1
|
Xu W, Boer K, Hesselink DA, Baan CC. Extracellular Vesicles and Immune Activation in Solid Organ Transplantation: The Impact of Immunosuppression. BioDrugs 2025; 39:445-459. [PMID: 40140222 PMCID: PMC12031870 DOI: 10.1007/s40259-025-00713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
Recent advances in extracellular vesicle (EV) research in organ transplantation have highlighted the crucial role of donor-derived EVs in triggering alloimmune responses, ultimately contributing to transplant rejection. Following transplantation, EVs carrying donor major histocompatibility complex (MHC) molecules activate recipient antigen-presenting cells (APCs), initiating both alloreactive and regulatory T-cell responses. While immunosuppressive drugs are essential for preventing rejection, they may also influence the biogenesis and release of EVs from donor cells. This review examines the impact of maintenance immunosuppressive therapy on EV biogenesis and release post-transplantation. In addition, EV release and uptake may be influenced by specific factors such as the patient's end-stage organ disease and the transplant procedure itself. In-vitro studies using primary human parenchymal and immune cells-integrated with cutting-edge multi-omics techniques, including genomics, proteomics, lipidomics, and single-EV analysis-will offer deeper insights into EV biology and the mechanisms by which immunosuppressive agents regulate EV-initiated immune processes. A detailed understanding of how organ failure, the transplantation procedure and immunosuppressive drugs affect the biology of EVs may uncover new roles for EVs in immune activation and regulation in patients, ultimately leading to improved immunosuppressive strategies and better transplant outcomes.
Collapse
Affiliation(s)
- Weicheng Xu
- Department of Internal Medicine, Sector Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center Rotterdam Erasmus MC, Doctor Molewaterplein 40, Room Nc 508, 3015 GD, Rotterdam, The Netherlands.
| | - Karin Boer
- Department of Internal Medicine, Sector Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center Rotterdam Erasmus MC, Doctor Molewaterplein 40, Room Nc 508, 3015 GD, Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Sector Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center Rotterdam Erasmus MC, Doctor Molewaterplein 40, Room Nc 508, 3015 GD, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Sector Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center Rotterdam Erasmus MC, Doctor Molewaterplein 40, Room Nc 508, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Sager RA, Backe SJ, Heritz J, Woodford MR, Bourboulia D, Mollapour M. Flow cytometry FRET reveals post-translational modifications drive Protein Phosphatase-5 conformational changes in mammalian cells. Cell Stress Chaperones 2024; 29:709-717. [PMID: 39395782 PMCID: PMC11532808 DOI: 10.1016/j.cstres.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
The serine/threonine Protein Phosphatase-5 (PP5) plays an essential role in regulating hormone and stress-induced signaling networks as well as extrinsic apoptotic pathways in cells. Unlike other Protein Phosphatases, PP5 possesses both regulatory and catalytic domains, and its function is further modulated through post-translational modifications (PTMs). PP5 contains a tetratricopeptide repeat (TPR) domain, which usually inhibits its phosphatase activity by blocking the active site (closed conformation). Certain activators bind to the PP5-TPR domain, alleviating this inhibition and allowing the catalytic domain to adopt an active (open) conformation. While this mechanism has been proposed based on structural and biophysical studies, PP5 conformational changes and activity have yet to be observed in cells. Here, we designed and developed a flow cytometry-based fluorescence resonance energy transfer (FC-FRET) method, enabling real-time observation of PP5 autoinhibition and activation within live mammalian cells. By quantifying FRET efficiency using sensitized emission, we established a standardized and adaptable data acquisition workflow. Our findings revealed that, in a cellular context, PP5 exists in multiple conformational states, none of which alone fully predicts its activity. Additionally, we have demonstrated that PTMs such as phosphorylation and SUMOylation impact PP5 conformational changes, representing a significant advancement in our understanding of its regulatory mechanisms.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, NY 13210, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, NY 13210, USA
| | - Jennifer Heritz
- Department of Urology, SUNY Upstate Medical University, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, NY 13210, USA.
| |
Collapse
|
3
|
Sager RA, Backe SJ, Dunn DM, Heritz JA, Ahanin E, Dushukyan N, Panaretou B, Bratslavsky G, Woodford MR, Bourboulia D, Mollapour M. SUMOylation of protein phosphatase 5 regulates phosphatase activity and substrate release. EMBO Rep 2024; 25:4636-4654. [PMID: 39304777 PMCID: PMC11549447 DOI: 10.1038/s44319-024-00250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
The serine/threonine protein phosphatase 5 (PP5) regulates hormone and stress-induced signaling networks. Unlike other phosphoprotein phosphatases, PP5 contains both regulatory and catalytic domains and is further regulated through post-translational modifications (PTMs). Here we identify that SUMOylation of K430 in the catalytic domain of PP5 regulates phosphatase activity. Additionally, phosphorylation of PP5-T362 is pre-requisite for SUMOylation, suggesting the ordered addition of PTMs regulates PP5 function in cells. Using the glucocorticoid receptor, a well known substrate for PP5, we demonstrate that SUMOylation results in substrate release from PP5. We harness this information to create a non-SUMOylatable K430R mutant as a 'substrate trap' and globally identified novel PP5 substrate candidates. Lastly, we generated a consensus dephosphorylation motif using known substrates, and verified its presence in the new candidate substrates. This study unravels the impact of cross talk of SUMOylation and phosphorylation on PP5 phosphatase activity and substrate release in cells.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Diana M Dunn
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Jennifer A Heritz
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Natela Dushukyan
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Barry Panaretou
- School of Cancer and Pharmaceutical Sciences, Institute of Pharmaceutical Science, King's College London, London, SE1 9NQ, UK
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
| |
Collapse
|
4
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
5
|
Backe SJ, Woodford MR, Ahanin E, Sager RA, Bourboulia D, Mollapour M. Impact of Co-chaperones and Posttranslational Modifications Toward Hsp90 Drug Sensitivity. Subcell Biochem 2023; 101:319-350. [PMID: 36520312 PMCID: PMC10077965 DOI: 10.1007/978-3-031-14740-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modifications (PTMs) regulate myriad cellular processes by modulating protein function and protein-protein interaction. Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone whose activity is responsible for the stabilization and maturation of more than 300 client proteins. Hsp90 is a substrate for numerous PTMs, which have diverse effects on Hsp90 function. Interestingly, many Hsp90 clients are enzymes that catalyze PTM, demonstrating one of the several modes of regulation of Hsp90 activity. Approximately 25 co-chaperone regulatory proteins of Hsp90 impact structural rearrangements, ATP hydrolysis, and client interaction, representing a second layer of influence on Hsp90 activity. A growing body of literature has also established that PTM of these co-chaperones fine-tune their activity toward Hsp90; however, many of the identified PTMs remain uncharacterized. Given the critical role of Hsp90 in supporting signaling in cancer, clinical evaluation of Hsp90 inhibitors is an area of great interest. Interestingly, differential PTM and co-chaperone interaction have been shown to impact Hsp90 binding to its inhibitors. Therefore, understanding these layers of Hsp90 regulation will provide a more complete understanding of the chaperone code, facilitating the development of new biomarkers and combination therapies.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
6
|
Maeda K, Habara M, Kawaguchi M, Matsumoto H, Hanaki S, Masaki T, Sato Y, Matsuyama H, Kunieda K, Nakagawa H, Shimada M. FKBP51 and FKBP52 regulate androgen receptor dimerization and proliferation in prostate cancer cells. Mol Oncol 2021; 16:940-956. [PMID: 34057812 PMCID: PMC8847985 DOI: 10.1002/1878-0261.13030] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/23/2021] [Accepted: 05/28/2021] [Indexed: 11/09/2022] Open
Abstract
The growth of prostate cancer is dependent on the androgen receptor (AR), which serves as a ligand-specific transcription factor. Although two immunophilins, FKBP51 and FKBP52, are known to regulate AR activity, the precise mechanism remains unclear. We found that depletion of either FKBP51 or FKBP52 reduced AR dimer formation, chromatin binding, and phosphorylation, suggesting defective AR signaling. Furthermore, the peptidyl-prolyl cis/trans isomerase activity of FKBP51 was found to be required for AR dimer formation and cancer cell growth. Treatment of prostate cancer cells with FK506, which binds to the FK1 domain of FKBPs, or with MJC13, an inhibitor of FKBP52-AR signaling, also inhibited AR dimer formation. Finally, elevated expression of FKBP52 was associated with a higher rate of prostate-specific antigen recurrence in patients with prostate cancer. Collectively, these results suggest that FKBP51 and FKBP52 might be promising targets for prostate cancer treatment through the inhibition of AR dimer formation.
Collapse
Affiliation(s)
- Keisuke Maeda
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Japan
| | - Makoto Habara
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Japan
| | | | - Hiroaki Matsumoto
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Shunsuke Hanaki
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Japan
| | - Takahiro Masaki
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Japan
| | - Yuki Sato
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Japan
| | - Hideyasu Matsuyama
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Kazuki Kunieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
| | - Midori Shimada
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Japan
| |
Collapse
|
7
|
Liu L, Cheng J, Wei F, Pang L, Zhi Z, Yang W, Tan W. The Influence Mechanism of Abnormal Immunophilin FKBP52 on the Expression Levels of PR-A and PR-B in Endometriosis Based on Endometrial Stromal Cell Model in Vitro. Organogenesis 2021; 17:1-13. [PMID: 33464989 PMCID: PMC8162255 DOI: 10.1080/15476278.2020.1860424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/10/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
As a chaperone protein of progesterone receptor (PR), FK-506 Binding Protein 52 (FKBP52) can enhance the activity of PR, but the mechanism of FKBP52 affecting PR expression levels is difficult to clarify. Here, we report a novel in vitro model of ectopic endometrial stromal cells (ESCM) established through the primary culture method of endometrial stromal cells, which is used to study the details of relationship between FKBP52 abnormality and PR expression level in endometriosis (Ems). At the same time, the clinical study of the relationship between FKBP52 and PR expression levels in endometriosis patients was used to verify our conclusions. The results showed that the expression levels of PR-A mRNA and protein in endometriosis are positively correlated with FKBP52 and the abnormality of FKBP52 leads to the decrease of PR-B mRNA and protein expression. When FKBP52 was deleted or reduced, the expression levels of m RNA and protein of PR-A and PR-B have decreased leading to the proliferation of ectopic endometrium cells (ESC) and the occurrence of endometriosis, which is consistent with the expression levels of clinical endometriosis patients and fully confirms our conclusions and reliability of the model, and has great guiding significance for the research of Ems disease occurrence mechanism and clinical treatment.
