Staphylococcus aureus and Escherichia coli, effectively eliminating invading bacteria without the aid of exogenous antibiotics in vivo while significantly reducing local acute inflammation caused by infection. Furthermore, the practical efficacy of the GBC/Gel/LL37 biopatch is evaluated in an infected ventral hernia model, revealing that the GBC/Gel/LL37 biopatch can prevent the formation of visceral adhesions, facilitate the repair of infected ventral hernia, and effectively mitigate chronic inflammation. The prepared antibacterial GBC/Gel/LL37 biopatch is very effective in dealing with the risk of infection in hernia repair surgery and offers potential clinical opportunities for other soft injuries, exhibiting considerable clinical application prospects.
Collapse
Affiliation(s)
- Pengyu He
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dawei Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Ruizhu Zheng
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lina Fu
- College of Medicine, Huanghuai University, Zhumadian, Henan 463000, China; Zhumadian Central Hospital, Zhumadian, Henan 463000, China
| | - Guoliang Tang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
7
|
Hendrawan S, Lheman J, Weber U, Oberkofler CE, Eryani A, Vonlanthen R, Baer HU. Fibroblast matrix implants-a better alternative for incisional hernia repair? Biomed Mater 2024; 19:035033. [PMID: 38604155 DOI: 10.1088/1748-605x/ad3da4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
The standard surgical procedure for abdominal hernia repair with conventional prosthetic mesh still results in a high recurrence rate. In the present study, we propose a fibroblast matrix implant (FMI), which is a three-dimensional (3D) poly-L-lactic acid scaffold coated with collagen (matrix) and seeded with fibroblasts, as an alternative mesh for hernia repair. The matrix was seeded with fibroblasts (cellularized) and treated with a conditioned medium (CM) of human Umbilical Cord Mesenchymal Stem Cells (hUC-MSC). Fibroblast proliferation and function were assessed and compared between treated with CM hUC-MSC and untreated group, 24 h after seeding onto the matrix (n= 3). To study the matricesin vivo,the hernia was surgically created on male Sprague Dawley rats and repaired with four different grafts (n= 3), including a commercial mesh (mesh group), a matrix without cells (cell-free group), a matrix seeded with fibroblasts (FMI group), and a matrix seeded with fibroblasts and cultured in medium treated with 1% CM hUC-MSC (FMI-CM group).In vitroexamination showed that the fibroblasts' proliferation on the matrices (treated group) did not differ significantly compared to the untreated group. CM hUC-MSC was able to promote the collagen synthesis of the fibroblasts, resulting in a higher collagen concentration compared to the untreated group. Furthermore, thein vivostudy showed that the matrices allowed fibroblast growth and supported cell functionality for at least 1 month after implantation. The highest number of fibroblasts was observed in the FMI group at the 14 d endpoint, but at the 28 d endpoint, the FMI-CM group had the highest. Collagen deposition area and neovascularization at the implantation site were observed in all groups without any significant difference between the groups. FMI combined with CM hUC-MSC may serve as a better option for hernia repair, providing additional reinforcement which in turn should reduce hernia recurrence.
Collapse
Affiliation(s)
- Siufui Hendrawan
- Tarumanagara Human Cell Technology Laboratory, Faculty of Medicine, Tarumanagara University, Jakarta 11440, Indonesia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Tarumanagara University, Jakarta 11440, Indonesia
| | - Jennifer Lheman
- Tarumanagara Human Cell Technology Laboratory, Faculty of Medicine, Tarumanagara University, Jakarta 11440, Indonesia
| | - Ursula Weber
- Tarumanagara Human Cell Technology Laboratory, Faculty of Medicine, Tarumanagara University, Jakarta 11440, Indonesia
- Baermed, Centre of Abdominal Surgery, Hirslanden Clinic, 8032 Zürich, Switzerland
| | | | - Astheria Eryani
- Department of Histology, Faculty of Medicine, Tarumanagara University, Jakarta 11440, Indonesia
| | - René Vonlanthen
- Vivévis AG, Viszeral-, Tumor- und Roboterchirurgie, Kappelistrasse 7, 8002 Zürich, Switzerland
| | - Hans Ulrich Baer
- Tarumanagara Human Cell Technology Laboratory, Faculty of Medicine, Tarumanagara University, Jakarta 11440, Indonesia
- Baermed, Centre of Abdominal Surgery, Hirslanden Clinic, 8032 Zürich, Switzerland
- Department of Visceral and Transplantation Surgery, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
8
|
Kaveti R, Lee JH, Youn JK, Jang TM, Han WB, Yang SM, Shin JW, Ko GJ, Kim DJ, Han S, Kang H, Bandodkar AJ, Kim HY, Hwang SW. Soft, Long-Lived, Bioresorbable Electronic Surgical Mesh with Wireless Pressure Monitor and On-Demand Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307391. [PMID: 37770105 DOI: 10.1002/adma.202307391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/02/2023] [Indexed: 10/03/2023]
Abstract
Current research in the area of surgical mesh implants is somewhat limited to traditional designs and synthesis of various mesh materials, whereas meshes with multiple functions may be an effective approach to address long-standing challenges including postoperative complications. Herein, a bioresorbable electronic surgical mesh is presented that offers high mechanical strength over extended timeframes, wireless post-operative pressure monitoring, and on-demand drug delivery for the restoration of tissue structure and function. The study of materials and mesh layouts provides a wide range of tunability of mechanical and biochemical properties. Dissolvable dielectric composite with porous structure in a pyramidal shape enhances sensitivity of a wireless capacitive pressure sensor, and resistive microheaters integrated with inductive coils provide thermo-responsive drug delivery system for an antibacterial agent. In vivo evaluations demonstrate reliable, long-lived operation, and effective treatment for abdominal hernia defects, by clear evidence of suppressed complications such as adhesion formation and infections.
Collapse
Affiliation(s)
- Rajaram Kaveti
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- SK Hynix Co., Ltd., 2091, Gyeongchung-daero, Bubal-eup, Incheon, Gyeonggi-do, 17336, Republic of Korea
| | - Joong Kee Youn
- Department of Pediatric Surgery, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Hanwha Systems Co., Ltd., 188, Pangyoyeok-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-do, 13524, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Hyun-Young Kim
- Department of Pediatric Surgery, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
9
|
Li Q, Wang L, Yu L, Li C, Xie X, Yan H, Zhou W, Wang C, Liu Z, Hou G, Zhao YQ. Polysaccharide-Based Coating with Excellent Antibiofilm and Repeatable Antifouling-Bactericidal Properties for Treating Infected Hernia. Biomacromolecules 2024; 25:1180-1190. [PMID: 38240673 DOI: 10.1021/acs.biomac.3c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
In recent years, the utilization of medical devices has gradually increased and implantation procedures have become common treatments. However, patients are susceptible to the risk of implant infections. This study utilized chemical grafting to immobilize polyethylenimine (QPEI) and hyaluronic acid (HA) on the surface of the mesh to improve biocompatibility while being able to achieve antifouling antimicrobial effects. From the in vitro testing, PP-PDA-Q-HA exhibited a high antibacterial ratio of 93% against S. aureus, 93% against E. coli, and 85% against C. albicans. In addition, after five rounds of antimicrobial testing, the coating continued to exhibit excellent antimicrobial properties; PP-PDA-Q-HA also inhibits the formation of bacterial biofilms. In addition, PP-PDA-Q-HA has good hemocompatibility and cytocompatibility. In vivo studies in animal implantation infection models also demonstrated the excellent antimicrobial properties of PP-PDA-Q-HA. Our study provides a promising strategy for the development of antimicrobial surface medical materials with excellent biocompatibility.
Collapse
Affiliation(s)
- Qifen Li
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Leixiang Wang
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Lu Yu
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Chengbo Li
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Xianrui Xie
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Huanhuan Yan
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Wenjuan Zhou
- The Affiliated Yantai Stomatological Hospital, Binzhou Medical University, Yantai 264003, PR China
| | - Chunhua Wang
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Zhonghao Liu
- The Affiliated Yantai Stomatological Hospital, Binzhou Medical University, Yantai 264003, PR China
| | - Guige Hou
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Yu-Qing Zhao
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| |
Collapse
|
10
|
Jiao Y, Yang X, Li Y, Wang F, Wang L, Li C. Spider-Silk-like Fiber Mat-Covered Polypropylene Warp-Knitted Hernia Mesh for Inhibition of Fibrosis under Dynamic Environment. Biomacromolecules 2024; 25:1214-1227. [PMID: 38295271 DOI: 10.1021/acs.biomac.3c01181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Hernia surgery is a widely performed procedure, and the use of a polypropylene mesh is considered the standard approach. However, the mesh often leads to complications, including the development of scar tissue that wraps around the mesh and causes it to shrink. Consequently, there is a need to investigate the relationship between the mesh and scar formation as well as to develop a hernia mesh that can prevent fibrosis. In this study, three different commercial polypropylene hernia meshes were examined to explore the connection between the fabric structure and mechanical properties. In vitro dynamic culture was used to investigate the mechanism by which the mechanical properties of the mesh in a dynamic environment affect cell differentiation. Additionally, electrospinning was employed to create polycaprolactone spider-silk-like fiber mats to achieve mechanical energy dissipation in dynamic conditions. These fiber mats were then combined with the preferred hernia mesh. The results demonstrated that the composite mesh could reduce the activation of fibroblast mechanical signaling pathways and inhibit its differentiation into myofibroblasts in dynamic environments.
Collapse
Affiliation(s)
- Yongjie Jiao
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaowei Yang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yan Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Fujun Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Chaojing Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
11
|
Liu C, Lin Z, Ruan W, Gai X, Qu Q, Wang C, Zhu F, Sun X, Zhang J. Safety and tissue remodeling assay of small intestinal submucosa meshes using a modified porcine surgical hernia model. Sci Rep 2024; 13:23108. [PMID: 38172186 PMCID: PMC10764949 DOI: 10.1038/s41598-023-50425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
In studies to date, meshes based on extracellular matrix (ECM) have been extensively used in clinical applications. Unfortunately, little is known about the function of the immunogenic residual, absorbable profile during the tissue repair process. Moreover, there needs to be a recognized preclinical animal model to investigate the safety and efficacy of extracellular matrix meshes. Herein, we designed and fabricated a kind of SIS mesh followed by a scanned electron micrograph characterization and tested α-Gal antigen clearance rate and DNA residual. In order to prove the biocompatibility of the SIS mesh, cell viability, chemotaxis assay and local tissue reaction were assessed by MTT and RTCA cytotoxicity test in vitro as well as implantation and degradation experiments in vivo. Furthermore, we developed a stable preclinical animal model in the porcine ventral hernia repair investigation, which using laparoscopic plus open hybridization method to evaluate tissue adhesion, explant mechanical performance, and histologic analysis after mesh implantation. More importantly, we established a semi-quantitative scoring system to examine the ECM degradation, tissue remodeling and regeneration in the modified porcine surgical hernia model for the first time. Our results highlight the application prospect of the improved porcine ventral hernia model for the safety and efficacy investigation of hernia repair meshes.
