1
|
Lu J, Cai J, Zhou Z, Ma J, Han T, Lu N, Zhu L. Gel@CAT-L hydrogel mediates mitochondrial unfolded protein response to regulate reactive oxygen species and mitochondrial homeostasis in osteoarthritis. Biomaterials 2025; 321:123283. [PMID: 40222260 DOI: 10.1016/j.biomaterials.2025.123283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/03/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVE This study investigates the role of Gelatin-Catalase (Gel@CAT)-L hydrogel in mediating reactive oxygen species (ROS) production and maintaining mitochondrial homeostasis through SIRT3-mediated unfolded protein response (UPRmt), while exploring its involvement in the molecular mechanism of osteoarthritis (OA). METHODS Self-assembled Gel@CAT-L hydrogels were fabricated and characterized using transmission electron microscopy, mechanical testing, external release property evaluation, and oxygen production measurement. Biocompatibility was assessed via live/dead cell staining and CCK8 assays. An OA mouse model was established using destabilization of the medial meniscus (DMM) surgery. X-ray and micro-CT imaging were employed to evaluate the structural integrity of the mouse knee joints, while histological staining was used to assess cartilage degeneration. Immunohistochemistry was performed to analyze the expression of proteins including Col2a1, Aggrecan, MMP13, ADAMTS5, SIRT3, PINK1, and Parkin. Multi-omics analyses-encompassing high-throughput sequencing, proteomics, and metabolomics-were conducted to identify key genes and metabolic pathways targeted by Gel@CAT-L hydrogel intervention in OA. Immunofluorescence techniques were utilized to measure ROS levels, mitochondrial membrane potential, and the expression of SIRT3, PINK1, Parkin, LYSO, LC3B, Col2a1, and MMP13 in primary mouse chondrocytes and mouse knee joints. Flow cytometry was applied to quantify ROS-positive cells. RT-qPCR analysis was conducted to determine mRNA levels of Aggrecan, Col2a1, ADAMTS5, MMP13, SIRT3, mtDNA, HSP60, LONP1, CLPP, and Atf5 in primary mouse chondrocytes, mouse knee joints, and human knee joints. Western blotting was performed to measure protein expression levels of SIRT3, HSP60, LONP1, CLPP, and Atf5 in both primary mouse chondrocytes and mouse knee joints. Additionally, 20 samples each from the control (CON) and OA groups were collected for analysis. Hematoxylin and eosin staining was used to evaluate cartilage degeneration in human knee joints. The Mankin histological scoring system quantified the degree of cartilage degradation, while immunofluorescence analyzed SIRT3 protein expression in human knee joints. RESULTS In vitro experiments demonstrated that self-assembled Gel@CAT-L hydrogels exhibited excellent biodegradability and oxygen-releasing capabilities, providing a stable three-dimensional environment conducive to cell viability and proliferation while reducing ROS levels. Multi-omics analysis identified SIRT3 as a key regulatory gene in mitigating OA and revealed its central role in the UPRmt pathway. Furthermore, Gel@CAT-L was confirmed to regulate mitochondrial homeostasis. Both in vitro experiments and in vivo mouse model studies confirmed that Gel@CAT-L significantly reduced ROS levels and regulated mitochondrial autophagy by activating the SIRT3-mediated UPRmt pathway, thereby improving the pathological state of OA. Clinical trials indicated downregulation of SIRT3 and UPRmt-related proteins in OA patients. CONCLUSION Gel@CAT-L hydrogel activates SIRT3-mediated UPRmt to regulate ROS and mitochondrial homeostasis, providing potential therapeutic benefits for OA.
Collapse
Affiliation(s)
- Jiajia Lu
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200434, China
| | - Jiao Cai
- Department of Medical Administration, Shanghai Changzheng Hospital, Shanghai, 200434, China
| | - Zhibin Zhou
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning, China
| | - Jun Ma
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200434, China; Department of Orthopaedic Trauma, Naval Medical Center of PLA, Naval Medical University, Shanghai, 200001, China
| | - Tianyu Han
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning, China.
| | - Nan Lu
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| | - Lei Zhu
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200434, China.
| |
Collapse
|
2
|
Huang P, Wang L, Heng BC, Haririan I, Cai Q, Ge Z. Property-Tailoring Chemical Modifications of Hyaluronic Acid for Regenerative Medicine Applications. Acta Biomater 2025:S1742-7061(25)00420-9. [PMID: 40490241 DOI: 10.1016/j.actbio.2025.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 05/19/2025] [Accepted: 06/06/2025] [Indexed: 06/11/2025]
Abstract
Hyaluronic acid (HA) as well as HA-based materials are widely applied in regenerative medicine due to their good biocompatibility, bioactivity and amenability to chemical modifications. Although the reactive sites and associated reaction types of HA have been summarized previously to guide chemical modification and synthesis of HA-based materials, the relationship between chemical modifications and HA-based material properties has not yet been discussed. In this review, the key properties of HA-based materials required for regenerative medicine in various tissues and organs including skin, bone, cartilage, heart and cornea are summarized and various chemical modification strategies aimed at achieving these properties are discussed. Versatile HA-based materials can be tailored through crosslinking and conjugation, as well as regulating the internal bonding types and degrees of modification. We also provide a comparative analysis of commonly used HA-based materials modification methods and discuss their practical advantages, limitations, and the current status of clinical translation. Even with significant progress already achieved, there is still a long way to go in precisely fine-tuning chemical modifications, balancing functionality and practicality, as well as in understanding their interactions with the diverse array of cells and tissues in vivo. This review bridges tissue-specific property demands with chemical design strategies. We believe that this demand-driven framework provides a practical and accessible guide for researchers intending to design HA-based materials with targeted regenerative capabilities. STATEMENT OF SIGNIFICANCE: This review critically examines hyaluronic acid (HA) and HA-based materials in regenerative medicine applications, focusing on the key properties required for applications in specific tissues such as skin, bone, cartilage, heart, and cornea, as well as the associated chemical modification strategies. While design strategies for HA-based materials have been studied in the past, the relationship between chemical modifications and the resulting material properties remains under-explored. This review thus addresses this gap by systematically categorizing various chemical modification strategies that have been tailored to different material property requirements, providing a comparative analysis of commonly used chemical modification methods, and discussing current clinical challenges and future directions of HA-based materials. By linking material properties to chemical modification strategies, this review thus provides a comprehensive guide for researchers and offers valuable insights for advancing the applications of HA-based materials in regenerative medicine.
Collapse
Affiliation(s)
- Peiling Huang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Li Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Boon Chin Heng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Ismaeil Haririan
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zigang Ge
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China; Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China.
| |
Collapse
|
3
|
Lin Y, Wu H, Wang J, He W, Hou J, Martin VT, Zhu C, Chen Y, Zhong J, Yu B, Lu A, Guan D, Qin G, Chen W. Nicotinamide Adenine Dinucleotide-Loaded Lubricated Hydrogel Microspheres with a Three-Pronged Approach Alleviate Age-Related Osteoarthritis. ACS NANO 2025; 19:17606-17626. [PMID: 40315404 PMCID: PMC12080321 DOI: 10.1021/acsnano.5c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 05/04/2025]
Abstract
Chondrocyte senescence, synovitis, and decreased level of lubrication play pivotal roles in the pathogenesis of age-related osteoarthritis (AROA). However, there are currently no effective therapeutic interventions capable of altering the progression of OA until it reaches advanced stages, necessitating joint replacement. In this study, lubricious and drug-loaded hydrogel microspheres were designed and fabricated by utilizing microfluidic technology for radical polymerization of chondroitin sulfate methacrylate and incorporating nicotinamide adenine dinucleotide (NAD)-loaded liposomes modified with lactoferrin that are positively charged. Mechanical, tribological, and drug release analyses demonstrated enhanced lubrication properties and an extended drug dissemination time for the NAD@NPs@HM microspheres. In vitro assays unveiled the ability of NAD@NPs@HM to counteract chondrocyte senescence. RNA sequencing analysis, untargeted metabolomics analysis, and in vitro experiments on macrophages revealed that NAD@NPs@HM can regulate the metabolic reprogramming of synovial macrophages, promoting their repolarization from the M1 to M2 phenotype, thereby alleviating synovitis. Intra-articular injection of NAD@NPs@HM in aged mice reduced the mechanisms associated with AROA. These results suggest that NAD@NPs@HM may provide extended drug release, improved joint lubrication leading to better gait, and attenuation of AROA pathogenic processes, indicating its potential as a therapeutic approach for AROA.
Collapse
Affiliation(s)
- Yanpeng Lin
- Department
of Radiology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Hangtian Wu
- Division
of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang
Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Jun Wang
- School
of Animal Science and Technology, Foshan
University, Foshan, Guangdong 528231, People’s Republic of China
| | - Wanling He
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
- Guangdong
Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jiahui Hou
- Division
of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang
Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Vidmi Taolam Martin
- Division
of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang
Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Chencheng Zhu
- Division
of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang
Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Yupeng Chen
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
- Guangdong
Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, P. R. China
| | - Junyuan Zhong
- Department
of Medical Imaging, Ganzhou People’s
Hospital, Ganzhou, Jiangxi 341000, P. R. China
| | - Bin Yu
- Division
of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang
Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Aiping Lu
- Institute
of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong 999077, P. R. China
- Guangdong-Hong
Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510515, P. R. China
| | - Daogang Guan
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
- Guangdong
Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, P. R. China
| | - Genggeng Qin
- Department
of Radiology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Weiguo Chen
- Department
of Radiology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, P. R. China
| |
Collapse
|
4
|
Cai C, Wang M, Wang L, Guo J, Wang L, Zhang Y, Wu G, Hua B, Stuart MAC, Guo X, Cao L, Yan Z. Zwitterionic Brush-Grafted Interfacial Bio-Lubricant Evades Complement C3-Mediated Macrophage Phagocytosis for Osteoarthritis Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501137. [PMID: 40304130 DOI: 10.1002/adma.202501137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/10/2025] [Indexed: 05/02/2025]
Abstract
Administering a bio-lubricant is a promising therapeutic approach for the treatment of osteoarthritis (OA), in particular, if it can both manage symptoms and halt disease progression. However, the clearance of these bio-lubricants mediated by synovial macrophages leads to reduced therapeutic efficiency and adverse inflammatory responses. Herein, it is shown that this process is predominantly mediated by the specific binding of complement C3 (on nanoparticle) and CD11b (on macrophage). More importantly, through a systematic evaluation of various interface modifications, a macrophage-evading nanoparticle strategy is proposed, which not only minimizes friction, but also largely suppresses C3 adsorption. It involves employing a zwitterionic poly-2-methacryloyloxyethyl phosphorylcholine (PMPC) brush layer grafted from a crosslinked gelatin core. In vitro studies demonstrate that such a nanoparticle lubricant can evade macrophage phagocytosis and further prevent the pro-inflammatory M1 polarization and subsequent harmful release of cytokines. In vivo studies show that the designed PMPC brush layer effectively mitigates synovial inflammation, alleviates OA-associated pain, and protects cartilage from degeneration, thus preventing OA progression. These findings clarify the pivotal role of complement C3-mediated macrophage recognition in nanoparticles clearance and offer a promising nanoparticle design strategy to restore joint lubrication.
