1
|
Kim DH, Lee SH, Kim J, Lee J, Lee JH, Jeong JH, Kim JY, Choi YK, Youk S, Song CS. Newcastle disease virus expressing clade 2.3.4.4b H5 hemagglutinin confers protection against lethal H5N1 highly pathogenic avian influenza in BALB/c mice. Front Vet Sci 2025; 12:1535274. [PMID: 40331222 PMCID: PMC12053158 DOI: 10.3389/fvets.2025.1535274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
The widespread H5 clade 2.3.4.4b highly pathogenic avian influenza virus (HPAI) poses a significant threat to both domestic and wild mammals because of its rapid genetic evolution, cross-species transmissibility, and host-range expansion. The increasing number of cases in mammalian species highlights the need for proactive measures driven by the One Health approach. In this study, we explored the potential use of previously developed a Newcastle disease virus (NDV)-vectored vaccine expressing clade 2.3.4.4b H5 hemagglutinin (rK148/22-H5) in a preclinical BALB/c mouse model. Two doses of intramuscular vaccination with viable (107 EID50/0.1 mL) or inactivated (107 EID50/0.1 mL) rK148/22-H5 provided protection against lethal H5N1 HPAI. A greater than 100-fold reduction in lung viral load was observed in the rK148/22-H5 vaccinated group compared to the control group. Consistently, co-housed contact mice in the vaccine group survived without evidence of infection, whereas those in the control group became infected and succumbed to the disease. The rK148/22-H5 vaccine demonstrated potential as a HPAI vaccine candidate for mammals, warranting further steps to advance this candidate vaccine into clinical trials in domestic and captive mammalian species.
Collapse
Affiliation(s)
- Deok-Hwan Kim
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
- KHAV Co., Ltd., Seoul, Republic of Korea
| | | | - Jiwon Kim
- KHAV Co., Ltd., Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jiho Lee
- Southeast Poultry Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, United States
| | - Ji-Hun Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jei-hyun Jeong
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
- KHAV Co., Ltd., Seoul, Republic of Korea
| | - Ji-yun Kim
- KHAV Co., Ltd., Seoul, Republic of Korea
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sungsu Youk
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Biomedical Research Institute, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
- KHAV Co., Ltd., Seoul, Republic of Korea
| |
Collapse
|
2
|
Deng J, Cao Y, Hu Z. Entry of Newcastle disease virus into host cells: an interplay among viral and host factors. Arch Virol 2024; 169:227. [PMID: 39428451 DOI: 10.1007/s00705-024-06157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/10/2024] [Indexed: 10/22/2024]
Abstract
Newcastle disease (ND) is a major burden for the poultry industry worldwide, especially in developing countries. The virus that causes this disease, Newcastle disease virus (NDV), is also an effective vector for the development of novel human and animal vaccines and a promising oncolytic virus for cancer therapy. The mechanism of entry of NDV into host cells is of particular interest because it has a significant impact on the infectivity, host range, and pathogenicity of the virus. Here, we present an overview of the entry of NDV into cells, focusing on the interplay among viral and host factors involved in this process. In particular, recent research revealing novel features of NDV attachment to cells, the identification of viral and cellular components that regulate binding of the virus to cells, and the emerging role of novel cellular routes of NDV entry are discussed. More importantly, some of the remaining gaps in our understanding of NDV entry and some fundamental questions for research efforts in the future are also highlighted.