Collapse
Affiliation(s)
- Chenghu Liu
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Rd, Jinan, 250012, Shandong, China
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, Jinan, 250101, China
| | - Zhenhua Lin
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, Jinan, 250101, China
| | - Wenting Ruan
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, Jinan, 250101, China
| | - Xiaoxiao Gai
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, Jinan, 250101, China
| | - Qiujin Qu
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, Jinan, 250101, China
| | - Changbin Wang
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, Jinan, 250101, China
| | - Fuyu Zhu
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, Jinan, 250101, China
| | - Xiaoxia Sun
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, Jinan, 250101, China
| | - Jian Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Rd, Jinan, 250012, Shandong, China.
| |
Collapse
|
12
|
Singh M, Teodorescu DL, Rowlett M, Wang SX, Balcells M, Park C, Bernardo B, McGarel S, Reeves C, Mehra MR, Zhao X, Yuk H, Roche ET. A Tunable Soft Silicone Bioadhesive for Secure Anchoring of Diverse Medical Devices to Wet Biological Tissue. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307288. [PMID: 37865838 PMCID: PMC11801177 DOI: 10.1002/adma.202307288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/21/2023] [Indexed: 10/23/2023]
Abstract
Silicone is utilized widely in medical devices for its compatibility with tissues and bodily fluids, making it a versatile material for implants and wearables. To effectively bond silicone devices to biological tissues, a reliable adhesive is required to create a long-lasting interface. BioAdheSil, a silicone-based bioadhesive designed to provide robust adhesion on both sides of the interface is introduced here, facilitating bonding between dissimilar substrates, namely silicone devices and tissues. The adhesive's design focuses on two key aspects: wet tissue adhesion capability and tissue-infiltration-based long-term integration. BioAdheSil is formulated by mixing soft silicone oligomers with siloxane coupling agents and absorbents for bonding the hydrophobic silicone device to hydrophilic tissues. Incorporation of biodegradable absorbents eliminates surface water and controls porosity, while silane crosslinkers provide interfacial strength. Over time, BioAdheSil transitions from nonpermeable to permeable through enzyme degradation, creating a porous structure that facilitates cell migration and tissue integration, potentially enabling long-lasting adhesion. Experimental results demonstrate that BioAdheSil outperforms commercial adhesives and elicits no adverse response in rats. BioAdheSil offers practical utility for adhering silicone devices to wet tissues, including long-term implants and transcutaneous devices. Here, its functionality is demonstrated through applications such as tracheal stents and left ventricular assist device lines.
Collapse
Affiliation(s)
- Manisha Singh
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Debbie L. Teodorescu
- Department of Cardiology, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, USA
| | - Meagan Rowlett
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sophie X. Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mercedes Balcells
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Bioengineering Department, Institut Químic de Sarrià, Ramon Llull Univ, Barcelona, Spain
| | - Clara Park
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
| | - Bruno Bernardo
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sian McGarel
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charlotte Reeves
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mandeep R. Mehra
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
- SanaHeal, Inc., Cambridge, MA, USA
| | - Ellen T. Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
| |
Collapse
|
13
|
Bokhari N, Ali A, Yasmeen A, Khalid H, Safi SZ, Sharif F. Fabrication of green composite hand knitted silk mesh reinforced with silk hydrogel. Int J Biol Macromol 2023; 253:127284. [PMID: 37806415 DOI: 10.1016/j.ijbiomac.2023.127284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/17/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Soft tissue defects like hernia and post-surgical fistula formation can be resolved with modern biomaterials in the form of meshes without post-operative complications. In the present study hand knitted silk meshes were surface coated with regenerated silk fibroin hydrogel and pure natural extracts. Two phytochemicals (Licorice extract (LE) and Bearberry extract (BE)) and the two honeybee products (royal jelly (RJ) and honey (HE)) were incorporated separately to induce antibacterial, anti-inflammatory, and wound healing ability to the silk hydrogel coated knitted silk meshes. Meshes were dip coated with a blend of 4 % silk hydrogel (w/v) and 5 % extracts. Dried modified meshes were characterized using SEM, DMA, GC-MS and FTIR. Antimicrobial testing, in-vitro cytotoxicity, in-vitro wound healing and Q-RT-PCR were also performed. SEM analysis concluded that presence of coating reduced the pore size up to 47.7 % whereas, fiber diameter was increased up to 17.9 % as compared to the control. The presence of coating on the mesh improved the mechanical strength/Young's modulus by 1602.8 %, UTS by 451.7 % and reduced the % strain by 51.12 %. Sustained release of extracts from MHRJ (62.9 % up to 72 h) confirmed that it can induce antibacterial activity against surgical infections. Cytocompatibility testing and gene expression results suggest that out of four variables MHRJ presented best cell viability, % wound closure and expression of wound healing marker genes. In-vivo analyses in rat hernia model were carried out using only MHRJ variant, which also confirmed the non- toxic nature and wound healing characteristics of the modified mesh. The improved cell proliferation and activated wound healing in vitro and in vivo suggested that MHRJ could be a valuable candidate to promote cell infiltration and activate soft tissue and hernia repair as a biomedical implant.
Collapse
Affiliation(s)
- Natasha Bokhari
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; Department of Chemistry, Lahore College for Women University, Lahore 54000, Pakistan
| | - Asif Ali
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Ghent 9000, Belgium
| | - Abida Yasmeen
- Department of Chemistry, Lahore College for Women University, Lahore 54000, Pakistan
| | - Hamad Khalid
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience & Nursing MAHSA University, Jenjarom 42610, Selangor, Malaysia
| | - Faiza Sharif
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan.
| |
Collapse
|
14
|
Silva CF, Felzemburgh VA, Vasconcelos LQ, Nunes VLC, Barbosa Júnior AA, Giglioti AF, Araújo RPC, Miguel FB, Meneses JVL, Rosa FP. Histomorphological evaluation of acellularized bovine pericardium in breast implant coverage. BRAZ J BIOL 2023; 83:e276220. [PMID: 38126640 DOI: 10.1590/1519-6984.276220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Bovine pericardium (BP) has been used as a biomaterial for several decades in many medical applications particularly due to its mechanical properties and the high collagen content. In the acellular form it favors faster tissue repair, providing a three-dimensional support for cellular and vascular events observed during tissue repair and due, to a low elastin content, may favor its use as a breast implant cover, resulting in a low possibility of contracture of the biomaterial, preventing the appearance of irregularities during the reconstruction process. Thus, the aim of this study was to evaluate, histomorphologically, the behavior of acellularized bovine pericardium (ABP) as a mammary implant cover in rats. For this purpose, 16 animals were divided into two groups, with eight animals at each biological point: 7 and 15 days after surgery. Of the 16 animals, 32 specimens were obtained: 16 in the experimental group (EG) and 16 in the control group (CG). Throughout this study, none of the studied groups had postoperative complications. Results: The histomorphological results showed, in the two biological points, both in the EG and in the CG, chronic inflammatory infiltrate, leukocyte fibrin exudate, formation of granulation tissue and deposition of collagen fibers, more evident in the EG, regressive along the biological points. At 15 days, the implanted ABP showed initial biointegration with the fibrous capsule and surrounding tissues of the recipient bed. Conclusion: These results indicate that the due to the observed favorable tissue response ABP may be of potential use as a breast implant cover.
Collapse
Affiliation(s)
- C Frutuoso Silva
- Universidade Federal da Bahia - UFBA, Instituto de Ciências da Saúde - ICS, Laboratório de Bioengenharia Tecidual e Biomateriais - LBTB, Salvador, BA, Brasil
| | - V A Felzemburgh
- Universidade Federal da Bahia - UFBA, Instituto de Ciências da Saúde - ICS, Laboratório de Bioengenharia Tecidual e Biomateriais - LBTB, Salvador, BA, Brasil
| | - L Q Vasconcelos
- Universidade Federal da Bahia - UFBA, Instituto de Ciências da Saúde - ICS, Laboratório de Bioengenharia Tecidual e Biomateriais - LBTB, Salvador, BA, Brasil
| | - V L C Nunes
- Universidade Federal da Bahia - UFBA, Faculdade de Medicina da Bahia - FMB, Salvador, BA, Brasil
| | | | - A F Giglioti
- Braile Biomédica, São José do Rio Preto, SP, Brasil
| | - R P C Araújo
- Universidade Federal da Bahia - UFBA, Instituto de Ciências da Saúde - ICS, Laboratório de Bioengenharia Tecidual e Biomateriais - LBTB, Salvador, BA, Brasil
| | - F B Miguel
- Universidade Federal da Bahia - UFBA, Instituto de Ciências da Saúde - ICS, Laboratório de Bioengenharia Tecidual e Biomateriais - LBTB, Salvador, BA, Brasil
| | - J V L Meneses
- Sociedade Brasileira de Cirurgia Plástica - SBCP, São Paulo, SP, Brasil
| | - F P Rosa
- Universidade Federal da Bahia - UFBA, Instituto de Ciências da Saúde - ICS, Laboratório de Bioengenharia Tecidual e Biomateriais - LBTB, Salvador, BA, Brasil
| |
Collapse
|
15
|
Jain T, Tantisuwanno C, Paul A, Takmakov P, Joy A, Isayeva I, Simon DD. Accelerated in vitro oxidative degradation testing of polypropylene surgical mesh. J Biomed Mater Res B Appl Biomater 2023; 111:2064-2076. [PMID: 37596906 DOI: 10.1002/jbm.b.35308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/14/2023] [Accepted: 08/01/2023] [Indexed: 08/21/2023]
Abstract
Polypropylene (PP) surgical mesh had reasonable success in repair of hernia and treatment of stress urinary incontinence (SUI); however, their use for the repair of pelvic organ prolapse (POP) resulted in highly variable results with lifelong complications in some patients. One of several factors that could be associated with mesh-related POP complications is changes in the properties of the implanted surgical mesh due to oxidative degradation of PP in vivo. Currently, there are no standardized in vitro bench testing methods available for assessing the susceptibility to oxidative degradation and estimating long-term in vivo stability of surgical mesh. In this work, we adapted a previously reported automated reactive accelerated aging (aRAA) system, which uses elevated temperatures and high concentrations of hydrogen peroxide (H2 O2 ), for accelerated bench-top oxidative degradation testing of PP surgical mesh. Since H2 O2 is highly unstable at elevated temperatures and for prolonged periods, the aRAA system involves a feedback loop based on electrochemical detection methods to maintain consistent H2 O2 concentration in test solutions. Four PP mesh samples with varying mesh knit designs, filament diameter, weight, and % porosity, were selected for testing using aRAA up to 4 weeks and characterized using thermal analysis, Fourier-transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and scanning electron microscopy (SEM). Additionally, the oxidation index (OI) values were calculated based on the FTIR-ATR spectra to estimate the oxidative degradation and oxidation reaction kinetics of PP surgical mesh. The OI values and surface damage in the form of surface flaking, peeling, and formation of transverse cracks increased with aRAA aging time. The aRAA test method introduced here could be used to standardize the assessment of long-term stability of surgical mesh and may also be adopted for accelerated oxidative degradation testing of other polymer-based medical devices.
