1
|
Li W, Li L, Hu J, Zhou D, Su H. Design and Applications of Supramolecular Peptide Hydrogel as Artificial Extracellular Matrix. Biomacromolecules 2024; 25:6967-6986. [PMID: 39418328 DOI: 10.1021/acs.biomac.4c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Supramolecular peptide hydrogels (SPHs) consist of peptides containing hydrogelators and functional epitopes, which can first self-assemble into nanofibers and then physically entangle together to form dynamic three-dimensional networks. Their porous structures, excellent bioactivity, and high dynamicity, similar to an extracellular matrix (ECM), have great potential in artificial ECM. The properties of the hydrogel are largely dependent on peptides. The noncovalent interactions among hydrogelators drive the formation of assemblies and further transition into hydrogels, while bioactive epitopes modulate cell-cell and cell-ECM interactions. Therefore, SPHs can support cell growth, making them ideal biomaterials for ECM mimics. This Review outlines the classical molecular design of SPHs from hydrogelators to functional epitopes and summarizes the recent advancements of SPHs as artificial ECMs in nervous system repair, wound healing, bone and cartilage regeneration, and organoid culture. This emerging SPH platform could provide an alternative strategy for developing more effective biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Wenting Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jiale Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Skrinda-Melne M, Locs J, Grava A, Dubnika A. Calcium phosphates enhanced with liposomes - the future of bone regeneration and drug delivery. J Liposome Res 2024; 34:507-522. [PMID: 37988074 DOI: 10.1080/08982104.2023.2285973] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Effective healing and regeneration of various bone defects is still a major challenge and concern in modern medicine. Calcium phosphates have emerged as extensively studied bone substitute materials due to their structural and chemical resemblance to the mineral phase of bone, along with their versatile properties. Calcium phosphates present promising biological characteristics that make them suitable for bone substitution, but a critical limitation lies in their low osteoinductivity. To supplement these materials with properties that promote bone regeneration, prevent infections, and cure bone diseases locally, calcium phosphates can be biologically and therapeutically modified. A promising approach involves combining calcium phosphates with drug-containing liposomes, renowned for their high biocompatibility and ability to provide controlled and sustained drug delivery. Surprisingly, there is a lack of research focused on liposome-calcium phosphate composites, where liposomes are dispersed within a calcium phosphate matrix. This raises the question of why such studies are limited. In order to provide a comprehensive overview of existing liposome and calcium phosphate composites as bioactive substance delivery systems, the authors review the literature exploring the interactions between calcium phosphates and liposomes. Additionally, it seeks to identify potential interactions between calcium ions and liposomes, which may impact the feasibility of developing liposome-containing calcium phosphate composite materials. Liposome capacity to protect bioactive compounds and facilitate localized treatment can be particularly valuable in scenarios involving bone regeneration, infection prevention, and the management of bone diseases. This review explores the implications of liposomes and calcium phosphate material containing liposomes on drug delivery, bioavailability, and stability, offering insights into their advantages.
Collapse
Affiliation(s)
- Marite Skrinda-Melne
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Andra Grava
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Arita Dubnika
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
3
|
Xu J, Wu D, Ge B, Li M, Yu H, Cao F, Wang W, Zhang Q, Yi P, Wang H, Song L, Liu L, Li J, Zhao D. Selective Laser Melting of the Porous Ta Scaffold with Mg-Doped Calcium Phosphate Coating for Orthopedic Applications. ACS Biomater Sci Eng 2024; 10:1435-1447. [PMID: 38330203 DOI: 10.1021/acsbiomaterials.3c01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Addressing the repair of large-scale bone defects has become a hot research topic within the field of orthopedics. This study assessed the feasibility and effectiveness of using porous tantalum scaffolds to treat such defects. These scaffolds, manufactured using the selective laser melting (SLM) technology, possessed biomechanical properties compatible with natural bone tissue. To enhance the osteogenesis bioactivity of these porous Ta scaffolds, we applied calcium phosphate (CaP) and magnesium-doped calcium phosphate (Mg-CaP) coatings to the surface of SLM Ta scaffolds through a hydrothermal method. These degradable coatings released calcium and magnesium ions, demonstrating osteogenic bioactivity. Experimental results indicated that the Mg-CaP group exhibited biocompatibility comparable to that of the Ta group in vivo and in vitro. In terms of osteogenesis, both the CaP group and the Mg-CaP group showed improved outcomes compared to the control group, with the Mg-CaP group demonstrating superior performance. Therefore, both CaP and magnesium-CaP coatings can significantly enhance the osseointegration of three-dimensional-printed porous Ta, thereby increasing the surface bioactivity. Overall, the present study introduces an innovative approach for the biofunctionalization of SLM porous Ta, aiming to enhance its suitability as a bone implant material.
Collapse
Affiliation(s)
- Jianfeng Xu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Di Wu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Bing Ge
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Maoyuan Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Haiyu Yu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Fang Cao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Weidan Wang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Qing Zhang
- Integrative Laboratory, Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Pinqiao Yi
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Haiyao Wang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Liqun Song
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Lingpeng Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Junlei Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| |
Collapse
|
4
|
Isler SC, Bellon B, Foss M, Pippenger B, Stavropoulos A, Andersen OZ. Assessing the osseointegration potential of a strontium releasing nanostructured titanium oxide surface: A biomechanical study in the rabbit tibia plateau model. Clin Exp Dent Res 2024; 10:e812. [PMID: 38044566 PMCID: PMC10860460 DOI: 10.1002/cre2.812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023] Open
Abstract
OBJECTIVES To investigate the impact of a Ti-Sr-O technology, applied to either a turned surface or an SLA surface, on the mechanical robustness of osseointegration, benchmarked against the SLActive surface. MATERIAL AND METHODS Ti discs (6.25-mm-diameter and 2-mm-thick) with three different surfaces were inserted on the proximal-anterior part of the tibial plateau of adult Swedish loop rabbits: (I) turned surface modified with Ti-Sr-O (turned + Ti-Sr-O), (II) SLA surface modified with Ti-Sr-O (SLA + Ti-Sr-O), and (III) SLActive surface (SLActive). Following a healing period of 2 weeks and 4 weeks, the pull-out (PO) force needed to detach the discs from the bone was assessed, as a surrogate of osseointegration. RESULTS The SLActive surface exhibited statistically significant higher median PO forces, compared with the SLA + Ti-Sr-O surfaces at both 2- and 4 weeks post-op (p > .05). In this study, no single turned + Ti-Sr-O surface disk was integrated. CONCLUSIONS The tested Ti-Sr-O technology failed to enhance osseointegration; however, this finding may be related to the inappropriateness of the rabbit tibia plateau model for assessing third-generation implant surface technologies, due to the limited diffusion and clearance at the disk-bone interface.
Collapse
Affiliation(s)
- Sila Cagri Isler
- Department of Periodontology, School of Dental MedicineUniversity of BernBernSwitzerland
- Department of Periodontology, Faculty of DentistryGazi UniversityAnkaraTurkey
| | - Benjamin Bellon
- Preclinical & Translational ResearchInstitut Straumann AGBaselSwitzerland
- Department of Periodontology, Faculty of DentistryUniversity of ZurichZurichSwitzerland
| | - Morten Foss
- iNANO and Department of Physics and AstronomyScience and TechnologyAarhusDenmark
| | - Benjamin Pippenger
- Department of Periodontology, School of Dental MedicineUniversity of BernBernSwitzerland
- Preclinical & Translational ResearchInstitut Straumann AGBaselSwitzerland
| | - Andreas Stavropoulos
- Department of Periodontology, School of Dental MedicineUniversity of BernBernSwitzerland
- Department of Periodontology, Faculty of OdontologyMalmö UniversityMalmöSweden
- Division of Conservative Dentistry and Periodontology, University Clinic of DentistryMedical University of ViennaViennaAustria
| | - Ole Zoffmann Andersen
- Department of Periodontology, School of Dental MedicineUniversity of BernBernSwitzerland
- Preclinical & Translational ResearchInstitut Straumann AGBaselSwitzerland
| |
Collapse
|
5
|
Li TT, Wang S, Li J, Zhang Y, Liu X, Liu L, Peng HK, Ren HT, Ling L, Lin JH, Lou CW. Braided scaffolds with polypyrrole/polydopamine/hydroxyapatite coatings with electrical conductivity and osteogenic properties for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2498-2515. [PMID: 37795599 DOI: 10.1080/09205063.2023.2265134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023]
Abstract
When impaired bones are grafted with bone scaffolds, the behaviors of osteoblast are dependent on the implant materials and surface morphology. To this end, we modulated the surface morphology of scaffolds that promote cell growth. In this study, ice-template and spraying method methods are employed to coat different proportions of PDA and PPy over the PLA/PVA weaving scaffolds, after which HA is Coated over via the electrochemical deposition, forming weaving scaffolds with electrically conductive PDA/PPy/HA coating. The test results indicate that with a PPy/PDA concentration ratio is 30, the PPy particles are more uniformly distributed on the fiber surface. The scaffolds are wrapped in a HA coating layer with a high purity, and calcium and phosphorus elements are evenly dispersed with a Ca/P ratio being 1.69. Owing to the synergistic effect between PDA and PPy coating, the scaffolds demonstrate excellent electrochemical stability and electrochemical activity. The biological activity of the scaffold increased to 274.66% under electrical stimulation. The new thinking proposed by this study extends the worth of applying textile structure to the medical field, the application of which highly increases the prospect of bone tissue engineering.
