1
|
Zhang Z, Dong Q, Li Z, Cheng G, Li Z. Bi-phasic integrated silk fibroin/polycaprolactone scaffolds for osteochondral regeneration inspired by the native joint tissue and interface. Mater Today Bio 2025; 32:101737. [PMID: 40275950 PMCID: PMC12018571 DOI: 10.1016/j.mtbio.2025.101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/05/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025] Open
Abstract
Osteochondral scaffolds designed with bi-phasic and multi-phasic have typically struggled with post-implantation delamination. To address this issue, we developed a novel integrated scaffold with natural and continuous interface and heterogeneous bilayer structure. Through layer-by-layer wet electrospinning, two-dimensional (2D) bi-layer integrated membranes of silk fibroin (SF) and polycaprolactone (PCL) were fabricated. These membranes were then transformed into three-dimensional (3D) scaffolds using a CO2 gas foaming technique, followed by gelatin coating on the osteogenic layer to afford final bi-phasic porous scaffolds. In vitro studies indicated that the 3D scaffolds better-maintained cell phenotypes than conventional 2D electrospun films. Additionally, the 3D scaffolds showed superior cartilage repair and osteoinductivity potential, with increased subchondral bone volume and reduced defect area in rat osteochondral defects models at 12 weeks. Taken together, these gas-foamed scaffolds were a promising candidate for osteochondral regeneration.
Collapse
Affiliation(s)
- Zexing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Qingquan Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Zubing Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Gu Cheng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhi Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
2
|
Shanto PC, Park S, Fahad MAA, Park M, Lee BT. 3D bio-printed proteinaceous bioactive scaffold loaded with dual growth factor enhanced chondrogenesis and in situ cartilage regeneration. Bioact Mater 2025; 46:365-385. [PMID: 39845130 PMCID: PMC11751550 DOI: 10.1016/j.bioactmat.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Articular cartilage has a limited self-healing capacity, leading to joint degeneration and osteoarthritis over time. Therefore, bioactive scaffolds are gaining attention as a promising approach to regenerating and repairing damaged articular cartilage through tissue engineering. In this study, we reported on a novel 3D bio-printed proteinaceous bioactive scaffolds combined with natural porcine cancellous bone dECM, tempo-oxidized cellulose nanofiber (TOCN), and alginate carriers for TGF-β1, FGF-18, and ADSCs to repair cartilage defects. The characterization results demonstrate that the 3D scaffolds are physically stable and facilitate a controlled dual release of TGF-β1 and FGF-18. Moreover, the key biological proteins within the bioactive scaffold actively interact with the biological systems to create a favorable microenvironment for cartilage regeneration. Importantly, the in vitro, in vivo, and in silico simulation showed that the scaffolds promote stem cell recruitment, migration, proliferation, and ECM deposition, and synergistic effects of TGF-β1/FGF-18 with the bioactive scaffolds significantly regulate stem cell chondrogenesis by activating the PI3K/AKT and TGFβ1/Smad4 signaling pathways. After implantation, the proteinaceous bioactive scaffold led to the regeneration of mechanically robust, full-thickness cartilage tissue that closely resembles native cartilage. Thus, these findings may provide a promising approach for regulating stem cell chondrogenesis and treating in situ cartilage regeneration.