Collapse
Affiliation(s)
- Tanmay Jain
- Division of Biology, Chemistry and Materials Science, U.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Silver Spring, Maryland, USA
| | | | - Arindam Paul
- Division of Biology, Chemistry and Materials Science, U.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Silver Spring, Maryland, USA
| | - Pavel Takmakov
- Division of Biology, Chemistry and Materials Science, U.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Silver Spring, Maryland, USA
| | - Abraham Joy
- Department of Polymer Science, The University of Akron, Akron, Ohio, USA
| | - Irada Isayeva
- Division of Biology, Chemistry and Materials Science, U.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Silver Spring, Maryland, USA
| | - David D Simon
- Division of Biology, Chemistry and Materials Science, U.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Silver Spring, Maryland, USA
| |
Collapse
|
16
|
Giacalone V, Civilini V, Audenino AL, Terzini M. Quantifying mesh textile and effective porosities: A straightforward image analysis procedure for morphological analysis of surgical meshes. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107850. [PMID: 37865005 DOI: 10.1016/j.cmpb.2023.107850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND AND OBJECTIVES Surgical meshes have demonstrated greater reliability compared to suture repair for abdominal wall hernia treatment. However, questions remain regarding the properties of these devices and their influence on surgical outcomes. Morphological properties, including pore size and porosity, play a crucial role in mesh integration and encapsulation. In this study, we introduce a straightforward image analysis procedure for accurately calculating both textile porosity and effective porosity. The latter specifically considers pores that prevent bridging, providing valuable insights into mesh performance. METHODS A photographic setup was established to capture high-quality images of the meshes, accompanied by calibration images necessary for computing the effective porosity. The developed image analysis procedure comprises seven steps focused on improving the binarization process's quality, followed by the computation of textile and effective porosities. To facilitate usability, an app called "poreScanner" was designed using MATLAB app designer, guiding users through the algorithm described herein. The app was used to compute both porosities on 24 meshes sourced from various manufacturers, by averaging seven measurements obtained from as many images. The app's measurement stability was validated computing the coefficient of variation for both textile and effective porosity, for a total of 36 results (24 for the textile porosity and 12 for the effective one). Additionally, different operators independently tested one heavy and one light mesh, confirming the measurement's operator independence. RESULTS The results on the coefficient of variation indicated values below 5 % in 34 out of 36 cases, regardless of the mesh density. Similarly, the same parameter was computed to assess the independence of the procedure from different operators, yielding a maximum value of 1.84 %. These findings confirm the robustness and user-independence of the measurement procedure. CONCLUSIONS The procedure presented in this study is straightforward to replicate and yields dependable results. Its adoption has the potential to standardize the computation of surgical mesh porosity, enabling consistent determination of this crucial morphological parameter.
Collapse
Affiliation(s)
- Vincenzo Giacalone
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin 10129, Italy; Polito(BIO)Med Lab, Politecnico di Torino, Turin 10129, Italy.
| | - Vittoria Civilini
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin 10129, Italy; Polito(BIO)Med Lab, Politecnico di Torino, Turin 10129, Italy
| | - Alberto L Audenino
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin 10129, Italy; Polito(BIO)Med Lab, Politecnico di Torino, Turin 10129, Italy
| | - Mara Terzini
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin 10129, Italy; Polito(BIO)Med Lab, Politecnico di Torino, Turin 10129, Italy
| |
Collapse
|
17
|
Jiao Y, Li X, Liu X, Li C, Yang X, Sun X, Wang F, Wang L. Cobweb-Inspired Micro/Nanostructured Scaffolds for Soft Tissue Regeneration with Inhibition Effect of Fibrosis under Dynamic Environment. Adv Healthc Mater 2023; 12:e2300997. [PMID: 37713107 DOI: 10.1002/adhm.202300997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/08/2023] [Indexed: 09/16/2023]
Abstract
In soft tissue repair, fibrosis can lead to repair failure and long-term chronic pain in patients. Excessive mechanical stimulation of fibroblasts is one of the causes of fibrosis during abdominal wall regeneration. Inspired by the cobweb, a polycaprolactone beaded fiber is prepared by electrospinning. The cobweb-inspired structure attenuates the mechanical stimulation of cells under a dynamic environment. Nano-protrusions are introduced into the scaffold for further inhibition of fibrosis by self-induced crystallization. A machine is built for in vitro dynamic culture and rat abdominal subcutaneous embedding experiments are performed to verify the inhibiting effect of fibrosis in a dynamic environment in vivo. Results show that the expression of integrin β1 and α-smooth muscle actin is inhibited by the cobweb-inspired structure under dynamic culture. The results of hematoxylin and eosin and Masson's trichrome indicate that the cobweb-inspired structure has a good inhibitory effect on fibrosis in a dynamic environment in vivo. In general, the cobweb-inspired scaffold with nano-protrusions has a good ability to inhibit fibrosis under both static and dynamic environments. It is believed that the scaffold has promising applications in the field of inhibiting fibrosis caused by mechanical stimulation.
Collapse
Affiliation(s)
- Yongjie Jiao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Xiaojing Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xingxing Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Chaojing Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Xiao Yang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xuwei Sun
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
18
|
Dorkhani E, Darzi B, Foroutani L, Ebrahim Soltani Z, Ahmadi Tafti SM. Characterization and in vivo evaluation of a fabricated absorbable poly(vinyl alcohol)-based hernia mesh. Heliyon 2023; 9:e22279. [PMID: 38045132 PMCID: PMC10689958 DOI: 10.1016/j.heliyon.2023.e22279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
The most widely taken medical approach toward hernia repair involves the implementation of a prosthetic mesh to cover the herniated site and reinforce the weakened area of the abdominal wall. Biodegradable meshes can serve as biocompatible grafts with a low risk of infection. However, their major complication is associated with a high rate of degradation and hernia recurrence. We proposed a facile and cost-effective method to fabricate a poly(vinyl alcohol)-based mesh, using the solution casting technique. The inclusion of zinc oxide nanoparticles, citric acid, and three cycles of freeze-thaw were intended to ameliorate the mechanical properties of poly(vinyl alcohol). Several characterization, cell culture, and animal studies were conducted. Swelling and water contact angle measurements confirmed good water uptake capacity and wetting behavior of the final mesh sample. The synthesized mesh acquired a high mechanical strength of 52.8 MPa, and its weight loss was decreased to 39 %. No cytotoxicity was found in all samples. In vivo experiments revealed that less adhesion and granuloma formation, greater tissue integration, and notably higher neovascularization rate were resulted from implanting this fabricated hernia mesh, compared to commercial Prolene® mesh. Furthermore, the amount of collagen deposition and influential growth factors were enhanced when rats were treated with the proposed mesh instead of Prolene®.
Collapse
Affiliation(s)
- Erfan Dorkhani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran 1411713138, Iran
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417614411, Iran
| | - Bahareh Darzi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran 1411713138, Iran
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417614411, Iran
| | - Laleh Foroutani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran 1411713138, Iran
- Colorectal Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Zahra Ebrahim Soltani
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran 1411713138, Iran
- Colorectal Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| |
Collapse
|
19
|
Najm A, Niculescu AG, Rădulescu M, Gaspar BS, Grumezescu AM, Beuran M. Novel Material Optimization Strategies for Developing Upgraded Abdominal Meshes. Int J Mol Sci 2023; 24:14298. [PMID: 37762601 PMCID: PMC10531784 DOI: 10.3390/ijms241814298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Over 20 million hernias are operated on globally per year, with most interventions requiring mesh reinforcement. A wide range of such medical devices are currently available on the market, most fabricated from synthetic polymers. Yet, searching for an ideal mesh is an ongoing process, with continuous efforts directed toward developing upgraded implants by modifying existing products or creating innovative systems from scratch. In this regard, this review presents the most frequently employed polymers for mesh fabrication, outlining the market available products and their relevant characteristics, further focusing on the state-of-the-art mesh approaches. Specifically, we mainly discuss recent studies concerning coating application, nanomaterials addition, stem cell seeding, and 3D printing of custom mesh designs.
Collapse
Affiliation(s)
- Alfred Najm
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (B.S.G.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (B.S.G.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Mircea Beuran
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (B.S.G.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
20
|
Civilini V, Giacalone V, Audenino AL, Terzini M. A reliable and replicable test protocol for the mechanical evaluation of synthetic meshes. J Mech Behav Biomed Mater 2023; 144:105987. [PMID: 37413894 DOI: 10.1016/j.jmbbm.2023.105987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
Despite the worldwide spread of surgical meshes in abdominal and inguinal surgery repair, the lack of specific standards for mechanical characterization of synthetic meshes, used in hernia repair and urogynecologic surgery, makes performance comparison between prostheses undoubtedly difficult. This consequently leads to the absence of acknowledged specifications about the mechanical requirements that synthetic meshes should achieve in order to avoid patient discomfort or hernia recurrences. The aim of this study is to provide a rigorous test protocol for the mechanical comparison between surgical meshes having the same intended use. The test protocol is composed of three quasi-static test methods: (1) ball burst test, (2) uniaxial tensile test, and (3) suture retention test. For each test, post-processing procedures are proposed to compute relevant mechanical parameters from the raw data. Some of the computed parameters, indeed, could be more suitable for comparison with physiological conditions (e.g., membrane strain and anisotropy), while others (e.g., uniaxial tension at rupture and suture retention strength) are reported as they provide useful mechanical information and could be convenient for comparisons between devices. The proposed test protocol was applied on 14 polypropylene meshes, 3 composite meshes, and 6 urogynecologic devices to verify its universal applicability towards meshes of different types and produced by various manufacturers, and its repeatability in terms of coefficient of variation. The test protocol resulted easily applicable to all the tested surgical meshes with intra-subject variability characterized by coefficient of variations settled around 0.05. Its use within other laboratories could allow the determination of the inter-subject variability assessing its repeatability among users of alternative universal testing machines.
Collapse
Affiliation(s)
- Vittoria Civilini
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129, Turin, Italy; Polito(BIO)Med Lab, Politecnico di Torino, 10129, Turin, Italy.
| | - Vincenzo Giacalone
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129, Turin, Italy; Polito(BIO)Med Lab, Politecnico di Torino, 10129, Turin, Italy
| | - Alberto L Audenino
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129, Turin, Italy; Polito(BIO)Med Lab, Politecnico di Torino, 10129, Turin, Italy
| | - Mara Terzini
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129, Turin, Italy; Polito(BIO)Med Lab, Politecnico di Torino, 10129, Turin, Italy
| |
Collapse
|
21
|
Saiding Q, Chen Y, Wang J, Pereira CL, Sarmento B, Cui W, Chen X. Abdominal wall hernia repair: from prosthetic meshes to smart materials. Mater Today Bio 2023; 21:100691. [PMID: 37455815 PMCID: PMC10339210 DOI: 10.1016/j.mtbio.2023.100691] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 06/03/2023] [Indexed: 07/18/2023] Open
Abstract
Hernia reconstruction is one of the most frequently practiced surgical procedures worldwide. Plastic surgery plays a pivotal role in reestablishing desired abdominal wall structure and function without the drawbacks traditionally associated with general surgery as excessive tension, postoperative pain, poor repair outcomes, and frequent recurrence. Surgical meshes have been the preferential choice for abdominal wall hernia repair to achieve the physical integrity and equivalent components of musculofascial layers. Despite the relevant progress in recent years, there are still unsolved challenges in surgical mesh design and complication settlement. This review provides a systemic summary of the hernia surgical mesh development deeply related to abdominal wall hernia pathology and classification. Commercial meshes, the first-generation prosthetic materials, and the most commonly used repair materials in the clinic are described in detail, addressing constrain side effects and rational strategies to establish characteristics of ideal hernia repair meshes. The engineered prosthetics are defined as a transit to the biomimetic smart hernia repair scaffolds with specific advantages and disadvantages, including hydrogel scaffolds, electrospinning membranes, and three-dimensional patches. Lastly, this review critically outlines the future research direction for successful hernia repair solutions by combing state-of-the-art techniques and materials.