Collapse
Affiliation(s)
- Ting-Ting Li
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
| | - Shiqi Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Jiaxin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Ying Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Xing Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Liyan Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Hao-Kai Peng
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
| | - Hai-Tao Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
| | - Lei Ling
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, China
| | - Jia-Horng Lin
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
- College of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan
- Department of Medical Research, China Medical University Hospital China Medica University, Taichung City, Taiwan
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou, China
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City, Taiwan
- School of Chinese Medicine, China Medical University, Taichung City, Taiwan
| | - Ching-Wen Lou
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
- College of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan
- Department of Medical Research, China Medical University Hospital China Medica University, Taichung City, Taiwan
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou, China
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City, Taiwan
- School of Chinese Medicine, China Medical University, Taichung City, Taiwan
| |
Collapse
|
6
|
Ahmed S, Hussain R, Khan A, Batool SA, Mughal A, Nawaz MH, Irfan M, Wadood A, Avcu E, Rehman MAU. 3D Printing Assisted Fabrication of Copper-Silver Mesoporous Bioactive Glass Nanoparticles Reinforced Sodium Alginate/Poly(vinyl alcohol) Based Composite Scaffolds: Designed for Skin Tissue Engineering. ACS APPLIED BIO MATERIALS 2023; 6:5052-5066. [PMID: 37857344 DOI: 10.1021/acsabm.3c00726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Additive manufacturing (also known as 3D printing) is a promising method for producing patient-specific implants. In the present study, sodium alginate (Na-ALG)/poly(vinyl alcohol) (PVA) polymer blends of varying ratios (1:0, 3:1, 1:1, and 1:3) were used to produce tailored-designed skin scaffolds using a 3D bioprinter. Samples of skin scaffolds were printed at 20 layers with a layer height of 0.15 mm using a needle with an inner diameter of 330 μm while maintaining the extrusion speed, extrusion width, and fill density at 10 mm/s, 0.2 mm, and 85%, respectively. The Na-ALG/PVA blend with a 3:1 ratio showed the best printability due to its good viscosity and minimal nozzle leakage, allowing for the fabrication of skin scaffolds with high fidelity and the desired morphological characteristics. Then, copper-silver doped mesoporous bioactive glass nanoparticles (Cu-Ag MBGNs) were incorporated into the Na-ALG/PVA blend (which had already been prepared by using a Na-ALG:PVA ratio of 3:1) in order to obtain therapeutic (angiogenic and antibacterial) effects. The fabricated Na-ALG/PVA/Cu-Ag MBGNs biocomposite scaffolds with dimensions of 20 mm× 20 × 3 mm3 and pore size of 400 ± 60 μm exhibited a promising fidelity. The presence of chemical bonds attributed to Na-ALG, PVA, and Cu-Ag MBGNs and the uniform distribution of Na, C, and O elements within the microstructure of the scaffolds were confirmed by EDX, SEM, and FTIR analyses. The scaffolds were hydrophilic and exhibited proper swelling and degradation behavior for skin tissue engineering. According to the inhibition halo test, the scaffolds exhibited strong antibacterial activity against Staphylococcus aureus and Escherichia coli. The cytocompatibility to human-derived fibroblast cells was confirmed by the WST-8 assay and in vivo Chorioallantoic Membrane Assay. In addition, Na-ALG/PVA/Cu-Ag MBGNs showed angiogenic potential, exhibiting favorable wound healing properties.
Collapse
Affiliation(s)
- Sheraz Ahmed
- Department of Materials Science & Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Rabia Hussain
- Department of Materials Science & Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Ahmad Khan
- Department of Materials Science & Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Syeda Ammara Batool
- Department of Materials Science & Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Awab Mughal
- Department of Materials Science & Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Muhammad Haseeb Nawaz
- Department of Materials Science & Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Muhammad Irfan
- School of Chemical and Materials Engineering, National University of Science & Technology, Islamabad 44000, Pakistan
| | - Abdul Wadood
- Department of Materials Science & Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Egemen Avcu
- Department of Mechanical Engineering, Institute of Natural and Applied Sciences, Kocaeli University, Kocaeli 41001, Turkey
- Department of Machine and Metal Technologies, Ford Otosan Ihsaniye Automotive Vocational School, Kocaeli University, Kocaeli 41650, Turkey
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science & Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
- Centre of Excellence in Biomaterials and Tissue Engineering, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
7
|
Cao J, Yang S, Liao Y, Wang Y, He J, Xiong C, Shi K, Hu X. Evaluation of polyetheretherketone composites modified by calcium silicate and carbon nanotubes for bone regeneration: mechanical properties, biomineralization and induction of osteoblasts. Front Bioeng Biotechnol 2023; 11:1271140. [PMID: 37711454 PMCID: PMC10497740 DOI: 10.3389/fbioe.2023.1271140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
Desired orthopedic implant materials must have a good biological activity and possess appropriate mechanical property that correspond to those of human bone. Although polyetheretherketone (PEEK) has displayed a promising application prospect in musculoskeletal and dentistry reconstruction thanks to its non-biodegradability and good biocompatibility in the body, the poor osseointegration and insufficient mechanical strength have significantly limited its application in the repair of load-bearing bones and surgical operations. In this study, carbon nanotubes (CNT)/calcium silicate (CS)/polyetheretherketone ternary composites were fabricated for the first time. The addition of CS was mainly aimed at improving biological activities and surface hydrophilicity, but it inevitably compromised the mechanical strength of PEEK. CNT can reinforce the composites even when brittle CS was introduced and further upgraded the biocompatibility of PEEK. The CNT/CS/PEEK composites exhibited higher mechanical strengths in tensile and bending tests, 64% and 90% higher than those of brittle CS/PEEK binary composites. Besides, after incorporation of CNT and CS into PEEK, the hydrophilicity, surface roughness and ability to induce apatite-layer deposition were significantly enhanced. More importantly, the adhesion, proliferation, and osteogenic differentiation of mouse embryo osteoblasts were effectively promoted on CNT/CS/PEEK composites. In contrast to PEEK, these composites exhibited a more satisfactory biocompatibility and osteoinductive activity. Overall, these results demonstrate that ternary CNT/CS/PEEK composites have the potential to serve as a feasible substitute to conventional metal alloys in musculoskeletal regeneration and orthopedic implantation.
Collapse
Affiliation(s)
- Jianfei Cao
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, China
| | - Shuhao Yang
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Yijun Liao
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, China
| | - Yao Wang
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Jian He
- College of Basic Medical and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Chengdong Xiong
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
| | - Kun Shi
- Cancer Center and State Key Laboratory of Biotherapy, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
- Cancer Center and State Key Laboratory of Biotherapy, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Buer Boyetey MJ, Torgbo S, Sukyai P. Bio-scaffold for bone tissue engineering with focus on bacterial cellulose, biological materials for hydroxyapatite synthesis and growth factors. Eur Polym J 2023; 194:112168. [DOI: 10.1016/j.eurpolymj.2023.112168] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
9
|
Dorozhkin SV. There Are over 60 Ways to Produce Biocompatible Calcium Orthophosphate (CaPO4) Deposits on Various Substrates. JOURNAL OF COMPOSITES SCIENCE 2023; 7:273. [DOI: 10.3390/jcs7070273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A The present overview describes various production techniques for biocompatible calcium orthophosphate (abbreviated as CaPO4) deposits (coatings, films and layers) on the surfaces of various types of substrates to impart the biocompatible properties for artificial bone grafts. Since, after being implanted, the grafts always interact with the surrounding biological tissues at the interfaces, their surface properties are considered critical to clinical success. Due to the limited number of materials that can be tolerated in vivo, a new specialty of surface engineering has been developed to desirably modify any unacceptable material surface characteristics while maintaining the useful bulk performance. In 1975, the development of this approach led to the emergence of a special class of artificial bone grafts, in which various mechanically stable (and thus suitable for load-bearing applications) implantable biomaterials and artificial devices were coated with CaPO4. Since then, more than 7500 papers have been published on this subject and more than 500 new publications are added annually. In this review, a comprehensive analysis of the available literature has been performed with the main goal of finding as many deposition techniques as possible and more than 60 methods (double that if all known modifications are counted) for producing CaPO4 deposits on various substrates have been systematically described. Thus, besides the introduction, general knowledge and terminology, this review consists of two unequal parts. The first (bigger) part is a comprehensive summary of the known CaPO4 deposition techniques both currently used and discontinued/underdeveloped ones with brief descriptions of their major physical and chemical principles coupled with the key process parameters (when possible) to inform readers of their existence and remind them of the unused ones. The second (smaller) part includes fleeting essays on the most important properties and current biomedical applications of the CaPO4 deposits with an indication of possible future developments.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
10
|
Sharma A, Kokil GR, He Y, Lowe B, Salam A, Altalhi TA, Ye Q, Kumeria T. Inorganic/organic combination: Inorganic particles/polymer composites for tissue engineering applications. Bioact Mater 2023; 24:535-550. [PMID: 36714332 PMCID: PMC9860401 DOI: 10.1016/j.bioactmat.2023.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Biomaterials have ushered the field of tissue engineering and regeneration into a new era with the development of advanced composites. Among these, the composites of inorganic materials with organic polymers present unique structural and biochemical properties equivalent to naturally occurring hybrid systems such as bones, and thus are highly desired. The last decade has witnessed a steady increase in research on such systems with the focus being on mimicking the peculiar properties of inorganic/organic combination composites in nature. In this review, we discuss the recent progress on the use of inorganic particle/polymer composites for tissue engineering and regenerative medicine. We have elaborated the advantages of inorganic particle/polymer composites over their organic particle-based composite counterparts. As the inorganic particles play a crucial role in defining the features and regenerative capacity of such composites, the review puts a special emphasis on the various types of inorganic particles used in inorganic particle/polymer composites. The inorganic particles that are covered in this review are categorised into two broad types (1) solid (e.g., calcium phosphate, hydroxyapatite, etc.) and (2) porous particles (e.g., mesoporous silica, porous silicon etc.), which are elaborated in detail with recent examples. The review also covers other new types of inorganic material (e.g., 2D inorganic materials, clays, etc.) based polymer composites for tissue engineering applications. Lastly, we provide our expert analysis and opinion of the field focusing on the limitations of the currently used inorganic/organic combination composites and the immense potential of new generation of composites that are in development.
Collapse
Affiliation(s)
- Astha Sharma
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Ganesh R. Kokil
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Yan He
- Institute of Regenerative and Translational Medicine, Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430030, China
| | - Baboucarr Lowe
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Arwa Salam
- Chemistry Department, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Tariq A. Altalhi
- Chemistry Department, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
11
|
Sheng X, Li C, Wang Z, Xu Y, Sun Y, Zhang W, Liu H, Wang J. Advanced applications of strontium-containing biomaterials in bone tissue engineering. Mater Today Bio 2023; 20:100636. [PMID: 37441138 PMCID: PMC10333686 DOI: 10.1016/j.mtbio.2023.100636] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 07/15/2023] Open
Abstract
Strontium (Sr) and strontium ranelate (SR) are commonly used therapeutic drugs for patients suffering from osteoporosis. Researches have showed that Sr can significantly improve the biological activity and physicochemical properties of materials in vitro and in vivo. Therefore, a large number of strontium containing biomaterials have been developed for repairing bone defects and promoting osseointegration. In this review, we provide a comprehensive overview of Sr-containing biomaterials along with the current state of their clinical use. For this purpose, the different types of biomaterials including calcium phosphate, bioactive glass, and polymers are discussed and provided future outlook on the fabrication of the next-generation multifunctional and smart biomaterials.
Collapse
Affiliation(s)
| | | | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yu Xu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yang Sun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Weimin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| |
Collapse
|
12
|
Safavi MS, Khalil-Allafi J, Visai L. Improved osteogenic activity of NiTi orthopedic implant by HAp-Nb 2O 5 composite coatings: Materials and biological points of view. BIOMATERIALS ADVANCES 2023; 150:213435. [PMID: 37098321 DOI: 10.1016/j.bioadv.2023.213435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 04/27/2023]
Abstract
The surface properties of NiTi, as an interface between the synthetic implant and living tissue, play a vital role in guaranteeing implantation success, especially during the initial stage. This contribution endeavors to enhance the surface features of NiTi orthopedic implants through the application of HAp-based coatings, placing emphasis on assessing the influence of Nb2O5 particles concentration in the electrolyte on resultant properties of HAp-Nb2O5 composite electrodeposits. The coatings were electrodeposited via pulse current mode under galvanostatic current control from an electrolyte containing 0-1 g/L of Nb2O5 particles. Surface morphology, topography, and phase composition were evaluated using FESEM, AFM, and XRD, respectively. EDS was employed to study surface chemistry. In vitro biomineralization and osteogenic activity of the samples were studied by immersing the samples in SBF and incubating them with osteoblastic SAOS-2 cells, respectively. The added Nb2O5 particles, at the optimum concentration, stimulated biomineralization, suppressed the Ni ion leaching, and improved SAOS-2 cell adhesion and proliferation. NiTi implant coated by HAp-0.50 g/L Nb2O5 layer showed tremendous osteogenic properties. Overall, the HAp-Nb2O5 composite layers bring forth fascinating coating in vitro biological performance, reducing Ni leaching, and promoting osteogenic activity, which are fundamental for the successful use of NiTi in vivo.