Collapse
Affiliation(s)
- Prayas Chakma Shanto
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Seongsu Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
3
|
Sun Q, Zhang Y, Hu B, Feng Q, Xia Y, Yu L, Zhang C, Liu W, Liu Z, Yao H, Lang Y. Development of a dual-responsive injectable GelMA/F127DA hydrogel for enhanced cartilage regeneration in osteoarthritis: Harnessing MMP-triggered and mechanical stress-induced release of therapeutic agents. Int J Biol Macromol 2025; 304:140823. [PMID: 39924046 DOI: 10.1016/j.ijbiomac.2025.140823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Osteoarthritis (OA) presents a significant challenge in clinical settings due to the limited self-renewal capability of cartilage tissue. To address this, engineered biomaterials employing biomimetic strategies have been developed to modulate and enhance cell-microenvironment interactions, facilitating cartilage regeneration. Nonetheless, excessive mechanical stress on joint structures can induce inflammatory responses, thereby impeding the process of cartilage repair. In this study, we focus on the OA microenvironment, characterized by the overexpression of matrix metalloproteinases (MMPs), and the mechanical stimuli due to joint movement. We engineered a dual-responsive injectable hydrogel: a blend of MMP-responsive, thermo-sensitive GelMA and mechanically robust, reverse thermo-sensitive F127DA. This hydrogel was designed to deliver TGF-β and KGN in a controlled manner via simple temperature modulation. The hydrophilic properties of GelMA and the hydrophobic nature of F127DA allow for efficient intra-articular delivery of diverse drug types, optimizing their therapeutic effects. Photocrosslinking the hydrogel in situ effectively seals cartilage defects and prevents further degradation. The overexpressed MMP in the OA environment triggers the release of TGF-β, recruiting bone marrow-derived stem cells (BMSCs), while mechanical pressure from joint movements releases KGN, promoting chondrogenic differentiation and mitigating inflammation. In summary, our injectable hydrogel, responsive to both the OA microenvironment and mechanical stress, shows promise in enhancing cartilage regeneration in OA. This approach holds significant potential for advancing the field of OA cartilage tissue engineering.
Collapse
Affiliation(s)
- Qi Sun
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou 311499, China
| | - Yuanbin Zhang
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou 311499, China
| | - Baisong Hu
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou 311499, China
| | - Qi Feng
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou 311499, China
| | - Yuanyuan Xia
- Biomedical and Health Technology Innovation Platform, National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - Lili Yu
- Biomedical and Health Technology Innovation Platform, National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - Chunye Zhang
- Biomedical and Health Technology Innovation Platform, National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - Wenjun Liu
- Department of Research and Development, Zhejiang Shangyue Biotechnology Research Center, Hangzhou 310000, China
| | - Zhao Liu
- Biomedical and Health Technology Innovation Platform, National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China.
| | - Hai Yao
- Biomedical and Health Technology Innovation Platform, National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China.
| | - Yong Lang
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou 311499, China.
| |
Collapse
|
4
|
Wang Z, Li X, Jiang Y, Wu T, Guo S, Li T. Preparation of hydrogel microsphere and its application in articular cartilage injury. Mater Today Bio 2025; 31:101641. [PMID: 40130039 PMCID: PMC11931253 DOI: 10.1016/j.mtbio.2025.101641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
In recent years, hydrogel microspheres have garnered significant attention due to their unique structure and functionality, demonstrating substantial potential in articular cartilage injury repair. This paper provides a comprehensive overview of current strategies for cartilage injury repair and summarizes the materials and preparation methods of hydrogel microspheres. Furthermore, it highlights the multiple roles of hydrogel microspheres in cartilage repair, including inflammation control, regulation of chondrocyte metabolism, drug and cell delivery, lubrication improvement, and recruitment of endogenous stem cells. Finally, the paper discusses the application prospects of hydrogel microspheres, identifies current limitations and challenges, and offers insights to guide future research and practical applications in cartilage injury repair.
Collapse
Affiliation(s)
- Zehua Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266000, China
| | - Yaping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Tingyu Wu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Sijia Guo
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Tao Li
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| |
Collapse
|
5
|
Wu H, Wang X, Wang G, Yuan G, Jia W, Tian L, Zheng Y, Ding W, Pei J. Advancing Scaffold-Assisted Modality for In Situ Osteochondral Regeneration: A Shift From Biodegradable to Bioadaptable. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407040. [PMID: 39104283 DOI: 10.1002/adma.202407040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Indexed: 08/07/2024]
Abstract
Over the decades, the management of osteochondral lesions remains a significant yet unmet medical challenge without curative solutions to date. Owing to the complex nature of osteochondral units with multi-tissues and multicellularity, and inherently divergent cellular turnover capacities, current clinical practices often fall short of robust and satisfactory repair efficacy. Alternative strategies, particularly tissue engineering assisted with biomaterial scaffolds, achieve considerable advances, with the emerging pursuit of a more cost-effective approach of in situ osteochondral regeneration, as evolving toward cell-free modalities. By leveraging endogenous cell sources and innate regenerative potential facilitated with instructive scaffolds, promising results are anticipated and being evidenced. Accordingly, a paradigm shift is occurring in scaffold development, from biodegradable and biocompatible to bioadaptable in spatiotemporal control. Hence, this review summarizes the ongoing progress in deploying bioadaptable criteria for scaffold-based engineering in endogenous osteochondral repair, with emphases on precise control over the scaffolding material, degradation, structure and biomechanics, and surface and biointerfacial characteristics, alongside their distinguished impact on the outcomes. Future outlooks of a highlight on advanced, frontier materials, technologies, and tools tailoring precision medicine and smart healthcare are provided, which potentially paves the path toward the ultimate goal of complete osteochondral regeneration with function restoration.