Collapse
Affiliation(s)
- Qimanguli Saiding
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yiyao Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Catarina Leite Pereira
- I3S – Instituto de Investigação e Inovação Em Saúde and INEB – Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Bruno Sarmento
- I3S – Instituto de Investigação e Inovação Em Saúde and INEB – Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IUCS – Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Xinliang Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
| |
Collapse
|
22
|
Zareei A, Kasi V, Thornton A, Rivera UH, Sawale M, Maruthamuthu MK, He Z, Nguyen J, Wang H, Mishra DK, Rahimi R. Non-destructive processing of silver containing glass ceramic antibacterial coating on polymeric surgical mesh surfaces. NANOSCALE 2023; 15:11209-11221. [PMID: 37345366 PMCID: PMC10552273 DOI: 10.1039/d3nr01317k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Surgical meshes composed of bioinert polymers such as polypropylene are widely used in millions of hernia repair procedures to prevent the recurrence of organ protrusion from the damaged abdominal wall. However, post-operative mesh infection remains a significant complication, elevating hernia recurrence risks from 3.6% to 10%, depending on the procedure type. While attempts have been made to mitigate these infection-related complications by using antibiotic coatings, the rise in antibiotic-resistant bacterial strains threatens their effectiveness. Bioactive glass-ceramics featuring noble metals, notably silver nanoparticles (AgNPs), have recently gained traction for their wide antibacterial properties and biocompatibility. Yet, conventional methods of synthesizing and coating of such materials often require high temperatures, thus making them impractical to be implemented on temperature-sensitive polymeric substrates. To circumvent this challenge, a unique approach has been explored to deposit these functional compounds onto temperature-sensitive polypropylene mesh (PP-M) surfaces. This approach is based on the recent advancements in cold atmospheric plasma (CAP) assisted deposition of SiO2 thin films and laser surface treatment (LST), enabling the selective heating and formation of functional glass-ceramic compounds under atmospheric conditions. A systematic study was conducted to identify optimal LST conditions that resulted in the effective formation of a bioactive glass-ceramic structure without significantly altering the chemical and mechanical properties of the underlying PP-M (less than 1% change compared to the original properties). The developed coating with optimized processing conditions demonstrated high biocompatibility and persistent antibacterial properties (>7 days) against both Gram-positive and Gram-negative bacteria. The developed process is expected to provide a new stepping stone towards depositing a wide range of functional bioceramic coatings onto different implant surfaces, thereby decreasing their risk of infection and associated complications.
Collapse
Affiliation(s)
- Amin Zareei
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Birck Nanotechnology Canter, Purdue University, West Lafayette, IN 47907, USA
| | - Venkat Kasi
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Birck Nanotechnology Canter, Purdue University, West Lafayette, IN 47907, USA
| | - Allison Thornton
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Birck Nanotechnology Canter, Purdue University, West Lafayette, IN 47907, USA
| | - Ulisses Heredia Rivera
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Birck Nanotechnology Canter, Purdue University, West Lafayette, IN 47907, USA
| | - Manoj Sawale
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Murali Kannan Maruthamuthu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zihao He
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Dharmendra K Mishra
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Rahim Rahimi
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Birck Nanotechnology Canter, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
23
|
Harman M, Champaigne K, Cobb W, Lu X, Chawla V, Wei L, Luzinov I, Mefford OT, Nagatomi J. A Novel Bio-Adhesive Mesh System for Medical Implant Applications: In Vivo Assessment in a Rabbit Model. Gels 2023; 9:372. [PMID: 37232966 PMCID: PMC10217475 DOI: 10.3390/gels9050372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023] Open
Abstract
Injectable surgical sealants and adhesives, such as biologically derived fibrin gels and synthetic hydrogels, are widely used in medical products. While such products adequately adhere to blood proteins and tissue amines, they have poor adhesion with polymer biomaterials used in medical implants. To address these shortcomings, we developed a novel bio-adhesive mesh system utilizing the combined application of two patented technologies: a bifunctional poloxamine hydrogel adhesive and a surface modification technique that provides a poly-glycidyl methacrylate (PGMA) layer grafted with human serum albumin (HSA) to form a highly adhesive protein surface on polymer biomaterials. Our initial in vitro tests confirmed significantly improved adhesive strength for PGMA/HSA grafted polypropylene mesh fixed with the hydrogel adhesive compared to unmodified mesh. Toward the development of our bio-adhesive mesh system for abdominal hernia repair, we evaluated its surgical utility and in vivo performance in a rabbit model with retromuscular repair mimicking the totally extra-peritoneal surgical technique used in humans. We assessed mesh slippage/contraction using gross assessment and imaging, mesh fixation using tensile mechanical testing, and biocompatibility using histology. Compared to polypropylene mesh fixed with fibrin sealant, our bio-adhesive mesh system exhibited superior fixation without the gross bunching or distortion that was observed in the majority (80%) of the fibrin-fixed polypropylene mesh. This was evidenced by tissue integration within the bio-adhesive mesh pores after 42 days of implantation and adhesive strength sufficient to withstand the physiological forces expected in hernia repair applications. These results support the combined use of PGMA/HSA grafted polypropylene and bifunctional poloxamine hydrogel adhesive for medical implant applications.
Collapse
Affiliation(s)
- Melinda Harman
- 301 Rhodes Engineering Research Center, Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- School of Medicine Greenville, Prisma Health Upstate, University of South Carolina, Greenville, SC 29605, USA
| | - Kevin Champaigne
- 301 Rhodes Engineering Research Center, Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Circa Bioscience, Charleston, SC 29412, USA
| | - William Cobb
- School of Medicine Greenville, Prisma Health Upstate, University of South Carolina, Greenville, SC 29605, USA
| | - Xinyue Lu
- 301 Rhodes Engineering Research Center, Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | | | - Liying Wei
- Materials Science & Engineering Department, Clemson University, Clemson, SC 29634, USA
| | - Igor Luzinov
- Materials Science & Engineering Department, Clemson University, Clemson, SC 29634, USA
| | - O. Thompson Mefford
- 301 Rhodes Engineering Research Center, Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Materials Science & Engineering Department, Clemson University, Clemson, SC 29634, USA
| | - Jiro Nagatomi
- 301 Rhodes Engineering Research Center, Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
24
|
Peng T, Shi Q, Chen M, Yu W, Yang T. Antibacterial-Based Hydrogel Coatings and Their Application in the Biomedical Field-A Review. J Funct Biomater 2023; 14:jfb14050243. [PMID: 37233353 DOI: 10.3390/jfb14050243] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels exhibit excellent moldability, biodegradability, biocompatibility, and extracellular matrix-like properties, which make them widely used in biomedical fields. Because of their unique three-dimensional crosslinked hydrophilic networks, hydrogels can encapsulate various materials, such as small molecules, polymers, and particles; this has become a hot research topic in the antibacterial field. The surface modification of biomaterials by using antibacterial hydrogels as coatings contributes to the biomaterial activity and offers wide prospects for development. A variety of surface chemical strategies have been developed to bind hydrogels to the substrate surface stably. We first introduce the preparation method for antibacterial coatings in this review, which includes surface-initiated graft crosslinking polymerization, anchoring the hydrogel coating to the substrate surface, and the LbL self-assembly technique to coat crosslinked hydrogels. Then, we summarize the applications of hydrogel coating in the biomedical antibacterial field. Hydrogel itself has certain antibacterial properties, but the antibacterial effect is not sufficient. In recent research, in order to optimize its antibacterial performance, the following three antibacterial strategies are mainly adopted: bacterial repellent and inhibition, contact surface killing of bacteria, and release of antibacterial agents. We systematically introduce the antibacterial mechanism of each strategy. The review aims to provide reference for the further development and application of hydrogel coatings.
Collapse
Affiliation(s)
- Tai Peng
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| | - Qi Shi
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| | - Manlong Chen
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
| | - Wenyi Yu
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| | - Tingting Yang
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
25
|
Wei D, Huang Y, Liang M, Ren P, Tao Y, Xu L, Zhang T, Ji Z, Zhang Q. Polypropylene composite hernia mesh with anti-adhesion layer composed of PVA hydrogel and liposomes drug delivery system. Colloids Surf B Biointerfaces 2023; 223:113159. [PMID: 36736174 DOI: 10.1016/j.colsurfb.2023.113159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Polypropylene (PP) mesh has been widely used in hernia repair as prosthesis material owing to its excellent balanced biocompatibility and mechanical properties. However, abdominal adhesion between the visceral and PP mesh is still a major problem. Therefore, anti-adhesive PP mesh was designed with poly(vinyl alcohol) (PVA) hydrogel and liposomes drug delivery system. First, PVA hydrogel coating was formed on the surface of PP mesh with freezing-thawing processing cycles (FTP). Subsequently, the lyophilized PVA10-c-PP was immersed in rapamycin (RPM)-loaded liposome solution until swelling equilibrated to obtain the anti-adhesion mesh RPM@LPS/PVA10-c-PP. It was demonstrated that the hydrogel coating can stably fix on the surface of PP mesh even after immersed in PBS solution at 37 °C or 40 °C for up to 30 days. In vitro cell tests revealed the excellent cytocompatibility and the potential to inhibit cell adhesion of the modified PP mesh. Moreover, the anti-adhesive effects of the RPM@LPS/PVA10-c-PP mesh was evaluated through in vivo experiments. The RPM@LPS/PVA10-c-PP mesh exhibited less adhesion than original PP mesh throughout the duration of implantation. At 30 days, the adhesion score of RPM@LPS/PVA10-c-PP mesh was 1.37 ± 0.75, however the original PP was 3 ± 0.71. Furthermore, the results of H&E and Masson trichrome staining proved that the RPM@LPS/PVA10-c-PP mesh showed slighter inflammation response and significant looser fibrous tissue surrounded the PP filaments as compared to the native PP. The current findings manifested that this type of RPM@LPS/PVA10-c-PP might be a potential candidate for anti-adhesion treatment. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- Dandan Wei
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yulin Huang
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Min Liang
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Pengfei Ren
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yinghua Tao
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Li Xu
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tianzhu Zhang
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhenling Ji
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Qianli Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
26
|
Belousov AM, Armashov VP, Shkarupa DD, Anushchenko TY, Filipenko TS, Zhukovskiy VA, Matveev NL. [Safety of mesh with fluoropolymer coating during intra-abdominal placement in large animals: results of the pilot study]. Khirurgiia (Mosk) 2023:43-58. [PMID: 36748870 DOI: 10.17116/hirurgia202302143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE When performing laparoscopic intraperitoneal hernioplasty (IPOM), endoprostheses made of fluoropolymers are often used. However, there is no data in the literature on the intra-abdominal use of inexpensive polyester prostheses with a fluoropolymer coating compared to composite implants. Thus, the aim of the pilot study was a preliminary assessment of the safety profile of FTOREX mesh endoprostheses during intra-abdominal placement in large animals. MATERIAL AND METHODS 6 endoprostheses were installed laparoscopically intraperitoneally in each of the 3 pigs: 1) FTOREX; 2) FTOREX with a layer of carboxymethylcellulose; 3) REPEREN-16-2; 4) SYMBOTEX; 5) VENTRALIGHT ST; 6) decellularized pork peritoneum. Fixation was performed with a herniator, transfascial sutures were not used. Relaparoscopy was performed after 45 days, and withdrawal from the experiment was performed after 90 days. Performance characteristics, signs of deformation and retraction, parameters of spike formation were evaluated. RESULTS All the animals survived, no complications were observed. There were no clinical manifestations or behavioral reactions indicating the presence of adhesions. The most convenient to use were the SYMBOTEX and FTOREX implants (5.0 points each). By the end of the experiment, deformation and retraction were noted in both variants of the FTOREX implants and the REPEREN prosthesis. These changes were completely absent only when using the SYMBOTEX endoprosthesis. According to the number of implants with adhesions, by the end of the observation, both variants of FTOREX prostheses occupied an intermediate position between the Reference (the worst indicator) and VENTRALIGHT ST (the best indicator). However, both FTOREX endoprostheses showed the best performance among all implants in the integral assessment of adhesions, as well as in terms of parameters such as the area and appearance of adhesions, and in terms of the strength of the joints, they were second only to the VENTRALIGHT ST endoprosthesis (0.67 vs. 0.5 points). During the study, there was no reliable dependence of deformation, retraction and adhesion formation indicators on the type of implant. CONCLUSION The results of the pilot study showed that all the implants used did not cause any clinically significant adverse reactions or complications. FTOREX endoprostheses with their intraperitoneal installation have anti-adhesive properties that are not inferior to VENTRALIGHT ST or SYMBOTEX composite implants. However, having less rigidity, they are more often deformed and subjected to retraction.