Collapse
Affiliation(s)
- Jing Deng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Kim DH, Lee J, Lee DY, Lee SH, Jeong JH, Kim JY, Kim J, Choi YK, Lee JB, Park SY, Choi IS, Lee SW, Youk S, Song CS. Intranasal Administration of Recombinant Newcastle Disease Virus Expressing SARS-CoV-2 Spike Protein Protects hACE2 TG Mice against Lethal SARS-CoV-2 Infection. Vaccines (Basel) 2024; 12:921. [PMID: 39204044 PMCID: PMC11359043 DOI: 10.3390/vaccines12080921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), emerged as a global outbreak in 2019, profoundly affecting both human health and the global economy. Various vaccine modalities were developed and commercialized to overcome this challenge, including inactivated vaccines, mRNA vaccines, adenovirus vector-based vaccines, and subunit vaccines. While intramuscular vaccines induce high IgG levels, they often fail to stimulate significant mucosal immunity in the respiratory system. We employed the Newcastle disease virus (NDV) vector expressing the spike protein of the SARS-CoV-2 Beta variant (rK148/beta-S), and evaluated the efficacy of intranasal vaccination with rK148/beta-S in K18-hACE2 transgenic mice. Intranasal vaccination with a low dose (106.0 EID50) resulted in an 86% survival rate after challenge with the SARS-CoV-2 Beta variant. Administration at a high dose (107.0 EID50) led to a reduction in lung viral load and 100% survival against the SARS-CoV-2 Beta and Delta variants. A high level of the SARS-CoV-2 spike-specific IgA was also induced in vaccinated mice lungs following the SARS-CoV-2 challenge. Our findings suggest that rK148/beta-S holds promise as an intranasal vaccine candidate that effectively induces mucosal immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Deok-Hwan Kim
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jiho Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture-Agricultural Research Service, 934 College Station Road, Athens, GA 30605, USA
| | - Da-Ye Lee
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seung-Hun Lee
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jei-Hyun Jeong
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ji-Yun Kim
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jiwon Kim
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea;
| | - Joong-Bok Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
| | - Seung-Young Park
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
| | - In-Soo Choi
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
| | - Sang-Won Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
| | - Sungsu Youk
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju 28160, Republic of Korea
- Biomedical Research Institute, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
4
|
Kundu S, Rohokale R, Lin C, Chen S, Biswas S, Guo Z. Bifunctional glycosphingolipid (GSL) probes to investigate GSL-interacting proteins in cell membranes. J Lipid Res 2024; 65:100570. [PMID: 38795858 PMCID: PMC11261293 DOI: 10.1016/j.jlr.2024.100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/28/2024] Open
Abstract
Glycosphingolipids (GSLs) are abundant glycolipids on cells and essential for cell recognition, adhesion, signal transduction, and so on. However, their lipid anchors are not long enough to cross the membrane bilayer. To transduce transmembrane signals, GSLs must interact with other membrane components, whereas such interactions are difficult to investigate. To overcome this difficulty, bifunctional derivatives of II3-β-N-acetyl-D-galactosamine-GA2 (GalNAc-GA2) and β-N-acetyl-D-glucosamine-ceramide (GlcNAc-Cer) were synthesized as probes to explore GSL-interacting membrane proteins in live cells. Both probes contain photoreactive diazirine in the lipid moiety, which can crosslink with proximal membrane proteins upon photoactivation, and clickable alkyne in the glycan to facilitate affinity tag addition for crosslinked protein pull-down and characterization. The synthesis is highlighted by the efficient assembly of simple glycolipid precursors followed by on-site lipid remodeling. These probes were employed to profile GSL-interacting membrane proteins in HEK293 cells. The GalNAc-GA2 probe revealed 312 distinct proteins, with GlcNAc-Cer probe-crosslinked proteins as controls, suggesting the potential influence of the glycan on GSL functions. Many of the proteins identified with the GalNAc-GA2 probe are associated with GSLs, and some have been validated as being specific to this probe. The versatile probe design and experimental protocols are anticipated to be widely applicable to GSL research.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Chuwei Lin
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA; Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Shayak Biswas
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Shi Q, Zhao R, Chen L, Liu T, Di T, Zhang C, Zhang Z, Wang F, Han Z, Sun J, Liu S. Newcastle disease virus activates diverse signaling pathways via Src to facilitate virus entry into host macrophages. J Virol 2024; 98:e0191523. [PMID: 38334327 PMCID: PMC10949470 DOI: 10.1128/jvi.01915-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 02/10/2024] Open
Abstract