Collapse
Affiliation(s)
- Mir Saman Safavi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz, P.O. Box: 51335-1996, Iran; Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy
| | - Jafar Khalil-Allafi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz, P.O. Box: 51335-1996, Iran.
| | - Livia Visai
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy; Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy.
| |
Collapse
|
13
|
Gröger R, Heiler T, Schimmel T, Walheim S. Tip-Induced Nanopatterning of Ultrathin Polymer Brushes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2204962. [PMID: 37026430 DOI: 10.1002/smll.202204962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/02/2023] [Indexed: 06/19/2023]
Abstract
Patterned, ultra-thin surface layers can serve as templates for positioning nanoparticlesor targeted self-assembly of molecular structures, for example, block-copolymers. This work investigates the high-resolution, atomic force microscopebased patterning of 2 nm thick vinyl-terminated polystyrene brush layers and evaluates the line broadening due to tip degradation. This work compares the patterning properties with those of a silane-based fluorinated self-assembled monolayer (SAM), using molecular heteropatterns generated by modified polymer blend lithography (brush/SAM-PBL). Stable line widths of 20 nm (FWHM) over lengths of over 20000 µm indicate greatly reduced tip wear, compared to expectations on uncoated SiOx surfaces. The polymer brush acts as a molecularly thin lubricating layer, thus enabling a 5000 fold increase in tip lifetime, and the brush is bonded weakly enough that it can be removed with surgical accuracy. On traditionally used SAMs, either the tip wear is very high or the molecules are not completely removed. Polymer Phase Amplified Brush Editing is presented, which uses directed self-assembly to amplify the aspect ratio of the molecular structures by a factor of 4. The structures thus amplified allow transfer into silicon/metal heterostructures, fabricating 30 nm deep, all-silicon diffraction gratings that could withstand focused high-power 405 nm laser irradiation.
Collapse
Affiliation(s)
- Roland Gröger
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, D-76131, Karlsruhe, Germany
- Center for Single-Atom Technologies (C.SAT), Karlsruhe Institute of Technology, Strasse am Forum 7, D-76131, Karlsruhe, Germany
| | - Tobias Heiler
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, D-76131, Karlsruhe, Germany
| | - Thomas Schimmel
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, D-76131, Karlsruhe, Germany
- Center for Single-Atom Technologies (C.SAT), Karlsruhe Institute of Technology, Strasse am Forum 7, D-76131, Karlsruhe, Germany
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology, Herrmann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
- Materials Research Center for Energy Systems (MZE), Karlsruhe Institute of Technology, Strasse am Forum 7, D-76131, Karlsruhe, Germany
| | - Stefan Walheim
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, D-76131, Karlsruhe, Germany
- Center for Single-Atom Technologies (C.SAT), Karlsruhe Institute of Technology, Strasse am Forum 7, D-76131, Karlsruhe, Germany
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology, Herrmann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
14
|
Marchenko ES, Baigonakova GA, Dubovikov KM, Kokorev OV, Gordienko II, Chudinova EA. Properties of Coatings Based on Calcium Phosphate and Their Effect on Cytocompatibility and Bioactivity of Titanium Nickelide. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2581. [PMID: 37048875 PMCID: PMC10095358 DOI: 10.3390/ma16072581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Coatings based on calcium phosphate with thicknesses of 0.5 and 2 μm were obtained by high-frequency magnetron sputtering on NiTi substrates in an argon atmosphere. The coating was characterized using X-ray diffraction, scanning electron microscopy, atomic force microscopy, and in vitro cytocompatibility and bioactivity studies. A biphasic coating of tricalcium phosphate (Ca3(PO4)2) and hydroxyapatite (Ca10(PO4)6(OH)2) with a 100% degree of crystallinity was formed on the surface. The layer enriched in calcium, phosphorus, and oxygen was observed using scanning electron microscopy and energy-dispersive X-ray spectroscopy. Scanning electron microscopy showed that the surface structure is homogeneous without visible defects. The 2 µm thick coating obtained by sputtering with a deposition time of 4 h and a deposition rate of 0.43 µm/h is uniform, contains the highest amount of the calcium phosphate phase, and is most suitable for the faster growth of cells and accelerated formation of apatite layers. Samples with calcium phosphate coatings do not cause hemolysis and have a low cytotoxicity index. The results of immersion in a solution simulating body fluid show that NiTi with the biphasic coating promotes apatite growth, which is beneficial for biological activity.
Collapse
Affiliation(s)
- Ekaterina S. Marchenko
- Laboratory of Superelastic Biointerfaces, National Research Tomsk State University, 36 Lenin Ave., 634045 Tomsk, Russia
| | - Gulsharat A. Baigonakova
- Laboratory of Superelastic Biointerfaces, National Research Tomsk State University, 36 Lenin Ave., 634045 Tomsk, Russia
| | - Kirill M. Dubovikov
- Laboratory of Superelastic Biointerfaces, National Research Tomsk State University, 36 Lenin Ave., 634045 Tomsk, Russia
| | - Oleg V. Kokorev
- Laboratory of Superelastic Biointerfaces, National Research Tomsk State University, 36 Lenin Ave., 634045 Tomsk, Russia
| | - Ivan I. Gordienko
- Department of Pediatric Surgery, Ural State Medical University, 620014 Yekaterinburg, Russia
| | - Ekaterina A. Chudinova
- Laboratory of Superelastic Biointerfaces, National Research Tomsk State University, 36 Lenin Ave., 634045 Tomsk, Russia
| |
Collapse
|
15
|
Han J, Park S, Kim JE, Park B, Hong Y, Lim JW, Jeong S, Son H, Kim HB, Seonwoo H, Jang KJ, Chung JH. Development of a Scaffold-on-a-Chip Platform to Evaluate Cell Infiltration and Osteogenesis on the 3D-Printed Scaffold for Bone Regeneration. ACS Biomater Sci Eng 2023; 9:968-977. [PMID: 36701173 DOI: 10.1021/acsbiomaterials.2c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Developing a scaffold for efficient and functional bone regeneration remains challenging. To accomplish this goal, a "scaffold-on-a-chip" device was developed as a platform to aid with the evaluation process. The device mimics a microenvironment experienced by a transplanted bone scaffold. The device contains a circular space at the center for scaffold insert and microfluidic channel that encloses the space. Such a design allows for monitoring of cell behavior at the blood-scaffold interphase. MC3T3-E1 cells were cultured with three different types of scaffold inserts to test its capability as an evaluation platform. Cellular behaviors, including migration, morphology, and osteogenesis with each scaffold, were analyzed through fluorescence images of live/dead assay and immunocytochemistry. Cellular behaviors, such as migration, morphology, and osteogenesis, were evaluated. The results revealed that our platform could effectively evaluate the osteoconductivity and osteoinductivity of scaffolds with various properties. In conclusion, our proposed platform is expected to replace current in vivo animal models as a highly relevant in vitro platform and can contribute to the fundamental study of bone regeneration.
Collapse
Affiliation(s)
- Jinsub Han
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea.,Convergence Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sangbae Park
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jae Eun Kim
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea
| | - Byeongjoo Park
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea
| | - Yeonggeol Hong
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju 52828, Korea
| | - Jae Woon Lim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Seung Jeong
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Hyunmok Son
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Hong Bae Kim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Hoon Seonwoo
- Department of Convergent Biosystems Engineering, College of Life Sciences and Natural Resources, Sunchon National University, Suncheon 57922, Korea.,Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Korea
| | - Kyoung-Je Jang
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju 52828, Korea.,Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Jong Hoon Chung
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea.,Convergence Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
16
|
Zn doped CaP coatings used for controlling the degradation rate of MgCa1 alloy: In vitro anticorrosive properties, sterilization and bacteria/cell-material interactions. Colloids Surf B Biointerfaces 2023; 222:113087. [PMID: 36542955 DOI: 10.1016/j.colsurfb.2022.113087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/12/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
The purpose of this study was to investigate the effect of Zn doped CaP coatings prepared by micro-arc oxidation method, as a possible approach to control MgCa1 alloy degradation. All the prepared coatings comprised a calcium deficient CaP phase. The control in this evaluation was performed with undoped CaP coating in SBF solution at body temperature (37 ± 0.5⁰C). The investigation involved determination of microchemical, mechanical, morphological, properties along with anticorrosive, cytocompatibility and antibacterial efficacy. The effect of sterilization process on the properties of the surfaces was also investigated. The results showed that the addition of Zn into CaP increased the corrosion resistance of MgCa1 alloy. Moreover, the adhesion strength of the coatings to MgCa1 alloy was enhanced by Zn addition. In cytotoxicity testing of the samples, extracts of the samples in MEM were incubated with L929 cells and malformation, degeneration and lysis of the cells were examined microscopically after 72 h. The results showed that all samples were cytocompatible. The degradation of MgCa1 alloy in the simulated body fluids (SBF) or DMEM was decreased by coating with CaP. Moreover, the degradation rate of CaP was further decreased by adding a small amount of Zn into the CaP matrix. The samples having CaP coatings and Zn doped CaP coating demonstrated antibacterial efficacy against E.coli. As a result, coating of magnesium alloy with Zn-doped CaP decreased the degradation rate, increased the corrosion resistance, cytocompatibility and the antibacterial effects of the alloys.
Collapse
|
17
|
Abodunrin OD, El Mabrouk K, Bricha M. A review on borate bioactive glasses (BBG): effect of doping elements, degradation, and applications. J Mater Chem B 2023; 11:955-973. [PMID: 36633185 DOI: 10.1039/d2tb02505a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Because of their excellent biologically active qualities, bioactive glasses (BGs) have been extensively used in the biomedical domain, leading to better tissue-implant interactions and promoting bone regeneration and wound healing. Aside from having attractive characteristics, BGs are appealing as a porous scaffold material. On the other hand, such porous scaffolds should enable tissue proliferation and integration with the natural bone and neighboring soft tissues and degrade at a rate that allows for new bone development while preventing bacterial colonization. Therefore, researchers have recently become interested in a different BG composition based on borate (B2O3) rather than silicate (SiO2). Furthermore, apatite synthesis in the borate-based bioactive glass (BBG) is faster than in the silicate-based bioactive glass, which slowly transforms to hydroxyapatite. This low chemical durability of BBG indicates a fast degradation process, which has become a concern for their utilization in biological and biomedical applications. To address these shortcomings, glass network modifiers, active ions, and other materials can be combined with BBG to improve the bioactivity, mechanical, and regenerative properties, including its degradation potential. To this end, this review article will highlight the details of BBGs, including their structure, properties, and medical applications, such as bone regeneration, wound care, and dental/bone implant coatings. Furthermore, the mechanism of BBG surface reaction kinetics and the role of doping ions in controlling the low chemical durability of BBG and its effects on osteogenesis and angiogenesis will be outlined.