Collapse
Affiliation(s)
- A M Belousov
- St. Petersburg University's, St. Petersburg, Russia
| | - V P Armashov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - D D Shkarupa
- St. Petersburg University's, St. Petersburg, Russia
| | | | | | | | - N L Matveev
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
27
|
Nikam SP, Hsu YH, Marks JR, Mateas C, Brigham NC, McDonald SM, Guggenheim DS, Ruppert D, Everitt JI, Levinson H, Becker ML. Anti-adhesive bioresorbable elastomer-coated composite hernia mesh that reduce intraperitoneal adhesions. Biomaterials 2023; 292:121940. [PMID: 36493714 DOI: 10.1016/j.biomaterials.2022.121940] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022]
Abstract
Intraperitoneal adhesions (IAs) are a major complication arising from abdominal repair surgeries, including hernia repair procedures. Herein, we fabricated a composite mesh device using a macroporous monofilament polypropylene mesh and a degradable elastomer coating designed to meet the requirements of this clinical application. The degradable elastomer was synthesized using an organo-base catalyzed thiol-yne addition polymerization that affords independent control of degradation rate and mechanical properties. The elastomeric coating was further enhanced by the covalent tethering of antifouling zwitterion molecules. Mechanical testing demonstrated the elastomer forms a robust coating on the polypropylene mesh does not exhibit micro-fractures, cracks or mechanical delamination under cyclic fatigue testing that exceeds peak abdominal loads (50 N/cm). Quartz crystal microbalance measurements showed the zwitterionic functionalized elastomer further reduced fibrinogen adsorption by 73% in vitro when compared to unfunctionalized elastomer controls. The elastomer exhibited degradation with limited tissue response in a 10-week murine subcutaneous implantation model. We also evaluated the composite mesh in an 84-day study in a rabbit cecal abrasion hernia adhesion model. The zwitterionic composite mesh significantly reduced the extent and tenacity of IAs by 94% and 90% respectively with respect to uncoated polypropylene mesh. The resulting composite mesh device is an excellent candidate to reduce complications related to abdominal repair through suppressed fouling and adhesion formation, reduced tissue inflammation, and appropriate degradation rate.
Collapse
Affiliation(s)
- Shantanu P Nikam
- Department of Chemistry, Duke University, Durham, NC, 27708, United States; Department of Polymer Science, The University of Akron, Akron, OH 44325, United States
| | - Yen-Hao Hsu
- Department of Chemistry, Duke University, Durham, NC, 27708, United States; Department of Polymer Science, The University of Akron, Akron, OH 44325, United States
| | - Jessica R Marks
- Department of Chemistry, Duke University, Durham, NC, 27708, United States
| | - Catalin Mateas
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| | - Natasha C Brigham
- Department of Chemistry, Duke University, Durham, NC, 27708, United States
| | | | - Dana S Guggenheim
- Department of Chemistry, Duke University, Durham, NC, 27708, United States
| | - David Ruppert
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| | - Jeffrey I Everitt
- Department of Pathology, Duke University, Durham, NC, 27708, United States
| | - Howard Levinson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States.
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, NC, 27708, United States; Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, United States; Department of Orthopaedic Surgery, Duke University, Durham, NC, 27708, United States; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States.
| |
Collapse
|
28
|
Belousov AM, Armashov VP, Shkarupa DD, Anushchenko TY, Filipenko TS, Blum NM, Potapov PA, Timofeeva KO, Putulyan AA, Matveev NL. [Histological changes in intraperitoneal onlay mesh (IPOM) with synthetic and biological meshes. Results of the chronic experiment]. Khirurgiia (Mosk) 2023:37-50. [PMID: 37379404 DOI: 10.17116/hirurgia202307137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
OBJECTIVE The objective of the study was to analyze histological changes in the site of the meshes FTOREX, FTOREX coated with carboxymethylcellulose, Ventralight ST, Symbotex, REPEREN-16-2 and decellularized porcine peritoneum on the parietal peritoneum of the pig. MATERIAL AND METHODS At laparoscopy, 6 different meshes were placed intraperitoneally in each of the 3 pigs. After 90 days, the animals were taken out of the experiment. After staining with hematoxylin and eosin, quantitative morphometry and counting the number of vessels and cells in the interstitium in the areas of the mesh and peritoneum were performed. An immunohistochemical study with an antibody to pancytokeratins assessed the state of the initial peritoneum and neoperitoneum. RESULTS According to morphological characteristics, the meshes were divided into 3 groups: 1) with fluoropolymer coating FTOREX, 2) Ventralight ST and Symbotex, 3) REPEREN and decellularized peritoneum. In group 1, the surface area of the mesh threads was optimal in terms of the arrangement and arrangement of the threads relative to each other. This contributed to the formation of a relatively dense fibrous framework and a place to preserve the underlying peritoneum involved in the formation of the neoperitoneum. Despite the smallest surface area of the threads, in group 3, the greatest fibroblastic reaction was noted. Inflammatory changes were the least pronounced in group 1. They were the greatest in group 3, where there was a pronounced leukocyte reaction, combined with the processes of metaplasia, the development of fibrinoid necrosis, and the progression of the secondary inflammatory process. In group 1, the optimal ratio of newly formed vessels was noted, in group 2 - veins prevailed over arteries, in group 3 - the number of vessels was minimal. Immunohistochemical study showed that in group 1, mesothelial cells covered almost the entire surface of the implant, and there were also areas of preserved basic peritoneum. In group 2, mesothelium also covered most of the surface of the meshes, but the underlying peritoneum was absent. In group 3, on the contrary, a significant number of extended areas not covered with mesothelium were revealed. CONCLUSION The conducted morphological and morphometric study showed that the most balanced ratio of the components of the newly formed fibrous tissue and blood vessels is observed when using implants with a fluoropolymer coating FTOREX. At the same time, the remaining basic peritoneum actively participated in the formation of the neoperitoneum. The Ventralight ST and Symbotex meshes also contributed to the formation of a full-fledged fibrous tissue and adequate vascular proliferation, however, they prevented the preservation of the underlying peritoneum, which practically excluded its participation in the formation of the neoperitoneum. The REPEREN mesh and decellularized porcine peritoneum led to the least balanced cell and vascular proliferation and the greatest fibroplastic reaction, which could further negatively affect the state of the formed scar.
Collapse
Affiliation(s)
- A M Belousov
- St. Petersburg State University Hospital, St. Petersburg, Russia
| | - V P Armashov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - D D Shkarupa
- St. Petersburg State University Hospital, St. Petersburg, Russia
| | | | | | - N M Blum
- S.M. Kirov Military Medical Academy, St. Petersburg, Russia
| | - P A Potapov
- Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - K O Timofeeva
- St. Petersburg State University Hospital, St. Petersburg, Russia
| | - A A Putulyan
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - N L Matveev
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
29
|
Sivaraj D, Fischer KS, Kim TS, Chen K, Tigchelaar SS, Trotsyuk AA, Gurtner GC, Lee GK, Henn D, Nazerali RS. Outcomes of Biosynthetic and Synthetic Mesh in Ventral Hernia Repair. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2022; 10:e4707. [PMID: 36530858 PMCID: PMC9746774 DOI: 10.1097/gox.0000000000004707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
The introduction of mesh for reinforcement of ventral hernia repair (VHR) led to a significant reduction in hernia recurrence rates. However, it remains controversial whether synthetic or biologic mesh leads to superior outcomes. Recently, hybrid mesh consisting of reinforced biosynthetic ovine rumen (RBOR) has been developed and aims to combine the advantages of biologic and synthetic mesh; however, outcomes after VHR with RBOR have not yet been compared with the standard of care. Methods We performed a retrospective analysis on 109 patients, who underwent VHR with RBOR (n = 50) or synthetic polypropylene mesh (n = 59). Demographic characteristics, comorbidities, postoperative complications, and recurrence rates were analyzed and compared between the groups. Multivariate logistic regression models were fit to assess associations of mesh type with overall complications and surgical site occurrence (SSO). Results Patients who underwent VHR with RBOR were older (mean age 63.7 versus 58.8 years, P = 0.02) and had a higher rate of renal disease (28.0 versus 10.2%, P = 0.01) compared with patients with synthetic mesh. Despite an unfavorable risk profile, patients with RBOR had lower rates of SSO (16.0 versus 30.5%, P = 0.12) and similar hernia recurrence rates (4.0 versus 6.78%, P = 0.68) compared with patients with synthetic mesh. The use of synthetic mesh was significantly associated with higher odds for overall complications (3.78, P < 0.05) and SSO (3.87, P < 0.05). Conclusion Compared with synthetic polypropylene mesh, the use of RBOR for VHR mitigates SSO while maintaining low hernia recurrence rates at 30-month follow-up.
Collapse
Affiliation(s)
- Dharshan Sivaraj
- From the Division of Plastic and Reconstructive Surgery, Stanford University Medical Center, Stanford, Calif
| | - Katharina S. Fischer
- From the Division of Plastic and Reconstructive Surgery, Stanford University Medical Center, Stanford, Calif
| | - Trudy S. Kim
- From the Division of Plastic and Reconstructive Surgery, Stanford University Medical Center, Stanford, Calif
| | - Kellen Chen
- From the Division of Plastic and Reconstructive Surgery, Stanford University Medical Center, Stanford, Calif
| | - Seth S. Tigchelaar
- From the Division of Plastic and Reconstructive Surgery, Stanford University Medical Center, Stanford, Calif
| | - Artem A. Trotsyuk
- From the Division of Plastic and Reconstructive Surgery, Stanford University Medical Center, Stanford, Calif
| | - Geoffrey C. Gurtner
- From the Division of Plastic and Reconstructive Surgery, Stanford University Medical Center, Stanford, Calif
| | - Gordon K. Lee
- From the Division of Plastic and Reconstructive Surgery, Stanford University Medical Center, Stanford, Calif
| | - Dominic Henn
- From the Division of Plastic and Reconstructive Surgery, Stanford University Medical Center, Stanford, Calif
| | - Rahim S. Nazerali
- From the Division of Plastic and Reconstructive Surgery, Stanford University Medical Center, Stanford, Calif
| |
Collapse
|
30
|
Agapov MA, Kakotkin VV, Yudina VD, Kadrev AV, Garmanova TN. DEVELOPMENT OF THE TAILORED APPROACH IN INGUINAL HERNIA REPAIR. SURGICAL PRACTICE 2022. [DOI: 10.38181/2223-2427-2022-2-5-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the study is to evaluate the effectiveness of a personalized algorithm for determining the technique of surgical treatment of inguinal hernias, which allows choosing the optimal operational tactics (its modifications) depending on the anthropometric, clinical, instrumental data of the patient.In the course of the study, the results of the application of a clinical algorithm in the Medical research and Educational center of Lomonosov Moscow State University for patients with unilateral non-incarcerated symptomatic inguinal hernias were analyzed. The frequencies of the main postoperative adverse outcomes of the research group were compared using the algorithm and patients of the German Herniamed Hernia Register, for whom only standard principles of surgical intervention selection are applied, the main provisions of the recommendations of the international HerniaSurge Group of experts. In some cases individual exceptional factors of patients were taken into account.The frequency of chronic pain and pain requiring repeated surgery was significantly lower than the average frequencies of the German Herniamed register (13.8% vs 28.7% (p<0.00001) and 0.99% vs 3.8% (p=0.0103) respectively). At the same time, the frequency of adverse outcomes, such as relapses and early postoperative complications, is similar to international population data.