Collapse
Affiliation(s)
- Liling Liu
- Department of Reproductive Medicine and Genetics Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, P. R. China
| | - Junping Cheng
- Department of Reproductive Medicine and Genetics Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, P. R. China
| | - Fu Wei
- Department of Reproductive Medicine and Genetics Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, P. R. China
| | - Lihong Pang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of GuangXi Medical University, Nanning, P. R. China
| | - Zhifu Zhi
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of GuangXi Medical University, Nanning, P. R. China
| | - Wenmei Yang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of GuangXi Medical University, Nanning, P. R. China
| | - Weihong Tan
- Department of Reproductive Medicine and Genetics Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, P. R. China
| |
Collapse
|
8
|
Albaghdadi AJH, Kan FWK. Therapeutic Potentials of Low-Dose Tacrolimus for Aberrant Endometrial Features in Polycystic Ovary Syndrome. Int J Mol Sci 2021; 22:2872. [PMID: 33808965 PMCID: PMC7998611 DOI: 10.3390/ijms22062872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a major anovulatory infertility affecting a great proportion of women of childbearing age and is associated with obesity, insulin resistance and chronic inflammation. Poor endometrial receptivity and recurrent implantation failure are major hurdles to the establishment of pregnancy in women with PCOS. The accumulating body of evidence obtained from experimental and clinical studies suggests a link between inherent adaptive and innate immune irregularities and aberrant endometrial features in PCOS. The use of conventional therapeutic interventions such as lifestyle modification, metformin and ovarian stimulation has achieved limited clinical success in restoring ovulation and endometrial receptivity in women with PCOS. Unlike other immunosuppressive drugs prescribed in the clinical management of autoimmune and inflammatory disorders that may have deleterious effects on fertility and fetal development, preclinical studies in mice and in women without PCOS but with repeated implantation failure revealed potential therapeutic benefits for the use of low-dose tacrolimus in treating female infertility. Improved systemic and ovarian immune functions, endometrial progesterone receptor and coreceptor expressions and uterine vascular adaptation to pregnancy were among features of enhanced progesterone-receptor sensitivity in the low-dose tacrolimus-treated mouse model of the disease. In this review, we have compiled available experimental and clinical data in literature on endometrial progesterone resistance and current therapeutic options, as well as mechanisms of actions and reported outcomes relevant to the potential therapeutic benefits for the use of low-dose tacrolimus in treating PCOS-associated female infertility.
Collapse
Affiliation(s)
| | - Frederick W. K. Kan
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
| |
Collapse
|
9
|
Chambraud B, Daguinot C, Guillemeau K, Genet M, Dounane O, Meduri G, Poüs C, Baulieu EE, Giustiniani J. Decrease of neuronal FKBP4/FKBP52 modulates perinuclear lysosomal positioning and MAPT/Tau behavior during MAPT/Tau-induced proteotoxic stress. Autophagy 2021; 17:3491-3510. [PMID: 33459145 DOI: 10.1080/15548627.2021.1875611] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Defects of autophagy-lysosomal protein degradation are thought to contribute to the pathogenesis of several neurodegenerative diseases, and the accumulation of aggregation prone proteins such as MAPT/Tau in Alzheimer disease (AD). We previously showed the localization of the immunophilin FKBP4/FKBP52 in the lysosomal system of healthy human neurons suggesting its possible role in lysosome function. We also showed that decreased FKBP4 levels in AD brain neurons correlate with abnormal MAPT accumulation and aggregation. In this study, we demonstrate that FKBP4 decrease in a human neuronal cell line (SH-SY5Y) and in dorsal root ganglion (DRG) neurons from human MAPTP301S transgenic mice affected the function of the autophagy-lysosomal system under MAPT induced proteotoxic stress conditions. We show that acute MAPT accumulation in SH-SY5Y cells induced perinuclear clustering of lysosomes, triggered FKBP4 localization around the clusters and its colocalization with MAPT and MAP1LC3/LC3-positive autophagic vesicles; a similar FKBP4 localization was detected in some AD brain neurons. We demonstrate that FKBP4 decrease altered lysosomal clustering along with MAPT and MAP1LC3 secretion increase. Although ectopic FKBP4 expression could not induce autophagy under our experimental conditions, it prevented MAPT secretion after MAPT accumulation in SH-SY5Y cells implying a regulatory role of FKBP4 on MAPT secretion. Finally, we observe that FKBP4 deficiency decreased MAP1LC3-II expression and provoked MAPT accumulation during long-term stress in mouse DRG neurons. We hypothesize that the abnormal FKBP4 decrease observed in AD brain neurons might hinder autophagy efficiency and contribute to the progression of the tauopathy by modulating MAPT secretion and accumulation during MAPT pathogenesis.Abbreviations: AD: Alzheimer disease; AKT/protein kinase B: AKT serine/threonine kinase; ALP: Autophagy-lysosomal pathway; ATG: autophagy-related; BafA1: bafilomycin A1; CQ: chloroquine; CTSD: cathepsin D; DIV: days in vitro; DRG: dorsal root ganglion neurons; Dox: doxycycline; DNAJC5: DnaJ heat shock protein family (Hsp40) member C5; EL: empty lentiviral vectors; ENO2/NSE: enolase 2, gamma neuronal; FKBP4/FKBP52: FKBP prolyl isomerase 4; FTLD-Tau: frontotemporal lobar degeneration with Tau pathology; GFP: green fluorescent protein; LAMP1: lysosomal associated membrane protein 1; LDH: lactate dehydrogenase; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPT/Tau: microtubule associated protein tau; MTT: tetrazolium salt; NFTs: neurofibrillary tangles; RPE-1: retinal pigment epithelial cells; shRNA: small-hairpin ribonucleic acid; SQSTM1/p62: sequestosome 1; SD: standard deviation; SEM: standard error of the mean; SH-SY5Y: human neuroblastoma cells; Sh1 or Sh2: Lentiviral shRNA vectors inducing FKBP4 decrease; SH-52GFP: MAPT/Tau-inducible SH-SY5Y cell line constitutively expressing FKBP4-GFP; TUBB3/βIII tubulin: tubulin beta 3 class III; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
| | | | | | - Melanie Genet
- INSERM U1195, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Omar Dounane
- INSERM U1195, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Geri Meduri
- INSERM U1195, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Christian Poüs
- INSERM UMR-S-1193, Université Paris-Saclay, Châtenay-Malabry, France.,Biochimie-Hormonologie , AP-HP Université Paris-Saclay, Site Antoine Béclère, Clamart, France
| | | | | |
Collapse
|
10
|
Geisler M, Hegedűs T. A twist in the ABC: regulation of ABC transporter trafficking and transport by FK506-binding proteins. FEBS Lett 2020; 594:3986-4000. [PMID: 33125703 DOI: 10.1002/1873-3468.13983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/02/2020] [Accepted: 10/15/2020] [Indexed: 01/07/2023]
Abstract
Post-transcriptional regulation of ATP-binding cassette (ABC) proteins has been so far shown to encompass protein phosphorylation, maturation, and ubiquitination. Yet, recent accumulating evidence implicates FK506-binding proteins (FKBPs), a type of peptidylprolyl cis-trans isomerase (PPIase) proteins, in ABC transporter regulation. In this perspective article, we summarize current knowledge on ABC transporter regulation by FKBPs, which seems to be conserved over kingdoms and ABC subfamilies. We uncover striking functional similarities but also differences between regulatory FKBP-ABC modules in plants and mammals. We dissect a PPIase- and HSP90-dependent and independent impact of FKBPs on ABC biogenesis and transport activity. We propose and discuss a putative new mode of transient ABC transporter regulation by cis-trans isomerization of X-prolyl bonds.
Collapse
Affiliation(s)
- Markus Geisler
- Department of Biology, University of Fribourg, Switzerland
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Tarczewska A, Wycisk K, Orłowski M, Waligórska A, Dobrucki J, Drewniak-Świtalska M, Berlicki Ł, Ożyhar A. Nuclear immunophilin FKBP39 from Drosophila melanogaster drives spontaneous liquid-liquid phase separation. Int J Biol Macromol 2020; 163:108-119. [PMID: 32615218 DOI: 10.1016/j.ijbiomac.2020.06.255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 11/27/2022]
Abstract
The FKBP39 from Drosophila melanogaster is a multifunctional regulatory immunophilin. It contains two globular domains linked by a highly charged disordered region. The N-terminal domain shows homology to the nucleoplasmin core domain, and the C-terminal domain is characteristic for the family of the FKBP immunophilin ligand binding domain. The specific partially disordered structure of the protein inspired us to investigate whether FKBP39 can drive spontaneous liquid-liquid phase separation (LLPS). Preliminary analyses using CatGranule and Pi-Pi contact predictors suggested a propensity for LLPS. Microscopy observations revealed that FKBP39 can self-concentrate to form liquid condensates. We also found that FKBP39 can lead to LLPS in the presence of RNA and peptides containing Arg-rich linear motifs derived from selected nuclear and nucleolar proteins. These heterotypic interactions have a stronger propensity for driving LLPS when compared to the interactions mediated by self-associating FKBP39 molecules. To investigate whether FKBP39 can drive LLPS in the cellular environment, we analysed it in fusion with YFP in COS-7 cells. The specific distribution and diffusion kinetics of FKBP39 examined by FRAP experiments provided evidence that immunophilin is an important driver of phase separation. The ability of FKBP39 to go into heterotypic interaction may be fundamental for ribosome subunits assembly.