Collapse
Affiliation(s)
- Han Wu
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuejing Wang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guocheng Wang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weitao Jia
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wenjiang Ding
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Medical Robotics & National Engineering Research Center for Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Zhang Y, Chen J, Sun Y, Wang M, Liu H, Zhang W. Endogenous Tissue Engineering for Chondral and Osteochondral Regeneration: Strategies and Mechanisms. ACS Biomater Sci Eng 2024; 10:4716-4739. [PMID: 39091217 DOI: 10.1021/acsbiomaterials.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Increasing attention has been paid to the development of effective strategies for articular cartilage (AC) and osteochondral (OC) regeneration due to their limited self-reparative capacities and the shortage of timely and appropriate clinical treatments. Traditional cell-dependent tissue engineering faces various challenges such as restricted cell sources, phenotypic alterations, and immune rejection. In contrast, endogenous tissue engineering represents a promising alternative, leveraging acellular biomaterials to guide endogenous cells to the injury site and stimulate their intrinsic regenerative potential. This review provides a comprehensive overview of recent advancements in endogenous tissue engineering strategies for AC and OC regeneration, with a focus on the tissue engineering triad comprising endogenous stem/progenitor cells (ESPCs), scaffolds, and biomolecules. Multiple types of ESPCs present within the AC and OC microenvironment, including bone marrow-derived mesenchymal stem cells (BMSCs), adipose-derived mesenchymal stem cells (AD-MSCs), synovial membrane-derived mesenchymal stem cells (SM-MSCs), and AC-derived stem/progenitor cells (CSPCs), exhibit the ability to migrate toward injury sites and demonstrate pro-regenerative properties. The fabrication and characteristics of scaffolds in various formats including hydrogels, porous sponges, electrospun fibers, particles, films, multilayer scaffolds, bioceramics, and bioglass, highlighting their suitability for AC and OC repair, are systemically summarized. Furthermore, the review emphasizes the pivotal role of biomolecules in facilitating ESPCs migration, adhesion, chondrogenesis, osteogenesis, as well as regulating inflammation, aging, and hypertrophy-critical processes for endogenous AC and OC regeneration. Insights into the applications of endogenous tissue engineering strategies for in vivo AC and OC regeneration are provided along with a discussion on future perspectives to enhance regenerative outcomes.