Collapse
Affiliation(s)
- M. A. Agapov
- Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University (Lomonosov MSU)
| | - V. V. Kakotkin
- Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University (Lomonosov MSU)
| | - V. D. Yudina
- Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University (Lomonosov MSU)
| | - A. V. Kadrev
- Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University (Lomonosov MSU)
| | - T. N. Garmanova
- Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University (Lomonosov MSU)
| |
Collapse
|
31
|
Ding X, Zhu J, Liu A, Guo Q, Cao Q, Xu Y, Hua Y, Yang Y, Li P. Preparation and Biocompatibility Study of Contrast-Enhanced Hernia Mesh Material. Tissue Eng Regen Med 2022; 19:703-715. [PMID: 35612710 DOI: 10.1007/s13770-022-00460-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Meshes play a crucial role in hernia repair. However, the displacement of mesh inevitably leads to various associated complications. This process is difficult to be traced by conventional imaging means. The purpose of this study is to create a contrast-enhanced material with high-density property that can be detected by computed tomography (CT). METHODS The contrast-enhanced monofilament was manufactured from barium sulfate nanoparticles and medical polypropylene (PP/Ba). To characterize the composite, stress tensile tests and scanning electron microscopy (SEM) was performed. Toxicity and biocompatibility of PP/Ba materials was verified by in vitro cellular assays. Meanwhile, the inflammatory response was tested by protein adsorption assay. In addition, an animal model was established to demonstrate the long-term radiographic effect of the composite material in vivo. Subsequent pathological tests confirmed its in vivo compatibility. RESULTS The SEM revealed that the main component of the monofilament is carbon. In vitro cell experiments demonstrated that novel material does not affect cell activity and proliferation. Protein adsorption assays indicated that the contrast-enhanced material does not cause additional inflammatory responses. In addition, in vivo experiments illustrated that PP/Ba mesh can be detected by CT and has good in vivo compatibility. CONCLUSION These results highlight the excellent biocompatibility of the contrast-enhanced material, which is suitable for human abdominal wall tissue engineering.
Collapse
Affiliation(s)
- Xuzhong Ding
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Chongchuan District, Nantong, 226000, China
| | - Jiachen Zhu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, No. 19, Qixiu Road, Chongchuan District, Nantong, Jiangsu, China
| | - Anning Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Chongchuan District, Nantong, 226000, China
| | - Qiyang Guo
- Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Qing Cao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Chongchuan District, Nantong, 226000, China
| | - Yu Xu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Chongchuan District, Nantong, 226000, China
| | - Ye Hua
- Department of Imaging, Affiliated Hospital of Nantong University, Nantong, China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, No. 19, Qixiu Road, Chongchuan District, Nantong, Jiangsu, China.
| | - Peng Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Chongchuan District, Nantong, 226000, China.
| |
Collapse
|
32
|
A review of recent developments of polypropylene surgical mesh for hernia repair. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Pedersen DD, Kim S, Wagner WR. Biodegradable polyurethane scaffolds in regenerative medicine: Clinical translation review. J Biomed Mater Res A 2022; 110:1460-1487. [PMID: 35481723 DOI: 10.1002/jbm.a.37394] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
Abstract
Early explorations of tissue engineering and regenerative medicine concepts commonly utilized simple polyesters such as polyglycolide, polylactide, and their copolymers as scaffolds. These biomaterials were deemed clinically acceptable, readily accessible, and provided processability and a generally known biological response. With experience and refinement of approaches, greater control of material properties and integrated bioactivity has received emphasis and a broadened palette of synthetic biomaterials has been employed. Biodegradable polyurethanes (PUs) have emerged as an attractive option for synthetic scaffolds in a variety of tissue applications because of their flexibility in molecular design and ability to fulfill mechanical property objectives, particularly in soft tissue applications. Biodegradable PUs are highly customizable based on their composition and processability to impart tailored mechanical and degradation behavior. Additionally, bioactive agents can be readily incorporated into these scaffolds to drive a desired biological response. Enthusiasm for biodegradable PU scaffolds has soared in recent years, leading to rapid growth in the literature documenting novel PU chemistries, scaffold designs, mechanical properties, and aspects of biocompatibility. Despite the enthusiasm in the field, there are still few examples of biodegradable PU scaffolds that have achieved regulatory approval and routine clinical use. However, there is a growing literature where biodegradable PU scaffolds are being specifically developed for a wide range of pathologies and where relevant pre-clinical models are being employed. The purpose of this review is first to highlight examples of clinically used biodegradable PU scaffolds, and then to summarize the growing body of reports on pre-clinical applications of biodegradable PU scaffolds.
Collapse
Affiliation(s)
- Drake D Pedersen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
34
|
Mirel S, Pusta A, Moldovan M, Moldovan S. Antimicrobial Meshes for Hernia Repair: Current Progress and Perspectives. J Clin Med 2022; 11:jcm11030883. [PMID: 35160332 PMCID: PMC8836564 DOI: 10.3390/jcm11030883] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Recent advances in the development of biomaterials have given rise to new options for surgery. New-generation medical devices can control chemical breakdown and resorption, prevent post-operative adhesion, and stimulate tissue regeneration. For the fabrication of medical devices, numerous biomaterials can be employed, including non-degradable biomaterials (silicone, polypropylene, expanded polytetrafluoroethylene) or biodegradable polymers, including implants and three-dimensional scaffolds for tissue engineering, which require particular physicochemical and biological properties. Based on the combination of new generation technologies and cell-based therapies, the biocompatible and bioactive properties of some of these medical products can lead to progress in the repair of injured or harmed tissue and in tissue regeneration. An important aspect in the use of these prosthetic devices is the associated infection risk, due to the medical complications and socio-economic impact. This paper provides the latest achievements in the field of antimicrobial surgical meshes for hernia repair and discusses the perspectives in the development of these innovative biomaterials.
Collapse
Affiliation(s)
- Simona Mirel
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Alexandra Pusta
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
- Correspondence:
| | - Mihaela Moldovan
- Pediatric Surgery Department, Emergency Clinical Children’s Hospital, 400370 Cluj-Napoca, Romania;
| | - Septimiu Moldovan
- Surgery Department, Prof. Dr. O. Fodor Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| |
Collapse
|
35
|
Xu D, Fang M, Wang Q, Qiao Y, Li Y, Wang L. Latest Trends on the Attenuation of Systemic Foreign Body Response and Infectious Complications of Synthetic Hernia Meshes. ACS APPLIED BIO MATERIALS 2022; 5:1-19. [PMID: 35014826 DOI: 10.1021/acsabm.1c00841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Throughout the past few years, hernia incidence has remained at a high level worldwide, with more than 20 million people requiring hernia surgery each year. Synthetic hernia meshes play an important role, providing a microenvironment that attracts and harbors host cells and acting as a permanent roadmap for intact abdominal wall reconstruction. Nevertheless, it is still inevitable to cause not-so-trivial complications, especially chronic pain and adhesion. In long-term studies, it was found that the complications are mainly caused by excessive fibrosis from the foreign body reaction (FBR) and infection resulting from bacterial colonization. For a thorough understanding of their complex mechanism and providing a richer background for mesh development, herein, we discuss different clinical mesh products and explore the interactions between their structure and complications. We further explored progress in reducing mesh complications to provide varied strategies that are informative and instructive for mesh modification in different research directions. We hope that this work will spur hernia mesh designers to step up their efforts to develop more practical and accessible meshes by improving the physical structure and chemical properties of meshes to combat the increasing risk of adhesions, infections, and inflammatory reactions. We conclude that further work is needed to solve this pressing problem, especially in the analysis and functionalization of mesh materials, provided of course that the initial performance of the mesh is guaranteed.
Collapse
Affiliation(s)
- Danyao Xu
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Meiqi Fang
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Qian Wang
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yansha Qiao
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yan Li
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
36
|
Corduas F, Mathew E, McGlynn R, Mariotti D, Lamprou DA, Mancuso E. Melt-extrusion 3D printing of resorbable levofloxacin-loaded meshes: Emerging strategy for urogynaecological applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112523. [PMID: 34857302 DOI: 10.1016/j.msec.2021.112523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/28/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022]
Abstract
Current surgical strategies for the treatment of pelvic floor dysfunctions involve the placement of a polypropylene mesh into the pelvic cavity. However, polypropylene meshes have proven to have inadequate mechanical properties and have been associated to the arising of severe complications, such as infections. Furthermore, currently employed manufacturing strategies are unable to produce compliant and customisable devices. In this work, polycaprolactone has been used to produce resorbable levofloxacin-loaded meshes in two different designs (90° and 45°) via melt-extrusion 3D printing. Drug-loaded meshes were produced using a levofloxacin concentration of 0.5% w/w. Drug loaded meshes were successfully produced with highly reproducible mechanical and physico-chemical properties. Tensile test results showed that drug-loaded 45° meshes possessed a mechanical behaviour close to that of the vaginal tissue (E ≃ 8.32 ± 1.85 MPa), even after 4 weeks of accelerated degradation. Meshes released 80% of the loaded levofloxacin in the first 3 days and were capable of producing an inhibitory effect against S. Aureus and E. coli bacterial strains with an inhibition zone equal to 12.8 ± 0.45 mm and 15.8 ± 0.45 mm respectively. Thus, the strategy adopted in this work holds great promise for the manufacturing of custom-made surgical meshes with antibacterial properties.
Collapse
Affiliation(s)
- Francesca Corduas
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus -, Newtownabbey BT37 0QB, UK; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Essyrose Mathew
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Ruairi McGlynn
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus -, Newtownabbey BT37 0QB, UK
| | - Davide Mariotti
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus -, Newtownabbey BT37 0QB, UK
| | | | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus -, Newtownabbey BT37 0QB, UK.
| |
Collapse
|
37
|
Das P, Rajesh K, Lalzawmliana V, Bavya Devi K, Basak P, Lahiri D, Kundu B, Roy M, Nandi SK. Development and Characterization of Acellular Caprine Choncal Cartilage Matrix for Tissue Engineering Applications. Cartilage 2021; 13:1292S-1308S. [PMID: 31215790 PMCID: PMC8804783 DOI: 10.1177/1947603519855769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Because of poor regenerative capabilities of cartilage, reconstruction of similar rigidity and flexibility is difficult, challenging, and restricted. The aim of the present investigation was to develop cost-effective acellular xenogeneic biomaterial as cartilage substitution. Two novel biometrics have been developed using different chemical processes (Na-deoxycholate + SDS and GndHCl + NaOH) to decellularize caprine (goat) ear cartilage and further extensively characterized before preclinical investigation. Complete cell removal was ascertained by hematoxylin and eosin staining followed by DNA estimation. No adverse effect on extracellular matrix (ECM) was found by quantifying collagen and sulfated glycosaminoglycans (sGAG) content as well as collagen, sGAG and elastin staining. Results showed no drastic changes in ECM structure apart from desired sGAG loss. Scanning electron microscopy images confirmed cellular loss and unaltered orientation. Nano-indentation study on cartilage matrices indicated interesting output showing better results among decellularized groups. Increased elastic modulus and hardness indicated better stiffness and more active energy dissipation mechanism due to decellularization. Fluid uptake and retention property remained unchanged after decellularization as analyzed by swelling behavior study. Additionally, acellular materials were confirmed to be nonreactive and nonhemolytic as assessed by in vitro hemocompatibility study. In vivo study (up to 3 months) on rabbits showed no symptoms of graft rejection/ tissue necrosis, established through postoperative histology and biochemical analyses of tissue explants. With regard to size, shape, biomechanics, source of origin and nonimmunogenic properties, these developed materials can play versatile role in biomedical/ clinical applications and pave a new insight as alternatives in cartilage reconstruction.