Collapse
Affiliation(s)
- Aneta Tarczewska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Krzysztof Wycisk
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Marek Orłowski
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Agnieszka Waligórska
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Jurek Dobrucki
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Magda Drewniak-Świtalska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
12
|
Ilaslan E, Markosyan R, Sproll P, Stevenson BJ, Sajek M, Sajek MP, Hayrapetyan H, Sarkisian T, Livshits L, Nef S, Jaruzelska J, Kusz-Zamelczyk K. The FKBP4 Gene, Encoding a Regulator of the Androgen Receptor Signaling Pathway, Is a Novel Candidate Gene for Androgen Insensitivity Syndrome. Int J Mol Sci 2020; 21:ijms21218403. [PMID: 33182400 PMCID: PMC7664851 DOI: 10.3390/ijms21218403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
Androgen insensitivity syndrome (AIS), manifesting incomplete virilization in 46,XY individuals, is caused mostly by androgen receptor (AR) gene mutations. Therefore, a search for AR mutations is a routine approach in AIS diagnosis. However, some AIS patients lack AR mutations, which complicates the diagnosis. Here, we describe a patient suffering from partial androgen insensitivity syndrome (PAIS) and lacking AR mutations. The whole exome sequencing of the patient and his family members identified a heterozygous FKBP4 gene mutation, c.956T>C (p.Leu319Pro), inherited from the mother. The gene encodes FKBP prolyl isomerase 4, a positive regulator of the AR signaling pathway. This is the first report describing a FKBP4 gene mutation in association with a human disorder of sexual development (DSD). Importantly, the dysfunction of a homologous gene was previously reported in mice, resulting in a phenotype corresponding to PAIS. Moreover, the Leu319Pro amino acid substitution occurred in a highly conserved position of the FKBP4 region, responsible for interaction with other proteins that are crucial for the AR functional heterocomplex formation and therefore the substitution is predicted to cause the disease. We proposed the FKBP4 gene as a candidate AIS gene and suggest screening that gene for the molecular diagnosis of AIS patients lacking AR gene mutations.
Collapse
Affiliation(s)
- Erkut Ilaslan
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (E.I.); (M.P.S.); (J.J.)
| | - Renata Markosyan
- Endocrinology Department, “Muratsan” University Hospital, Endocrinology Clinic, Yerevan State Medical University, 0025 Yerevan, Armenia;
| | - Patrick Sproll
- Division of Endocrinology, University of Fribourg, 1700 Fribourg, Switzerland;
| | | | - Malgorzata Sajek
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland;
| | - Marcin P. Sajek
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (E.I.); (M.P.S.); (J.J.)
| | - Hasmik Hayrapetyan
- Department of Medical Genetics, Yerevan State Medical University, 0025 Yerevan, Armenia; (H.H.); (T.S.)
- Center of Medical Genetics and Primary Health Care, 375010 Yerevan, Armenia
| | - Tamara Sarkisian
- Department of Medical Genetics, Yerevan State Medical University, 0025 Yerevan, Armenia; (H.H.); (T.S.)
- Center of Medical Genetics and Primary Health Care, 375010 Yerevan, Armenia
| | - Ludmila Livshits
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine;
| | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Genève 4, Switzerland
- Correspondence: (S.N.); (K.K.-Z.)
| | - Jadwiga Jaruzelska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (E.I.); (M.P.S.); (J.J.)
| | - Kamila Kusz-Zamelczyk
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (E.I.); (M.P.S.); (J.J.)
- Correspondence: (S.N.); (K.K.-Z.)
| |
Collapse
|
13
|
Increased Temperature Facilitates Adeno-Associated Virus Vector Transduction of Colorectal Cancer Cell Lines in a Manner Dependent on Heat Shock Protein Signature. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9107140. [PMID: 32090115 PMCID: PMC7031720 DOI: 10.1155/2020/9107140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/30/2019] [Accepted: 08/10/2019] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers in human population. A great achievement in the treatment of CRC was the introduction of targeted biological drugs and solutions of chemotherapy, combined with hyperthermia. Cytoreductive surgery and HIPEC (hyperthermic intraperitoneal chemotherapy) extends the patients' survival with CRC. Recently, gene therapy approaches are also postulated. The studies indicate the possibility of enhancing the gene transfer to cells by recombinant adeno-associated vectors (rAAV) at hyperthermia. The rAAV vectors arouse a lot of attention in the field of cancer treatment due to many advantages. In this study, the effect of elevated temperature on the transduction efficiency of rAAV vectors on CRC cells with different origin and gene profile was examined. The effect of heat shock on the penetration of rAAV vectors into CRC cells in relation with the expression of HSP and AAV receptor genes was tested. It was found that the examined cells under hyperthermia (43°C, 1 h) are transduced at a higher level than in normal conditions (37°C). The results also indicate that studied RKO, HT-29, and LS411N cell lines express HSP genes at different levels under both 37°C and 43°C. Moreover, the results showed that the expression of AAV receptors increases in response to elevated temperature. The study suggests that increased rAAV transfer to CRC can be achieved under elevated temperature conditions. The obtained results provide information relevant to the design of new solutions in CRC therapy based on the combination of hyperthermia, chemotherapy, and gene therapy.
Collapse
|
14
|
Comparative transcriptome analysis reveals potential evolutionary differences in adaptation of temperature and body shape among four Percidae species. PLoS One 2019; 14:e0215933. [PMID: 31063465 PMCID: PMC6504104 DOI: 10.1371/journal.pone.0215933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/10/2019] [Indexed: 12/18/2022] Open
Abstract
Considering the divergent temperature habitats and morphological traits of four Percidae species: yellow perch (Perca flavescens), Eurasian perch (Perca fluviatilis), pike perch (Sander lucioperca), and ruffe (Gymnocephalus cernua), we stepped into the transcriptome level to discover genes and mechanisms that drive adaptation to different temperature environments and evolution in body shape. Based on 93,566 to 181,246 annotated unigenes of the four species, we identified 1,117 one-to-one orthologous genes and subsequently constructed the phylogenetic trees that are consistent with previous studies. Together with the tree, the ratios of nonsynonymous to synonymous substitutions presented decreased evolutionary rates from the D. rerio branch to the sub-branch clustered by P. flavescens and P. fluviatilis. The specific 93 fast-evolving genes and 57 positively selected genes in P. flavescens, compared with 22 shared fast-evolving genes among P. fluviatilis, G. cernua, and S. lucioperca, showed an intrinsic foundation that ensure its adaptation to the warmer Great Lakes and farther south, especially in functional terms like “Cul4-RING E3 ubiquitin ligase complex.” Meanwhile, the specific 78 fast-evolving genes and 41 positively selected genes in S. lucioperca drew a clear picture of how it evolved to a large and elongated body with camera-type eyes and muscle strength so that it could occupy the highest position in the food web. Overall, our results uncover genetic basis that support evolutionary adaptation of temperature and body shape in four Percid species, and could furthermore assist studies on environmental adaptation in fishes.
Collapse
|
15
|
Song S, Tan Y. Expression of FKBP52 in the ovaries of PCOS rats. Int J Mol Med 2018; 43:868-878. [PMID: 30483787 PMCID: PMC6317667 DOI: 10.3892/ijmm.2018.3998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to examine the expression of FK-506 binding protein 52 (FKBP52) in the ovary tissues of rats with polycystic ovarian syndrome (PCOS) and its action on mediating androgen receptor (AR) through the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway. PCOS model rats were established by dehydroepiandrosterone injection. Enzyme-linked immunosorbent assay (ELISA) measured serum sex hormones. Hematoxylin and eosin (H&E) staining was used to examine histological changes of the ovarian tissues. The expression levels of FKBP52 were detected by immunohistochemical (IHC) staining, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis and western blotting (WB). In addition, RT-qPCR analysis was used to detect the mRNA expression of AR, and WB was used to detect the protein expression levels of AR, ERK1/2 and phosphorylated (p-) ERK1/2. In granulosa cell (GC) experiments, primary GCs were extracted and cultured. FKBP4 is the FKBP52-encoding gene, therefore, adenovirus vectors Ad-Oe-FKBP4-EGFP and Ad-siRNA-FKBP4-EGFP were constructed to examine the association among the above factors using the RT-qPCR and WB methods. In the animal experiment, the vaginal smear, H&E staining and ELISA results showed that the PCOS model was successfully established. The IHC staining revealed that the expression of FKBP52 in the GCs of the PCOS model group was higher than the remaining groups (P<0.01). The mRNA and expression levels of FKBP52 and AR in the PCOS model rats were significantly increased, when compared with levels in the other rats (P<0.05). The expression level of p-ERK1/2 was also higher (P<0.05). In the GC experiment, following overexpression of the FKBP4 gene, the mRNA and expression levels of FKBP52 and AR were increased (P<0.05). The expression level of p-ERK1/2 was also increased (P<0.05). Following FKBP4 gene silencing, the mRNA and expression levels of FKBP52 and AR were decreased (P<0.05). The expression level of ERK1/2 was also decreased (P<0.05). However, the expression level of p-ERK1/2 was increased (P<0.05). In conclusion, the upregulation of co-chaperone FKBP52 may mediate the activation of AR through the MAPK/ERK pathway.
Collapse
Affiliation(s)
- Shiyan Song
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yong Tan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
16
|
Albaghdadi AJH, Kan FWK. Immunosuppression with tacrolimus improved implantation and rescued expression of uterine progesterone receptor and its co-regulators FKBP52 and PIASy at nidation in the obese and diabetic mice: Comparative studies with metformin. Mol Cell Endocrinol 2018; 460:73-84. [PMID: 28689771 DOI: 10.1016/j.mce.2017.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/15/2017] [Accepted: 07/05/2017] [Indexed: 02/02/2023]
Abstract
Diabesity is often associated with subfertility and recurrent miscarriages. Evidence links systemic and local uterine cytotoxicity to the pathogenesis of implantation failure (IF) in diabetes. Immunosuppression with tacrolimus improved pregnancy outcomes in obese and diabetic mice and repeated IF in women with elevated Th1/Th2 blood cell ratios. However the mode of action of tacrolimus in protecting against IF and the molecular mechanisms associated with recurrent miscarriages in the obese and diabetic subjects are yet to be elucidated. Here we administered tacrolimus (FK506) (0.1 mg/kg) for four consecutive weeks to the NONcNZO10/LtJ mice, a model of human PCOS, chronically fed with 60% kCal fat for 16 consecutive weeks to simulate human obesity-associated T2DM. Compared to those immunosuppressed with tacrolimus and their normative controls, high-fat fed (HFD) diabetic NONcNZO mice exhibited higher rates of peri- and post-implantation resorption and had aberrant expression of uterine IFNγ and progesterone receptor (PGR) and its immunophilin co-chaperone FKBP52 at nidation. Immature uterodomes and lack of activation of uterine STAT3 and NFκB at implantation were characteristics of IF in the HFD-dNONcNZO dams also low in the deciduogenic factors IL11 and GM-CSF. Therapeutic interventions with tacrolimus or metformin normalized the expression of decidual IFNγ, PGR and FKBP52, increased co-localization of protein inhibitor of activated STATy (PIASy) to PGR and resulted in the upregulation of uterine IL11and LIF. Rescued phosphorylation of STAT3 and NFκBp65 and uterodome maturation at nidation defined implantation success in treated dams. To our knowledge this is the first report to show that the impact of HFD on the hemochorial implantation is at least in part mediated through disruption of PGR signaling at nidation and that immunosuppression with tacrolimus or treatment with metformin restores PGR-mediated influences during implantation in the obese and diabetic subjects.