Collapse
Affiliation(s)
- Chuandong Cai
- Department of Orthopaedic Surgery, Zhongshan Hospital, Institute of Bone and Joint Diseases, Fudan University, Shanghai, 200032, China
| | - Mingwei Wang
- School of Chemical Engineering, State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, 6525 EX, The Netherlands
| | - Luman Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Institute of Bone and Joint Diseases, Fudan University, Shanghai, 200032, China
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiangtao Guo
- School of Chemical Engineering, State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lipeng Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Institute of Bone and Joint Diseases, Fudan University, Shanghai, 200032, China
| | - Yingkai Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Institute of Bone and Joint Diseases, Fudan University, Shanghai, 200032, China
| | - Guohao Wu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Institute of Bone and Joint Diseases, Fudan University, Shanghai, 200032, China
| | - Bingxuan Hua
- Department of Orthopaedic Surgery, Zhongshan Hospital, Institute of Bone and Joint Diseases, Fudan University, Shanghai, 200032, China
| | - Martien A Cohen Stuart
- School of Chemical Engineering, State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Xuhong Guo
- School of Chemical Engineering, State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Lu Cao
- Department of Orthopaedic Surgery, Zhongshan Hospital, Institute of Bone and Joint Diseases, Fudan University, Shanghai, 200032, China
| | - Zuoqin Yan
- Department of Orthopaedic Surgery, Zhongshan Hospital, Institute of Bone and Joint Diseases, Fudan University, Shanghai, 200032, China
- Department of Orthopaedic Surgery, Shanghai Geriatric Medical Center, 2560 Chunshen Road, Shanghai, 201104, China
| |
Collapse
|
5
|
Miao J, Jiang X, Wang S. YTHDF1-mediated m6A modification promotes cisplatin resistance in ovarian cancer via the FZD7/Wnt/β-catenin pathway. Apoptosis 2025:10.1007/s10495-025-02094-0. [PMID: 40281310 DOI: 10.1007/s10495-025-02094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 04/29/2025]
Abstract
Cisplatin resistance significantly hinders the efficacy of ovarian cancer treatment, presenting a major challenge in improving patient outcomes. This study identifies the m6A reader protein YTHDF1 as a key regulator of cisplatin resistance in ovarian cancer through its modulation of the FZD7/Wnt/β-catenin signaling pathway. Using cisplatin-resistant ovarian cancer cell lines (A2780/DDP and SKOV3/DDP), we observed elevated YTHDF1 expression, which positively correlated with tumor cell proliferation and migration. Silencing YTHDF1 reduced FZD7 expression, inhibited Wnt/β-catenin signaling, and restored cisplatin sensitivity both in vitro and in vivo. Mechanistic investigations revealed that YTHDF1 binds to m6A-modified FZD7 mRNA, enhancing its stability and translation. Functional studies in xenograft mouse models demonstrated that targeting YTHDF1 suppressed tumor growth and enhanced apoptosis in cisplatin-resistant ovarian cancer cells. These findings highlight the YTHDF1-FZD7 axis as a novel therapeutic target for overcoming cisplatin resistance, paving the way for improved treatment strategies in ovarian cancer.
Collapse
Affiliation(s)
- Jintian Miao
- Department of Gynecology, First Affiliated Hospital of Harbin Medical University, No. 2705, Seventh Avenue, Qunli, Daoli District, Harbin, Heilongjiang Province, 151000, China.
| | - Xinyan Jiang
- Department of Gynecology, First Affiliated Hospital of Harbin Medical University, No. 2705, Seventh Avenue, Qunli, Daoli District, Harbin, Heilongjiang Province, 151000, China
| | - Siyun Wang
- Department of Gynecology, First Affiliated Hospital of Harbin Medical University, No. 2705, Seventh Avenue, Qunli, Daoli District, Harbin, Heilongjiang Province, 151000, China
| |
Collapse
|
6
|
Liang W, Yang R, Qin L, Liang T, Chen W. Current Status and Perspectives of Research on Polymer Hydrogels in the Treatment and Protection of Osteoarthritis. Macromol Biosci 2025:e2500016. [PMID: 40271818 DOI: 10.1002/mabi.202500016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/04/2025] [Indexed: 04/25/2025]
Abstract
Arthritis is a degenerative disease characterized by chronic cartilage degeneration. It affects hundreds of millions of people worldwide and often has serious consequences such as joint pain and swelling, limited mobility, and joint deformity. However, conventional treatments still struggle to achieve satisfactory results. Finding more effective treatments for arthritis remains an important clinical challenge. As hydrogels have a unique 3D spatial mesh structure, significant material interaction ability, adjustable mechanical properties, and good biodegradability, they can provide a suitable cellular or tissue microenvironment, and their potential in scaffolding effect, lubrication, anti-inflammatory effect, or drug or cellular delivery is expected to be a potent therapeutic approach for the treatment of osteoarthritis. In this review, three aspects of hydrogel products for osteoarthritis treatment are comprehensively summarized and discussed, namely, material selection and gel design, exploration of cross-linking mechanisms, and mechanisms of hydrogel therapy for osteoarthritis, and focus on the advantages and limitations of their clinical applications, which point out the direction of the development strategy of innovative products in this field, applied research, and clinical transformation.
Collapse
Affiliation(s)
- Wanjun Liang
- School of Pharmaceutical Sciences, Institute of Materia Medica, Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release System, Shandong First Medical University, Jinan, 250117, China
| | - Rui Yang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Lijing Qin
- School of Pharmaceutical Sciences, Institute of Materia Medica, Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release System, Shandong First Medical University, Jinan, 250117, China
| | - Tongjuan Liang
- School of Pharmaceutical Sciences, Institute of Materia Medica, Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release System, Shandong First Medical University, Jinan, 250117, China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
7
|
Yang X, Gao F, Song W. Cartilage Lubrication from the Perspective of Wettability. ACS NANO 2025; 19:13505-13526. [PMID: 40171891 DOI: 10.1021/acsnano.4c17681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Cartilage exhibits an extremely low friction and very low wearability within the liquid environment of the joint. It is also capable of switching wettability between superhydrophilicity and hydrophobicity in both wetting and dry conditions (specific experimental operations or open wounds). Therefore, the understanding of cartilage lubrication from the perspective of wettability provides inspiration for the design of artificial cartilage and sections with motion of soft actuators with extremely low coefficients of friction (COF). In this review, the lubrication of articular cartilage is introduced and discussed from the view of wettability. First, basic principles of articular cartilage lubrication and wettability are described with a focus on compositions and wettability of articular cartilage, and in particular the relationship between the phospholipid layers and wettability on articular cartilage, and the supramolecular synergy of synovial fluid on the lubrication of articular cartilage. Subsequently, the wettability and lubrication of articular cartilage under different stimuli (such as shear, pH, temperature, and electric field) is introduced for insights into cartilage lubrication. Finally, we present a comprehensive summary and delineate the challenges within the domain of cartilage lubrication and wettability for assisting researchers in formulating viable concepts for the design of efficient cartilage substitution or smart soft lubricating devices.
Collapse
Affiliation(s)
- Xuhao Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Feng Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
8
|
Liao X, Bai MH, Liu YW, Wei YQ, Wang JY, Wang ZG, Hong R, Gou JX, Xu JZ, Li ZM, Li K. Mitigating intubation stress, mucosa injury, and inflammatory response in nasogastric tube intubation via suppression of the NF-κB signaling pathway by engineering a hydration lubrication coating. J Mater Chem B 2025; 13:4582-4593. [PMID: 39474843 DOI: 10.1039/d4tb01171f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Nasogastric tube (NGT) intubation is a common yet critical clinical procedure. However, complications arising from tube friction result in awful pain and morbidity. Here, we report a straightforward surface modification of slender NGT utilizing highly hydrated micelles that were composed of hyaluronic acid and Pluronic. The strong intermolecular hydrogen bonding facilitated the assembly of the micelles on NGT via a one-step dip coating process. The micelle coating conferred excellent hydrophilic, lubrication, anti-protein adhesive, and biocompatible properties. The in vivo efficacy of the micelle coating in alleviating catheterization irritation and mucosal injury was demonstrated using an NGT intubation model of rabbits. More importantly, compared to the paraffin oil coating (the current clinical means), the micelle coating possessed superior capability to reduce the inflammatory reaction caused by NGT intubation. The underlying mechanism was attributed to the suppression of the TLR4-IKBα-NF-κB inflammatory signaling pathway. This work provides a promising solution for developing lubricant medical coatings.
Collapse
Affiliation(s)
- Xi Liao
- West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China.
- Department of General Surgery, West China Hospital, Sichuan University/Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng-Han Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Yu-Wei Liu
- West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China.
| | - Yu-Qing Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jun-Yang Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhi-Guo Wang
- West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China.
| | - Rui Hong
- West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China.
| | - Ju-Xiang Gou
- Thyroid Surgery Department, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jia-Zhuang Xu
- West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China.
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- West China Hospital, Sichuan University/West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Ka Li
- West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Ruochong Z, Dongmei W, Xinshao C, Minghuan W, Xiaodong H, Qi D, Xuefeng X, Meirong C, Litian H. Recent development in friction of supramolecular gel lubricant: from mechanisms to applications. NANOTECHNOLOGY 2025; 36:182003. [PMID: 40117672 DOI: 10.1088/1361-6528/adc39f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/21/2025] [Indexed: 03/23/2025]
Abstract
Due to the unique self-assembling structure and rheological properties, supramolecular gel lubricants have become the third major type of liquid lubricating materials to supplement the lubricating oils and greases. The molecular structures of gelators applicable to oil-based, water-based and extreme conditions base oils were summarized firstly. Furthermore, this review aims at exploring the relationships between the molecular structures of gelators and the gel-forming, rheological and tribological properties of gel lubricants. Based on the wide application of gel in various lubrication fields, the synergistic lubricating effect between gel lubricants and nanomaterials, films, textured surfaces were analyzed. The design of solid-liquid composite lubrication systems based on gel lubricants and solid lubricants were attempted to be highlighted and revealed. Finally, the perspectives on the development of gel lubricants and corresponding composite lubricating materials were presented.
Collapse
Affiliation(s)
- Zhang Ruochong
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Wang Dongmei
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Cheng Xinshao
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Wang Minghuan
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Hu Xiaodong
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Ding Qi
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Xu Xuefeng
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Cai Meirong
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Hu Litian
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
10
|
Mitsou E, Klein J. Liposome-Based Interventions in Knee Osteoarthritis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410060. [PMID: 40143645 PMCID: PMC12036560 DOI: 10.1002/smll.202410060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/21/2025] [Indexed: 03/28/2025]
Abstract
Osteoarthritis (OA) is the most common degenerative disease of the joints, causing significant disability and socio-economic burden in the aging population. Simultaneously, however, it is a common occurrence in younger individuals, initiated by joint injuries or obesity alongside other factors. Intravenous and oral pharmaceutical OA management have both been associated with systemic adverse effects, thereby resulting in a growing interest in intra-articular (IA) treatment. IA-administered drugs circumvent the requirement for high dosage, offering immediate access to the site of interest while minimizing any unfavorable effects. Nonetheless, IA-injected drugs, administered in their free form, present low retention time in the knee joint raising the need for multiple injection dosage regimens, while their capability to target the cartilage or specific cell populations is limited. Liposomes, due to their unique characteristics and tunable nature, have proven to be excellent candidates for the management of knee OA. This review explores the last decade's research on the efficacy of various IA liposomal formulations, investigating their multifaceted properties as pharmaceutical carriers, lubricating agents, and a basis for combinatorial approaches paving the way to novel treatment solutions for OA.