Collapse
Affiliation(s)
- Piyali Das
- School of Biosciences and Engineering,
Jadavpur University, Kolkata, West Bengal, India
| | - Kanike Rajesh
- Department of Metallurgical and
Materials Engineering, Indian Institute of Technology, Roorkee, Uttarakhand,
India
| | - V. Lalzawmliana
- Department of Veterinary Surgery and
Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West
Bengal, India
| | - K. Bavya Devi
- Department of Metallurgical and
Materials Engineering, Indian Institute of Technology–Kharagpur, Kharagpur, West
Bengal, India
| | - Piyali Basak
- School of Biosciences and Engineering,
Jadavpur University, Kolkata, West Bengal, India
| | - Debrupa Lahiri
- Department of Metallurgical and
Materials Engineering, Indian Institute of Technology, Roorkee, Uttarakhand,
India
| | - Biswanath Kundu
- Bioceramics and Coating Division,
CSIR–Central Glass and Ceramic Research Institute, Kolkata, West Bengal, India
| | - Mangal Roy
- Department of Metallurgical and
Materials Engineering, Indian Institute of Technology–Kharagpur, Kharagpur, West
Bengal, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and
Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West
Bengal, India,Samit Kumar Nandi, Department of Veterinary
Surgery and Radiology, West Bengal University of Animal and Fishery Sciences,
37, K. B. Sarani, Kolkata 700037, West Bengal, India.
| |
Collapse
|
38
|
Pérez-Köhler B, Benito-Martínez S, Gómez-Gil V, Rodríguez M, Pascual G, Bellón JM. New Insights into the Application of 3D-Printing Technology in Hernia Repair. MATERIALS 2021; 14:ma14227092. [PMID: 34832493 PMCID: PMC8623842 DOI: 10.3390/ma14227092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022]
Abstract
Abdominal hernia repair using prosthetic materials is among the surgical interventions most widely performed worldwide. These materials, or meshes, are implanted to close the hernial defect, reinforcing the abdominal muscles and reestablishing mechanical functionality of the wall. Meshes for hernia repair are made of synthetic or biological materials exhibiting multiple shapes and configurations. Despite the myriad of devices currently marketed, the search for the ideal mesh continues as, thus far, no device offers optimal tissue repair and restored mechanical performance while minimizing postoperative complications. Additive manufacturing, or 3D-printing, has great potential for biomedical applications. Over the years, different biomaterials with advanced features have been successfully manufactured via 3D-printing for the repair of hard and soft tissues. This technological improvement is of high clinical relevance and paves the way to produce next-generation devices tailored to suit each individual patient. This review focuses on the state of the art and applications of 3D-printing technology for the manufacture of synthetic meshes. We highlight the latest approaches aimed at developing improved bioactive materials (e.g., optimizing antibacterial performance, drug release, or device opacity for contrast imaging). Challenges, limitations, and future perspectives are discussed, offering a comprehensive scenario for the applicability of 3D-printing in hernia repair.
Collapse
Affiliation(s)
- Bárbara Pérez-Köhler
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain; (B.P.-K.); (S.B.-M.)
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (V.G.-G.); (M.R.); (J.M.B.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Selma Benito-Martínez
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain; (B.P.-K.); (S.B.-M.)
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (V.G.-G.); (M.R.); (J.M.B.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Verónica Gómez-Gil
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (V.G.-G.); (M.R.); (J.M.B.)
- Departamento de Cirugía, Ciencias Médicas y Sociales, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Departamento de Ciencias Biomédicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Marta Rodríguez
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (V.G.-G.); (M.R.); (J.M.B.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Departamento de Cirugía, Ciencias Médicas y Sociales, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Gemma Pascual
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain; (B.P.-K.); (S.B.-M.)
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (V.G.-G.); (M.R.); (J.M.B.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Correspondence:
| | - Juan Manuel Bellón
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (V.G.-G.); (M.R.); (J.M.B.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Departamento de Cirugía, Ciencias Médicas y Sociales, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| |
Collapse
|
39
|
Ribeiro WG, Nascimento ACC, Ferreira LB, Marchi DDD, Rego GM, Maeda CT, Silva GEB, Artigiani Neto R, Torres OJM, Pitombo MB. Analysis of tissue inflammatory response, fibroplasia, and foreign body reaction between the polyglactin suture of abdominal aponeurosis in rats and the intraperitoneal implant of polypropylene, polypropylene/polyglecaprone and polyester/porcine collagen meshes. Acta Cir Bras 2021; 36:e360706. [PMID: 34495141 PMCID: PMC8428674 DOI: 10.1590/acb360706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/22/2021] [Indexed: 01/05/2023] Open
Abstract
Purpose To compare tissue inflammatory response, foreign body reaction, fibroplasia,
and proportion of type I/III collagen between closure of abdominal wall
aponeurosis using polyglactin suture and intraperitoneal implant of
polypropylene, polypropylene/polyglecaprone, and polyester/porcine collagen
meshes to repair defects in the abdominal wall of rats. Methods Forty Wistar rats were placed in four groups, ten animals each, for the
intraperitoneal implant of polypropylene, polypropylene/polyglecaprone, and
polyester/porcine collagen meshes or suture with polyglactin (sham) after
creation of defect in the abdominal wall. Twenty-one days later,
histological analysis was performed after staining with hematoxylin-eosin
and picrosirius red. Results The groups with meshes had a higher inflammation score (p < 0.05) and
higher number of gigantocytes (p < 0.05) than the sham group, which had a
better fibroplasia with a higher proportion of type I/III collagen than the
tissue separating meshes (p < 0.05). There were no statistically
significant differences between the three groups with meshes. Conclusions The intraperitoneal implant of polypropylene/polyglecaprone and
polyester/porcine collagen meshes determined a more intense tissue
inflammatory response with exuberant foreign body reaction, immature
fibroplasia and low tissue proportion of type I/III collagen compared to
suture with polyglactin of abdominal aponeurosis. However, there were no
significant differences in relation to the polypropylene mesh group.
Collapse
|
40
|
Moradi H, Beh Aein R, Youssef G. Multi-objective design optimization of dental implant geometrical parameters. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3511. [PMID: 34302714 DOI: 10.1002/cnm.3511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/23/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
In-silico investigations are becoming an integral part of the development of novel biomedical devices, including dental implants. Using computer simulations can streamline the process by tuning different geometrical and structural features, emphasizing the osseointegration of the implant design a priori, leading to the optimal designs in preparation for in-vivo trails. This research aims to elucidate the interrelationship between 12 geometrical variables that holistically define the shape of the implant. The approach to achieve optimality hinged on coupling the finite element analysis results with the fractional factorial design method. The latter was used to determine the most influential variables during the screening process, followed by the parameter optimization process using the response surface method, regarding four different objectives, namely: bone-implant contact area, volume of trabecular bone dead cells, volume of cortical bone dead cells, and axial displacement. This resulted in reducing the number of virtual experiments and substantially decreasing the computational cost without compromising the accuracy of the solution. It was found that the optimized values improved the performance significantly. The validity of all models was verified by comparing optimized responses with simulation results. A sensitivity analysis was performed on all five optimized models to address the effect of friction coefficient on the implant-bone joint interaction. It was shown that the mechanical behavior of implant-bone would be independent in higher friction coefficients. The significance of this study is demonstrated in determining the most effective and optimized values of all possible geometrical parameters considering their singular or interactive effects.
Collapse
Affiliation(s)
- Hamidreza Moradi
- Department of Mechanical Engineering and Engineering Science, The University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Roozbeh Beh Aein
- D.M.D. Department of Dentistry, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | - George Youssef
- Experimental Mechanics Laboratory, Mechanical Engineering Department, San Diego State University, California, USA
| |
Collapse
|
41
|
He W, Cao G, Gan X, Fan Y, Pei B, Li X. Evaluation methods for mechanical biocompatibility of hernia repair meshes: respective characteristics, application scope and future perspectives. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2021; 13:1826-1840. [DOI: 10.1016/j.jmrt.2021.05.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
|
42
|
Serrano-Aroca Á, Pous-Serrano S. Prosthetic meshes for hernia repair: State of art, classification, biomaterials, antimicrobial approaches, and fabrication methods. J Biomed Mater Res A 2021; 109:2695-2719. [PMID: 34021705 DOI: 10.1002/jbm.a.37238] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Worldwide, hernia repair represents one of the most frequent surgical procedures encompassing a global market valued at several billion dollars. This type of surgery usually requires the implantation of a mesh that needs the appropriate chemical, physical and biological properties for the type of repair. This review thus presents a description of the types of hernias, current hernia repair methods, and the state of the art of prosthetic meshes for hernia repair providing the most important meshes used in clinical practice by surgeons working in this area classified according to their biological or chemical nature, morphology and whether bioabsorbable or not. We emphasise the importance of surgical site infection in herniatology, how to deal with this microbial problem, and we go further into the future research lines on the production of advanced antimicrobial meshes to improve hernia repair and prevent microbial infections, including multidrug-resistant strains. A great deal of progress has been made in this biomedical field in the last decade. However, we are still far from an ideal antimicrobial mesh that can also provide excellent integration to the abdominal wall, mechanical performance, low visceral adhesion and minimal inflammatory or foreign body reactions, among many other problems.
Collapse
Affiliation(s)
- Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Salvador Pous-Serrano
- Surgical Unit of Abdominal Wall, Department of General and Digestive Surgery, La Fe University Hospital, Valencia, Spain
| |
Collapse
|
43
|
Raj R, Shenoy SJ, Mony MP, Pratheesh KV, Nair RS, Geetha CS, Sobhan PK, Purnima C, Anilkumar TV. Surface Modification of Polypropylene Mesh with a Porcine Cholecystic Extracellular Matrix Hydrogel for Mitigating Host Tissue Reaction. ACS APPLIED BIO MATERIALS 2021; 4:3304-3319. [DOI: 10.1021/acsabm.0c01627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Reshmi Raj
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Sachin J. Shenoy
- Division of In Vivo Models and Testing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Manjula P. Mony
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Kanakarajan V. Pratheesh
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Reshma S. Nair
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Chandrika S. Geetha
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Praveen K. Sobhan
- Division of Tissue Culture, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Chandramohanan Purnima
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Thapasimuthu V. Anilkumar
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
- School of Biology, Indian Institute of Science Education and Research—Thiruvananthapuram, Maruthamala, Vithura 695551, India
| |
Collapse
|
44
|
Increased Elasticity Modulus of Polymeric Materials Is a Source of Surface Alterations in the Human Body. J Funct Biomater 2021; 12:jfb12020024. [PMID: 33923414 PMCID: PMC8167751 DOI: 10.3390/jfb12020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
The introduction of alloplastic materials (meshes) in hernia surgery has improved patient outcome by a radical reduction of hernia recurrence rate, but discussion about the biocompatibility of these implanted materials continues since observations of surface alterations of polypropylene and other alloplastic materials were published. This study intends to investigate if additives supplemented to alloplastic mesh materials merge into the solution and become analyzable. Four polypropylene and one polyester alloplastic material were incubated in different media for three weeks: distilled water, saline solution, urea solution, formalin, and hydrogen peroxide. No swelling or other changes were observed. Infrared spectroscopy scanning of incubated alloplastic materials and NMR studies of extracted solutions were performed to investigate loss of plasticizers. The surface of the mesh materials did not show any alterations independent of the incubation medium. FT-IR spectra before and after incubation did not show any differences. NMR spectra showed leaching of different plasticizers (PEG, sterically hindered phenols, thioester), of which there was more for polypropylene less for polyester. This could be the reason for the loss of elasticity of the alloplastic materials with consecutive physically induced surface alterations. A mixture of chemical reactions (oxidative stress with additive leaching from polymer fiber) in connection with physical alterations (increased elasticity modulus by loss of plasticizers) seem to be a source of these PP and PE alterations.