Collapse
Affiliation(s)
- Ahmad J H Albaghdadi
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Frederick W K Kan
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, Ontario K7L3N6, Canada.
| |
Collapse
|
17
|
Hong C, Li T, Zhang F, Wu X, Chen X, Cui X, Zhang G, Cui Y. Elevated FKBP52 expression indicates a poor outcome in patients with breast cancer. Oncol Lett 2017; 14:5379-5385. [PMID: 29113172 PMCID: PMC5652253 DOI: 10.3892/ol.2017.6828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/15/2017] [Indexed: 02/06/2023] Open
Abstract
The 52-kDa FK506-binding protein (FKBP52), a regulator of steroid hormone receptor signaling, is potentially involved in a variety of hormone-dependent cancer types. The present study investigated the expression and clinical implications of FKBP52 in breast cancer. Immunohistochemistry was performed on samples from 145 breast cancer patients and on 66 unmatched breast non-cancerous tissues (as controls) to determine the expression level of FKBP52. Publicly available microarray and RNA-seq datasets used in the present study were downloaded from the European Bioinformatics Institute ArrayExpress. Kaplan-Meier survival analysis was also performed. FKBP52 expression was moderately higher in the tumors than that in the non-cancerous tissues, but this difference was not statistically significant (P=0.176). However, available microarray datasets exhibited a significant difference in FKBP52 mRNA levels between breast tumors and controls. In the 145 breast cancer patients, elevated FKBP52 expression was significantly associated with advanced Tumor-Node-Metastasis (TNM) stage (P=0.015), lymph node metastasis (P=0.015) and tumors with poor histological differentiation (P=0.047). FKBP52 expression was negatively associated with estrogen receptor expression (P=0.033), but positively associated with human epidermal growth factor receptor 2 expression (P=0.033). However, there was no association between FKBP52 and progesterone receptor expression. Survival analyses demonstrated that FKBP52 was indicative of a poor overall survival rate (P=0.026), which was consistent with the result of Kaplan-Meier analysis, exhibiting a negative association between the mRNA of FKBP52 and overall survival (OS) (P=0.044). Other than for FKBP52 [hazard ratio (HR), 2.315; 95% confidence interval (CI), 1.077-4.975; P=0.032], univariate analysis revealed that clinical stage exhibited a significant influence on the prognosis of the breast cancer patients (HR, 2.148; 95% CI, 1.011-4.566; P=0.047). However, multivariate analysis revealed that only clinical stage, not FKBP52, was an independent prognostic factor (HR, 2.721; 95% CI, 1.169-6.335; P=0.020). Patients were further classified according to their OS. Compared with the controls (3.94±2.992), FKBP52 expression in breast cancer patients with OS of ≤3 years (5.39±3.409; P=0.042) or OS of ≤5 years (5.88±3.473; P=0.005) was significantly increased, respectively. However, no significant difference in FKBP52 expression was observed between controls and individuals with an OS time of >3 years (4.84±3.769; P=0.109) or >5 years (5.32±3.372; P=0.090). Elevated FKBP52 expression may be involved in tumor progression and invasion, given its positive association with TNM stage and lymph node metastasis. Although it is not an independent predictor, FKBP52 has promise as a biological marker for estimating the progression of breast cancer.
Collapse
Affiliation(s)
- Chaoqun Hong
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Ting Li
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Fan Zhang
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Xiao Wu
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Xipeng Chen
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Xiaojiang Cui
- Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Guojun Zhang
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Yukun Cui
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Professor Yukun Cui, Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| |
Collapse
|
18
|
Joshi JB, Patel D, Morton DJ, Sharma P, Zou J, Hewa Bostanthirige D, Gorantla Y, Nagappan P, Komaragiri SK, Sivils JC, Xie H, Palaniappan R, Wang G, Cox MB, Chaudhary J. Inactivation of ID4 promotes a CRPC phenotype with constitutive AR activation through FKBP52. Mol Oncol 2017; 11:337-357. [PMID: 28252832 PMCID: PMC5378613 DOI: 10.1002/1878-0261.12028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/22/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is the emergence of prostate cancer cells that have adapted to the androgen-depleted environment of the prostate. In recent years, targeting multiple chaperones and co-chaperones (e.g., Hsp27, FKBP52) that promote androgen receptor (AR) signaling and/or novel AR regulatory mechanisms have emerged as promising alternative treatments for CRPC. We have shown that inactivation of inhibitor of differentiation 4 (ID4), a dominant-negative helix loop helix protein, promotes de novo steroidogenesis and CRPC with a gene expression signature that resembles constitutive AR activity in castrated mice. In this study, we investigated the underlying mechanism through which loss of ID4 potentiates AR signaling. Proteomic analysis between prostate cancer cell line LNCaP (L+ns) and LNCaP lacking ID4 (L(-)ID4) revealed elevated levels of Hsp27 and FKBP52, suggesting a role for these AR-associated co-chaperones in promoting constitutively active AR signaling in L(-)ID4 cells. Interestingly, protein interaction studies demonstrated a direct interaction between ID4 and the 52-kDa FK506-binding protein (FKBP52) in vitro, but not with AR. An increase in FKBP52-dependent AR transcriptional activity was observed in L(-)ID4 cells. Moreover, pharmacological inhibition of FKBP52-AR signaling, by treatment with MJC13, attenuated the tumor growth, weight, and volume in L(-)ID4 xenografts. Together, our results demonstrate that ID4 selectively regulates AR activity through direct interaction with FKBP52, and its loss, promotes CRPC through FKBP52-mediated AR signaling.
Collapse
Affiliation(s)
- Jugal Bharat Joshi
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, GA, USA
| | - Divya Patel
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, GA, USA
| | - Derrick J Morton
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, GA, USA
| | - Pankaj Sharma
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, GA, USA
| | - Jin Zou
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, GA, USA
| | | | | | - Peri Nagappan
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, GA, USA
| | | | - Jeffrey C Sivils
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, TX, USA
| | - Huan Xie
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | | | - Guangdi Wang
- Department of Chemistry, RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, USA
| | - Marc B Cox
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, TX, USA
| | - Jaideep Chaudhary
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, GA, USA
| |
Collapse
|
19
|
Young MJ, Geiszler PC, Pardon MC. A novel role for the immunophilin FKBP52 in motor coordination. Behav Brain Res 2016; 313:97-110. [PMID: 27418439 DOI: 10.1016/j.bbr.2016.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/09/2016] [Accepted: 07/10/2016] [Indexed: 02/01/2023]
Abstract
FKBP52 is a ubiquitously distributed immunophilin that has been associated with wide-ranging functions in cell signalling as well as hormonal and stress responses. Amongst other pathways, it acts via complex-formation with corticosteroid receptors and has consequently been associated with stress- and age- related neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Reduced levels of FKBP52 have been linked to tau dysfunction and amyloid beta toxicity in AD. However, FKBP52's role in cognition and neurodegenerative disorder-like phenotypes remain to be elucidated. The present study aimed therefore at investigating the cognitive and behavioural effects of reduced FKBP52 levels of genetically modified mice during ageing. Female and male FKBP52(+/+), FKBP52(+/-) and FKBP52(-/-) mice were compared at two-, ten-, twelve-, fifteen- and eighteen-months-of-age in a series of behavioural tests covering specie-specific behaviour, motor activity and coordination, fear-, spatial and recognition memory as well as curiosity and emotionality. Whilst cognitively unimpaired, FKBP52(+/-) mice performed worse on an accelerating rotating rod than FKBP52(+/+) littermates across all age-groups suggesting that FKBP52 is involved in processes controlling motor coordination. This deficit did not exacerbate with age but did worsen with repeated testing; pointing towards a role for FKBP52 in learning of tasks requiring motor coordination abilities. This study contributes to the knowledge base of FKBP52's implication in neurodegenerative diseases by demonstrating that FKBP52 by itself does not directly affect cognition and may therefore rather play an indirect, modulatory role in the functional pathology of AD, whereas it directly affects motor coordination, an early sign of neurodegenerative damages to the brain.
Collapse
Affiliation(s)
- Matthew J Young
- University of Nottingham Medical School, School of Life Sciences, Neuroscience group, Queen's Medical Centre, Nottingham NG7 2UH United Kingdom
| | - Philippine C Geiszler
- University of Nottingham Medical School, School of Life Sciences, Neuroscience group, Queen's Medical Centre, Nottingham NG7 2UH United Kingdom
| | - Marie-Christine Pardon
- University of Nottingham Medical School, School of Life Sciences, Neuroscience group, Queen's Medical Centre, Nottingham NG7 2UH United Kingdom.
| |
Collapse
|
20
|
Meduri G, Guillemeau K, Dounane O, Sazdovitch V, Duyckaerts C, Chambraud B, Baulieu EE, Giustiniani J. Caspase-cleaved Tau-D(421) is colocalized with the immunophilin FKBP52 in the autophagy-endolysosomal system of Alzheimer's disease neurons. Neurobiol Aging 2016; 46:124-37. [PMID: 27479154 DOI: 10.1016/j.neurobiolaging.2016.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/27/2016] [Accepted: 06/24/2016] [Indexed: 01/06/2023]
Abstract
Pathologic modifications of the Tau protein leading to neurofibrillary tangle (NFT) formation are a common feature of a wide range of neurodegenerative diseases known as tauopathies, which include Alzheimer's disease (AD). We previously showed that the immunophilin FKBP52 physically and functionally interacts with Tau, and we recently reported that FKBP52 levels are abnormally low in AD patients' brains. To decipher the mechanism of FKBP52 decrease in AD brains, we performed multiple labeling immunohistofluorescence and lysosomal purification using postmortem brain samples of healthy controls (n = 8) and AD (n = 20) patients. Confocal analysis revealed that FKBP52 localizes to the endolysosomal system. We also report FKBP52 colocalization with the truncated Tau-D(421) in the autophagy-endolysosomal system in some AD neurons and that the decrease of FKBP52 correlates with NFT formation. Additional experiments of autophagy inhibition in Tau-inducible SH-SY5Y cells allowed demonstrating FKBP52 release in the extracellular milieu. Our findings point out the possibility that FKBP52 could be abnormally released from NFTs negative neurons in AD brains in correlation with the early pathologic Tau-D(421) neuronal accumulation.