Collapse
Affiliation(s)
- Oluwatosin David Abodunrin
- Euromed Research Centre, Euromed Polytechnic School, Euromed University of Fes, Eco-Campus, Fes-Meknes Road, 30030 Fes, Morocco.
| | - Khalil El Mabrouk
- Euromed Research Centre, Euromed Polytechnic School, Euromed University of Fes, Eco-Campus, Fes-Meknes Road, 30030 Fes, Morocco.
| | - Meriame Bricha
- Euromed Research Centre, Euromed Polytechnic School, Euromed University of Fes, Eco-Campus, Fes-Meknes Road, 30030 Fes, Morocco.
| |
Collapse
|
18
|
Recent Advancements in Metallic Drug-Eluting Implants. Pharmaceutics 2023; 15:pharmaceutics15010223. [PMID: 36678852 PMCID: PMC9862589 DOI: 10.3390/pharmaceutics15010223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Over the past decade, metallic drug-eluting implants have gained significance in orthopedic and dental applications for controlled drug release, specifically for preventing infection associated with implants. Recent studies showed that metallic implants loaded with drugs were substituted for conventional bare metal implants to achieve sustained and controlled drug release, resulting in a desired local therapeutic concentration. A number of secondary features can be provided by the incorporated active molecules, including the promotion of osteoconduction and angiogenesis, the inhibition of bacterial invasion, and the modulation of host body reaction. This paper reviews recent trends in the development of the metallic drug-eluting implants with various drug delivery systems in the past three years. There are various types of drug-eluting implants that have been developed to meet this purpose, depending on the drug or agents that have been loaded on them. These include anti-inflammatory drugs, antibiotics agents, growth factors, and anti-resorptive drugs.
Collapse
|
19
|
Sabouni K, Ozturk Y, Kacar E, Kose GT, Kok FN, Kazmanli MK, Urgen MK, Onder S. Surface analysis of (Ti,Mg)N coated bone fixation devices following the rabbit femur surgery. Biomed Mater Eng 2023; 34:459-472. [PMID: 37005873 DOI: 10.3233/bme-222544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
BACKGROUND Magnesium (Mg) enhances the bone regeneration, mineralization and attachment at the tissue/biomaterial interface. OBJECTIVE In this study, the effect of Mg on mineralization/osseointegration was determined using (Ti,Mg)N thin film coated Ti6Al4V based plates and screws in vivo. METHODS TiN and (Ti,Mg)N coated Ti6Al4V plates and screws were prepared using arc-PVD technique and used to fix rabbit femur fractures for 6 weeks. Then, mineralization/osseointegration was assessed by surface analysis including cell attachment, mineralization, and hydroxyapatite deposition on concave and convex sides of the plates along with the attachment between the screw and the bone. RESULTS According to Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analyses; cell attachment and mineralization were higher on the concave sides of the plates from both groups in comparison to the convex sides. However, mineralization was significantly higher on Mg-containing ones. The mean gray value indicating mineralized area after von Kossa staining was found as 0.48 ± 0.01 and 0.41 ± 0.04 on Mg containing and free ones respectively. Similarly, Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) analyses showed that hydroxyapatite growth was abundant on the Mg-containing and concave sides of the plates. Enhanced mineralization and strong attachment to bone were also detected in EDS and SEM analyses of Mg-containing screws. CONCLUSION These findings indicated that (Ti,Mg)N coatings can be used to increase attachment at the implant tissue interface due to accelerated mineralization, cell attachment, and hydroxyapatite growth.
Collapse
Affiliation(s)
- Kenda Sabouni
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Yetkin Ozturk
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Erkan Kacar
- Department of Metallurgical and Materials Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Gamze Torun Kose
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Fatma Nese Kok
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Muhammet Kursat Kazmanli
- Department of Metallurgical and Materials Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Mustafa Kamil Urgen
- Department of Metallurgical and Materials Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Sakip Onder
- Department of Biomedical Engineering, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
20
|
Lyutova E, Tkachuk VA, Selyunina LA, Borilo LP, Fedorishin DA, Chen YW. Facile Synthesis of TiO 2-SiO 2-P 2O 5/CaO/ZnO with a Core-Shell Structure for Bone Implantation. ACS OMEGA 2022; 7:46564-46572. [PMID: 36570249 PMCID: PMC9773928 DOI: 10.1021/acsomega.2c05398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
A facile synthesis method was developed to synthesize TiO2-SiO2-P2O5/CaO or TiO2-SiO2-P2O5/ZnO with a core-shell structure. The carboxylic cation exchanger Tokem-250 has a high selectivity for Ca2+/Zn2+ ions and was used in this study. The framework of the material in the shell was TiO2-SiO2-P2O5, and the inner part was filled with CaO (sample TiO2-SiO2/CaO) or ZnO (sample TiO2-SiO2-P2O5/ZnO). A stepwise heat treatment (drying in a drying oven at 60 °C for 30 min, then annealing in a muffle furnace for 30 min at 150, 250, and 350 °C, at 600 °C for 6 h, and at 800 °C for 1 h) was needed to obtain a homogeneous material. The poly(vinyl alcohol) was used as a binding additive. The obtained composites were characterized by a regular structure and highly developed surface. The samples exhibit bioactive properties in the simulated body fluid (SBF) solution, since the surface contains active centers (Si4+, Ti4+) which contribute to mineralization and precipitation of the calcium-phosphate compounds on the surface from biological media. The TiO2-SiO2-P2O5/CaO-PVA samples did not exceed acceptable hemolysis levels for medical materials.
Collapse
Affiliation(s)
| | - Valeriya A. Tkachuk
- National
Research Tomsk State University, 36 Lenina Avenue, Tomsk634050, Russia
| | - Liliya A. Selyunina
- National
Research Tomsk State University, 36 Lenina Avenue, Tomsk634050, Russia
| | - Lyudmila P. Borilo
- National
Research Tomsk State University, 36 Lenina Avenue, Tomsk634050, Russia
| | | | - Yu-Wen Chen
- Department
of Chemical and Materials Engineering, National
Central University, Jhongli32001, Taiwan
| |
Collapse
|
21
|
Wang Z, Zhang J, Hu J, Yang G. Gene-activated titanium implants for gene delivery to enhance osseointegration. BIOMATERIALS ADVANCES 2022; 143:213176. [PMID: 36327825 DOI: 10.1016/j.bioadv.2022.213176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Osseointegration is the direct and intimate contact between mineralized tissue and titanium implant at the bone-implant interface. Early establishment and stable maintenance of osseointegration is the key to long-term implant success. However, in patients with compromised conditions such as osteoporosis and patients beginning early load-bearing activities such as walking, lower osseointegration around titanium implants is often observed, which might result in implant early failure. Gene-activated implants show an exciting prospect of combining gene delivery and biomedical implants to solve the problems of poor osseointegration formation, overcoming the shortcomings of protein therapy, including rapid degradation and overdose adverse effects. The conception of gene-activated titanium implants is based on "gene-activated matrix" (GAM), which means scaffolds using non-viral vectors for in situ gene delivery to achieve a long-term and efficient transfection of target cells. Current preclinical studies in animal models have shown that plasmid DNA (pDNA), microRNA (miRNA), and small interference RNA (siRNA) functionalized titanium implants can enhance osseointegration with safety and efficiency, leading to the expectation of applying this technique in dental and orthopedic clinical scenarios. This review aims to comprehensively summarize fabrication strategies, current applications, and futural outlooks of gene-activated implants, emphasizing nucleic acid targets, non-viral vectors, implant surface modification techniques, nucleic acid/vector complexes loading strategies.
Collapse
Affiliation(s)
- Zhikang Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jing Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jinxing Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
22
|
Tan J, Ren L, Xie K, Wang L, Jiang W, Guo Y, Hao Y. Functionalized TiCu/TiCuN coating promotes osteoporotic fracture healing by upregulating the Wnt/β-catenin pathway. Regen Biomater 2022; 10:rbac092. [PMID: 36683750 PMCID: PMC9847630 DOI: 10.1093/rb/rbac092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Osteoporosis results in decreased bone mass and insufficient osteogenic function. Existing titanium alloy implants have insufficient osteoinductivity and delayed/incomplete fracture union can occur when used to treat osteoporotic fractures. Copper ions have good osteogenic activity, but their dose-dependent cytotoxicity limits their clinical use for bone implants. In this study, titanium alloy implants functionalized with a TiCu/TiCuN coating by arc ion plating achieved a controlled release of copper ions in vitro for 28 days. The coated alloy was co-cultured with bone marrow mesenchymal stem cells and showed excellent biocompatibility and osteoinductivity in vitro. A further exploration of the underlying mechanism by quantitative real-time polymerase chain reaction and western blotting revealed that the enhancement effects are related to the upregulation of genes and proteins (such as axin2, β-catenin, GSK-3β, p-GSK-3β, LEF1 and TCF1/TCF7) involved in the Wnt/β-catenin pathway. In vivo experiments showed that the TiCu/TiCuN coating significantly promoted osteoporotic fracture healing in a rat femur fracture model, and has good in vivo biocompatibility based on various staining results. Our study confirmed that TiCu/TiCuN-coated Ti promotes osteoporotic fracture healing associated with the Wnt pathway. Because the coating effectively accelerates the healing of osteoporotic fractures and improves bone quality, it has significant clinical application prospects.
Collapse
Affiliation(s)
- Jia Tan
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ling Ren
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110000, China
| | - Kai Xie
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lei Wang
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wenbo Jiang
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yu Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing 100044, China
| | - Yongqiang Hao
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
23
|
Mota J, Bravo C, Santos C, Alves PC, Rijo P, Antunes AM, Grenho L, Helena Fernandes M, Alves MM, André V. Eco-friendly fabricated multibioactive Ca(II)-antibiotic coordination framework coating on zinc towards improved bone tissue regeneration. Colloids Surf B Biointerfaces 2022; 221:113008. [DOI: 10.1016/j.colsurfb.2022.113008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
|
24
|
Wang LN, Meng YF, Feng Y, Wang HC, Mao LB, Yu SH, Wang ZL. Amorphous Precursor-Mediated Calcium Phosphate Coatings with Tunable Microstructures for Customized Bone Implants. Adv Healthc Mater 2022; 11:e2201248. [PMID: 35842766 DOI: 10.1002/adhm.202201248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/27/2023]
Abstract
Calcium phosphate (CaP) is frequently used as coating for bone implants to promote osseointegration. However, commercial CaP coatings via plasma spraying display similar microstructures, and thus fail to provide specific implants according to different surgical conditions or skeletal bone sites. Herein, inspired by the formation of natural biominerals with various morphologies mediated by amorphous precursors, CaP coatings with tunable microstructures mediated by an amorphous metastable phase are fabricated. The microstructures of the coatings are precisely controlled by both polyaspartic acid and Mg2+ . The cell biological behaviors, including alkaline phosphatase activity, mineralization, and osteogenesis-related genes expression, on the CaP coatings with different microstructures, exhibit significant differences. Furthermore, in vivo experiments demonstrate the osseointegration in different types of rats and bones indeed favors different CaP coatings. This biomimetic strategy can be used to fabricate customized bone implants that can meet the specific requirements of various surgery conditions.