Collapse
Affiliation(s)
- Evgenia Mitsou
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of ScienceHertzl Street 234Rehovot7610001Israel
- Present address:
Institute of Chemical BiologyNational Hellenic Research Foundation48, Vassileos Constantinou Ave.Athens11635Greece
| | - Jacob Klein
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of ScienceHertzl Street 234Rehovot7610001Israel
| |
Collapse
|
11
|
Ma Y, Yang W, Lin Q, Li M, Li Z, Xing Y, Wei L, Duan W, Wei X. High-speed centrifugation reduces immune rejection by removing bone marrow elements from fresh osteochondral allografts. J Orthop Translat 2025; 51:37-50. [PMID: 39906333 PMCID: PMC11791335 DOI: 10.1016/j.jot.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/02/2024] [Accepted: 12/09/2024] [Indexed: 02/06/2025] Open
Abstract
Background Fresh osteochondral allografts (OCAs) contain numerous immunogenic components in the subchondral bone (SB). Whether high-speed centrifugation (HSC) reduces immune rejection by removing bone marrow elements (BMEs), compared to methods without HSC, remains unknown. This study aimed to validate the efficacy and safety of HSC in reducing immune rejection by removing allogeneic BMEs. Methods OCAs were obtained from the femoral condyles of the stifle joint in 18 pigs. Gross observations, histological staining, weight measurements, and DNA extraction were performed to assess the effects of centrifugation speed and duration on BMEs removal in OCAs. The effect of HSC on OCAs preservation was determined in vitro using microbiological testing, live/dead cell staining, and histological staining. Moreover, the co-culture effect of RAW264.7 cells and OCAs with or without HSC in vitro was evaluated using enzyme-linked immunosorbent assay (ELISA), histological staining, and immunohistochemical staining. The transplantation effect of OCAs with or without HSC was examined in vivo using a subcutaneous mouse model. Finally, the residues in the centrifuge tubes were analysed using ELISA, haematoxylin and eosin (HE) staining, and metabolomic analysis. Results Centrifugal speeds of 12000 rpm for 1 min were sufficient to reduce BMEs by over 90 %. HSC had a protective effect on chondrocytes and the extracellular matrix during the in vitro preservation of OCAs. In addition, OCAs using the HSC method exhibited reduced recognition by the host immune system compared with OCAs without HSC, thereby reducing immune rejection. Lipids were the most abundant and difficult-to-remove antigenic components and are the most likely to affect host macrophage polarisation, playing an important role in immune rejection. Conclusion Our study demonstrated that HSC method significantly reduces immune rejection by removing BMEs from OCAs. The translational potential of this article Our study demonstrated that HSC is a simple, efficient, and safe physical method for removing antigenic components from OCAs, effectively reducing immune rejection and highlighting its clinical potential.
Collapse
Affiliation(s)
- Yongsheng Ma
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
- Shanxi Center for Osteochondral Transplantation, Taiyuan, 030001, China
| | - Wenming Yang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
- Shanxi Center for Osteochondral Transplantation, Taiyuan, 030001, China
| | - Qitai Lin
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
- Shanxi Center for Osteochondral Transplantation, Taiyuan, 030001, China
| | - Meiming Li
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
- Shanxi Center for Osteochondral Transplantation, Taiyuan, 030001, China
| | - Zehao Li
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
- Shanxi Center for Osteochondral Transplantation, Taiyuan, 030001, China
| | - Yugang Xing
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
- Shanxi Center for Osteochondral Transplantation, Taiyuan, 030001, China
| | - Lei Wei
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
| | - Wangping Duan
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
- Shanxi Center for Osteochondral Transplantation, Taiyuan, 030001, China
| | - Xiaochun Wei
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
- Shanxi Center for Osteochondral Transplantation, Taiyuan, 030001, China
| |
Collapse
|
12
|
Xu Z, Liu J, Hu H, Ma J, Yang H, Chen J, Xu H, Hu H, Luo H, Chen G. Recent applications of stimulus-responsive smart hydrogels for osteoarthritis therapy. Front Bioeng Biotechnol 2025; 13:1539566. [PMID: 40035023 PMCID: PMC11872905 DOI: 10.3389/fbioe.2025.1539566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Osteoarthritis is one of the most common degenerative joint diseases, which seriously affects the life of middle-aged and elderly people. Traditional treatments such as surgical treatment and systemic medication, often do not achieve the expected or optimal results, which leads to severe trauma and a variety of side effects. Therefore, there is an urgent need to develop novel therapeutic options to overcome these problems. Hydrogels are widely used in biomedical tissue repairing as a platform for loading drugs, proteins and stem cells. In recent years, smart-responsive hydrogels have achieved excellent results as novel drug delivery systems in the treatment of osteoarthritis. This review focuses on the recent advances of endogenous stimuli (including enzymes, pH, reactive oxygen species and temperature, etc.) responsive hydrogels and exogenous stimuli (including light, shear, ultrasound and magnetism, etc.) responsive hydrogels in osteoarthritis treatment. Finally, the current limitations of application and future prospects of smart responsive hydrogels are summarized.
Collapse
Affiliation(s)
- Zhuoming Xu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jintao Liu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hanyin Hu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jun Ma
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Haiyang Yang
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jiayi Chen
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hongwei Xu
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Haodong Hu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Huanhuan Luo
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Gang Chen
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
13
|
Li A, Nicolas J, Mura S. Unlocking the Potential of Hybrid Nanocomposite Hydrogels: Design, Mechanical Properties and Biomedical Performances. ADVANCED FUNCTIONAL MATERIALS 2025; 35. [DOI: 10.1002/adfm.202409670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Indexed: 01/06/2025]
Abstract
AbstractHybrid nanocomposite hydrogels consist of the homogeneous incorporation of nano‐objects in a hydrogel matrix. The latter, whether made of natural or synthetic materials, possesses a microporous, soft structure that makes it an ideal host for a variety of polymer and lipid‐based nano‐objects as well as metal‐ and silica‐based ones. By carefully choosing the composition and the proportions of the different constituents, hybrid hydrogels can display a wide array of properties, from simple enhancement of mechanical characteristics to specific bioactivity. This review aims to provide an overview of the state of the art in hybrid hydrogels highlighting key aspects that make them a promising choice for a variety of biomedical applications. Strategies for the preparation of hybrid hydrogels are discussed by covering the selection of individual components. The review will also explore the physico‐chemical and rheological characterization of these materials, which is essential for understanding their structure and function, ultimately satisfying specifications for the intended use. Successful examples of biomedical applications will also be presented, and the main challenges to be met will be discussed, with the aim of stimulating the research community to exploit the full potential of these materials.
Collapse
Affiliation(s)
- Anqi Li
- Université Paris‐Saclay CNRS Institut Galien Paris‐Saclay Orsay 91400 France
| | - Julien Nicolas
- Université Paris‐Saclay CNRS Institut Galien Paris‐Saclay Orsay 91400 France
| | - Simona Mura
- Université Paris‐Saclay CNRS Institut Galien Paris‐Saclay Orsay 91400 France
| |
Collapse
|
14
|
Han Q, Qian Y, Bai L, Zhou J, Hao Y, Hu D, Zhang Z, Yang X. Injectable Nano-Micron AKBA Delivery Platform for Treatment of Tendinopathy in a Rat Model. J Biomed Mater Res A 2025; 113:e37844. [PMID: 39668791 DOI: 10.1002/jbm.a.37844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Tendinopathy is a disorder characterized by pain and reduced function due to a series of changes in injured or diseased tendons. Inflammation and collagen degeneration are key contributors to the onset and chronic nature of tendinopathy. Acetyl-11-keto-β-boswellic acid (AKBA) is an effective anti-inflammatory agent widely used in chronic inflammatory disorders and holds potential for tendinopathy treatment; however, its therapeutic efficacy is limited by poor aqueous solubility. Here, we fabricated AKBA-encapsulated cationic liposome-gelatin methacrylamide (GelMA) microspheres (GM-Lipo-AKBA) using thin-film hydration and microfluidic technology for drug delivery therapy. GM-Lipo-AKBA exhibited high encapsulation efficiency, extended AKBA release for over 4 weeks, and prolonged degradation. In vitro and in vivo experiments demonstrated its effectiveness in improving inflammation and ECM remodeling in tendinopathy. In summary, the injectable nano-micron drug delivery platform provides a promising strategy for the sustained and localized delivery of AKBA for tendinopathy treatment.
Collapse
Affiliation(s)
- Qibin Han
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
- Research Institute of Clinical Medicine, Department of Orthopedic Surgery and Biochemistry, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Yinhua Qian
- Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, P. R. China
| | - Lang Bai
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Jing Zhou
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Yuefeng Hao
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Dan Hu
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Zhouzhou Zhang
- Department of Urology Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Xing Yang
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| |
Collapse
|
15
|
Liao J, Zhu Z, Zou J, Liu S, Luo X, Bao W, Du C, Lei Y, Huang W. Macrophage Membrane-Biomimetic Multi-Layered Nanoparticles Targeting Synovial Angiogenesis for Osteoarthritis Therapy. Adv Healthc Mater 2025; 14:e2401985. [PMID: 39402771 DOI: 10.1002/adhm.202401985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/01/2024] [Indexed: 01/15/2025]
Abstract
Osteoarthritis (OA) is an inflammatory and progressive joint disease characterized by angiogenesis-mediated sustained, chronic, and low-grade synovitis. Anti-angiogenesis is emerging as a strategy for attenuating OA progression, but is often compromised by poor targeted drug delivery and immune clearance. Recent studies have identified macrophages formed a "protective barrier" in the lining layer (LL) of synovium, which blocked the communication of joint cavity and sublining layer (SL) of synovium. Inspired by natural mimicry, macrophage membrane-camouflaged drug delivery is explored to avoid immune clearance. Based on the single cell RNA sequencing, the CD34+ synovial cells are identified as "sentinel cells" for synovium angiogenesis. Consequently, CD34 antibody-modified macrophage membrane is constructed to target new angiogenesis. Hence, a biomimetic multi-layered nanoparticle (NP) is developed that incorporates axitinib-loaded poly(lactic-co-glycolic) acid (PLGA) with CD34 antibody modified macrophage membrane (Atb@NP@Raw@CD34) to specifically deliver axitinib (Atb) to the SL and sustain inhibiting angiogenesis without immune elimination. It is found that the Atb@NP@Raw@CD34 can pass through macrophage "barrier", specifically targeting CD34+ cells, continuously releasing Atb and anti-angiogenesis in OA synovitis. Furthermore, in vivo data demonstrated that Atb@NP@Raw@CD34 can attenuate joint degeneration by inhibiting synovium angiogenesis-mediated synovitis. In conclusion, local injection of Atb@NP@Raw@CD34 presents a promising approach for clinically impeding OA progression.