Collapse
Affiliation(s)
- Yanan Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Yuzhi Sun
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Mingyue Wang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
7
|
Li CJ, Park JH, Jin GS, Mandakhbayar N, Yeo D, Lee JH, Lee JH, Kim HS, Kim HW. Strontium/Silicon/Calcium-Releasing Hierarchically Structured 3D-Printed Scaffolds Accelerate Osteochondral Defect Repair. Adv Healthc Mater 2024; 13:e2400154. [PMID: 38647029 DOI: 10.1002/adhm.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Articular cartilage defects are a global challenge, causing substantial disability. Repairing large defects is problematic, often exceeding cartilage's self-healing capacity and damaging bone structures. To tackle this problem, a scaffold-mediated therapeutic ion delivery system is developed. These scaffolds are constructed from poly(ε-caprolactone) and strontium (Sr)-doped bioactive nanoglasses (SrBGn), creating a unique hierarchical structure featuring macropores from 3D printing, micropores, and nanotopologies due to SrBGn integration. The SrBGn-embedded scaffolds (SrBGn-µCh) release Sr, silicon (Si), and calcium (Ca) ions, which improve chondrocyte activation, adhesion, proliferation, and maturation-related gene expression. This multiple ion delivery significantly affects metabolic activity and maturation of chondrocytes. Importantly, Sr ions may play a role in chondrocyte regulation through the Notch signaling pathway. Notably, the scaffold's structure and topological cues expedite the recruitment, adhesion, spreading, and proliferation of chondrocytes and bone marrow-derived mesenchymal stem cells. Si and Ca ions accelerate osteogenic differentiation and blood vessel formation, while Sr ions enhance the polarization of M2 macrophages. The findings show that SrBGn-µCh scaffolds accelerate osteochondral defect repair by delivering multiple ions and providing structural/topological cues, ultimately supporting host cell functions and defect healing. This scaffold holds great promise for osteochondral repair applications.
Collapse
Affiliation(s)
- Cheng Ji Li
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Gang Shi Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Donghyeon Yeo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
8
|
Jiang Z, Chen L, Huang L, Yu S, Lin J, Li M, Gao Y, Yang L. Bioactive Materials That Promote the Homing of Endogenous Mesenchymal Stem Cells to Improve Wound Healing. Int J Nanomedicine 2024; 19:7751-7773. [PMID: 39099796 PMCID: PMC11297574 DOI: 10.2147/ijn.s455469] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/23/2024] [Indexed: 08/06/2024] Open
Abstract
Endogenous stem cell homing refers to the transport of endogenous mesenchymal stem cells (MSCs) to damaged tissue. The paradigm of using well-designed biomaterials to induce resident stem cells to home in to the injured site while coordinating their behavior and function to promote tissue regeneration is known as endogenous regenerative medicine (ERM). ERM is a promising new avenue in regenerative therapy research, and it involves the mobilizing of endogenous stem cells for homing as the principal means through which to achieve it. Comprehending how mesenchymal stem cells home in and grasp the influencing factors of mesenchymal stem cell homing is essential for the understanding and design of tissue engineering. This review summarizes the process of MSC homing, the factors influencing the homing process, analyses endogenous stem cell homing studies of interest in the field of skin tissue repair, explores the integration of endogenous homing promotion strategies with cellular therapies and details tissue engineering strategies that can be used to modulate endogenous homing of stem cells. In addition to providing more systematic theories and ideas for improved materials for endogenous tissue repair, this review provides new perspectives to explore the complex process of tissue remodeling to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jiabao Lin
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Mengyao Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
9
|
Zhou L, Ho KWK, Zheng L, Xu J, Chen Z, Ye X, Zou L, Li Y, Chang L, Shao H, Li X, Long J, Nie Y, Stoddart MJ, Lai Y, Qin L. A rabbit osteochondral defect (OCD) model for evaluation of tissue engineered implants on their biosafety and efficacy in osteochondral repair. Front Bioeng Biotechnol 2024; 12:1352023. [PMID: 38766649 PMCID: PMC11099227 DOI: 10.3389/fbioe.2024.1352023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Osteochondral defect (OCD) is a common but challenging condition in orthopaedics that imposes huge socioeconomic burdens in our aging society. It is imperative to accelerate the R&D of regenerative scaffolds using osteochondral tissue engineering concepts. Yet, all innovative implant-based treatments require animal testing models to verify their feasibility, biosafety, and efficacy before proceeding to human trials. Rabbit models offer a more clinically relevant platform for studying OCD repair than smaller rodents, while being more cost-effective than large animal models. The core-decompression drilling technique to produce full-thickness distal medial femoral condyle defects in rabbits can mimic one of the trauma-relevant OCD models. This model is commonly used to evaluate the implant's biosafety and efficacy of osteochondral dual-lineage regeneration. In this article, we initially indicate the methodology and describe a minimally-invasive surgical protocol in a step-wise manner to generate a standard and reproducible rabbit OCD for scaffold implantation. Besides, we provide a detailed procedure for sample collection, processing, and evaluation by a series of subsequent standardized biochemical, radiological, biomechanical, and histological assessments. In conclusion, the well-established, easy-handling, reproducible, and reliable rabbit OCD model will play a pivotal role in translational research of osteochondral tissue engineering.