Collapse
Affiliation(s)
- Li-Na Wang
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, 200072, China.,Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Feng Meng
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Yanhuizhi Feng
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, 200072, China
| | - Hai-Cheng Wang
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, 200072, China
| | - Li-Bo Mao
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Zuo-Lin Wang
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, 200072, China
| |
Collapse
|
25
|
Brigiano FS, Bazin D, Tielens F. Peculiar opportunities given by XPS spectroscopy for the clinician. CR CHIM 2022. [DOI: 10.5802/crchim.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Li J, Li J, He N, Fu Q, Feng M, Li Q, Wang Q, Liu X, Xiao S, Jin W, Yu Z, Chu PK. In situ growth of Ca-Zn-P coatings on the Zn-pretreated WE43 Mg alloy to mitigate corrosion and enhance cytocompatibility. Colloids Surf B Biointerfaces 2022; 218:112798. [PMID: 36030726 DOI: 10.1016/j.colsurfb.2022.112798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
Abstract
Magnesium (Mg) alloys are potential materials for orthopedic fixation devices but rapid degradation of the materials restricts wider clinical applications. Herein, zinc-incorporated calcium phosphate (Ca-Zn-P) coatings are prepared on the Zn-pretreated WE43 Mg alloy by a hydrothermal technique under relatively stable and favorable conditions. The hydrothermal coating consists of a compact bottom layer of CaZn2(PO4)2∙2 H2O and ZnO granular crystals and a jagged upper layer of CaHPO4. The Zn coating reduces the corrosion current density of WE43 to (3.49 ± 1.60) × 10-5 A cm-2, whereas the Ca-Zn-P/Zn composite coating further reduces it by 3 orders of magnitude in the simulated body fluid (SBF). The charge transfer resistances of the Zn-coated and Ca-Zn-P/Zn-coated alloys increase by 49 and 7176 times to 835 and 1.22 × 105 Ω cm2, respectively. The 7-day immersion results reveal that the Zn coating cannot provide long-term protection to WE43 in SBF because of the formation of galvanic couples between the Zn coating and WE43. In contrast, Ca-Zn-P/Zn-coated WE43 remains intact after soaking for 7 days and furthermore, the Ca-Zn-P coating self-repairs and continues to grow despite dissolution. The compact and adherent Ca-Zn-P bottom layer plays a major role in mitigating corrosion of WE43 by hindering penetration of the aggressive medium and charge transfer of the corrosion reactions resulting in only slight corrosion of the Zn layer. Biologically, the Zn coating reduces attachment and proliferation of MC3T3-E1 pre-osteoblasts on WE43, but the composite coating fosters cell adhesion and proliferation which stems from the good biocompatibility of the hydrothermal layer and relatively stable surface conditions avoiding severe corrosion.
Collapse
Affiliation(s)
- Jingyao Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Jian Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Nian He
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Qingyun Fu
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Mingcheng Feng
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Qingyang Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.
| | - Qiong Wang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Xiangning Liu
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Shu Xiao
- Institute of Safety Science & Engineering, South China University of Technology, Guangzhou 510641, China
| | - Weihong Jin
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China; Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Zhentao Yu
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
27
|
da Costa E Silva RMF, Diniz IMA, Gomes NA, Silva GJB, da Fonte Ferreira JM, de Freitas Filho RL, Freitas ETF, Martins DA, Domingues RZ, Andrade ÂL. Equisetum hyemale-derived unprecedented bioactive composite for hard and soft tissues engineering. Sci Rep 2022; 12:13425. [PMID: 35927566 PMCID: PMC9352763 DOI: 10.1038/s41598-022-17626-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
Abstract
Although Bioactive Glasses (BGs) have been progressively optimized, their preparation often still involves the use of toxic reagents and high calcination temperatures to remove organic solvents. In the present work, these synthesis related drawbacks were overcome by treating the ashes from the Equisetum hyemale plant in an ethanol/water solution to develop a bioactive composite [glass/carbon (BG-Carb)]. The BG-Carb was characterized by scanning electron microscopy, and transmission electron microscopy; and its chemical composition was assessed by inductively coupled plasma-optical emission spectroscopy. Brunauer-Emmett-Teller gas adsorption analysis showed a specific surface area of 121 m2 g-1. The formation of hydroxyapatite (HA) surface layer in vitro was confirmed by Fourier-transform infrared spectroscopy analysis before and after immersion in simulated body fluid (SBF) solution. The Rietveld refinement of the XRD patterns and selected area electron diffraction analyses confirmed HA in the sample even before immersing it in SBF solution. However, stronger evidences of the presence of HA were observed after immersion in SBF solution due to the surface mineralization. The BG-Carb samples showed no cytotoxicity on MC3T3-E1 cells and osteo-differentiation capacity similar to the positive control. Altogether, the BG-Carb material data reveals a promising plant waste-based candidate for hard and soft tissue engineering.
Collapse
Affiliation(s)
| | - Ivana Márcia Alves Diniz
- Restorative Dentistry Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Natália Aparecida Gomes
- Restorative Dentistry Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | - José Maria da Fonte Ferreira
- Department of Materials and Ceramic Engineering, CICECO -Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | - Erico Tadeu Fraga Freitas
- Centro de Microscopia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | - Rosana Zacarias Domingues
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Ângela Leão Andrade
- Departamento de Química, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
28
|
Composite Coatings for Osteoblast Growth Attachment Fabricated by Matrix-Assisted Pulsed Laser Evaporation. Polymers (Basel) 2022; 14:polym14142934. [PMID: 35890714 PMCID: PMC9322700 DOI: 10.3390/polym14142934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
The bioactive and biocompatible properties of hydroxyapatite (HAp) promote the osseointegration process. HAp is widely used in biomedical applications, especially in orthopedics, as well as a coating material for metallic implants. We obtained composite coatings based on HAp, chitosan (CS), and FGF2 by a matrix-assisted pulsed laser evaporation (MAPLE) technique. The coatings were physico-chemically investigated by means of X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Infrared Microscopy (IRM), and Scanning Electron Microscopy (SEM). Further, biological investigations were performed. The MAPLE-composite coatings were tested in vitro on the MC3T3-E1 cell line in order to endorse cell attachment and growth without toxic effects and to promote pre-osteoblast differentiation towards the osteogenic lineage. These coatings can be considered suitable for bone tissue engineering applications that lack toxicity and promotes cell adhesion and proliferation while also sustaining the differentiation of pre-osteoblasts towards mature bone cells.
Collapse
|
29
|
George SM, Nayak C, Singh I, Balani K. Multifunctional Hydroxyapatite Composites for Orthopedic Applications: A Review. ACS Biomater Sci Eng 2022; 8:3162-3186. [PMID: 35838237 DOI: 10.1021/acsbiomaterials.2c00140] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Being a bioactive material, hydroxyapatite (HAp) is regarded as one of the most attractive ceramic biomaterials for bone and hard-tissue replacement and regeneration. Despite its substantial biocompatibility, osteoconductivity, and compositional similarity to that of bone, the employment of HAp is still limited in orthopedic applications due to its poor mechanical (low fracture toughness and bending strength) and antibacterial properties. These significant challenges lead to the notion of developing novel HAp-based composites via different fabrication routes. HAp, when efficaciously combined with functionally graded materials and antibacterial agents, like Ag, ZnO, Co, etc., form composites that render remarkable crack resistance and toughening, as well as enhance its bactericidal efficacy. The addition of different materials and a fabrication method, like 3D printing, greatly influence the porosity of the structure and, in turn, control cell adhesion, thereby enabling biological fixation of the material. This article encompasses an elaborate discussion on different multifunctional HAp composites developed for orthopedic applications with particular emphasis on the incorporation of functionally graded materials and antibacterial agents. The influence of 3D printing on the fabrication of HAp-based scaffolds, and the different in vitro and in vivo studies conducted on these, have all been included here. Furthermore, the present review not only provides insights and broad understanding by elucidating recent advancements toward 4D printing but also directs the reader to future research directions in design and application of HAp-based composite coatings and scaffolds.
Collapse
Affiliation(s)
- Suchi Mercy George
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Chinmayee Nayak
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Indrajeet Singh
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Kantesh Balani
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.,Advanced Centre for Materials Science, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
30
|
Potential bioactive coating system for high-performance absorbable magnesium bone implants. Bioact Mater 2022; 12:42-63. [PMID: 35087962 PMCID: PMC8777287 DOI: 10.1016/j.bioactmat.2021.10.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Magnesium alloys are considered the most suitable absorbable metals for bone fracture fixation implants. The main challenge in absorbable magnesium alloys is their high corrosion/degradation rate that needs to be controlled. Various coatings have been applied to magnesium alloys to slow down their corrosion rates to match their corrosion rate to the regeneration rate of the bone fracture. In this review, a bioactive coating is proposed to slow down the corrosion rate of magnesium alloys and accelerate the bone fracture healing process. The main aim of the bioactive coatings is to enhance the direct attachment of living tissues and thereby facilitate osteoconduction. Hydroxyapatite, collagen type I, recombinant human bone morphogenetic proteins 2, simvastatin, zoledronate, and strontium are six bioactive agents that show high potential for developing a bioactive coating system for high-performance absorbable magnesium bone implants. In addition to coating, the substrate itself can be made bioactive by alloying magnesium with calcium, zinc, copper, and manganese that were found to promote bone regeneration. Bioactive-coated magnesium implant could accelerate bone fracture healing time to match with magnesium degradation. Hydroxyapatite, collagen type I, recombinant human bone morphogenetic proteins 2, simvastatin, zoledronate, and strontium are high potential bioactive coating materials. The incorporation of Ca, Zn, Cu, Sr, and Mn in Mg base-metal could further enhance bone formation.