Collapse
Affiliation(s)
- Junyi Liao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Zhenglin Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Jing Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Senrui Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Xuefeng Luo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Bao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chengcheng Du
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
16
|
Wu S, Wang H, Zhang L, Wang Q, Xu N, Shi K, He C, Hua Y, Zhao Z. Cell membrane fusion composite lipid nanocarrier: preparation and evaluation of anti-tumor effects. Drug Deliv Transl Res 2024:10.1007/s13346-024-01750-3. [PMID: 39638935 DOI: 10.1007/s13346-024-01750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
With the advancements in nanotechnology and biomaterials science, the development of nanodrug delivery systems (Nano-DDSs) has provided opportunities for the realization of precise targeted treatment of malignant tumors. Liposomes have become a type of DDS with early clinical application and mature development due to their excellent tissue-targeting capacity and outstanding biocompatibility. However, several obstacles remain, such as recognition and clearance by the immune system, a short half-life, and poor tumor targeting. To address these problems, we propose a new method to transform liposomes, using fusion to reassemble the extracted natural cell membranes and artificial phospholipids to form a composite nanolipid carrier (recombined lipid nanocarriers (RLNs)). We evaluated the different types of cell membrane composite lipid nanocarriers based on parameters such as particle size, stability, drug loading and release capabilities, in vitro and in vivo tumor-targeting efficacy, and safety. The results indicated that these novel tumor cell-derived membrane fusion lipid nanocarriers exhibited promising antitumor effects and safety profiles, offering insights for precision cancer treatment.
Collapse
Affiliation(s)
- Shengyue Wu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, PR China
| | - Hanming Wang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, PR China
| | - Lihua Zhang
- Yangzhou Hospital Of TCM, 577 Wenchang Middle Road, Yangzhou City, 225002, PR China
| | - Qianqian Wang
- Department of Pharmacy, Affiliated Hospital of Medical School, Taikang Xianlin Drum Tower Hospital, Nanjing University, 188 Lingshan North Road, Qixia District, Nanjing, 210046, PR China
| | - Ningze Xu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, PR China
| | - Kaihong Shi
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, PR China
| | - Cong He
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, PR China
| | - Yabing Hua
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, PR China.
| | - Ziming Zhao
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, PR China.
| |
Collapse
|
17
|
Wu D, Yang S, Gong Z, Zhu X, Hong J, Wang H, Xu W, Lai J, Wang X, Lu J, Fang X, Jiang G, Zhu J. Enhanced therapeutic potential of a self-healing hyaluronic acid hydrogel for early intervention in osteoarthritis. Mater Today Bio 2024; 29:101353. [PMID: 39687801 PMCID: PMC11647215 DOI: 10.1016/j.mtbio.2024.101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Osteoarthritis (OA) is characterized by symptoms such as abnormal lubrication function of synovial fluid and heightened friction on the cartilage surface in its early stages, prior to evident cartilage damage. Current early intervention strategies employing lubricated hydrogels to shield cartilage from friction often overlook the significance of hydrogel-cartilage adhesion and enhancement of the cartilage extracellular matrix (ECM). Herein, we constructed a hydrogel based on dihydrazide-modified hyaluronic acid (HA) (AHA) and catechol-conjugated aldehyde-modified HA (CHA), which not only adheres to the cartilage surface as an effective lubricant but also improves the extracellular environment of chondrocytes in OA. Material characterization experiments on AHA/CHA hydrogels with varying concentrations validated their exceptional self-healing capabilities, superior injectability and viscoelasticity, sustained adhesion strength to cartilage, and a low friction coefficient. Chondrocytes exhibited robust adhesion and proliferation on the AHA/CHA hydrogel surface, with the upregulation of cartilage matrix protein expression. Intra-articular injection of AHA/CHA hydrogels was performed following destabilization of the medial meniscus (DMM) surgery in mice to assess its protective effect on cartilage. The AHA/CHA hydrogel effectively attenuated the degree of cartilage wear, facilitated chondrocytes' anabolic metabolism, and restored the ECM of cartilage. Therefore, the AHA/CHA hydrogel emerges as a promising therapeutic approach in clinical practices of OA treatment.
Collapse
Affiliation(s)
- Dongze Wu
- Department of Spinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Shuhui Yang
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Zhe Gong
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Zhejiang Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases, Hangzhou, 310016, Zhejiang, China
| | - Xinxin Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, Zhejiang, China
| | - Juncong Hong
- Department of Anesthesiology, The First People's Hospital of Linping District, Hangzhou, 311100, Zhejiang, China
| | - Haitao Wang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Zhejiang Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases, Hangzhou, 310016, Zhejiang, China
| | - Wenbin Xu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Zhejiang Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases, Hangzhou, 310016, Zhejiang, China
| | - Juncheng Lai
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jiye Lu
- Department of Spinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Xiangqian Fang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Zhejiang Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases, Hangzhou, 310016, Zhejiang, China
| | - Guoqiang Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Jinjin Zhu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Zhejiang Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases, Hangzhou, 310016, Zhejiang, China
| |
Collapse
|
18
|
Hridayanka KSN, Duttaroy AK, Basak S. Bioactive Compounds and Their Chondroprotective Effects for Osteoarthritis Amelioration: A Focus on Nanotherapeutic Strategies, Epigenetic Modifications, and Gut Microbiota. Nutrients 2024; 16:3587. [PMID: 39519419 PMCID: PMC11547880 DOI: 10.3390/nu16213587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
In degenerative joint disease like osteoarthritis (OA), bioactive compounds like resveratrol, epigallocatechin gallate, curcumin, and other polyphenols often target various signalling pathways, including NFκB, TGFβ, and Wnt/β-catenin by executing epigenetic-modifying activities. Epigenetic modulation can target genes of disease pathophysiology via histone modification, promoter DNA methylation, and non-coding RNA expression, some of which are directly involved in OA but have been less explored. OA patients often seek options that can improve the quality of their life in addition to existing treatment with nonsteroidal anti-inflammatory drugs (NSAIDs). Although bioactive and natural compounds exhibit therapeutic potential against OA, several disadvantages loom, like insolubility and poor bioavailability. Nanoformulated bioactive compounds promise a better way to alleviate OA since they also control systemic events, including metabolic, immunological, and inflammatory responses, by modulating host gut microbiota that can regulate OA pathogenesis. Recent data suggest gut dysbiosis in OA. However, limited evidence is available on the role of bioactive compounds as epigenetic and gut modulators in ameliorating OA. Moreover, it is not known whether the effects of polyphenolic bioactive compounds on gut microbial response are mediated by epigenetic modulatory activities in OA. This narrative review highlights the nanotherapeutic strategies utilizing bioactive compounds, reporting their effects on chondrocyte growth, metabolism, and epigenetic modifications in osteoarthritis amelioration.
Collapse
Affiliation(s)
- Kota Sri Naga Hridayanka
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway;
| | - Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| |
Collapse
|
19
|
Feng H, Ang K, Guan P, Li J, Meng H, Yang J, Fan L, Sun Y. Application of adhesives in the treatment of cartilage repair. INTERDISCIPLINARY MEDICINE 2024; 2. [DOI: 10.1002/inmd.20240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/08/2024] [Indexed: 01/04/2025]
Abstract
AbstractFrom degeneration causing intervertebral disc issues to trauma‐induced meniscus tears, diverse factors can injure the different types of cartilage. This review highlights adhesives as a promising and rapidly implemented repair strategy. Compared to traditional techniques such as sutures and wires, adhesives offer several advantages. Importantly, they seamlessly connect with the injured tissue, deliver bioactive substances directly to the repair site, and potentially alleviate secondary problems like inflammation or degeneration. This review delves into the cutting‐edge advancements in adhesive technology, specifically focusing on their effectiveness in cartilage injury treatment and their underlying mechanisms. We begin by exploring the material characteristics of adhesives used in cartilage tissue, focusing on essential aspects like adhesion, biocompatibility, and degradability. Subsequently, we investigate the various types of adhesives currently employed in this context. Our discussion then moves to the unique role adhesives play in addressing different cartilage injuries. Finally, we acknowledge the challenges currently faced by this promising technology.
Collapse
Affiliation(s)
- Haoyang Feng
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Kai Ang
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Pengfei Guan
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Junji Li
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Huan Meng
- Postdoc Cartilage Biology AO Research Institute Davos Davos Platz Wellington Switzerland
| | - Jian Yang
- Biomedical Engineering Program School of Engineering Westlake University Hangzhou China
| | - Lei Fan
- Department of Orthopedic Surgery Nanfang Hospital Southern Medical University Guangzhou China
| | - Yongjian Sun
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| |
Collapse
|
20
|
Du C, Chen Z, Liu S, Liu J, Zhan J, Zou J, Liao J, Huang W, Lei Y. Lubricin-Inspired Nanozymes Reconstruct Cartilage Lubrication System with an "In-Out" Strategy. SMALL METHODS 2024; 8:e2400757. [PMID: 38962862 DOI: 10.1002/smtd.202400757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Lubricin, secreted primarily by chondrocytes, plays a critical role in maintaining the function of the cartilage lubrication system. However, both external factors such as friction and internal factors like oxidative stress can disrupt this system, leading to osteoarthritis. Inspired by lubricin, a lubricating nanozyme, that is, Poly-2-acrylamide-2-methylpropanesulfonic acid sodium salt-grafted aminofullerene, is developed to restore the cartilage lubrication system using an "In-Out" strategy. The "Out" aspect involves reducing friction through a combination of hydration lubrication and ball-bearing lubrication. Simultaneously, the "In" aspect aims to mitigate oxidative stress by reducing free radical, increasing autophagy, and improving the mitochondrial respiratory chain. This results in reduced chondrocyte senescence and increased lubricin production, enhancing the natural lubrication ability of cartilage. Transcriptome sequencing and Western blot results demonstrate that it enhances the functionality of mitochondrial respiratory chain complexes I, III, and V, thereby improving mitochondrial function in chondrocytes. In vitro and in vivo experiments show that the lubricating nanozymes reduce cartilage wear, improve chondrocyte senescence, and mitigate oxidative stress damage, thereby mitigating the progression of osteoarthritis. These findings provide novel insights into treating diseases associated with oxidative stress and frictional damage, such as osteoarthritis, and set the stage for future research and development of therapeutic interventions.
Collapse
Affiliation(s)
- Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhuolin Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Senrui Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jingdi Zhan
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jing Zou
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Junyi Liao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
21
|
Wei D, Huang Y, Ren P, Liang M, Xu L, Yang L, Zhang T, Ji Z. Effect of Compressive Modulus of Porous PVA Hydrogel Coating on the Preventing Adhesion of Polypropylene Mesh. Macromol Biosci 2024; 24:e2400112. [PMID: 38850262 DOI: 10.1002/mabi.202400112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Indexed: 06/10/2024]
Abstract
PP mesh is a widely used prosthetic material in hernia repair. However, visceral adhesion is one of the worst complications of this operation. Hence, an anti-adhesive PP mesh is developed by coating porous polyvinyl alcohol (PVA) hydrogel on PP surface via freezing-thawing process method. The compressive modulus of porous PVA hydrogel coating is first regulated by the addition of porogen sodium bicarbonate (NaHCO3) at various quality ratios with PVA. As expected, the porous hydrogel coating displayed modulus more closely resembling that of native abdominal wall tissue. In vitro tests demonstrate the modified PP mesh show superior coating stability, excellent hemocompatibility, and good cytocompatibility. In vivo experiments illustrate that PP mesh coated by the PVA4 hydrogel that mimicked the modulus of native abdominal wall could prevent adhesion effectively. Based on this, the rapamycin (RPM) is loaded into the porous PVA4 hydrogel coating to further improve anti-adhesive property of PP mesh. The Hematoxylin and eosin (H&E) and Masson trichrome (MT) staining results verified that the resulting mesh could alleviate the inflammation response and reduce the deposition of collagen around the implantation zone. The biomimetic mechanical property and anti-adhesive property of modified PP mesh make it a valuable candidate for application in hernioplasty.