Collapse
Affiliation(s)
- Liangbin Zhou
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
| | - Ki-Wai Kevin Ho
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ziyi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiangdong Ye
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Li Zou
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Liang Chang
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hongwei Shao
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xisheng Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jing Long
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, China
| | - Yangyi Nie
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, China
| | | | - Yuxiao Lai
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
10
|
Lee S, Yoo J, Bae G, Thangam R, Heo J, Park JY, Choi H, Kim C, An J, Kim J, Mun KR, Shin S, Zhang K, Zhao P, Kim Y, Kang N, Han SB, Kim D, Yoon J, Kang M, Kim J, Yang L, Karamikamkar S, Kim J, Zhu Y, Najafabadi AH, Song G, Kim DH, Lee KB, Oh SJ, Jung HD, Song HC, Jang WY, Bian L, Chu Z, Yoon J, Kim JS, Zhang YS, Kim Y, Jang HS, Kim S, Kang H. Photonic control of ligand nanospacing in self-assembly regulates stem cell fate. Bioact Mater 2024; 34:164-180. [PMID: 38343773 PMCID: PMC10859239 DOI: 10.1016/j.bioactmat.2023.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 10/28/2024] Open
Abstract
Extracellular matrix (ECM) undergoes dynamic inflation that dynamically changes ligand nanospacing but has not been explored. Here we utilize ECM-mimicking photocontrolled supramolecular ligand-tunable Azo+ self-assembly composed of azobenzene derivatives (Azo+) stacked via cation-π interactions and stabilized with RGD ligand-bearing poly(acrylic acid). Near-infrared-upconverted-ultraviolet light induces cis-Azo+-mediated inflation that suppresses cation-π interactions, thereby inflating liganded self-assembly. This inflation increases nanospacing of "closely nanospaced" ligands from 1.8 nm to 2.6 nm and the surface area of liganded self-assembly that facilitate stem cell adhesion, mechanosensing, and differentiation both in vitro and in vivo, including the release of loaded molecules by destabilizing water bridges and hydrogen bonds between the Azo+ molecules and loaded molecules. Conversely, visible light induces trans-Azo+ formation that facilitates cation-π interactions, thereby deflating self-assembly with "closely nanospaced" ligands that inhibits stem cell adhesion, mechanosensing, and differentiation. In stark contrast, when ligand nanospacing increases from 8.7 nm to 12.2 nm via the inflation of self-assembly, the surface area of "distantly nanospaced" ligands increases, thereby suppressing stem cell adhesion, mechanosensing, and differentiation. Long-term in vivo stability of self-assembly via real-time tracking and upconversion are verified. This tuning of ligand nanospacing can unravel dynamic ligand-cell interactions for stem cell-regulated tissue regeneration.