Collapse
|
31
|
Antibacterial Activity and Drug Release of Ciprofloxacin Loaded PVA-nHAp Nanocomposite Coating on Ti-6Al-4 V. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Sun H, Chan Y, Li X, Xu R, Zhang Z, Hu X, Wu F, Deng F, Yu X. Multi-omics analysis of oral bacterial biofilm on titanium oxide nanostructure modified implant surface: In vivo sequencing-based pilot study in beagle dogs. Mater Today Bio 2022; 15:100275. [PMID: 35572854 PMCID: PMC9098469 DOI: 10.1016/j.mtbio.2022.100275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Peri-implantitis, the major cause of implant failure, is an inflammatory destructive disease due to the dysbiotic polymicrobial communities at the peri-implant sites. Therefore, it is highly warranted to develop the implant materials with antimicrobial properties and investigate their effects on oral microbiota. However, most of the relevant studies were performed in vitro, and insufficient to provide the comprehensive assessment of the antimicrobial capacity of the implant materials in vivo. Herein, we introduce an innovative approach to evaluate the in vivo antibacterial properties of the most commonly used implant materials, titanium with different nanostructured surfaces, and investigate their antibacterial mechanism via the next-generation sequencing (NGS) technology. We firstly prepared the titanium implants with three different surfaces, i) mechanical polishing (MP), ii) TiO2 nanotubes (NT) and iii) nanophase calcium phosphate embedded to TiO2 nanotubes (NTN), and then characterized them using scanning electron microscopy (SEM), energy-dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), confocal laser scanning microscopy (CLSM) and surface hydrophilicity analysis. Afterwards, the implants were placed in the beagle dogs’ mouths to replace the pre-extracted premolar and molar teeth for eight weeks through implant surgery. The supra- and sub-mucosal plaques were collected and subjected to 16S rRNA gene/RNA sequencing and data analysis. It was found that the nanostructured surfaces in NT and NTN groups showed significantly increased roughness and decreased water contact angles compared to the MP group, while the XPS data further confirmed the successful modifications of TiO2 nanotubes and the subsequent deposition of nanophase calcium phosphate. Notably, the nanostructured surfaces in NT and NTN groups had limited impact on the diversity and community structure of oral microbiota according to the 16S rRNA sequencing results, and the nanostructures in NTN group could down-regulate the genes associated with localization and locomotion based on Gene Ontology (GO) terms enrichment analysis. Moreover, the differentially expressed genes (DEGs) were associated with microbial metabolism, protein synthesis and bacterial invasion of epithelial cells. Taken together, this study provides a new strategy to evaluate the antibacterial properties of the biomedical materials in vivo via the high-throughput sequencing and bioinformatic approaches, revealing the differences of the composition and functional gene expressions in the supra- and sub-mucosal microbiome.
Collapse
|
33
|
Su S, Chen W, Zheng M, Lu G, Tang W, Huang H, Qu D. Facile Fabrication of 3D-Printed Porous Ti6Al4V Scaffolds with a Sr-CaP Coating for Bone Regeneration. ACS OMEGA 2022; 7:8391-8402. [PMID: 35309469 PMCID: PMC8928158 DOI: 10.1021/acsomega.1c05908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/10/2022] [Indexed: 05/12/2023]
Abstract
To improve osseointegration caused by the stress-shielding effect and the inert nature of titanium-based alloys, in this work, we successfully constructed a strontium calcium phosphate (Sr-CaP) coating on three-dimensional (3D)-printed Ti6Al4V scaffolds to address this issue. The energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) results indicated that the coatings with and without Sr doping mainly consisted of CaHPO4. The bonding strength of Sr doping coating met the required ISO 13 779-4-2018 standard (≥15 MPa). The in vitro results suggested that the Sr-CaP-modified Ti6Al4V scaffolds were found to effectively promote mice bone-marrow stem cell (mBMSC) adhesion, spreading, and osteogenesis. The in vivo experiments also showed that the Sr-CaP-modified Ti6Al4V scaffolds could significantly improve bone regeneration and osseointegration. More importantly, Sr-doped CaP-coated Ti6Al4V scaffolds were found to accelerate bone healing in comparison to CaP-coated Ti6Al4V scaffolds. The Sr-CaP-modified Ti6Al4V scaffolds are considered a promising strategy to develop bioactive surfaces for enhancing the osseointegration between the implant and bone tissue.
Collapse
Affiliation(s)
- Shenghui Su
- Division
of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Weidong Chen
- Division
of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Minghui Zheng
- Division
of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
- Department
of Orthopaedic Surgery, Zengcheng Branch of Nanfang Hospital, Southern Medical University, 511338 Guangzhou, China
| | - Guozan Lu
- Guangzhou
Huatai 3D Material Manufacture Ltd., Co., 511300 Guangzhou, China
| | - Wei Tang
- Department
of Anatomy, College of Basic Medicine, Dalian
Medical University, Dalian 116044, China
| | - Haihong Huang
- Division
of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Dongbin Qu
- Division
of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
- Department
of Orthopaedic Surgery, Zengcheng Branch of Nanfang Hospital, Southern Medical University, 511338 Guangzhou, China
| |
Collapse
|
34
|
Su S, Tang Q, Qu D. In Vitro Study of Degradation and Cytocompatibility of Ceramics/PLA Composite Coating on Pure Zinc for Orthopedic Application. Front Bioeng Biotechnol 2022; 10:856986. [PMID: 35309984 PMCID: PMC8931491 DOI: 10.3389/fbioe.2022.856986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Zinc and its alloys are considered to be next-generation materials for fabricating absorbable biomedical devices. However, cytotoxicity has been reported to be associated with rapid degradation. To address these issues, a composite coating (PLA/Li-OCP) consisting of CaHPO4 conversion coating (Ca-P) and polylactic acid (PLA) decorated with Li-octacalcium phosphate particles was constructed on pure zinc. The immersion tests showed that the presence of Ca-P coating and PLA/Li-OCP coating on pure zinc could reduce the pH value. Compared with Ca-P coating, the introduction of the PLA/Li-OCP film on the Ca-P-coated samples could enhance the corrosion resistance, and there was one order of magnitude decrease in the corrosion current density. The cytocompatibility assay suggested that the PLA/Li-OCP coating favored the cell viability and upregulated the expression of related osteogenic-genes including RUNX2, OCN, and BMP. Therefore, the presence of the PLA/Li-OCP coating on pure zinc could effectively improve the degradation rate and cytocompatibility of pure zinc.
Collapse
Affiliation(s)
- Shenghui Su
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiangqiang Tang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Dongbin Qu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Orthopaedic Surgery, Zengcheng Branch of Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Dongbin Qu,
| |
Collapse
|
35
|
Zuo K, Wang L, Wang Z, Yin Y, Du C, Liu B, Sun L, Li X, Xiao G, Lu Y. Zinc-Doping Induces Evolution of Biocompatible Strontium-Calcium-Phosphate Conversion Coating on Titanium to Improve Antibacterial Property. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7690-7705. [PMID: 35114085 DOI: 10.1021/acsami.1c23631] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Implant-associated infections (IAI) remains a common and devastating complication in orthopedic surgery. To reduce the incidence of IAI, implants with intrinsic antibacterial activity have been proposed. The surface functionalization and structure optimization of metallic implants can be achieved by surface modification using the phosphate chemical conversion (PCC) technique. Zinc (Zn) has strong antibacterial behavior toward a broad-spectrum of bacteria. Herein, Zn was incorporated into strontium-calcium-phosphate (SrCaP) coatings on titanium (Ti) via PCC method, and the influence of its doping amount on the phase, microstructure, antibacterial activity, and biocompatibility of the composite coating was researched. The results indicated that traces of Zn doping produced grain refinement of SrCaP coating with no significant effect on its phase and surface properties, while a higher Zn content induced its phase and microstructure transformed into zinc-strontium-phosphate (SrZn2(PO4)2). SrCaP-Zn1 and SrCaP-Zn4 represented trace and high content Zn-doped coatings, respectively, which exhibited a similar bacterial attachment for a short time but showed inhibition of biofilm formation after continuous incubation up to 24 h. The killing rates of SrCaP-Zn1 coating for Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) reached 61.25% and 55.38%, respectively. While that data increased to 83.01% and 71.28% on SrCaP-Zn4 coating due to the more-releasing Zn2+. Furthermore, in vitro culture of MC3T3-E1 cells proved that the Zn-doped coatings also possessed excellent biocompatibility. This study provides a new perception for the phase and microstructural optimization of phosphate coatings on implant surfaces, as well as fabricating promising coatings with excellent biocompatibility and antimicrobial properties against IAI.
Collapse
Affiliation(s)
- Kangqing Zuo
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Lili Wang
- Department of Stomatology, The People's Hospital of Zhaoyuan City, Yantai 264500, China
| | - Zhanghan Wang
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Yixin Yin
- Oral Implantology Center, Ji Nan Stomatological Hospital, Jinan 250001, China
| | - Chunmiao Du
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Bing Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Lanying Sun
- Oral Implantology Center, Ji Nan Stomatological Hospital, Jinan 250001, China
| | - Xiaoyan Li
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Guiyong Xiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Yupeng Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| |
Collapse
|
36
|
Drug-Releasing Gelatin Coating Reinforced with Calcium Titanate Formed on Ti–6Al–4V Alloy Designed for Osteoporosis Bone Repair. COATINGS 2022. [DOI: 10.3390/coatings12020139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ti–6Al–4V alloy has been widely used in the orthopedic and dental fields owing to its high mechanical strength and biocompatibility. However, this alloy has a poor bone-bonding capacity, and its implantation often causes loosening. Osteoporosis increases with the aging of the population, and bisphosphonate drugs such as alendronate and minodronate (MA) are used for the medical treatment. Reliable and multifunctional implants showing both bone bonding and drug releasing functions are desired. In this study, we developed a novel organic-inorganic composite layer consisting of MA-containing gelatin and calcium-deficient calcium titanate (cd–CT) with high bone-bonding and scratch resistance on Ti–6Al–4V alloy. The alloy with the composite layer formed apatite within 7 days in a simulated body fluid and exhibited high scratch resistance of an approximately 50 mN, attributable to interlocking with cd ± CT. Although the gelatin layer almost completely dissolved in phosphate-buffered saline within 6 h, its dissolution rate was significantly suppressed by a subsequent thermal crosslinking treatment. The released MA was estimated at more than 0.10 μmol/L after 7 days. It is expected that the Ti alloy with the MA-containing gelatin and cd–CT composite layer will be useful for the treatment of osteoporosis bone.
Collapse
|
37
|
He M, Lu W, Yu D, Wang H, Wang S, Yuan C, Chen A. Corrosion Behavior and Biocompatibility of Na2EDTA-Induced Nacre Coatings on AZ91D Alloys Prepared via Hydrothermal Treatment. Front Chem 2022; 9:810886. [PMID: 35118051 PMCID: PMC8804281 DOI: 10.3389/fchem.2021.810886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
An effective method for controlling the corrosion rate of Mg-based implants must be urgently developed to meet the requirements of clinical applications. As a naturally occurring osteoid material, nacre offers a strategy to endow biomedical Mg alloys with excellent biocompatibility, and corrosion resistance. In this study, pearl powder and NaH2PO4 were used as precursors to deposit coatings on AZ91D alloy substrates hydrothermally based on Na2EDTA-assisted induction. Na2EDTA-induced nacre coatings were fabricated at various pH values, and its chemical composition and microstructure were analyzed via energy-dispersive X-ray, scanning electron microscopy, and X-ray diffraction spectroscopy. The corrosion-resistant performance and cytocompatibility of the samples were evaluated via electrochemical measurements and in vitro cell experiments. Results showed that the samples hydrothermally treated under faint acid conditions present excellent corrosion resistance, whereas the samples treated under slight alkaline conditions demonstrate improved biocompatibility due to high Ca and P content and large Ca/P atomic ratio. This study provides substantial evidence of the potential value of nacre coatings in expanding the biological applications of implanted biomaterials.