Collapse
Affiliation(s)
- Dandan Wei
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Institute of Medical Devices (Suzhou), Southeast University, 3rd Floor, Building 1, Medpark, No.8 Jinfeng Road, Suzhou, 215163, China
| | - Yulin Huang
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Pengfei Ren
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Min Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Li Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liuxin Yang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Tianzhu Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Institute of Medical Devices (Suzhou), Southeast University, 3rd Floor, Building 1, Medpark, No.8 Jinfeng Road, Suzhou, 215163, China
| | - Zhenling Ji
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| |
Collapse
|
22
|
Zhou S, He J, Liu Q, Chen T, Guan X, Gao H, Jiang J, Wang J, Peng X, Wu J. Injectable Hydrogel of Chitosan-Octyl Itaconate Conjugate Modulates Inflammatory Response. ACS Biomater Sci Eng 2024; 10:4823-4838. [PMID: 39056337 DOI: 10.1021/acsbiomaterials.4c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Itaconic acid and its derivative 4-octyl itaconate (OI) represent a novel anti-inflammatory medication that has demonstrated efficacy in multiple inflammation models because of its minimal side effects. Recently, natural polymers conjugated with small molecule drugs, known as polymer-drug conjugates (PDCs), have emerged as a promising approach to sustained drug release. In this work, we reported an approach to prepare a PDC containing an OI and make it into an injectable hydrogel. Chitosan (CS) was selected for PDC synthesis because of its abundant free amino groups that can be conjugated with molecules containing carboxyl groups by carbodiimide chemistry. We used an ethanol/water cosolvent system to synthesize a CS-OI conjugate via EDC/NHS catalysis. The CS-OI conjugate had improved water solubility and unique anti-inflammatory activity and did not show compromised antibacterial activity compared with unmodified CS. Beta-glycerophosphate (β-GP) cross-linked CS-OI hydrogel exhibited good injectability with sustainable OI release and effectively modulated inflammatory response in a rat model. Therefore, this study provides valuable insights into the design of PDC hydrogels with inflammatory modulatory properties.
Collapse
Affiliation(s)
- Shasha Zhou
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Jibing He
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Quan Liu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, P. R. China
| | - Ting Chen
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiangheng Guan
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Haihan Gao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Jia Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Jiaxing Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Xiaochun Peng
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
23
|
Li S, Cao S, Lu H, He B, Gao B. Kirigami triboelectric spider fibroin microneedle patches for comprehensive joint management. Mater Today Bio 2024; 26:101044. [PMID: 38600920 PMCID: PMC11004194 DOI: 10.1016/j.mtbio.2024.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Joint injuries are among the leading causes of disability. Present concentrations were focused on oral drugs and surgical treatment, which brings severe and unnecessary difficulties for patients. Smart patches with high flexibility and intelligent drug control-release capacity are greatly desirable for efficient joint management. Herein, we present a novel kirigami spider fibroin-based microneedle triboelectric nanogenerator (KSM-TENG) patch with distinctive features for comprehensive joint management. The microneedle patch consists of two parts: the superfine tips and the flexible backing base, which endow it with great mechanical strength to penetrate the skin and enough flexibility to fit different bends. Besides, the spider fibroin-based MNs served as a positive triboelectric material to generate electrical stimulation, thereby forcing drug release from needles within 720 min. Especially, kirigami structures could also transform the flat patch into three dimensions, which could impart the patch with flexible properties to accommodate the complicated processes produced by joint motion. Benefiting from these traits, the KSM-TENG patch presents excellent performance in inhibiting the inflammatory response and promoting wound healing in mice models. The results indicated that the mice possessed only 2% wound area and the paw thickness was reduced from 10.5 mm to 6.2 mm after treatment with the KSM-TENG patch, which further demonstrates the therapeutic effect of joints in vivo. Thus, it is believed that the proposed novel KSM-TENG patch is valuable in the field of comprehensive treatments and personalized clinical applications.
Collapse
Affiliation(s)
- Shuhuan Li
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Suwen Cao
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Huihui Lu
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Bingbing Gao
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
24
|
Chen Y, Lu W, Zhou Y, Hu Z, Wu H, Gao Q, Shi J, Wu W, Lv S, Yao K, He Y, Xie Z. A Spatiotemporal Controllable Biomimetic Skin for Accelerating Wound Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310556. [PMID: 38386291 DOI: 10.1002/smll.202310556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/04/2024] [Indexed: 02/23/2024]
Abstract
Skin injury repair is a dynamic process involving a series of interactions over time and space. Linking human physiological processes with materials' changes poses a significant challenge. To match the wound healing process, a spatiotemporal controllable biomimetic skin is developed, which comprises a three-dimensional (3D) printed membrane as the epidermis, a cell-containing hydrogel as the dermis, and a cytokine-laden hydrogel as the hypodermis. In the initial stage of the biomimetic skin repair wound, the membrane frame aids wound closure through pre-tension, while cells proliferate within the hydrogel. Next, as the frame disintegrates over time, cells released from the hydrogel migrate along the residual membrane. Throughout the process, continuous cytokines release from the hypodermis hydrogel ensures comprehensive nourishment. The findings reveal that in the rat full-thickness skin defect model, the biomimetic skin demonstrated a wound closure rate eight times higher than the blank group, and double the collagen content, particularly in the early repair process. Consequently, it is reasonable to infer that this biomimetic skin holds promising potential to accelerate wound closure and repair. This biomimetic skin with mechanobiological effects and spatiotemporal regulation emerges as a promising option for tissue regeneration engineering.
Collapse
Affiliation(s)
- Yuewei Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Weiying Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Haiyan Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Wenzhi Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Shang Lv
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ke Yao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
25
|
Deng J, Wei R, Qiu H, Wu X, Yang Y, Huang Z, Miao J, Liu A, Chai H, Cen X, Wang R. Biomimetic zwitterionic copolymerized chitosan as an articular lubricant. Carbohydr Polym 2024; 330:121821. [PMID: 38368102 DOI: 10.1016/j.carbpol.2024.121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 02/19/2024]
Abstract
Restoration of the lubrication functions of articular cartilage is an effective treatment to alleviate the progression of osteoarthritis (OA). Herein, we fabricated chitosan-block-poly(sulfobetaine methacrylate) (CS-b-pSBMA) copolymer via a free radical polymerization of sulfobetaine methacrylate onto activated chitosan segment, structurally mimicking the lubricating biomolecules on cartilage. The successful copolymerization of CS-b-pSBMA was verified by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and 1H nuclear magnetic resonance. Friction test confirmed that the CS-b-pSBMA copolymer could achieve an excellent lubrication effect on artificial joint materials such as Ti6Al4V alloy with a coefficient of friction as low as 0.008, and on OA-simulated cartilage, better than the conventional lubricant hyaluronic acid, and the adsorption effect of lubricant on cartilage surface was proved by a fluorescence labeling experiment. In addition, CS-b-pSBMA lubricant possessed an outstanding stability, which can withstand enzymatic degradation and even a long-term storage up to 4 weeks. In vitro studies showed that CS-b-pSBMA lubricant had a favorable antibacterial activity and good biocompatibility. In vivo studies confirmed that the CS-b-pSBMA lubricant was stable and could alleviate the degradation process of cartilage in OA mice. This biomimetic lubricant is a promising articular joint lubricant for the treatment of OA and cartilage restoration.
Collapse
Affiliation(s)
- Junjie Deng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Rufang Wei
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Haofeng Qiu
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China; School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Xiang Wu
- Ningbo Medical Center Li Huili Hospital; Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Yanyu Yang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Zhimao Huang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Jiru Miao
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Ashuang Liu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Haiyang Chai
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, PR China; Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, PR China.
| | - Rong Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China.
| |
Collapse
|
26
|
Chen M, Lu Y, Liu Y, Liu Q, Deng S, Liu Y, Cui X, Liang J, Zhang X, Fan Y, Wang Q. Injectable Microgels with Hybrid Exosomes of Chondrocyte-Targeted FGF18 Gene-Editing and Self-Renewable Lubrication for Osteoarthritis Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312559. [PMID: 38266145 DOI: 10.1002/adma.202312559] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Abnormal silencing of fibroblast growth factor (FGF) signaling significantly contributes to joint dysplasia and osteoarthritis (OA); However, the clinical translation of FGF18-based protein drugs is hindered by their short half-life, low delivery efficiency and the need for repeated articular injections. This study proposes a CRISPR/Cas9-based approach to effectively activate the FGF18 gene of OA chondrocytes at the genome level in vivo, using chondrocyte-affinity peptide (CAP) incorporated hybrid exosomes (CAP/FGF18-hyEXO) loaded with an FGF18-targeted gene-editing tool. Furthermore, CAP/FGF18-hyEXO are encapsulated in methacrylic anhydride-modified hyaluronic (HAMA) hydrogel microspheres via microfluidics and photopolymerization to create an injectable microgel system (CAP/FGF18-hyEXO@HMs) with self-renewable hydration layers to provide persistent lubrication in response to frictional wear. Together, the injectable CAP/FGF18-hyEXO@HMs, combined with in vivo FGF18 gene editing and continuous lubrication, have demonstrated their capacity to synergistically promote cartilage regeneration, decrease inflammation, and prevent ECM degradation both in vitro and in vivo, holding great potential for clinical translation.