Collapse
Affiliation(s)
- Geri Meduri
- INSERM, Unité mixte de recherche 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Kevin Guillemeau
- INSERM, Unité mixte de recherche 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Omar Dounane
- INSERM, Unité mixte de recherche 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Véronique Sazdovitch
- Laboratoire de Neuropathologie Escourolle, Hôpital de La Salpêtrière, AP-HP, Paris, France
| | - Charles Duyckaerts
- Laboratoire de Neuropathologie Escourolle, Hôpital de La Salpêtrière, AP-HP, Paris, France
| | - Béatrice Chambraud
- INSERM, Unité mixte de recherche 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Etienne Emile Baulieu
- INSERM, Unité mixte de recherche 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France.
| | - Julien Giustiniani
- INSERM, Unité mixte de recherche 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France.
| |
Collapse
|
21
|
Gamberi T, Magherini F, Fiaschi T, Landini I, Massai L, Valocchia E, Bianchi L, Bini L, Gabbiani C, Nobili S, Mini E, Messori L, Modesti A. Proteomic analysis of the cytotoxic effects induced by the organogold(III) complex Aubipyc in cisplatin-resistant A2780 ovarian cancer cells: further evidence for the glycolytic pathway implication. MOLECULAR BIOSYSTEMS 2016; 11:1653-67. [PMID: 25906354 DOI: 10.1039/c5mb00008d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cellular alterations produced in cisplatin-resistant A2780 ovarian cancer cells (A2780/R) upon treatment with the cytotoxic organogold(III) complex Aubipyc were investigated in depth through a classical proteomic approach. We observed that A2780/R cell exposure to a cytotoxic concentration of Aubipyc for 24 hours results in a conspicuous number of alterations at the protein level that were carefully examined. Notably, we observed that several affected proteins belong to the glucose metabolism system further supporting the idea that the cytotoxic effects of Aubipyc in A2780/R cells are mostly mediated by an impairment of glucose metabolism in excellent agreement with previous observations on the parent cisplatin-sensitive cell line.
Collapse
Affiliation(s)
- Tania Gamberi
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Haase M, Fitze G. HSP90AB1: Helping the good and the bad. Gene 2015; 575:171-86. [PMID: 26358502 DOI: 10.1016/j.gene.2015.08.063] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/30/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Haase
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Guido Fitze
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
23
|
Giustiniani J, Guillemeau K, Dounane O, Sardin E, Huvent I, Schmitt A, Hamdane M, Buée L, Landrieu I, Lippens G, Baulieu EE, Chambraud B. The FK506-binding protein FKBP52in vitroinduces aggregation of truncated Tau forms with prion-like behavior. FASEB J 2015; 29:3171-81. [DOI: 10.1096/fj.14-268243] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/31/2015] [Indexed: 11/11/2022]
|
24
|
Molecular mechanisms of repeated social defeat-induced glucocorticoid resistance: Role of microRNA. Brain Behav Immun 2015; 44:195-206. [PMID: 25317829 PMCID: PMC4275324 DOI: 10.1016/j.bbi.2014.09.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/13/2014] [Accepted: 09/25/2014] [Indexed: 12/31/2022] Open
Abstract
Glucocorticoid (GC) resistance is a severe problem associated with various inflammatory diseases. Previous studies have shown that repeated social stress induces GC resistance in innate immune cells, but the underlying molecular mechanisms have not been fully elucidated. Therefore, the purpose of this study was to examine potential underlying molecular mechanism(s) of repeated social defeat (RSD) stress on GC resistance in splenic macrophages. It was hypothesized that mRNA expression of receptors for GC and nuclear translocating-associated regulators in splenic macrophages would be affected by RSD, and that these changes would be associated with epigenetic modification. The data showed that the mRNA expression of GC and mineralocorticoid receptors were significantly decreased in splenic macrophages by RSD. RSD also induced a significantly decreased mRNA expression in FK506-binding protein 52 (FKBP52), consequently resulting in a significantly increased ratio of FKBP51 to FKBP52. Moreover, DNA methyltransferases 3a and 3b showed a significant decrease in their mRNA expression in the RSD group as did mRNA expression of histone deacetyltransferase 2. The RSD group also showed a significantly reduced quantity of methylated DNA in splenic macrophages. Based on microRNA (miRNA) profiling data, it was determined that RSD induced significantly increased expression of 9 different miRNAs that were predicted to interact with mRNAs of the GC receptor (6 miRNAs), mineralocorticoid receptor (3 miRNAs) and FKBP52 (2 miRNAs). Spearman correlation analysis revealed significantly strong correlations between the expression of 2 miRNAs and their target mRNA expression for GC receptors. Among these miRNAs, we verified direct effects of miRNA-29b and -340 overexpression on mRNA expression of GC receptors in L929 cells. The overexpression of miRNA-29b or -340 in L929 cells significantly reduced LPS-induced overexpression of GC receptors. In conclusion, this study provides evidence that epigenetic regulation, such as DNA methylation and miRNA expression, may play a role in the RSD-induced GC resistance that we have observed in splenic macrophages.
Collapse
|
25
|
Spellmon N, Holcomb J, Trescott L, Sirinupong N, Yang Z. Structure and function of SET and MYND domain-containing proteins. Int J Mol Sci 2015; 16:1406-28. [PMID: 25580534 PMCID: PMC4307310 DOI: 10.3390/ijms16011406] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/05/2015] [Indexed: 12/26/2022] Open
Abstract
SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domain-containing proteins (SMYD) have been found to methylate a variety of histone and non-histone targets which contribute to their various roles in cell regulation including chromatin remodeling, transcription, signal transduction, and cell cycle control. During early development, SMYD proteins are believed to act as an epigenetic regulator for myogenesis and cardiomyocyte differentiation as they are abundantly expressed in cardiac and skeletal muscle. SMYD proteins are also of therapeutic interest due to the growing list of carcinomas and cardiovascular diseases linked to SMYD overexpression or dysfunction making them a putative target for drug intervention. This review will examine the biological relevance and gather all of the current structural data of SMYD proteins.
Collapse
Affiliation(s)
- Nicholas Spellmon
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.
| | - Joshua Holcomb
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.
| | - Laura Trescott
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.
| | - Nualpun Sirinupong
- Nutraceuticals and Functional Food Research and Development Center, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.
| |
Collapse
|
26
|
Structure-affinity properties of a high-affinity ligand of FKBP12 studied by molecular simulations of a binding intermediate. PLoS One 2014; 9:e114610. [PMID: 25502559 PMCID: PMC4264844 DOI: 10.1371/journal.pone.0114610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/10/2014] [Indexed: 11/19/2022] Open
Abstract
With a view to explaining the structure-affinity properties of the ligands of the protein FKBP12, we characterized a binding intermediate state between this protein and a high-affinity ligand. Indeed, the nature and extent of the intermolecular contacts developed in such a species may play a role on its stability and, hence, on the overall association rate. To find the binding intermediate, a molecular simulation protocol was used to unbind the ligand by gradually decreasing the biasing forces introduced. The intermediate was subsequently refined with 17 independent stochastic boundary molecular dynamics simulations that provide a consistent picture of the intermediate state. In this state, the core region of the ligand remains stable, notably because of the two anchoring oxygen atoms that correspond to recurrent motifs found in all FKBP12 ligand core structures. Besides, the non-core regions participate in numerous transient intermolecular and intramolecular contacts. The dynamic aspect of most of the contacts seems important both for the ligand to retain at least a part of its configurational entropy and for avoiding a trapped state along the binding pathway. Since the transient and anchoring contacts contribute to increasing the stability of the intermediate, as a corollary, the dissociation rate constant of this intermediate should be decreased, resulting in an increase of the affinity constant . The present results support our previous conclusions and provide a coherent rationale for explaining the prevalence in high-affinity ligands of (i) the two oxygen atoms found in carbonyl or sulfonyl groups of dissimilar core structures and of (ii) symmetric or pseudo-symmetric mobile groups of atoms found as non-core moieties. Another interesting aspect of the intermediate is the distortion of the flexible 80 s loop of the protein, mainly in its tip region, that promotes the accessibility to the bound state.
Collapse
|
27
|
Mazaira GI, Lagadari M, Erlejman AG, Galigniana MD. The Emerging Role of TPR-Domain Immunophilins in the Mechanism of Action of Steroid Receptors. NUCLEAR RECEPTOR RESEARCH 2014. [DOI: 10.11131/2014/101094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- G. I. Mazaira
- Departamento de Química Biológica-IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. Lagadari
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - A. G. Erlejman
- Departamento de Química Biológica-IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. D. Galigniana
- Departamento de Química Biológica-IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| |
Collapse
|
28
|
Chen HY, Li OY, Pang LH, Xu H, Fan XJ, Liang HF, Chen XF, Qing JZ, Huang RD, Deng BY. Expression of FK506-binding protein 52 (FKBP52) in chorionic villi with early recurrent spontaneous abortion. J Matern Fetal Neonatal Med 2014; 28:1165-9. [PMID: 25053194 DOI: 10.3109/14767058.2014.947572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the mRNA and protein expression of FK506-binding protein 52 (FKBP52) in the chorionic villi of patients with recurrent spontaneous abortion (RSA) and normal women during early pregnancy. METHODS Fresh chorionic villus tissues were collected from 60 subjects. A total of 30 patients with a history of RSA were enrolled into the RSA group and 30 normal pregnant women were enrolled into the control group. The FKBP52 mRNA expression levels in chorionic villi of the RSA patients and healthy controls were measured via semiquantitative RT-PCR. The protein distribution and expression levels of FKBP52 in chorionic villi were analyzed through immunohistochemistry (IHC). The correlation between FKBP52 expression and RSA was analyzed. RESULTS We demonstrated that FKBP52 mRNA is expressed in chorionic villi samples of normal pregnancy and RSA. RSA patients exhibited significantly lower FKBP52 gene expression levels compared with those in normal pregnancies (p < 0.05). FKBP52 immunoreactivity in chorionic villi was mainly observed in trophoblast cell cytoplasm. The FKBP52 protein expression levels in the chorionic villi of RSA patients was significantly lower than in normal women during pregnancy (p < 0.05). CONCLUSIONS FKBP52 protein levels were decreased in the chorionic villi of RSA patients, which indicate that the decrease in FKBP52 may be associated with RSA. The low FKBP52 mRNA expression level, which is consistent with the IHC result, may affect embryonic development and even lead to abortion. FKBP52 may be involved in the pathogenesis of RSA and new therapies that increase the FKBP52 expression may help treat RSA.