Collapse
|
38
|
Md Yusop AH, Al Sakkaf A, Nur H. Modifications on porous absorbable Fe-based scaffolds for bone applications: A review from corrosion and biocompatibility viewpoints. J Biomed Mater Res B Appl Biomater 2022; 110:18-44. [PMID: 34132457 DOI: 10.1002/jbm.b.34893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2022]
Abstract
Iron (Fe) and Fe-based scaffolds have become a research frontier in absorbable materials which is inherent to their promising mechanical properties including fatigue strength and ductility. Nevertheless, their slow corrosion rate and low biocompatibility have been their major obstacles to be applied in clinical applications. Over the last decade, various modifications on porous Fe-based scaffolds have been performed to ameliorate both properties encompassing surface coating, microstructural alteration via alloying, and advanced topologically order structural design produced by additive manufacturing (AM) techniques. The recent advent of AM produces topologically ordered porous Fe-based structures with an optimized architecture having controllable pore size and strut thickness, intricate internal design, and larger exposed surface area. This undoubtedly opens up new options for controlling Fe corrosion and its structural strengths. However, the in vitro biocompatibility of the AM porous Fe still needs to be addressed considering its higher corrosion rate due to the larger exposed surface area. This review summarizes the latest progress of the modifications on porous Fe-based scaffolds with a specific focus on their responses on the corrosion behavior and biocompatibility.
Collapse
Affiliation(s)
- Abdul Hakim Md Yusop
- Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Ahmed Al Sakkaf
- School of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Hadi Nur
- Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Skudai, Malaysia
- Central Laboratory of Minerals and Advanced Materials, Faculty of Mathematics and Natural Sciences, State University of Malang, Malang, Indonesia
| |
Collapse
|
39
|
Cyphert EL, Zhang N, Learn GD, Hernandez CJ, von Recum HA. Recent Advances in the Evaluation of Antimicrobial Materials for Resolution of Orthopedic Implant-Associated Infections In Vivo. ACS Infect Dis 2021; 7:3125-3160. [PMID: 34761915 DOI: 10.1021/acsinfecdis.1c00465] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While orthopedic implant-associated infections are rare, revision surgeries resulting from infections incur considerable healthcare costs and represent a substantial research area clinically, in academia, and in industry. In recent years, there have been numerous advances in the development of antimicrobial strategies for the prevention and treatment of orthopedic implant-associated infections which offer promise to improve the limitations of existing delivery systems through local and controlled release of antimicrobial agents. Prior to translation to in vivo orthopedic implant-associated infection models, the properties (e.g., degradation, antimicrobial activity, biocompatibility) of the antimicrobial materials can be evaluated in subcutaneous implant in vivo models. The antimicrobial materials are then incorporated into in vivo implant models to evaluate the efficacy of using the material to prevent or treat implant-associated infections. Recent technological advances such as 3D-printing, bacterial genomic sequencing, and real-time in vivo imaging of infection and inflammation have contributed to the development of preclinical implant-associated infection models that more effectively recapitulate the clinical presentation of infections and improve the evaluation of antimicrobial materials. This Review highlights the advantages and limitations of antimicrobial materials used in conjunction with orthopedic implants for the prevention and treatment of orthopedic implant-associated infections and discusses how these materials are evaluated in preclinical in vivo models. This analysis serves as a resource for biomaterial researchers in the selection of an appropriate orthopedic implant-associated infection preclinical model to evaluate novel antimicrobial materials.
Collapse
Affiliation(s)
- Erika L. Cyphert
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Ningjing Zhang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Greg D. Learn
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Christopher J. Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
- Hospital for Special Surgery, New York, New York 10021, United States
| | - Horst A. von Recum
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
40
|
Characterization of sodium alginate containing bioactive glass coatings prepared by sol–gel processing. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Dong J, Tümer N, Putra NE, Zhu J, Li Y, Leeflang MA, Taheri P, Fratila-Apachitei LE, Mol JMC, Zadpoor AA, Zhou J. Extrusion-based 3D printed magnesium scaffolds with multifunctional MgF 2 and MgF 2-CaP coatings. Biomater Sci 2021; 9:7159-7182. [PMID: 34549742 DOI: 10.1039/d1bm01238j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Additively manufactured (AM) biodegradable magnesium (Mg) scaffolds with precisely controlled and fully interconnected porous structures offer unprecedented potential as temporary bone substitutes and for bone regeneration in critical-sized bone defects. However, current attempts to apply AM techniques, mainly powder bed fusion AM, for the preparation of Mg scaffolds, have encountered some crucial difficulties related to safety in AM operations and severe oxidation during AM processes. To avoid these difficulties, extrusion-based 3D printing has been recently developed to prepare porous Mg scaffolds with highly interconnected structures. However, limited bioactivity and a too high rate of biodegradation remain the major challenges that need to be addressed. Here, we present a new generation of extrusion-based 3D printed porous Mg scaffolds that are coated with MgF2 and MgF2-CaP to improve their corrosion resistance and biocompatibility, thereby bringing the AM scaffolds closer to meeting the clinical requirements for bone substitutes. The mechanical properties, in vitro biodegradation behavior, electrochemical response, and biocompatibility of the 3D printed Mg scaffolds with a macroporosity of 55% and a strut density of 92% were evaluated. Furthermore, comparisons were made between the bare scaffolds and the scaffolds with coatings. The coating not only covered the struts but also infiltrated the struts through micropores, resulting in decreases in both macro- and micro-porosity. The bare Mg scaffolds exhibited poor corrosion resistance due to the highly interconnected porous structure, while the MgF2-CaP coatings remarkably improved the corrosion resistance, lowering the biodegradation rate of the scaffolds down to 0.2 mm y-1. The compressive mechanical properties of the bare and coated Mg scaffolds before and during in vitro immersion tests for up to 7 days were both in the range of the values reported for the trabecular bone. Moreover, direct culture of MC3T3-E1 preosteoblasts on the coated Mg scaffolds confirmed their good biocompatibility. Overall, this study clearly demonstrated the great potential of MgF2-CaP coated porous Mg prepared by extrusion-based 3D printing for further development as a bone substitute.
Collapse
Affiliation(s)
- J Dong
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - N Tümer
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - N E Putra
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - J Zhu
- Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - Y Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - M A Leeflang
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - P Taheri
- Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - L E Fratila-Apachitei
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - J M C Mol
- Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - A A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - J Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| |
Collapse
|
42
|
Um SH, Lee J, Song IS, Ok MR, Kim YC, Han HS, Rhee SH, Jeon H. Regulation of cell locomotion by nanosecond-laser-induced hydroxyapatite patterning. Bioact Mater 2021; 6:3608-3619. [PMID: 33869901 PMCID: PMC8022786 DOI: 10.1016/j.bioactmat.2021.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 02/08/2023] Open
Abstract
Hydroxyapatite, an essential mineral in human bones composed mainly of calcium and phosphorus, is widely used to coat bone graft and implant surfaces for enhanced biocompatibility and bone formation. For a strong implant-bone bond, the bone-forming cells must not only adhere to the implant surface but also move to the surface requiring bone formation. However, strong adhesion tends to inhibit cell migration on the surface of hydroxyapatite. Herein, a cell migration highway pattern that can promote cell migration was prepared using a nanosecond laser on hydroxyapatite coating. The developed surface promoted bone-forming cell movement compared with the unpatterned hydroxyapatite surface, and the cell adhesion and movement speed could be controlled by adjusting the pattern width. Live-cell microscopy, cell tracking, and serum protein analysis revealed the fundamental principle of this phenomenon. These findings are applicable to hydroxyapatite-coated biomaterials and can be implemented easily by laser patterning without complicated processes. The cell migration highway can promote and control cell movement while maintaining the existing advantages of hydroxyapatite coatings. Furthermore, it can be applied to the surface treatment of not only implant materials directly bonded to bone but also various implanted biomaterials implanted that require cell movement control.
Collapse
Affiliation(s)
- Seung-Hoon Um
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jaehong Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - In-Seok Song
- Department of Oral and Maxillofacial Surgery, Korea University Anam Hospital, Seoul, 02841, Republic of Korea
| | - Myoung-Ryul Ok
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yu-Chan Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyung-Seop Han
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sang-Hoon Rhee
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hojeong Jeon
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
43
|
Yamaguchi S, Le PTM, Shintani SA, Takadama H, Ito M, Ferraris S, Spriano S. Iodine-Loaded Calcium Titanate for Bone Repair with Sustainable Antibacterial Activity Prepared by Solution and Heat Treatment. NANOMATERIALS 2021; 11:nano11092199. [PMID: 34578515 PMCID: PMC8472594 DOI: 10.3390/nano11092199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
In the orthopedic and dental fields, simultaneously conferring titanium (Ti) and its alloy implants with antibacterial and bone-bonding capabilities is an outstanding challenge. In the present study, we developed a novel combined solution and heat treatment that controllably incorporates 0.7% to 10.5% of iodine into Ti and its alloys by ion exchange with calcium ions in a bioactive calcium titanate. The treated metals formed iodine-containing calcium-deficient calcium titanate with abundant Ti-OH groups on their surfaces. High-resolution XPS analysis revealed that the incorporated iodine ions were mainly positively charged. The surface treatment also induced a shift in the isoelectric point toward a higher pH, which indicated a prevalence of basic surface functionalities. The Ti loaded with 8.6% iodine slowly released 5.6 ppm of iodine over 90 days and exhibited strong antibacterial activity (reduction rate >99%) against methicillin-resistant Staphylococcus aureus (MRSA), S. aureus, Escherichia coli, and S. epidermidis. A long-term stability test of the antibacterial activity on MRSA showed that the treated Ti maintained a >99% reduction until 3 months, and then it gradually decreased after 6 months (to a 97.3% reduction). There was no cytotoxicity in MC3T3-E1 or L929 cells, whereas apatite formed on the treated metal in a simulated body fluid within 3 days. It is expected that the iodine-carrying Ti and its alloys will be particularly useful for orthopedic and dental implants since they reliably bond to bone and prevent infection owing to their apatite formation, cytocompatibility, and sustainable antibacterial activity.
Collapse
Affiliation(s)
- Seiji Yamaguchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto, Kasugai 487-8501, Aichi, Japan; (P.T.M.L.); (S.A.S.); (H.T.); (M.I.)