Collapse
Affiliation(s)
- Manyu Chen
- National Engineering Research Center for Biomaterials Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Biomedical Engineering Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yan Lu
- National Engineering Research Center for Biomaterials Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Biomedical Engineering Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yuhan Liu
- The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, P. R. China
| | - Quanying Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Siyan Deng
- National Engineering Research Center for Biomaterials Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Biomedical Engineering Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yuan Liu
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaolin Cui
- School of medicine the Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
- Department of Orthopedic Surgery & Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine University of Otago, Christchurch, 8140, New Zealand
| | - Jie Liang
- National Engineering Research Center for Biomaterials Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Biomedical Engineering Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- Sichuan Testing Center for Biomaterials and Medical Devices Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Biomedical Engineering Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Biomedical Engineering Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Biomedical Engineering Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
27
|
Gao F, Yang X, Song W. Bioinspired Supramolecular Hydrogel from Design to Applications. SMALL METHODS 2024; 8:e2300753. [PMID: 37599261 DOI: 10.1002/smtd.202300753] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 08/22/2023]
Abstract
Nature offers a wealth of opportunities to solve scientific and technological issues based on its unique structures and function. The dynamic non-covalent interaction is considered to be the main base of living functions of creatures including humans, animals, and plants. Supramolecular hydrogels formed by non-covalent bonding interactions has become a unique platform for constructing promising materials for medicine, energy, electronic, and biological substitute. In this review, the self-assemble principle of supramolecular hydrogels is summarized. Next, the stimulation of external environment that triggers the assembly or disassembly of supramolecular hydrogels are recapitulated, including temperature, mechanics, light, pH, ions, etc. The main applications of bioinspired supramolecular hydrogels in terms of bionic objects including humans, animals, and plants are also described. Although so many efforts are done for revealing the synergized mechanism of the function and non-covalent interactions on the supramolecular hydrogel, the complexity and variability between stimulus and non-covalent bonding in the supramolecular system still require impeccable theories. As an outlook, the bioinspired supramolecular hydrogel is just beginning to exhibit its great potential in human life, offering significant opportunities in drug delivery and screening, implantable devices and substitutions, tissue engineering, micro-fluidic devices, and biosensors.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuhao Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
28
|
Liu H, Wu X, Liu R, Wang W, Zhang D, Jiang Q. Cartilage-on-a-chip with magneto-mechanical transformation for osteoarthritis recruitment. Bioact Mater 2024; 33:61-68. [PMID: 38024232 PMCID: PMC10661690 DOI: 10.1016/j.bioactmat.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disease primarily induced by overstrain, leading to disability and significantly impacting patients' quality of life. However, current OA studies lack an ideal in vitro model, which can recapitulate the high peripheral strain of the joint and precisely model the disease onset process. In this paper, we propose a novel cartilage-on-a-chip platform that incorporates a biohybrid hydrogel comprising Neodymium (NdFeB)/Poly-GelMA-HAMA remote magneto-control hydrogel film. This platform facilitates chondrocyte culture and stress loading, enabling the investigation of chondrocytes under various stress stimuli. The Neodymium (NdFeB)/Poly-GelMA-HAMA hydrogel film exhibits magneto-responsive shape-transition behavior, further dragging the chondrocytes cultured in hydrogels under magnetic stimulation. It was investigated that inflammation-related genes and proteins in chondrocytes are changed with mechanical stress stimulation in the cartilage-on-a-chip. Especially, MMP-13 and the proportion of collagen secretion are upregulated, showing a phenotype similar to that of real human osteoarthritis. Therefore, we believed that this cartilage-on-a-chip platform provides a desired in vitro model for osteoarthritis, which is of great significance in disease research and drug development.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xiangyi Wu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Rui Liu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Weijun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Dagan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| |
Collapse
|
29
|
Zhang J, Guan Y, Zhang Q, Wang T, Wang M, Zhang Z, Gao Y, Gao G. Durable hydrogel-based lubricated composite coating with remarkable underwater performances. J Colloid Interface Sci 2024; 654:568-580. [PMID: 37862806 DOI: 10.1016/j.jcis.2023.09.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/22/2023]
Abstract
HYPOTHESIS Hydrogel coatings have received great attention in the field of such as medical devices, water treatment membranes, flexible electronics, and marine antifouling. However, when it comes to lubrication of hydrogel materials, though it has great potential applications in the field of industrial and medical drag reduction, some restrained properties are urgently needed to overcome for releasing the practical potential. EXPERIMENTS Durability of high lubrication was revealed from the sliding test during the long-term storage, as well as the long-distance sliding. Some variables which possibly affect the lubrication performance were examined to demonstrate that excellent lubricity of the coating would not be easily influenced by load, frequency, friction pair and temperature. The microstructure and mechanical characterization of the lubricative coating indicate that the resistance to harsh running conditions is premised on enough hydration extent and robustness. The formulae of Possion ratio and ball-on-disk contact stress which apply to soft matter were used for calculating contact stress values in tribology tests. Anti-swelling and bio-compatibility are also verified. FINDINGS This work found a route of achieving superior lubrication and coexisting with stability in lubrication, which can be used for drag reduction in medical devices and shipbuilding industry.
Collapse
Affiliation(s)
- Jiawei Zhang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yingxin Guan
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Qin Zhang
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Tianyu Wang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Ming Wang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Zhixin Zhang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yang Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
30
|
Fan S, Tan Y, Yuan X, Liu C, Wu X, Dai T, Ni S, Wang J, Weng Y, Zhao H. Regulation of the immune microenvironment by pioglitazone-loaded polylactic glycolic acid nanosphere composite scaffolds to promote vascularization and bone regeneration. J Tissue Eng 2024; 15:20417314241231452. [PMID: 38361536 PMCID: PMC10868507 DOI: 10.1177/20417314241231452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
Osteogenesis is caused by multiple factors, and the inflammatory response, osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), regeneration of blood vessels, and other factors must be considered in bone tissue engineering. To effectively repair bone defect, it is important to decrease excessive inflammation, enhance the differentiation of mesenchymal stem cells into osteoblasts, and stimulate angiogenesis. Herein, nano-attapulgite (ATP), polyvinyl alcohol (PVA), and gelatin (GEL) scaffolds were produced using 3D printing technology and pioglitazone (PIO)-containing polylactic acid-glycolic acid (PLGA) nanospheres were added. In both in vitro and in vivo studies, material scaffolds with PIO-loaded polylactic acid-glycolic acid nanospheres could reduce the inflammatory response by encouraging macrophage polarization from M1 to M2 and promoting the osteogenic differentiation of BMSCs by activating the BMP2/Smad/RUNX2 signal pathway to repair bone defects. The vascularization of human umbilical vein endothelial cells (HUVECs) through the PI3K/AKT/HIF1-/VEGF pathway was also encouraged. In vivo research using PIO-containing PLGA nanospheres revealed massive collagen deposition in skin models. These findings indicate a potentially effective scaffold for bone healing, when PLGA nanospheres-which contain the drug PIO-are combined with ATP/PVA/GEL scaffolds.
Collapse
Affiliation(s)
- Shijie Fan
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Yadong Tan
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Xiuchen Yuan
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Chun Liu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Xiaoyu Wu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Ting Dai
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Su Ni
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Jiafeng Wang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Yiping Weng
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Hongbin Zhao
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
31
|
Liu L, Xian Y, Wang W, Huang L, Fan J, Ma W, Li Y, Liu H, Yu JK, Wu D. Meniscus-Inspired Self-Lubricating and Friction-Responsive Hydrogels for Protecting Articular Cartilage and Improving Exercise. ACS NANO 2023; 17:24308-24319. [PMID: 37975685 DOI: 10.1021/acsnano.3c10139] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Meniscus injuries are associated with the degeneration of cartilage and development of osteoarthritis (OA). It is challenging to protect articular cartilage and improve exercise when a meniscus injury occurs. Herein, inspired by the components and functions of the meniscus, we developed a self-lubricating and friction-responsive hydrogel that contains nanoliposomes loaded with diclofenac sodium (DS) and Kartogenin (KGN) for anti-inflammation and cartilage regeneration. When the hydrogel was injected into the meniscus injury site, the drug-loaded nanoliposomes were released from the hydrogel in a friction-responsive manner and reassembled to form hydration layers that lubricate joints during movement. Meanwhile, DS and KNG were constantly released from the nanoliposomes to mitigate inflammation and promote cartilage regeneration. Additionally, this hydrogel exhibited favorable injectability, mechanical properties, fatigue resistance, and prolonged degradation. In vivo experiments demonstrated that injection of the hydrogel effectively improved exercise performance and protected the articular cartilage of rats, suggesting it as a potential therapeutic approach for meniscal injuries.
Collapse
Affiliation(s)
- Lei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiwen Xian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wantao Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Spine Surgery, The First Affiliated Hospital, Pain Research Center, Sun Yat-Sen University, Guangzhou 510080, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jinghao Fan
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenzheng Ma
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Spine Surgery, The First Affiliated Hospital, Pain Research Center, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yixi Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jia-Kuo Yu
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
32
|
Tehrany PM, Rahmanian P, Rezaee A, Ranjbarpazuki G, Sohrabi Fard F, Asadollah Salmanpour Y, Zandieh MA, Ranjbarpazuki A, Asghari S, Javani N, Nabavi N, Aref AR, Hashemi M, Rashidi M, Taheriazam A, Motahari A, Hushmandi K. Multifunctional and theranostic hydrogels for wound healing acceleration: An emphasis on diabetic-related chronic wounds. ENVIRONMENTAL RESEARCH 2023; 238:117087. [PMID: 37716390 DOI: 10.1016/j.envres.2023.117087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Hydrogels represent intricate three-dimensional polymeric structures, renowned for their compatibility with living systems and their ability to naturally degrade. These networks stand as promising and viable foundations for a range of biomedical uses. The practical feasibility of employing hydrogels in clinical trials has been well-demonstrated. Among the prevalent biomedical uses of hydrogels, a significant application arises in the context of wound healing. This intricate progression involves distinct phases of inflammation, proliferation, and remodeling, often triggered by trauma, skin injuries, and various diseases. Metabolic conditions like diabetes have the potential to give rise to persistent wounds, leading to delayed healing processes. This current review consolidates a collection of experiments focused on the utilization of hydrogels to expedite the recovery of wounds. Hydrogels have the capacity to improve the inflammatory conditions at the wound site, and they achieve this by diminishing levels of reactive oxygen species (ROS), thereby exhibiting antioxidant effects. Hydrogels have the potential to enhance the growth of fibroblasts and keratinocytes at the wound site. They also possess the capability to inhibit both Gram-positive and Gram-negative bacteria, effectively managing wounds infected by drug-resistant bacteria. Hydrogels can trigger angiogenesis and neovascularization processes, while also promoting the M2 polarization of macrophages, which in turn mitigates inflammation at the wound site. Intelligent and versatile hydrogels, encompassing features such as pH sensitivity, reactivity to reactive oxygen species (ROS), and responsiveness to light and temperature, have proven advantageous in expediting wound healing. Furthermore, hydrogels synthesized using environmentally friendly methods, characterized by high levels of biocompatibility and biodegradability, hold the potential for enhancing the wound healing process. Hydrogels can facilitate the controlled discharge of bioactive substances. More recently, there has been progress in the creation of conductive hydrogels, which, when subjected to electrical stimulation, contribute to the enhancement of wound healing. Diabetes mellitus, a metabolic disorder, leads to a slowdown in the wound healing process, often resulting in the formation of persistent wounds. Hydrogels have the capability to expedite the healing of diabetic wounds, facilitating the transition from the inflammatory phase to the proliferative stage. The current review sheds light on the biological functionalities of hydrogels, encompassing their role in modulating diverse mechanisms and cell types, including inflammation, oxidative stress, macrophages, and bacteriology. Additionally, this review emphasizes the significance of smart hydrogels with responsiveness to external stimuli, as well as conductive hydrogels for promoting wound healing. Lastly, the discussion delves into the advancement of environmentally friendly hydrogels with high biocompatibility, aimed at accelerating the wound healing process.
Collapse
Affiliation(s)
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Golnaz Ranjbarpazuki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farima Sohrabi Fard
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Ranjbarpazuki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajedeh Asghari
- Faculty of Veterinary Medicine, Islamic Azad University, Babol Branch, Babol, Iran
| | - Nazanin Javani
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alireza Motahari
- Board-Certified in Veterinary Surgery, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
33
|
Liu L, Tang H, Wang Y. Nanotechnology-Boosted Biomaterials for Osteoarthritis Treatment: Current Status and Future Perspectives. Int J Nanomedicine 2023; 18:4969-4983. [PMID: 37693887 PMCID: PMC10487746 DOI: 10.2147/ijn.s423737] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent global health concern, posing a significant and increasing public health challenge worldwide. Recently, nanotechnology-boosted biomaterials have emerged as a highly promising strategy for OA therapy due to their exceptional physicochemical properties and capacity to regulate pathological processes. However, there is an urgent need for a deeper understanding of the potential therapeutic applications of these biomaterials in the clinical management of diseases, particularly in the treatment of OA. In this comprehensive review, we present an extensive discussion of the current status and future prospects concerning nanotechnology-boosted biomaterials for OA therapy. Initially, we discuss the pathophysiology of OA and the constraints associated with existing treatment modalities. Subsequently, various types of nanomaterials utilized for OA therapy, including nanoparticles, nanofibers, and nanocomposites, are thoroughly discussed and summarized, elucidating their respective advantages and challenges. Furthermore, we analyze recent preclinical and clinical studies that highlight the potential of nanotechnology-boosted biomaterials in OA therapy. Additionally, future research directions in this evolving field are highlighted. By establishing a link between the structural properties of nanotechnology-boosted biomaterials and their therapeutic functions in OA treatment, we aim to foster advances in designing sophisticated nanomaterials for OA, ultimately resulting in improved therapeutic efficacy of OA therapy through translation into clinical setting in the near future.