Collapse
|
45
|
Liu Z, Wei N, Tang R. Functionalized Strategies and Mechanisms of the Emerging Mesh for Abdominal Wall Repair and Regeneration. ACS Biomater Sci Eng 2021; 7:2064-2082. [PMID: 33856203 DOI: 10.1021/acsbiomaterials.1c00118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Meshes have been the overwhelmingly popular choice for the repair of abdominal wall defects to retrieve the bodily integrity of musculofascial layer. Broadly, they are classified into synthetic, biological and composite mesh based on their mechanical and biocompatible features. With the development of anatomical repair techniques and the increasing requirements of constructive remodeling, however, none of these options satisfactorily manages the conditional repair. In both preclinical and clinical studies, materials/agents equipped with distinct functions have been characterized and applied to improve mesh-aided repair, with the importance of mesh functionalization being highlighted. However, limited information exists on systemic comparisons of the underlying mechanisms with respect to functionalized strategies, which are fundamental throughout repair and regeneration. Herein, we address this topic and summarize the current literature by subdividing common functions of the mesh into biomechanics-matched, macrophage-mediated, integration-enhanced, anti-infective and antiadhesive characteristics for a comprehensive overview. In particular, we elaborate their effects separately with respect to host response and integration and discuss their respective advances, challenges and future directions toward a clinical alternative. From the vastly different approaches, we provide insight into the mechanisms involved and offer suggestions for personalized modifications of these emerging meshes.
Collapse
Affiliation(s)
- Zhengni Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Nina Wei
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Rui Tang
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| |
Collapse
|
46
|
In vitro characterisation of low-cost synthetic meshes intended for hernia repair in the UK. Hernia 2021; 26:325-334. [PMID: 33797680 PMCID: PMC8881267 DOI: 10.1007/s10029-021-02401-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/17/2021] [Indexed: 11/20/2022]
Abstract
Purpose Low-cost meshes (LCM) were repurposed for the repair of hernias in the developing world. In vivo studies have shown LCM to have comparable results to commercial meshes (CM) at a fraction of the cost. However, little has been done to characterise the mechanical and biocompatible properties of LCM, preventing its clinical use in the UK. The objectives of the research are to assess mechanical and ultrastructural properties of two UK-sourced low-cost meshes (LCM) and the characterisation of the LCMs in vitro biocompatibility. Methods Mechanical properties of the two LCM were measured through uniaxial tensile test and ultrastructure was evaluated with Scanning Electron Microscopy. LIVE/DEAD® Viability/Cytotoxicity Assay kit and alamarBlue were used to assess cellular viability and proliferation, respectively. Images were acquired with a fluorescence microscope and analysed using ImageJ (NIH, USA). Results LCM1 and LCM2 were both multifilament meshes, with the first having smaller pores than the latter. LCM1 exhibited significantly higher tensile strength (p < 0.05) than LCM2 but significantly lower extensibility (p < 0.0001), while Young’s Modulus of the two samples was not significantly different. No significant difference was found in the cellular viability and morphology cultured in LCM1 and LCM2 conditioned media. Metabolic assay and fluorescence imaging showed cellular attachment and proliferation on both LCMs over 14 days. Conclusion The characterisation of the two UK-sourced LCMs showed in vitro biocompatibility and mechanical and ultrastructural properties comparable to the equivalent CM. This in vitro data represents a step forward for the feasibility of adopting LCM for surgical repair of hernias in the UK.
Collapse
|
47
|
The Role of Mesh Implants in Surgical Treatment of Parastomal Hernia. MATERIALS 2021; 14:ma14051062. [PMID: 33668318 PMCID: PMC7956701 DOI: 10.3390/ma14051062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022]
Abstract
A parastomal hernia is a common complication following stoma surgery. Due to the large number of hernial relapses and other complications, such as infections, adhesion to the intestines, or the formation of adhesions, the treatment of hernias is still a surgical challenge. The current standard for the preventive and causal treatment of parastomal hernias is to perform a procedure with the use of a mesh implant. Researchers are currently focusing on the analysis of many relevant options, including the type of mesh (synthetic, composite, or biological), the available surgical techniques (Sugarbaker’s, “keyhole”, or “sandwich”), the surgical approach used (open or laparoscopic), and the implant position (onlay, sublay, or intraperitoneal onlay mesh). Current surface modification methods and combinations of different materials are actively explored areas for the creation of biocompatible mesh implants with different properties on the visceral and parietal peritoneal side. It has been shown that placing the implant in the sublay and intraperitoneal onlay mesh positions and the use of a specially developed implant with a 3D structure are associated with a lower frequency of recurrences. It has been shown that the prophylactic use of a mesh during stoma formation significantly reduces the incidence of parastomal hernias and is becoming a standard method in medical practice.
Collapse
|
48
|
Afewerki S, Bassous N, Harb SV, Corat MAF, Maharjan S, Ruiz-Esparza GU, de Paula MMM, Webster TJ, Tim CR, Viana BC, Wang D, Wang X, Marciano FR, Lobo AO. Engineering multifunctional bactericidal nanofibers for abdominal hernia repair. Commun Biol 2021; 4:233. [PMID: 33608611 PMCID: PMC7896057 DOI: 10.1038/s42003-021-01758-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
The engineering of multifunctional surgical bactericidal nanofibers with inherent suitable mechanical and biological properties, through facile and cheap fabrication technology, is a great challenge. Moreover, hernia, which is when organ is pushed through an opening in the muscle or adjacent tissue due to damage of tissue structure or function, is a dire clinical challenge that currently needs surgery for recovery. Nevertheless, post-surgical hernia complications, like infection, fibrosis, tissue adhesions, scaffold rejection, inflammation, and recurrence still remain important clinical problems. Herein, through an integrated electrospinning, plasma treatment and direct surface modification strategy, multifunctional bactericidal nanofibers were engineered showing optimal properties for hernia repair. The nanofibers displayed good bactericidal activity, low inflammatory response, good biodegradation, as well as optimal collagen-, stress fiber- and blood vessel formation and associated tissue ingrowth in vivo. The disclosed engineering strategy serves as a prominent platform for the design of other multifunctional materials for various biomedical challenges.
Collapse
Affiliation(s)
- Samson Afewerki
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Health Sciences and Technology, Harvard University ‒ Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Nicole Bassous
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Samarah Vargas Harb
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marcus Alexandre F Corat
- Multidisciplinary Center for Biological Research, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Harvard University ‒ Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guillermo U Ruiz-Esparza
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Harvard University ‒ Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mirian M M de Paula
- Multidisciplinary Center for Biological Research, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Thomas J Webster
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Bartolomeu Cruz Viana
- LIMAV - Interdisciplinary Laboratory for Advanced Materials, Materials Science & Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina, Piaui, Brazil
- Department of Physics, Federal University of Piaui, Teresina, Piaui, Brazil
| | - Danquan Wang
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Xichi Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Harvard University ‒ Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fernanda Roberta Marciano
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Department of Physics, Federal University of Piaui, Teresina, Piaui, Brazil
| | - Anderson Oliveira Lobo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Health Sciences and Technology, Harvard University ‒ Massachusetts Institute of Technology, Cambridge, MA, USA.
- LIMAV - Interdisciplinary Laboratory for Advanced Materials, Materials Science & Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina, Piaui, Brazil.
- Department of Chemistry, Massachusetts Institute of Technology, MIT, Cambridge, MA, USA.
| |
Collapse
|
49
|
Liu W, Xie Y, Zheng Y, He W, Qiao K, Meng H. Regulatory science for hernia mesh: Current status and future perspectives. Bioact Mater 2021; 6:420-432. [PMID: 32995670 PMCID: PMC7490592 DOI: 10.1016/j.bioactmat.2020.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/16/2020] [Accepted: 08/23/2020] [Indexed: 11/25/2022] Open
Abstract
Regulatory science for medical devices aims to develop new tools, standards and approaches to assess the safety, effectiveness, quality and performance of medical devices. In the field of biomaterials, hernia mesh is a class of implants that have been successfully translated to clinical applications. With a focus on hernia mesh and its regulatory science system, this paper collected and reviewed information on hernia mesh products and biomaterials in both Chinese and American markets. The current development of regulatory science for hernia mesh, including its regulations, standards, guidance documents and classification, and the scientific evaluation of its safety and effectiveness was first reported. Then the research prospect of regulatory science for hernia mesh was discussed. New methods for the preclinical animal study and new tools for the evaluation of the safety and effectiveness of hernia mesh, such as computational modeling, big data platform and evidence-based research, were assessed. By taking the regulatory science of hernia mesh as a case study, this review provided a research basis for developing a regulatory science system of implantable medical devices, furthering the systematic evaluation of the safety and effectiveness of medical devices for better regulatory decision-making. This was the first article reviewing the regulatory science of hernia mesh and biomaterial-based implants. It also proposed and explained the concepts of evidence-based regulatory science and technical review for the first time.
Collapse
Affiliation(s)
- Wenbo Liu
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
- Center for Medical Device Evaluation, National Medical Products Administration, Intellectual Property Publishing House Mansion, Qixiang Road, Haidian District, Beijing, China
| | - Yajie Xie
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
| | - Wei He
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
| | - Kun Qiao
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
| | - Haoye Meng
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
| |
Collapse
|
50
|
Next-generation surgical meshes for drug delivery and tissue engineering applications: materials, design and emerging manufacturing technologies. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00108-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Surgical meshes have been employed in the management of a variety of pathological conditions including hernia, pelvic floor dysfunctions, periodontal guided bone regeneration, wound healing and more recently for breast plastic surgery after mastectomy. These common pathologies affect a wide portion of the worldwide population; therefore, an effective and enhanced treatment is crucial to ameliorate patients’ living conditions both from medical and aesthetic points of view. At present, non-absorbable synthetic polymers are the most widely used class of biomaterials for the manufacturing of mesh implants for hernia, pelvic floor dysfunctions and guided bone regeneration, with polypropylene and poly tetrafluoroethylene being the most common. Biological prostheses, such as surgical grafts, have been employed mainly for breast plastic surgery and wound healing applications. Despite the advantages of mesh implants to the treatment of these conditions, there are still many drawbacks, mainly related to the arising of a huge number of post-operative complications, among which infections are the most common. Developing a mesh that could appropriately integrate with the native tissue, promote its healing and constructive remodelling, is the key aim of ongoing research in the area of surgical mesh implants. To this end, the adoption of new biomaterials including absorbable and natural polymers, the use of drugs and advanced manufacturing technologies, such as 3D printing and electrospinning, are under investigation to address the previously mentioned challenges and improve the outcomes of future clinical practice. The aim of this work is to review the key advantages and disadvantages related to the use of surgical meshes, the main issues characterizing each clinical procedure and the future directions in terms of both novel manufacturing technologies and latest regulatory considerations.
Graphic abstract
Collapse
|