- Correspondence: ; Tel.: +81-568-51-6420; Fax: +81-568-51-5370
| | - Phuc Thi Minh Le
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto, Kasugai 487-8501, Aichi, Japan; (P.T.M.L.); (S.A.S.); (H.T.); (M.I.)
| | - Seine A. Shintani
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto, Kasugai 487-8501, Aichi, Japan; (P.T.M.L.); (S.A.S.); (H.T.); (M.I.)
| | - Hiroaki Takadama
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto, Kasugai 487-8501, Aichi, Japan; (P.T.M.L.); (S.A.S.); (H.T.); (M.I.)
| | - Morihiro Ito
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto, Kasugai 487-8501, Aichi, Japan; (P.T.M.L.); (S.A.S.); (H.T.); (M.I.)
| | - Sara Ferraris
- Politecnico di Torino, Corso Duca degli Abruzzi 24, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (S.F.); (S.S.)
| | - Silvia Spriano
- Politecnico di Torino, Corso Duca degli Abruzzi 24, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (S.F.); (S.S.)
| |
Collapse
|
44
|
Bee SL, Bustami Y, Ul-Hamid A, Lim K, Abdul Hamid ZA. Synthesis of silver nanoparticle-decorated hydroxyapatite nanocomposite with combined bioactivity and antibacterial properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:106. [PMID: 34426879 PMCID: PMC8382650 DOI: 10.1007/s10856-021-06590-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/09/2021] [Indexed: 05/12/2023]
Abstract
Combination of bioactive material such as hydroxyapatite (HAp) with antibacterial agents would have great potential to be used as bone implant materials to avert possible bacterial infection that can lead to implant-associated diseases. The present study aimed to develop an antibacterial silver nanoparticle-decorated hydroxyapatite (HAp/AgNPs) nanocomposite using chemical reduction and thermal calcination approaches. In this work, natural HAp that was extracted from chicken bone wastes is used as support matrix for the deposition of silver nanoparticles (AgNPs) to produce HAp/AgNPs nanocomposite. XRD, FESEM-EDX, HRTEM, and XPS analyses confirmed that spherical AgNPs were successfully synthesized and deposited on the surface of HAp particles, and the amount of AgNPs adhered on the HAp surface increased with increasing AgNO3 concentration used. The synthesized HAp/AgNPs nanocomposites demonstrated strong antibacterial activity against Staphylococcus aureus bacteria, where the antibacterial efficiency is relied on the amount and size of deposited AgNPs. In addition, the in vitro bioactivity examination in Hank's balanced salt solution showed that more apatite were grown on the surface of HAp/AgNPs nanocomposite when AgNO3 concentration used >1 wt.%. Such nanocomposite with enhanced bioactivity and antibacterial properties emerged as a promising biomaterial to be applied for dentistry and orthopedic implantology.
Collapse
Affiliation(s)
- Soo-Ling Bee
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| | - Yazmin Bustami
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - A Ul-Hamid
- Center for Engineering Research, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Keemi Lim
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Z A Abdul Hamid
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
45
|
Tajik S, Yadegari A, Momtaz M, Tabatabaei FS, Tongas N, Rasoulianboroujeni M. Pressure-Assisted Coating of Ceramics on 3D-Printed Polymeric Scaffolds. ACS APPLIED BIO MATERIALS 2021; 4:6462-6472. [DOI: 10.1021/acsabm.1c00608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Sanaz Tajik
- Marquette University School of Dentistry, Milwaukee, Wisconsin, 53233 United States
| | - Amir Yadegari
- Marquette University School of Dentistry, Milwaukee, Wisconsin, 53233 United States
| | - Milad Momtaz
- Department of Chemistry and Biochemistry, University of Wisconsin−Milwaukee, Milwaukee 53211, Wisconsin, United States
| | | | - Nikita Tongas
- Marquette University School of Dentistry, Milwaukee, Wisconsin, 53233 United States
| | - Morteza Rasoulianboroujeni
- Marquette University School of Dentistry, Milwaukee, Wisconsin, 53233 United States
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin−Madison, Madison, Wisconsin, 53705 United States
| |
Collapse
|
46
|
Evaluation of fluorohydroxyapatite/strontium coating on titanium implants fabricated by hydrothermal treatment. Prog Biomater 2021; 10:185-194. [PMID: 34370267 DOI: 10.1007/s40204-021-00162-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022] Open
Abstract
Titanium and its alloys are considered as appropriate replacements for the irreparable bone. Calcium phosphate coatings are widely used to improve the osteoinduction and osseointegration ability of titanium alloys. To further improve the performance of the calcium phosphate-coated implants, strontium (Sr) was introduced to partially replace the calcium ions. In this study, the effect of Sr ion addition on the fluorohydroxyapatite (FHA)-coated Ti6Al4V alloy was investigated and all the coatings were treated under hydrothermal condition. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the phases and microstructures, respectively. Shear tests were done to evaluate the bond strength of the coating layer. MTT, adhesion, and alkaline phosphatase tests were performed to evaluate the biocompatibility and osteogenic behavior of the samples. Results showed that the average crystallite size for the strontium-doped FHA samples was 48 nm and the bond strength had increased 13.15% in comparison with FHA-coated samples. Analysis of variance showed p value for all MTT tests at more than 0.322 and there was not any evidence of cell death after 7 days. The results of the ALP test showed that the increase of the cell activity in Sr samples from day 7 to 14 is three times higher than the FHA ones.
Collapse
|
47
|
Han Y, Zhao W, Zheng Y, Wang H, Sun Y, Zhang Y, Luo J, Zhang H. Self-adhesive lubricated coating for enhanced bacterial resistance. Bioact Mater 2021; 6:2535-2545. [PMID: 33615044 PMCID: PMC7868611 DOI: 10.1016/j.bioactmat.2021.01.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Limited surface lubrication and bacterial biofilm formation pose great challenges to biomedical implants. Although hydrophilic lubricated coatings and bacterial resistance coatings have been reported, the harsh and tedious synthesis greatly compromises their application, and more importantly, the bacterial resistance property has seldom been investigated in combination with the lubrication property. In this study, bioinspired by the performances of mussel and articular cartilage, we successfully synthesized self-adhesive lubricated coating and simultaneously achieved optimal lubrication and bacterial resistance properties. Additionally, we reported the mechanism of bacterial resistance on the nanoscale by studying the adhesion interactions between biomimetic coating and hydrophilic/hydrophobic tip or living bacteria via atomic force microscopy. In summary, the self-adhesive lubricated coating can effectively enhance lubrication and bacterial resistance performances based on hydration lubrication and hydration repulsion, and represent a universal and facial strategy for surface functionalization of biomedical implants.
Collapse
Affiliation(s)
- Ying Han
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Weiwei Zhao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yiwei Zheng
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haimang Wang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yulong Sun
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yifei Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Jing Luo
- Beijing Research Institute of Automation for Machinery Industry Co., Ltd, Beijing, 100120, China
| | - Hongyu Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
48
|
Zhang B, Su Y, Zhou J, Zheng Y, Zhu D. Toward a Better Regeneration through Implant-Mediated Immunomodulation: Harnessing the Immune Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100446. [PMID: 34117732 PMCID: PMC8373114 DOI: 10.1002/advs.202100446] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Indexed: 05/06/2023]
Abstract
Tissue repair/regeneration, after implantation or injury, involves comprehensive physiological processes wherein immune responses play a crucial role to enable tissue restoration, amidst the immune cells early-stage response to tissue damages. These cells break down extracellular matrix, clear debris, and secret cytokines to orchestrate regeneration. However, the immune response can also lead to abnormal tissue healing or scar formation if not well directed. This review first introduces the general immune response post injury, with focus on the major immune cells including neutrophils, macrophages, and T cells. Next, a variety of implant-mediated immunomodulation strategies to regulate immune response through physical, chemical, and biological cues are discussed. At last, various scaffold-facilitated regenerations of different tissue types, such as, bone, cartilage, blood vessel, and nerve system, by harnessing the immunomodulation are presented. Therefore, the most recent data in biomaterials and immunomodulation is presented here in a bid to shape expert perspectives, inspire researchers to go in new directions, and drive development of future strategies focusing on targeted, sequential, and dynamic immunomodulation elicited by implants.
Collapse
Affiliation(s)
- Ben Zhang
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| | - Yingchao Su
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| | - Juncen Zhou
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| | - Yufeng Zheng
- Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Donghui Zhu
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| |
Collapse
|
49
|
Titanium and Other Metal Hypersensitivity Diagnosed by MELISA® Test: Follow-Up Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5512091. [PMID: 34124241 PMCID: PMC8192180 DOI: 10.1155/2021/5512091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 11/22/2022]
Abstract
This study is aimed at proving the clinical benefit of the MELISA® test in the minimization or complete elimination of health problems in patients with confirmed hypersensitivity to metals used for tissue replacements. A group of 305 patients aged 20-75 years with previously proven metal hypersensitivity (initial MELISA® test), mainly to titanium and then to another fifteen metals, was chosen from the database at the Institute of Dental Medicine. From these patients, a final group of 42 patients agreed to participate in the study, 35 of which were female and 7 were male. The patients completed a special questionnaire aimed at information regarding change of health status from their last visit and determining whether the results of the initial MELISA® test and recommendations based on it were beneficial for patients or not. They were clinically examined, and peripheral blood samples were taken to perform follow-up MELISA® tests. Questionnaire data was processed, and the follow-up MELISA® test results were compared with the results of the initial MELISA® tests. For statistical analysis, the Fisher's exact test and paired T-test were used. Thirty-two patients reported that they followed the recommendations based on the results of the initial MELISA® tests, and of these, 30 patients (94%) confirmed significant health improvement. Six patients did not follow the recommendation, and from these, only one patient reported an improvement in his health problems. By comparison of the initial and follow-up MELISA® test results, it can be stated that the hypersensitivity to the given metal decreased or disappeared after the therapeutic interventions performed based on the initial MELISA® test results. The evaluation of the data obtained from patients in this study confirmed a significant clinical benefit of MELISA® test.
Collapse
|
50
|
Amukarimi S, Mozafari M. Biodegradable magnesium-based biomaterials: An overview of challenges and opportunities. MedComm (Beijing) 2021; 2:123-144. [PMID: 34766139 PMCID: PMC8491235 DOI: 10.1002/mco2.59] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/26/2022] Open
Abstract
As promising biodegradable materials with nontoxic degradation products, magnesium (Mg) and its alloys have received more and more attention in the biomedical field very recently. Having excellent biocompatibility and unique mechanical properties, magnesium-based alloys currently cover a broad range of applications in the biomedical field. The use of Mg-based biomedical devices eliminates the need for biomaterial removal surgery after the healing process and reduces adverse effects induced by the implantation of permanent biomaterials. However, the high corrosion rate of Mg-based implants leads to unexpected degradation, structural failure, hydrogen evolution, alkalization, and cytotoxicity. To overcome these limitations, alloying Mg with suitable alloying elements and surface treatment come highly recommended. In this area, open questions remain on the behavior of Mg-based biomaterials in the human body and the effects of different factors that have resulted in these challenges. In addition to that, many techniques are yet to be verified to turn these challenges into opportunities. Accordingly, this article aims to review major challenges and opportunities for Mg-based biomaterials to minimize the challenges for the development of novel biomaterials made of Mg and its alloys.
Collapse
Affiliation(s)
- Shukufe Amukarimi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical Sciences (IUMS)TehranIran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical Sciences (IUMS)TehranIran
| |
Collapse
|