Collapse
Affiliation(s)
- Lin Liu
- Department of Emergency, Honghui Hospital of Xi’an Jiaotong University, Xi’an, 710054, People’s Republic of China
| | - Haifeng Tang
- Department of Emergency, Honghui Hospital of Xi’an Jiaotong University, Xi’an, 710054, People’s Republic of China
| | - Yanjun Wang
- Department of Emergency, Honghui Hospital of Xi’an Jiaotong University, Xi’an, 710054, People’s Republic of China
| |
Collapse
|
34
|
Singh P, Verma C, Gupta A, Mukhopadhyay S, Gupta B. Development of κ-carrageenan-PEG/lecithin bioactive hydrogel membranes for antibacterial adhesion and painless detachment. Int J Biol Macromol 2023; 247:125789. [PMID: 37437679 DOI: 10.1016/j.ijbiomac.2023.125789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
The issue of wound dressing adherence poses a substantial challenge in the field of wound care, with implications both clinically and economically. Overcoming this challenge requires the development of a hydrogel dressing that enables painless removal without causing any secondary damage. However, addressing this issue still remains a significant challenge that requires attention and further exploration. The present study is focused on the synthesis of hydrogel membranes based on κ-carrageenan (CG), polyethylene glycol (PEG), and soy lecithin (LC), which can provide superior antioxidant and antibacterial attachment properties with a tissue anti adhesion activity for allowing an easy removability without causing secondary damage. The (CG-PEG)/LC mass ratio was varied to fabricate hydrogel membranes via a facile approach of physical blending and solution casting. The physicochemical properties of (CG-PEG)/LC hydrogel membranes were studied by scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and mechanical analyses. The membranes showed significantly enhanced mechanical properties with excellent flexibility and had high swelling capacity (˃1000 %), which would provide a moist condition for wound healing. The membranes also exhibited excellent free radical scavenging ability (>60 %). In addition, the (CG-PEG)/LC hydrogel membranes showed reduced peel strength 26.5 N/m as a result of weakening the hydrogel-gelatin interface during an in vitro gelatin peeling test. Moreover, the membrane showed superior antibacterial adhesion activity (>90 %) against both S. aureus and E. coli due to the presence of both PEG and LC. The results also suggested that the hydrogel membranes exhibit NIH3T3 cell antiadhesion property, making them promising material for easy detachment from the healed tissue without causing secondary damage. Thus, this novel combination of (CG-PEG)/LC hydrogel membranes have immense application potential as a biomaterial in the healthcare sector.
Collapse
Affiliation(s)
- Pratibha Singh
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Chetna Verma
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Amlan Gupta
- Department of Pathology, Sikkim Manipal Institute of Medical Sciences, Tadong, Gangtok, Sikkim 737102, India
| | - Samrat Mukhopadhyay
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
35
|
Qiu H, Deng J, Wei R, Wu X, Chen S, Yang Y, Gong C, Cui L, Si Z, Zhu Y, Wang R, Xiong D. A lubricant and adhesive hydrogel cross-linked from hyaluronic acid and chitosan for articular cartilage regeneration. Int J Biol Macromol 2023; 243:125249. [PMID: 37295698 DOI: 10.1016/j.ijbiomac.2023.125249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Trauma-induced articular cartilage damages are common in clinical practice. Hydrogels have been used to fill the cartilage defects and act as extracellular matrices for cell migration and tissue regeneration. Lubrication and stability of the filler materials are essential to achieve a satisfying healing effect in cartilage regeneration. However, conventional hydrogels failed to provide a lubricous effect, or could not anchor to the wound to maintain a stable curing effect. Herein, we fabricated dually cross-linked hydrogels using oxidized hyaluronic acid (OHA) and N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC) methacrylate (HTCCMA). The OHA/HTCCMA hydrogels, which were dynamically cross-linked and then covalently cross-linked by photo-irradiation, showed appropriate rheological properties and self-healing capability. The hydrogels exhibited moderate and stable tissue adhesion property due to formation of dynamic covalent bonds with the cartilage surface. The coefficient of friction values were 0.065 and 0.078 for the dynamically cross-linked and double-cross-linked hydrogels, respectively, demonstrating superior lubrication. In vitro studies showed that the hydrogels had good antibacterial ability and promoted cell proliferation. In vivo studies confirmed that the hydrogels were biocompatible and biodegradable, and exhibited a robust regenerating ability for articular cartilage. This lubricant-adhesive hydrogel is expected to be promising for the treatment of joint injuries as well as regeneration.
Collapse
Affiliation(s)
- Haofeng Qiu
- School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China; Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, PR China
| | - Junjie Deng
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, PR China
| | - Rufang Wei
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, PR China
| | - Xiang Wu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, PR China; School of Medicine, Ningbo University, Ningbo 315211, PR China
| | - Shengjia Chen
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, PR China; School of Medicine, Ningbo University, Ningbo 315211, PR China
| | - Yanyu Yang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, PR China
| | - Chenyang Gong
- School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Lingling Cui
- School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Zhangyong Si
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Yabin Zhu
- School of Medicine, Ningbo University, Ningbo 315211, PR China
| | - Rong Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, PR China.
| | - Dangsheng Xiong
- School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China.
| |
Collapse
|
36
|
Jurtík M, Gřešková B, Prucková Z, Rouchal M, Dastychová L, Vítková L, Valášková K, Achbergerová E, Vícha R. Assembling a supramolecular 3D network with tuneable mechanical properties using adamantylated cross-linking agents and β-cyclodextrin-modified hyaluronan. Carbohydr Polym 2023; 313:120872. [PMID: 37182963 DOI: 10.1016/j.carbpol.2023.120872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Hydrogels based on the supramolecular host-guest concept can be prepared if at least one constituent is a polymer chain modified with supramolecular host or guest (or both) units. Low-molecular-weight multitopic counterparts can also be used, however, guest molecules in the role of cross-linking agents are seldom reported, although such an approach offers wide-ranging possibilities for tuning the system properties via easily achievable structural modifications. In this paper, a series of adamantane-based star-like guest molecules was used for cross-linking of two types of β-cyclodextrin-modified hyaluronan (CD-HA). The prepared 3D supramolecular networks were characterised using nuclear magnetic resonance, titration calorimetry and rheological measurements to confirm the formation of the host-guest complexes between adamantane moieties and β-cyclodextrin units, including their typical properties such as self-healing and dynamic nature. The results indicate that the nature of the cross-linker (amides versus esters) has a greater impact on mechanical properties than the length of the guest's arms. In addition, the results show that the length of the HA polymer chain is more important than the degree of modification with supramolecular units. In conclusion, it was proven that the modular concept employing low-molecular-weight cross-linking guests is valuable for the formulation of supramolecular networks, including hydrogels.
Collapse
|
37
|
Cai J, Liu LF, Qin Z, Liu S, Wang Y, Chen Z, Yao Y, Zheng L, Zhao J, Gao M. Natural Morin-Based Metal Organic Framework Nanoenzymes Modulate Articular Cavity Microenvironment to Alleviate Osteoarthritis. RESEARCH (WASHINGTON, D.C.) 2023; 6:0068. [PMID: 36930778 PMCID: PMC10013961 DOI: 10.34133/research.0068] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
Osteoarthritis (OA) is always characterized as excessive reactive oxygen species (ROS) inside articular cavity. Mimicking natural metalloenzymes with metal ions as the active centers, stable metal organic framework (MOF) formed by natural polyphenols and metal ions shows great potential in alleviating inflammatory diseases. Herein, a series of novel copper-morin-based MOF (CuMHs) with different molar ratios of Cu2+ and MH were employed to serve as ROS scavengers for OA therapy. As a result, CuMHs exhibited enhanced dispersion in aqueous solution, improved biocompatibility, and efficient ROS-scavenging ability compared to MH. On the basis of H2O2-stimulated chondrocytes, intracellular ROS levels were efficiently declined and cell death was prevented after treated by Cu6MH (Cu2+ and MH molar ratio of 6:1). Meanwhile, Cu6MH also exhibited efficient antioxidant and anti-inflammation function by down-regulating the expression of IL6, MMP13, and MMP3, and up-regulating cartilage specific gene expression as well. Importantly, Cu6MH could repair mitochondrial function by increasing mitochondrial membrane potential, reducing the accumulation of calcium ions, as well as promoting ATP content production. In OA joint model, intra-articular (IA) injected Cu6MH suppressed the progression of OA. It endowed that Cu6MH might be promising nanoenzymes for the prevention and treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Jinhong Cai
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Lian-Feng Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Ultrasound, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Zainen Qin
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Shuhan Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yonglin Wang
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zhengrong Chen
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Yi Yao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Ming Gao
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
38
|
Du Y, Li C, Zhang Y, Xiong W, Wang F, Wang J, Zhang Y, Deng L, Li X, Chen W, Cui W. In Situ-Activated Phospholipid-Mimic Artemisinin Prodrug via Injectable Hydrogel Nano/Microsphere for Rheumatoid Arthritis Therapy. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0003. [PMID: 39290968 PMCID: PMC11407526 DOI: 10.34133/research.0003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 09/19/2024]
Abstract
In situ-activated therapy is a decent option for localized diseases with improved efficacies and reduced side effects, which is heavily dependent on the local conversion or activation of bioinert components. In this work, we applied a phospholipid-mimic artemisinin prodrug (ARP) for preparing an injectable nano/microsphere to first realize an in situ-activated therapy of the typical systemically administrated artemisinin-based medicines for a localized rheumatoid arthritis (RA) lesion. ARP is simultaneously an alternative of phospholipids and an enzyme-independent activable prodrug, which can formulate "drug-in-drug" co-delivery liposomes with cargo of partner drugs (e.g., methotrexate). To further stabilize ARP/methotrexate "drug-in-drug" liposomes (MTX/ARPL) for a long-term intra-articular retention, a liposome-embedded hydrogel nano/microsphere (MTX/ARPL@MS) was prepared. After the local injection, the MTX/ARPL could be slowly released because of imine hydrolysis and targeted to RA synovial macrophages and fibroblasts simultaneously. ARP assembly is relatively stable before cellular internalization but disassembled ARP after lysosomal escape and converted into dihydroartemisinin rapidly to realize the effective in situ activation. Taken together, phospholipid-mimic ARP was applied for the firstly localized in situ-activated RA therapy of artemisinin-based drugs, which also provided a brand-new phospholipid-mimic strategy for other systemically administrated prodrugs to realize a remodeling therapeutic schedule for localized diseases.