Collapse
Affiliation(s)
- Hong-Yan Chen
- a Division of Maternal-Fetal Medicine , Prenatal Diagnosis Center, the First Affiliated Hospital of Guangxi Medical University , Nanning , Guangxi , China and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hung TC, Chang TT, Fan MJ, Lee CC, Chen CYC. In Silico Insight into Potent of Anthocyanin Regulation of FKBP52 to Prevent Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:450592. [PMID: 24899909 PMCID: PMC4036721 DOI: 10.1155/2014/450592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 02/01/2023]
Abstract
Alzheimer's disease (AD) is caused by the hyperphosphorylation of Tau protein aggregation. FKBP52 (FK506 binding protein 52) has been found to inhibit Tau protein aggregation. This study found six different kinds of anthocyanins that have high binding potential. After analyzing the docking positions, hydrophobic interactions, and hydrogen bond interactions, several amino acids were identified that play important roles in protein and ligand interaction. The proteins' variation is described using eigenvectors and the distance between the amino acids during a molecular dynamics simulation (MD). This study investigates the three loops based around Glu85, Tyr113, and Lys121-all of which are important in inducing FKBP52 activation. By performing a molecular dynamic simulation process between unbound proteins and the protein complex with FK506, it was found that ligand targets that docked onto the FK1 domain will decrease the distance between Glu85/Tyr113 and Glu85/Lys121. The FKBP52 structure variation may induce FKBP52 activation and inhibit Tau protein aggregation. The results indicate that anthocyanins might change the conformation of FKBP52 during binding. In addition, the purple anthocyanins, such as cyanidin-3-glucoside and malvidin-3-glucoside, might be better than FK506 in regulating FKBP52 and treating Alzheimer's disease.
Collapse
Affiliation(s)
- Tzu-Chieh Hung
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
| | - Tung-Ti Chang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ming-Jen Fan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
| | - Cheng-Chun Lee
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Calvin Yu-Chian Chen
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
30
|
Kang C, Ye H, Chia J, Choi BH, Dhe-Paganon S, Simon B, Schütz U, Sattler M, Yoon HS. Functional role of the flexible N-terminal extension of FKBP38 in catalysis. Sci Rep 2013; 3:2985. [PMID: 24145868 PMCID: PMC3804861 DOI: 10.1038/srep02985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 09/30/2013] [Indexed: 11/09/2022] Open
Abstract
FKBP38 regulates apoptosis through unique interactions with multiple regulators including Bcl-2. Interestingly, the peptidylprolyl isomerase activity of FKBP38 is only detectable when it binds to calcium-saturated calmodulin (CaM/Ca2+). This, in turn, permits the formation of a complex with Bcl-2. FKBP38 thereby provides an important link between isomerase activity and apoptotic pathways. Here, we show that the N-terminal extension (residues 1-32) preceding the catalytic domain of FKBP38 has an autoinhibitory activity. The core isomerase activity of FKBP38 is inhibited by transient interactions involving the flexible N-terminal extension that precedes the catalytic domain. Notably, CaM/Ca2+ binds to this N-terminal extension and thereby releases the autoinhibitory contacts between the N-terminal extension and the catalytic domain, thus potentiating the isomerase activity of FKBP38. Our data demonstrate how CaM/Ca2+ modulates the catalytic activity of FKBP38.
Collapse
Affiliation(s)
- Congbao Kang
- 1] School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore [2] [3]
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hsp90-binding immunophilins as a potential new platform for drug treatment. Future Med Chem 2013; 5:591-607. [PMID: 23573975 DOI: 10.4155/fmc.13.7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Immunophilins are proteins that contain a PPIase domain as a family signature. Low-molecular-weight immunophilins were first described associated to immunosuppressive action and protein folding. Recent studies of other members of the family have led to the identification of their participation in basic processes such as protein-protein interactions, signal transduction cascades, cell differentiation, cell cycle progression, metabolic activity, apoptosis mechanisms, microorganisms infection, cancer, neurotrophism and neuroprotection, among several other physiological and pathophysiological processes. Due to all these emerging features, the development of specific ligands for immunophilins appears to have promising perspectives, in particular in the fields of cancer biology and neuroregeneration fields. We review the emerging role of immunophilins in protein transport, transcription regulation, malignancies development and neurotrophic action, in addition to a number of biological properties that transform these proteins in potential targets for novel therapeutic strategies.
Collapse
|
32
|
Zhang YL, Xue RY, Cao GL, Zhu YX, Pan ZH, Gong CL. Shotgun proteomic analysis of wing discs from the domesticated silkworm (Bombyx mori) during metamorphosis. Amino Acids 2013; 45:1231-41. [PMID: 24005483 DOI: 10.1007/s00726-013-1588-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/27/2013] [Indexed: 11/24/2022]
Abstract
Proteomic profiles from the wing discs of silkworms at the larval, pupal, and adult moth stages were determined using shotgun proteomics and MS sequencing. We identified 241, 218, and 223 proteins from the larval, pupal, and adult moth stages, respectively, of which 139 were shared by all three stages. In addition, there were 55, 37, and 43 specific proteins identified at the larval, pupal, and adult moth stages, respectively. More metabolic enzymes were identified among the specific proteins expressed in the wing disc of larvae compared with pupae and moths. The identification of FKBP45 and the chitinase-like protein EN03 as two proteins solely expressed at the larval stage indicate these two proteins may be involved in the immunological functions of larvae. The myosin heavy chain was identified in the pupal wing disc, suggesting its involvement in the formation of wing muscle. Some proteins, such as proteasome alpha 3 subunits and ribosomal proteins, specifically identified from the moth stage may be involved in the degradation of old cuticle proteins and new cuticle protein synthesis. Gene ontology analysis of proteins specific to each of these three stages enabled their association with cellular component, molecular function, and biological process categories. The analysis of similarities and differences in these identified proteins will greatly further our understanding of wing disc development in silkworm and other insects.
Collapse
Affiliation(s)
- Yi-ling Zhang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Weinstain R, Kanter J, Friedman B, Ellies LG, Baker ME, Tsien RY. Fluorescent ligand for human progesterone receptor imaging in live cells. Bioconjug Chem 2013; 24:766-71. [PMID: 23600997 PMCID: PMC3658552 DOI: 10.1021/bc3006418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We employed molecular modeling to design and then synthesize fluorescent ligands for the human progesterone receptor. Boron dipyrromethene (BODIPY) or tetramethylrhodamine were conjugated to the progesterone receptor antagonist RU486 (Mifepristone) through an extended hydrophilic linker. The fluorescent ligands demonstrated comparable bioactivity to the parent antagonist in live cells and triggered nuclear translocation of the receptor in a specific manner. The BODIPY labeled ligand was applied to investigate the dependency of progesterone receptor nuclear translocation on partner proteins and to show that functional heat shock protein 90 but not immunophilin FKBP52 activity is essential. A tissue distribution study indicated that the fluorescent ligand preferentially accumulates in tissues that express high levels of the receptor in vivo. The design and properties of the BODIPY-labeled RU486 make it a potential candidate for in vivo imaging of PR by positron emission tomography through incorporation of (18)F into the BODIPY core.
Collapse
Affiliation(s)
- Roy Weinstain
- Department of Pharmacology 0647, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
34
|
Hung TC, Lin CW, Hsu TL, Wu CY, Wong CH. Investigation of SSEA-4 binding protein in breast cancer cells. J Am Chem Soc 2013; 135:5934-7. [PMID: 23574147 DOI: 10.1021/ja312210c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SSEA-4, a sialyl-glycolipid, has been commonly used as a pluripotent human embryonic stem cell marker, and its expression is correlated with the metastasis of some malignant tumors. However, there is no in-depth functional study related to the receptor and the role of this glycolipid. Here, we report the identification of an SSEA-4-binding protein in a breast cancer cell line, MCF-7. By using affinity capture and glycan microarray techniques, the intracellular FK-506 binding protein 4 (FKBP4) was identified to bind directly to SSEA-4. The biological significance of SSEA-4/FKBP4 interaction was investigated.
Collapse
Affiliation(s)
- Ting-Chun Hung
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | |
Collapse
|
35
|
KIM YONGSIK, JUNG HANA, ZERIN TAMANNA, SONG HOYEON. Protein profiling of paraquat-exposed rat lungs following treatment with Acai (Euterpe oleracea Mart.) berry extract. Mol Med Rep 2013; 7:881-6. [DOI: 10.3892/mmr.2013.1259] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 11/06/2012] [Indexed: 11/06/2022] Open
|
36
|
Gollan PJ, Bhave M, Aro EM. The FKBP families of higher plants: Exploring the structures and functions of protein interaction specialists. FEBS Lett 2012; 586:3539-47. [PMID: 22982859 DOI: 10.1016/j.febslet.2012.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 08/31/2012] [Accepted: 09/03/2012] [Indexed: 01/24/2023]
Abstract
The FK506-binding proteins (FKBPs) are known both as the receptors for immunosuppressant drugs and as prolyl isomerase (PPIase) enzymes that catalyse rotation of prolyl bonds. FKBPs are characterised by the inclusion of at least one FK506-binding domain (FKBd), the receptor site for proline and the active site for PPIase catalysis. The FKBPs form large and diverse families in most organisms, with the largest FKBP families occurring in higher plants. Plant FKBPs are molecular chaperones that interact with specific protein partners to regulate a diversity of cellular processes. Recent studies have found that plant FKBPs operate in intricate and coordinated mechanisms for regulating stress response and development processes, and discoveries of new interaction partners expand their cellular influences to gene expression and photosynthetic adaptations. This review presents an examination of the molecular and structural features and functional roles of the higher plant FKBP family within the context of these recent findings, and discusses the significance of domain conservation and variation for the development of a diverse, versatile and complex chaperone family.