As an intrinsic cellular mechanism responsible for the internalization of extracellular ligands and membrane components, caveolae-mediated endocytosis (CavME) is also exploited by certain pathogens for endocytic entry [e.g., Newcastle disease virus (NDV) of paramyxovirus]. However, the molecular mechanisms of NDV-induced CavME remain poorly understood. Herein, we demonstrate that sialic acid-containing gangliosides, rather than glycoproteins, were utilized by NDV as receptors to initiate the endocytic entry of NDV into HD11 cells. The binding of NDV to gangliosides induced the activation of a non-receptor tyrosine kinase, Src, leading to the phosphorylation of caveolin-1 (Cav1) and dynamin-2 (Dyn2), which contributed to the endocytic entry of NDV. Moreover, an inoculation of cells with NDV-induced actin cytoskeletal rearrangement through Src to facilitate NDV entry via endocytosis and direct fusion with the plasma membrane. Subsequently, unique members of the Rho GTPases family, RhoA and Cdc42, were activated by NDV in a Src-dependent manner. Further analyses revealed that RhoA and Cdc42 regulated the activities of specific effectors, cofilin and myosin regulatory light chain 2, responsible for actin cytoskeleton rearrangement, through diverse intracellular signaling cascades. Taken together, our results suggest that an inoculation of NDV-induced Src-mediated cellular activation by binding to ganglioside receptors. This process orchestrated NDV endocytic entry by modulating the activities of caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPases and downstream effectors. IMPORTANCE In general, it is known that the paramyxovirus gains access to host cells through direct penetration at the plasma membrane; however, emerging evidence suggests more complex entry mechanisms for paramyxoviruses. The endocytic entry of Newcastle disease virus (NDV), a representative member of the paramyxovirus family, into multiple types of cells has been recently reported. Herein, we demonstrate the binding of NDV to induce ganglioside-activated Src signaling, which is responsible for the endocytic entry of NDV through caveolae-mediated endocytosis. This process involved Src-dependent activation of the caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPase and downstream effectors, thereby orchestrating the endocytic entry process of NDV. Our findings uncover a novel molecular mechanism of endocytic entry of NDV into host cells and provide novel insight into paramyxovirus mechanisms of entry.
Collapse
Affiliation(s)
- Qiankai Shi
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ran Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Linna Chen
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tianyi Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tao Di
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunwei Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhiying Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fangfang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
6
|
Newcastle Disease Virus Entry into Chicken Macrophages via a pH-Dependent, Dynamin and Caveola-Mediated Endocytic Pathway That Requires Rab5. J Virol 2021; 95:e0228820. [PMID: 33762417 DOI: 10.1128/jvi.02288-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The cellular entry pathways and the mechanisms of Newcastle disease virus (NDV) entry into cells are poorly characterized. In this study, we demonstrated that chicken interferon-induced transmembrane protein 1 (chIFITM1), which is located in the early endosomes, could limit the replication of NDV in chicken macrophage cell line HD11, suggesting the endocytic entry of NDV into chicken macrophages. Then, we presented a systematic study about the entry mechanism of NDV into chicken macrophages. First, we demonstrated that a low-pH condition and dynamin were required during NDV entry. However, NDV entry into chicken macrophages was independent of clathrin-mediated endocytosis. We also found that NDV entry was dependent on membrane cholesterol. The NDV entry and replication were significantly reduced by nystatin and phorbol 12-myristate 13-acetate treatment, overexpression of dominant-negative (DN) caveolin-1, or knockdown of caveolin-1, suggesting that NDV entry depends on caveola-mediated endocytosis. However, macropinocytosis did not play a role in NDV entry into chicken macrophages. In addition, we found that Rab5, rather than Rab7, was involved in the entry and traffic of NDV. The colocalization of NDV with Rab5 and early endosome suggested that NDV virion was transported to early endosomes in a Rab5-dependent manner after internalization. Of particular note, the caveola-mediated endocytosis was also utilized by NDV to enter primary chicken macrophages. Moreover, NDV entered different cell types using different pathways. Collectively, our findings demonstrate for the first time that NDV virion enters chicken macrophages via a pH-dependent, dynamin and caveola-mediated endocytosis pathway and that Rab5 is involved in the traffic and location of NDV. IMPORTANCE Although the pathogenesis of Newcastle disease virus (NDV) has been extensively studied, the detailed mechanism of NDV entry into host cells is largely unknown. Macrophages are the first-line defenders of host defense against infection of pathogens. Chicken macrophages are considered one of the main types of target cells during NDV infection. Here, we comprehensively investigated the entry mechanism of NDV in chicken macrophages. This is the first report to demonstrate that NDV enters chicken macrophages via a pH-dependent, dynamin and caveola-mediated endocytosis pathway that requires Rab5. The result is important for our understanding of the entry of NDV in chicken macrophages, which will further advance the knowledge of NDV pathogenesis and provide useful clues for the development of novel preventive or therapeutic strategies against NDV infection. In addition, this information will contribute to our further understanding of pathogenesis with regard to other members of the Avulavirus genus in the Paramyxoviridae family.