Collapse
Affiliation(s)
- Sungkyu Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jounghyun Yoo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Gunhyu Bae
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jeongyun Heo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jung Yeon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Honghwan Choi
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Chowon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jusung An
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jungryun Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Kwang Rok Mun
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seungyong Shin
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Yuri Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Nayeon Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dahee Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jiwon Yoon
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Misun Kang
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jihwan Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | | | - Jinjoo Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Soong Ju Oh
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun-Do Jung
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyun-Cheol Song
- Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Woo Young Jang
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul, 02841, Republic of Korea
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering and Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Hong Kong, 518057, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Ho Seong Jang
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Nano & Information Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Sehoon Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
11
|
Ko MJ, Min S, Hong H, Yoo W, Joo J, Zhang YS, Kang H, Kim DH. Magnetic nanoparticles for ferroptosis cancer therapy with diagnostic imaging. Bioact Mater 2024; 32:66-97. [PMID: 37822917 PMCID: PMC10562133 DOI: 10.1016/j.bioactmat.2023.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/06/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023] Open
Abstract
Ferroptosis offers a novel method for overcoming therapeutic resistance of cancers to conventional cancer treatment regimens. Its effective use as a cancer therapy requires a precisely targeted approach, which can be facilitated by using nanoparticles and nanomedicine, and their use to enhance ferroptosis is indeed a growing area of research. While a few review papers have been published on iron-dependent mechanism and inducers of ferroptosis cancer therapy that partly covers ferroptosis nanoparticles, there is a need for a comprehensive review focusing on the design of magnetic nanoparticles that can typically supply iron ions to promote ferroptosis and simultaneously enable targeted ferroptosis cancer nanomedicine. Furthermore, magnetic nanoparticles can locally induce ferroptosis and combinational ferroptosis with diagnostic magnetic resonance imaging (MRI). The use of remotely controllable magnetic nanocarriers can offer highly effective localized image-guided ferroptosis cancer nanomedicine. Here, recent developments in magnetically manipulable nanocarriers for ferroptosis cancer nanomedicine with medical imaging are summarized. This review also highlights the advantages of current state-of-the-art image-guided ferroptosis cancer nanomedicine. Finally, image guided combinational ferroptosis cancer therapy with conventional apoptosis-based therapy that enables synergistic tumor therapy is discussed for clinical translations.
Collapse
Affiliation(s)
- Min Jun Ko
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunsik Hong
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojung Yoo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, 02139, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, IL, 60607, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
12
|
Ma T, Liu C, Zhao Q, Zhang Y, Xiao L. Decellularized nucleus pulposus matrix/chitosan hybrid hydrogel combined with nucleus pulposus stem cells and GDF5-loaded microspheres for intervertebral disc degeneration prevention. Mol Med 2024; 30:7. [PMID: 38200442 PMCID: PMC10782726 DOI: 10.1186/s10020-024-00777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is considered an important pathological basis for spinal degenerative diseases. Tissue engineering is a powerful therapeutic strategy that can effectively restore the normal biological properties of disc units. In this study, hydrogels loaded with growth/differentiation factor 5 (GDF5) and stem cells were combined to provide an effective strategy for nucleus pulposus regeneration. METHODS Nucleus pulposus stem cells (NPSCs) were obtained by low-density inoculation and culture, and their stem cell characteristics were verified by flow cytometry and a tri-lineage-induced differentiation experiment. A decellularized nucleus pulposus matrix (DNPM) and chitosan hybrid hydrogel was prepared, and GDF5-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres were incorporated into the hydrogels to obtain a composite hydrogels with GDF5-loaded microspheres. Taking bone marrow mesenchymal stem cells (BMSCs) as a reference, the effect of composite hydrogels with GDF5-loaded microspheres on the chondrogenic differentiation of NPSCs was evaluated. A model of intervertebral disc degeneration induced by acupuncture on the tail of rats was constructed, and the repair effect of composite hydrogels with GDF5-loaded microspheres combined with NPSCs on IDD was observed. RESULTS Stem cell phenotype identification, stemness gene expression and tri-lineage-induced differentiation confirmed that NPSCs had characteristics similar to those of BMSCs. The rat DNPM and chitosan hybrid hydrogels had good mechanical properties, and the GDF5-loaded microspheres sustainably released GDF5. NPSCs grew normally in the composite hydrogels and gradually expressed a chondrocyte phenotype. Animal experiments showed that the composite hydrogels with GDF5-loaded microspheres combined with NPSCs effectively promoted nucleus pulposus regeneration and that the effect of the hydrogels on the repair of IDD was significantly better than that of BMSCs. CONCLUSION GDF5-loaded microspheres combined with DNPM/chitosan composite hydrogels can effectively promote the differentiation of NPSCs into nucleus pulposus-like cells and effectively preventIDD.
Collapse
Affiliation(s)
- Tao Ma
- Department of Hand and Foot Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - Chen Liu
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - Quanlai Zhao
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - Yu Zhang
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - Liang Xiao
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China.
- Spine Research Center of Wannan Medical College, No.22 Wenchang West Road, Wuhu, 241001, China.
| |
Collapse
|