Collapse
Affiliation(s)
- Peter J Gollan
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia.
| | | | | |
Collapse
|
37
|
Quintá HR, Galigniana MD. The neuroregenerative mechanism mediated by the Hsp90-binding immunophilin FKBP52 resembles the early steps of neuronal differentiation. Br J Pharmacol 2012; 166:637-49. [PMID: 22091865 DOI: 10.1111/j.1476-5381.2011.01783.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The immunosuppressive macrolide FK506 (tacrolimus) shows neuroregenerative action by a mechanism that appears to involve the Hsp90-binding immunophilin FKBP52. This study analyses some aspects of the early steps of neuronal differentiation and neuroregeneration. EXPERIMENTAL APPROACH Undifferentiated murine neuroblastoma cells and hippocampal neurones isolated from embryonic day-17 rat embryos were induced to differentiate with FK506. Subcellular relocalization of FKBP52, Hsp90 and its co-chaperone p23 was analysed by indirect immunofluorescence confocal microscopy and by Western blots of axonal fractions isolated from cells grown on a porous transwell cell culture chamber. Neuroregeneration was evaluated using a scratch-wound assay. KEY RESULTS In undifferentiated cells, FKBP52, Hsp90 and p23 are located in the cell nucleus, forming an annular structure that disassembles when the differentiation process is triggered by FK506. This was observed in the N2a cell line and in hippocampal neurones. More importantly, the annular structure of chaperones is reassembled after damaging the neurones, whereas FK506 prompts their rapid regeneration, a process linked to the subcellular redistribution of the heterocomplex. CONCLUSIONS AND IMPLICATIONS There is a direct relationship between the disassembly of the chaperone complex and the progression of neuronal differentiation upon stimulation with the immunophilin ligand FK506. Both neuronal differentiation and neuroregeneration appear to be mechanistically linked, so the elucidation of one mechanism may lead to unravel the properties of the other. This study also implies that the discovery of FK506 derivatives, devoid of immunosuppressive action, would be therapeutically significant for neurotrophic use.
Collapse
Affiliation(s)
- H R Quintá
- Instituto de Biología y Medicina Experimental-CONICET and Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
38
|
Pellegrin S, Heesom KJ, Satchwell TJ, Hawley BR, Daniels G, van den Akker E, Toye AM. Differential proteomic analysis of human erythroblasts undergoing apoptosis induced by epo-withdrawal. PLoS One 2012; 7:e38356. [PMID: 22723854 PMCID: PMC3377639 DOI: 10.1371/journal.pone.0038356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/08/2012] [Indexed: 01/12/2023] Open
Abstract
The availability of Erythropoietin (Epo) is essential for the survival of erythroid progenitors. Here we study the effects of Epo removal on primary human erythroblasts grown from peripheral blood CD34(+) cells. The erythroblasts died rapidly from apoptosis, even in the presence of SCF, and within 24 hours of Epo withdrawal 60% of the cells were Annexin V positive. Other classical hallmarks of apoptosis were also observed, including cytochrome c release into the cytosol, loss of mitochondrial membrane potential, Bax translocation to the mitochondria and caspase activation. We adopted a 2D DIGE approach to compare the proteomes of erythroblasts maintained for 12 hours in the presence or absence of Epo. Proteomic comparisons demonstrated significant and reproducible alterations in the abundance of proteins between the two growth conditions, with 18 and 31 proteins exhibiting altered abundance in presence or absence of Epo, respectively. We observed that Epo withdrawal induced the proteolysis of the multi-functional proteins Hsp90 alpha, Hsp90 beta, SET, 14-3-3 beta, 14-3-3 gamma, 14-3-3 epsilon, and RPSA, thereby targeting multiple signaling pathways and cellular processes simultaneously. We also observed that 14 proteins were differentially phosphorylated and confirmed the phosphorylation of the Hsp90 alpha and Hsp90 beta proteolytic fragments in apoptotic cells using Nano LC mass spectrometry. Our analysis of the global changes occurring in the proteome of primary human erythroblasts in response to Epo removal has increased the repertoire of proteins affected by Epo withdrawal and identified proteins whose aberrant regulation may contribute to ineffective erythropoiesis.
Collapse
Affiliation(s)
- Stéphanie Pellegrin
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol, United Kingdom
| | - Kate J. Heesom
- Proteomics Facility, University of Bristol, University Walk, Bristol, United Kingdom
| | - Timothy J. Satchwell
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol, United Kingdom
| | - Bethan R. Hawley
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol, United Kingdom
| | - Geoff Daniels
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Filton, Bristol, United Kingdom
| | | | - Ashley M. Toye
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol, United Kingdom
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Filton, Bristol, United Kingdom
| |
Collapse
|
39
|
Pearson JD, Mohammed Z, Bacani JTC, Lai R, Ingham RJ. The heat shock protein-90 co-chaperone, Cyclophilin 40, promotes ALK-positive, anaplastic large cell lymphoma viability and its expression is regulated by the NPM-ALK oncoprotein. BMC Cancer 2012; 12:229. [PMID: 22681779 PMCID: PMC3407532 DOI: 10.1186/1471-2407-12-229] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/08/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL) is a T cell lymphoma defined by the presence of chromosomal translocations involving the ALK tyrosine kinase gene. These translocations generate fusion proteins (e.g. NPM-ALK) with constitutive tyrosine kinase activity, which activate numerous signalling pathways important for ALK+ ALCL pathogenesis. The molecular chaperone heat shock protein-90 (Hsp90) plays a critical role in allowing NPM-ALK and other signalling proteins to function in this lymphoma. Co-chaperone proteins are important for helping Hsp90 fold proteins and for directing Hsp90 to specific clients; however the importance of co-chaperone proteins in ALK+ ALCL has not been investigated. Our preliminary findings suggested that expression of the immunophilin co-chaperone, Cyclophilin 40 (Cyp40), is up-regulated in ALK+ ALCL by JunB, a transcription factor activated by NPM-ALK signalling. In this study we examined the regulation of the immunophilin family of co-chaperones by NPM-ALK and JunB, and investigated whether the immunophilin co-chaperones promote the viability of ALK+ ALCL cell lines. METHODS NPM-ALK and JunB were knocked-down in ALK+ ALCL cell lines with siRNA, and the effect on the expression of the three immunophilin co-chaperones: Cyp40, FK506-binding protein (FKBP) 51, and FKBP52 examined. Furthermore, the effect of knock-down of the immunophilin co-chaperones, either individually or in combination, on the viability of ALK+ ALCL cell lines and NPM-ALK levels and activity was also examined. RESULTS We found that NPM-ALK promoted the transcription of Cyp40 and FKBP52, but only Cyp40 transcription was promoted by JunB. We also observed reduced viability of ALK+ ALCL cell lines treated with Cyp40 siRNA, but not with siRNAs directed against FKBP52 or FKBP51. Finally, we demonstrate that the decrease in the viability of ALK+ ALCL cell lines treated with Cyp40 siRNA does not appear to be due to a decrease in NPM-ALK levels or the ability of this oncoprotein to signal. CONCLUSIONS This is the first study demonstrating that the expression of immunophilin family co-chaperones is promoted by an oncogenic tyrosine kinase. Moreover, this is the first report establishing an important role for Cyp40 in lymphoma.
Collapse
Affiliation(s)
- Joel D Pearson
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Zubair Mohammed
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Julinor T C Bacani
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2B7, Canada
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2B7, Canada
| | - Robert J Ingham
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G 2E1, Canada
| |
Collapse
|
40
|
The therapeutic and diagnostic potential of FKBPL; a novel anticancer protein. Drug Discov Today 2012; 17:544-8. [DOI: 10.1016/j.drudis.2012.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/05/2011] [Accepted: 01/09/2012] [Indexed: 11/22/2022]
|
41
|
Galigniana NM, Ballmer LT, Toneatto J, Erlejman AG, Lagadari M, Galigniana MD. Regulation of the glucocorticoid response to stress-related disorders by the Hsp90-binding immunophilin FKBP51. J Neurochem 2012; 122:4-18. [DOI: 10.1111/j.1471-4159.2012.07775.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Hutt DM, Roth DM, Chalfant MA, Youker RT, Matteson J, Brodsky JL, Balch WE. FK506 binding protein 8 peptidylprolyl isomerase activity manages a late stage of cystic fibrosis transmembrane conductance regulator (CFTR) folding and stability. J Biol Chem 2012; 287:21914-25. [PMID: 22474283 DOI: 10.1074/jbc.m112.339788] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the apical chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) with 90% of patients carrying at least one deletion of the F508 (ΔF508) allele. This mutant form of CFTR is characterized by a folding and trafficking defect that prevents exit from the endoplasmic reticulum. We previously reported that ΔF508 CFTR can be recovered in a complex with Hsp90 and its co-chaperones as an on-pathway folding intermediate, suggesting that Δ508 CF disease arises due to a failure of the proteostasis network (PN), which manages protein folding and degradation in the cell. We have now examined the role of FK506-binding protein 8 (FKBP8), a component of the CFTR interactome, during the biogenesis of wild-type and ΔF508 CFTR. FKBP8 is a member of the peptidylprolyl isomerase family that mediates the cis/trans interconversion of peptidyl prolyl bonds. Our results suggest that FKBP8 is a key PN factor required at a post-Hsp90 step in CFTR biogenesis. In addition, changes in its expression level or alteration of its activity by a peptidylprolyl isomerase inhibitor alter CFTR stability and transport. We propose that CF is caused by the sequential failure of the prevailing PN pathway to stabilize ΔF508-CFTR for endoplasmic reticulum export, a pathway that can be therapeutically managed.
Collapse
Affiliation(s)
- Darren M Hutt
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Ducruet AF, DeRosa PA, Zacharia BE, Sosunov SA, Connolly ES, Weinstein DE. GM1485, a nonimmunosuppressive immunophilin ligand, promotes neurofunctional improvement and neural regeneration following stroke. J Neurosci Res 2012; 90:1413-23. [DOI: 10.1002/jnr.23033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 12/14/2011] [Accepted: 12/27/2011] [Indexed: 11/06/2022]
|
44
|
Wang N, Geng L, Zhang S, He B, Wang J. Expression of PRB, FKBP52 and HB-EGF relating with ultrasonic evaluation of endometrial receptivity. PLoS One 2012; 7:e34010. [PMID: 22448285 PMCID: PMC3309003 DOI: 10.1371/journal.pone.0034010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/20/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND To explore the molecular basis of the different ultrasonic patterns of the human endometrium, and the molecular marker basis of local injury. METHODOLOGY/PRINCIPAL FINDINGS The mRNA and protein expression of FKBP52, progesterone receptor A (PRA), progesterone receptor B (PRB), and HB-EGF were detected in different patterns of the endometrium by real-time RTPCR and immunohistochemistry. There were differences in the mRNA and protein expression of FKBP52, PRB, and HB-EGF in the triple line (Pattern A) and homogeneous (Pattern C) endometrium in the window of implantation. No difference was detected in PRA expression. After local injury, the mRNA expression of HB-EGF significantly increased. In contrast, there was no difference in the mRNA expression of FKBP52, PRB, or PRA. The protein expression of FKBP52, PRB, and HB-EGF increased after local injury. There was no difference in the PRA expression after local injury. CONCLUSIONS PRB, FKBP52, and HB-EGF may be the molecular basis for the classification of the ultrasonic patterns. HB-EGF may be the molecular basis of local injury. Ultrasonic evaluation on the day of ovulation can be effective in predicting the outcome of implantation.