Collapse
Affiliation(s)
- Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Chao Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Yu Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Wei Xiong
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China
| | - Wei Chen
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| |
Collapse
|
39
|
Li W, Yang X, Lai P, Shang L. Bio-inspired adhesive hydrogel for biomedicine-principles and design strategies. SMART MEDICINE 2022; 1:e20220024. [PMID: 39188733 PMCID: PMC11235927 DOI: 10.1002/smmd.20220024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 08/28/2024]
Abstract
The adhesiveness of hydrogels is urgently required in various biomedical applications such as medical patches, tissue sealants, and flexible electronic devices. However, biological tissues are often wet, soft, movable, and easily damaged. These features pose difficulties for the construction of adhesive hydrogels for medical use. In nature, organisms adhere to unique strategies, such as reversible sucker adhesion in octopuses and nontoxic and firm catechol chemistry in mussels, which provide many inspirations for medical hydrogels to overcome the above challenges. In this review, we systematically classify bioadhesion strategies into structure-related and molecular-related ones, which cover almost all known bioadhesion paradigms. We outline the principles of these strategies and summarize the corresponding designs of medical adhesive hydrogels inspired by them. Finally, conclusions and perspectives concerning the development of this field are provided. For the booming bio-inspired adhesive hydrogels, this review aims to summarize and analyze the various existing theories and provide systematic guidance for future research from an innovative perspective.
Collapse
Affiliation(s)
- Wenzhao Li
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| | - Xinyuan Yang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Puxiang Lai
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| | - Luoran Shang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
40
|
Wang M, Deng Z, Guo Y, Xu P. Designing functional hyaluronic acid-based hydrogels for cartilage tissue engineering. Mater Today Bio 2022; 17:100495. [PMID: 36420054 PMCID: PMC9676212 DOI: 10.1016/j.mtbio.2022.100495] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/14/2022] Open
Abstract
Damage to cartilage tissues is often difficult to repair owing to chronic inflammation and a lack of bioactive factors. Therefore, developing bioactive materials, such as hydrogels acting as extracellular matrix mimics, that can inhibit the inflammatory microenvironment and promote cartilage repair is crucial. Hyaluronic acid, which exists in cartilage and synovial fluid, has been extensively investigated for cartilage tissue engineering because of its promotion of cell adhesion and proliferation, regulation of inflammation, and enhancement of cartilage regeneration. However, hyaluronic acid-based hydrogels have poor degradation rates and unfavorable mechanical properties, limiting their application in cartilage tissue engineering. Recently, various multifunctional hyaluronic acid-based hydrogels, including alkenyl, aldehyde, thiolated, phenolized, hydrazide, and host–guest group-modified hydrogels, have been extensively studied for use in cartilage tissue engineering. In this review, we summarize the recent progress in the multifunctional design of hyaluronic acid-based hydrogels and their application in cartilage tissue engineering. Moreover, we outline the future research prospects and directions in cartilage tissue regeneration. This would provide theoretical guidance for developing hyaluronic acid-based hydrogels with specific properties to satisfy the requirements of cartilage tissue repair.
Collapse
|
41
|
Chu T, Li Q, Dai C, Li X, Kong X, Fan Y, Yin H, Ge J. A novel Nanocellulose-Gelatin-AS-IV external stent resists EndMT by activating autophagy to prevent restenosis of grafts. Bioact Mater 2022; 22:466-481. [PMID: 36330163 PMCID: PMC9615139 DOI: 10.1016/j.bioactmat.2022.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Vein grafts are widely used for coronary artery bypass grafting and hemodialysis access, but restenosis remains the "Achilles' heel" of these treatments. An extravascular stent is one wrapped around the vein graft and provides mechanical strength; it can buffer high arterial pressure and secondary vascular dilation of the vein to prevent restenosis. In this study, we developed a novel Nanocellulose-gelatin hydrogel, loaded with the drug Astragaloside IV (AS-IV) as an extravascular scaffold to investigate its ability to reduce restenosis. We found that the excellent physical and chemical properties of the drug AS-IV loaded Nanocellulose-gelatin hydrogel external stent limit graft vein expansion and make the stent biocompatible. We also found it can prevent restenosis by resisting endothelial-to-mesenchymal transition (EndMT) in vitro. It does so by activating autophagy, and AS-IV can enhance this effect both in vivo and in vitro. This study has added to existing research on the mechanism of extravascular stents in preventing restenosis of grafted veins. Furthermore, we have developed a novel extravascular stent for the prevention and treatment of restenosis. This will help optimize the clinical treatment plan of external stents and improve the prognosis in patients with vein grafts. The NC-Gelatin extravascular stent has suitable physicochemical properties to prevent restenosis of the grafted veins. The NC-Gelatin extravascular stent has excellent biocompatibility, which is critical for grafting veins. The NC-Gelatin extravascular stent prevents restenosis by activating autophagy against EndMT. AS-IV can enhance the effect of the stent to activate autophagy against EndMT.
Collapse
Affiliation(s)
- Tianshu Chu
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Anhui Provincial Engineering Research Center for Cardiopulmonary and Vascular Materials, Hefei, Anhui, 230001, China
| | - Qingye Li
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Yaan, Sichuan Province, 625014, PR China
| | - Chun Dai
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Anhui Provincial Engineering Research Center for Cardiopulmonary and Vascular Materials, Hefei, Anhui, 230001, China
| | - Xiang Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiang Kong
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Anhui Provincial Engineering Research Center for Cardiopulmonary and Vascular Materials, Hefei, Anhui, 230001, China
| | - Yangming Fan
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Anhui Provincial Engineering Research Center for Cardiopulmonary and Vascular Materials, Hefei, Anhui, 230001, China
| | - Hongyan Yin
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianjun Ge
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Anhui Provincial Engineering Research Center for Cardiopulmonary and Vascular Materials, Hefei, Anhui, 230001, China,Corresponding author. The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
42
|
An H, Liu Y, Yi J, Xie H, Li C, Wang X, Chai W. Research progress of cartilage lubrication and biomimetic cartilage lubrication materials. Front Bioeng Biotechnol 2022; 10:1012653. [PMID: 36267457 PMCID: PMC9576862 DOI: 10.3389/fbioe.2022.1012653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Human joints move thousands of times a day. The articular cartilage plays a vital role in joints’ protection. If there is dysfunction in cartilage lubrication, cartilage cannot maintain its normal function. Eventually, the dysfunction may bring about osteoarthritis (OA). Extensive researches have shown that fluid film lubrication, boundary lubrication, and hydration lubrication are three discovered lubrication models at cartilage surface, and analyzing and simulating the mechanism of cartilage lubrication are fundamental to the treatment of OA. This essay concludes recent researches on the progress of cartilage lubrication and biomimetic cartilage, revealing the pathophysiology of cartilage lubrication and updating bio-inspired cartilage lubrication applications.
Collapse
Affiliation(s)
- Haoming An
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Yubo Liu
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jiafeng Yi
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Hongbin Xie
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Chao Li
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
- *Correspondence: Chao Li, ; Xing Wang, ; Wei Chai,
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- The Institute of Chemistry of the Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Chao Li, ; Xing Wang, ; Wei Chai,
| | - Wei Chai
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
- *Correspondence: Chao Li, ; Xing Wang, ; Wei Chai,
| |
Collapse
|
43
|
Deng M, Wu Y, Ren Y, Song H, Zheng L, Lin G, Wen X, Tao Y, Kong Q, Wang Y. Clickable and smart drug delivery vehicles accelerate the healing of infected diabetic wounds. J Control Release 2022; 350:613-629. [PMID: 36058354 DOI: 10.1016/j.jconrel.2022.08.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022]
Abstract
In this study, an adipic acid dihydrazide (ADH)/ tannic acid (TA)-grafted hyaluronic acid (HA)-based multifunctional hydrogel was synthesized through a spontaneous amino-yne click reaction and used to promote the improved healing of infected diabetic wounds. This hydrogel exhibited a range of beneficial properties such as tunable gelation time, adjustable mechanical properties, pH-sensitive response characteristics, excellent injectability, the ability to readily adhere to tissue, and ultra-intimate contact capabilities. Following the encapsulation of ultrasmall Ag nanoclusters (AgNCs) and deferoxamine loaded polydopamine/ hollow mesoporous manganese dioxide (PHMD, PDA/H-mMnO2@DFO) nanoparticles, the prepared hydrogel presented with robust antibacterial, anti-inflammatory, and pro-angiogenic properties and a desirable smart drug release profile. In this fabricated platform, PHMD was able to effectively alleviate localized oxidative stress and prolonged oxygen deprivation via the decomposition of endogenous H2O2 to produce O2. Further in vivo assays revealed that this hydrogel was capable of facilitating the healing of infected wounds through the sequential engagement of antibacterial, anti-inflammatory, and pro-angiogenic activities. Together, this synthesized clickable environmentally-responsive hydrogel offers great promise as a tool that can be applied to aid in the healing of chronically infected diabetic wounds and other inflammatory conditions.
Collapse
Affiliation(s)
- Mingyan Deng
- WestChina-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ye Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Ren
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haoyang Song
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zheng
- WestChina-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangzhi Lin
- WestChina-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Wen
- WestChina-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiran Tao
- WestChina-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingquan Kong
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
44
|
Kim YS, Guilak F. Engineering Hyaluronic Acid for the Development of New Treatment Strategies for Osteoarthritis. Int J Mol Sci 2022; 23:8662. [PMID: 35955795 PMCID: PMC9369020 DOI: 10.3390/ijms23158662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that is characterized by inflammation of the joints, degradation of cartilage, and the remodeling of other joint tissues. Due to the absence of disease-modifying drugs for OA, current clinical treatment options are often only effective at slowing down disease progression and focus mainly on pain management. The field of tissue engineering has therefore been focusing on developing strategies that could be used not only to alleviate symptoms of OA but also to regenerate the damaged tissue. Hyaluronic acid (HA), an integral component of both the synovial fluid and articular cartilage, has gained widespread usage in developing hydrogels that deliver cells and biomolecules to the OA joint thanks to its biocompatibility and ability to support cell growth and the chondrogenic differentiation of encapsulated stem cells, providing binding sites for growth factors. Tissue-engineering strategies have further attempted to improve the role of HA as an OA therapeutic by developing diverse modified HA delivery platforms for enhanced joint retention and controlled drug release. This review summarizes recent advances in developing HA-based hydrogels for OA treatment and provides additional insights into how HA-based therapeutics could be further improved to maximize their potential as a viable treatment option for OA.
Collapse
Affiliation(s)
- Yu Seon Kim
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children—Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children—Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| |
Collapse
|
45
|
Novel Gels: An Emerging Approach for Delivering of Therapeutic Molecules and Recent Trends. Gels 2022; 8:gels8050316. [PMID: 35621614 PMCID: PMC9140900 DOI: 10.3390/gels8050316] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022] Open
Abstract
Gels are semisolid, homogeneous systems with continuous or discrete therapeutic molecules in a suitable lipophilic or hydrophilic three-dimensional network base. Innovative gel systems possess multipurpose applications in cosmetics, food, pharmaceuticals, biotechnology, and so forth. Formulating a gel-based delivery system is simple and the delivery system enables the release of loaded therapeutic molecules. Furthermore, it facilitates the delivery of molecules via various routes as these gel-based systems offer proximal surface contact between a loaded therapeutic molecule and an absorption site. In the past decade, researchers have potentially explored and established a significant understanding of gel-based delivery systems for drug delivery. Subsequently, they have enabled the prospects of developing novel gel-based systems that illicit drug release by specific biological or external stimuli, such as temperature, pH, enzymes, ultrasound, antigens, etc. These systems are considered smart gels for their broad applications. This review reflects the significant role of advanced gel-based delivery systems for various therapeutic benefits. This detailed discussion is focused on strategies for the formulation of different novel gel-based systems, as well as it highlights the current research trends of these systems and patented technologies.
Collapse
|