Collapse
|
7
|
Kim CH. Viral Protein Interaction with Host Cells GSLs. GLYCOSPHINGOLIPIDS SIGNALING 2020:53-92. [DOI: 10.1007/978-981-15-5807-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
8
|
Soliman MA, Nour AA, Erfan AM. Quantitative evaluation of viral interference among Egyptian isolates of highly pathogenic avian influenza viruses (H5N1 and H5N8) with the lentogenic and velogenic Newcastle disease virus genotype VII in specific pathogen-free embryonated chicken eggs model. Vet World 2019; 12:1833-1839. [PMID: 32009763 PMCID: PMC6925047 DOI: 10.14202/vetworld.2019.1833-1839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/11/2019] [Indexed: 12/25/2022] Open
Abstract
Background and Aim Mixed infections of the highly pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are considered the most distressing problem of the poultry industry. The problem arises due to the influence of a hidden virus on the replication of another suspected virus. Consequently, misdiagnosis of the real cause of disease may become a source of infection for other healthy stock by transmission and dissemination of the hidden virus. This study aimed to determine the impact of HPAIV and NDV on each other in a specific pathogen-free embryonated chicken egg (SPF-ECE) model. Materials and Methods HPAIVs (H5N1 and H5N8) and NDVs [avirulent NDV [avNDV] and velogenic NDV [vNDV]) were inoculated into the allantois cavity of SPF-ECE with graded titers (2, 3, and 4 log10 EID50) at 24 and 48 h of incubation, followed by the collection of allantoic fluid. A quantitative reverse transcription real-time polymerase chain reaction was used to determine the viral RNA copies of both viruses. Results Obvious interference was reported on the growth of NDVs when co-inoculated with AIVs. NDV RNA titers reduction ranged from <3 to 5 log10 to complete suppression, but slight interference with the growth of AIVs occurred. H5N1 RNA titers showed <1-2 log10 reduction when co-inoculated with vNDV compared with the H5N1 control. The interference impact of H5N8 was more powerful than that of H5N1, while vNDV showed more resistance for interference than the avNDV strain. On the other hand, interference of AIVs was not observed except when vNDV was inoculated before H5N1. The interfering impact was increased after 48 h of inoculation, whereas no titer of avNDV was detectable. Conclusion AIV strains had a powerful effect on NDV growth, regardless of which infection occurred first.
Collapse
Affiliation(s)
- Mohamed A Soliman
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza 12618, Egypt
| | - Ahmed A Nour
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza 12618, Egypt
| | - Ahmed M Erfan
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza 12618, Egypt
| |
Collapse
|
9
|
Thompson AJ, de Vries RP, Paulson JC. Virus recognition of glycan receptors. Curr Opin Virol 2019; 34:117-129. [PMID: 30849709 PMCID: PMC6476673 DOI: 10.1016/j.coviro.2019.01.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/24/2019] [Indexed: 01/17/2023]
Abstract
Attachment of viruses to cell-surface receptors is the initial step in infection. Many mammalian viruses have evolved to recognize receptors that are glycans on cell-surface glycoproteins or glycolipids. Although glycans are a ubiquitous component of mammalian cells, the types of terminal structures expressed vary among different cell-types and tissues, and even between comparable cells and tissues from different species, frequently leading to specific tissue and species tropisms as a direct consequence of glycan receptor recognition. Covering the majority of known virus families, this review provides an overview of mammalian viruses that use glycans as receptors, and their roles in determining in host recognition and tropism.