Collapse
Affiliation(s)
| | | | | | | | - Jiedong Wang
- National Research Institute for Family Planning, Beijing, China
- * E-mail:
| |
Collapse
|
45
|
Lakhssassi N, Doblas VG, Rosado A, del Valle AE, Posé D, Jimenez AJ, Castillo AG, Valpuesta V, Borsani O, Botella MA. The Arabidopsis tetratricopeptide thioredoxin-like gene family is required for osmotic stress tolerance and male sporogenesis. PLANT PHYSIOLOGY 2012; 158:1252-66. [PMID: 22232384 PMCID: PMC3291270 DOI: 10.1104/pp.111.188920] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 01/06/2012] [Indexed: 05/23/2023]
Abstract
TETRATRICOPEPTIDE THIOREDOXIN-LIKE (TTL) proteins are characterized by the presence of six tetratricopeptide repeats in conserved positions and a carboxyl-terminal region known as the thioredoxin-like domain with homology to thioredoxins. In Arabidopsis (Arabidopsis thaliana), the TTL gene family is composed by four members, and the founder member, TTL1, is required for osmotic stress tolerance. Analysis of sequenced genomes indicates that TTL genes are specific to land plants. In this study, we report the expression profiles of Arabidopsis TTL genes using data mining and promoter-reporter β-glucuronidase fusions. Our results show that TTL1, TTL3, and TTL4 display ubiquitous expression in normal growing conditions but differential expression patterns in response to osmotic and NaCl stresses. TTL2 shows a very different expression pattern, being specific to pollen grains. Consistent with the expression data, ttl1, ttl3, and ttl4 mutants show reduced root growth under osmotic stress, and the analysis of double and triple mutants indicates that TTL1, TTL3, and TTL4 have partially overlapping yet specific functions in abiotic stress tolerance while TTL2 is involved in male gametophytic transmission.
Collapse
MESH Headings
- Adaptation, Physiological
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/physiology
- Arabidopsis Proteins/classification
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Computational Biology
- Data Mining
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Multigene Family
- Mutation
- Phylogeny
- Plant Roots/genetics
- Plant Roots/metabolism
- Plant Roots/physiology
- Plants, Genetically Modified/drug effects
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/physiology
- Pollen/genetics
- Pollen/metabolism
- Pollen/physiology
- Promoter Regions, Genetic
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sodium Chloride/pharmacology
- Stress, Physiological
Collapse
|
46
|
Yang H, Zhou Y, Edelshain B, Schatz F, Lockwood CJ, Taylor HS. FKBP4 is regulated by HOXA10 during decidualization and in endometriosis. Reproduction 2012; 143:531-8. [PMID: 22279148 DOI: 10.1530/rep-11-0438] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
FKBP4 (FKBP52) and FKBP5 (FKBP51) are progestin receptor (PR) co-chaperone proteins that enhance and inhibit, respectively, progestin-mediated transcription by PR. Here, we examined FKBP4 and FKBP5 expression in the eutopic endometrium of fertile women with endometriosis and effects of FKBP4 and FKBP5 on the decidualization of human endometrial stromal cells (HESCs), and assessed HOXA10 regulation of FKBP4. Expression of FKBP4 mRNA was increased in the late proliferative phase and remained elevated throughout the secretory phase. FKBP5 expression was low and remained constant throughout the menstrual cycle. Compared with controls, FKBP4 mRNA expression was decreased in the endometrium of women with endometriosis, whereas no significant endometriosis-related change was seen for FKBP5. Cultured HESCs were treated with either FKBP4 or FKBP5 siRNA and then decidualized by incubation with progesterone (P(4)) and 8-bromoadenosine cAMP. Treatment of HESCs with FKBP4 siRNA resulted in 60% lower IGFBP1 expression. In contrast, incubation with FKBP5 siRNA did not significantly decrease IGFBP1 expression during in vitro decidualization. HOXA10 and FKBP4 expression increased in parallel during in vitro decidualization. In HESCs, overexpressed HOXA10 enhanced FKBP4 mRNA and protein levels, whereas HOXA10 knockdown decreased FKBP4 mRNA and protein levels compared with controls. Similarly, during in vitro decidualization, FKBP4 expression was decreased in HOXA10-silenced cells. Enhanced HOXA10 expression in HESCs elicits a decidualization mediating increase in FKBP4 expression. The findings are consistent with the observation that women with endometriosis have diminished FKBP4 expression leading to impaired decidualization and infertility. The P(4) resistance seen in endometriosis may be mediated through HOXA10-regulated FKBP4 expression.
Collapse
Affiliation(s)
- Huan Yang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
BACKGROUND INFORMATION The FKBPs (FK506-binding proteins) belong to a ubiquitous family of proteins that are found in a wide range of taxonomic groups. These proteins participate in a variety of pathways, including protein folding, down-regulation of T-cell activation and inhibition of cell-cycle progression. RESULTS A cDNA encoding the 12 kDa FKBP gene orthologue (FKBP12) in Bombyx mori was been isolated from both Bm-5 cultured cells and silk-gland tissue. Using the FKBP12 cDNA in combination with the B. mori 6x whole-genome shotgun database, we were able to identify the FKBP12 gene, as well as the positions of its intron-exon junctions. CONCLUSIONS FKBP12 exon sizes and intronic positions are highly conserved among FKBP12 orthologues in 24 diverse genomes. Comparison of 41 FKBP12 genes revealed several intronic insertion and deletion events throughout evolution. In addition, paralogous FKBP12 isoforms were identified in all 12 vertebrate genomes. Both structural and phylogenetics analyses suggest that the isoforms may be evolving independently, possibly due to the distinct functional roles played by each paralogue.
Collapse
Affiliation(s)
- Jason A Somarelli
- Department of Biological Sciences, Florida International University, University Park, Miami, FL 33199, USA
| | | |
Collapse
|
48
|
Abstract
The FK506-binding protein (FKBP) family of immunophilins consists of proteins with a variety of protein-protein interaction domains and versatile cellular functions. Analysis of the functions of immunophilins has been the focus of studies in recent years and has led to the identification of various molecular pathways in which FKBPs play an active role. All FKBPs contain a domain with prolyl cis/trans isomerase (PPIase) activity. Binding of the immunosuppressant molecule FK506 to this domain inhibits their PPIase activity while mediating immune suppression through inhibition of calcineurin. The larger members, FKBP51 and FKBP52, interact with Hsp90 and exhibit chaperone activity that is shown to regulate steroid hormone signalling. From these studies it is clear that FKBP proteins are expressed ubiquitously but show relatively high levels of expression in the nervous system. Consistent with this expression, FKBPs have been implicated with both neuroprotection and neurodegeneration. This review will focus on recent studies involving FKBP immunophilins in Alzheimer's-disease-related pathways.
Collapse
|
49
|
Yang WS, Moon HG, Kim HS, Choi EJ, Yu MH, Noh DY, Lee C. Proteomic approach reveals FKBP4 and S100A9 as potential prediction markers of therapeutic response to neoadjuvant chemotherapy in patients with breast cancer. J Proteome Res 2011; 11:1078-88. [PMID: 22074005 DOI: 10.1021/pr2008187] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although doxorubicin (Doxo) and docetaxel (Docet) in combination are widely used in treatment regimens for a broad spectrum of breast cancer patients, a major obstacle has emerged in that some patients are intrinsically resistant to these chemotherapeutics. Our study aimed to discover potential prediction markers of drug resistance in needle-biopsied tissues of breast cancer patients prior to neoadjuvant chemotherapy. Tissues collected before chemotherapy were analyzed by mass spectrometry. A total of 2,331 proteins were identified and comparatively quantified between drug sensitive (DS) and drug resistant (DR) patient groups by spectral count. Of them, 298 proteins were differentially expressed by more than 1.5-fold. Some of the differentially expressed proteins (DEPs) were further confirmed by Western blotting. Bioinformatic analysis revealed that the DEPs were largely associated with drug metabolism, acute phase response signaling, and fatty acid elongation in mitochondria. Clinical validation of two selected proteins by immunohistochemistry found that FKBP4 and S100A9 might be putative prediction markers in discriminating the DR group from the DS group of breast cancer patients. The results demonstrate that a quantitative proteomics/bioinformatics approach is useful for discovering prediction markers of drug resistance, and possibly for the development of a new therapeutic strategy.
Collapse
Affiliation(s)
- Won Suk Yang
- BRI, Korea Institute of Science and Technology , 39-1 Hawolgok, Seongbuk, Seoul 136-791, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Sanchez ER. Chaperoning steroidal physiology: lessons from mouse genetic models of Hsp90 and its cochaperones. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:722-9. [PMID: 22155719 DOI: 10.1016/j.bbamcr.2011.11.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 02/06/2023]
Abstract
The molecular chaperone Hsp90 is abundant, ubiquitous, and catholic to biological processes in eukaryotes, controlling phosphorylation cascades, protein stability and turnover, client localization and trafficking, and ligand-receptor interactions. Not surprisingly, Hsp90 does not accomplish these activities alone. Instead, an ever-growing number of cochaperones have been identified, leading to an explosion of reports on their molecular and cellular effects on Hsp90 chaperoning of client substrates. Notable among these clients are many members of the steroid receptor family, such as glucocorticoid, androgen, estrogen and progesterone receptors. Cochaperones typically associated with the mature, hormone-competent states of these receptors include p23, the FK506-binding protein 52 (FKBP52), FKBP51, protein phosphatase 5 (PP5) and cyclophilin 40 (Cyp40). The ultimate relevance of these cochaperones to steroid receptor action depends on their physiological effects. In recent years, the first mouse genetic models of these cochaperones have been developed. This work will review the complex and intriguing phenotypes so far obtained in genetically-altered mice and compare them to the known molecular and cellular impacts of cochaperones on steroid receptors. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
Affiliation(s)
- Edwin R Sanchez
- Department of Physiologyand Pharmacology, University of Toledo College of Medicine, Toledo, OH, USA.
| |
Collapse
|