Collapse
Affiliation(s)
- Andrew J Thompson
- Departments of Molecular Medicine, Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - James C Paulson
- Departments of Molecular Medicine, Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Fazel P, Mehrabanpour MJ. Evaluation of the Viral Interference between Lentogenic Newcastle Disease Virus (Lasota) and Avian Influenza Virus (H9N2) using Real-Time Reverse Transcription Polymerase Chain Reaction in SPF Chicken. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2017-0717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- P Fazel
- Islamic Azad University, Iran; Islamic Azad University, Iran
| | | |
Collapse
|
11
|
Li Q, Wei D, Feng F, Wang XL, Li C, Chen ZN, Bian H. α2,6-linked sialic acid serves as a high-affinity receptor for cancer oncolytic virotherapy with Newcastle disease virus. J Cancer Res Clin Oncol 2017; 143:2171-2181. [PMID: 28687873 DOI: 10.1007/s00432-017-2470-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE Newcastle disease virus (NDV) has been applied to oncolytic virotherapy for decades due to its naturally oncolytic property. In spite of the substantiation of the sialic acid receptors of NDV on host cells, knowledge of preference of sialic acid linkage in viral attachment and oncolytic effect is lacking and imperative to be elucidated. METHODS Surface plasmon resonance analysis and competitive inhibition with sialylated glycan receptor analogues were used to determine the affinity and the preference of sialic acid receptor. Treatments of sialyltransferase inhibitors and linkage-specific sialidases and transfection with sialyltransferase expression vector were performed to regulate sialic acids levels. RESULTS We demonstrated that sialic acid was essential for NDV binding and infection of tumor cells. α2,6-linked sialic acid served as a high-affinity receptor for NDV and the ST6Gal I sialyltransferase that synthesizes α2-6 linkage of sialylated N-linked glycans in CHO-K1 cells promoted NDV binding and cytopathic effect. More importantly, an enhanced antitumor effect of NDV on aggressive SW620 colorectal carcinoma cells with high-level of cell surface α2,6-sialylation, but not SW480 cells with relative low-level of α2,6-sialylation, was observed both in vitro and in vivo. CONCLUSIONS The study provides evidence of optimized therapeutic strategy in oncolytic virotherapy via partly defining α2,6-sialylated receptor as a "cellular marker" for NDV.
Collapse
Affiliation(s)
- Qian Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, China
| | - Ding Wei
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, China
| | - Fei Feng
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, China
| | - Xi-Long Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, China
| | - Can Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, China
| | - Zhi-Nan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, China.
| | - Huijie Bian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
12
|
Bonfante F, Cattoli G, Leardini S, Salomoni A, Mazzetto E, Davidson I, Haddas R, Terregino C. Synergy or interference of a H9N2 avian influenza virus with a velogenic Newcastle disease virus in chickens is dose dependent. Avian Pathol 2017; 46:488-496. [DOI: 10.1080/03079457.2017.1319904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Francesco Bonfante
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Giovanni Cattoli
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
- Animal Production and Health Laboratory, Joint FAO/IAEA Division for Nuclear Applications in Food and Agriculture, International Atomic Energy Agency, Seibersdorf, Austria
| | - Sofia Leardini
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Angela Salomoni
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Eva Mazzetto
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Irit Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Ruth Haddas
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Calogero Terregino
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| |
Collapse
|
13
|
Site-specific glycosylation of the Newcastle disease virus haemagglutinin-neuraminidase. Glycoconj J 2016; 34:181-197. [DOI: 10.1007/s10719-016-9750-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022]
|
14
|
Glycosphingolipid-Protein Interaction in Signal Transduction. Int J Mol Sci 2016; 17:ijms17101732. [PMID: 27754465 PMCID: PMC5085762 DOI: 10.3390/ijms17101732] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022] Open
Abstract
Glycosphingolipids (GSLs) are a class of ceramide-based glycolipids essential for embryo development in mammals. The synthesis of specific GSLs depends on the expression of distinctive sets of GSL synthesizing enzymes that is tightly regulated during development. Several reports have described how cell surface receptors can be kept in a resting state or activate alternative signalling events as a consequence of their interaction with GSLs. Specific GSLs, indeed, interface with specific protein domains that are found in signalling molecules and which act as GSL sensors to modify signalling responses. The regulation exerted by GSLs on signal transduction is orthogonal to the ligand–receptor axis, as it usually does not directly interfere with the ligand binding to receptors. Due to their properties of adjustable production and orthogonal action on receptors, GSLs add a new dimension to the control of the signalling in development. GSLs can, indeed, dynamically influence progenitor cell response to morphogenetic stimuli, resulting in alternative differentiation fates. Here, we review the available literature on GSL–protein interactions and their effects on cell signalling and development.
Collapse
|
15
|
Stone JA, Nicola AV, Baum LG, Aguilar HC. Multiple Novel Functions of Henipavirus O-glycans: The First O-glycan Functions Identified in the Paramyxovirus Family. PLoS Pathog 2016; 12:e1005445. [PMID: 26867212 PMCID: PMC4750917 DOI: 10.1371/journal.ppat.1005445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/19/2016] [Indexed: 01/13/2023] Open
Abstract
O-linked glycosylation is a ubiquitous protein modification in organisms belonging to several kingdoms. Both microbial and host protein glycans are used by many pathogens for host invasion and immune evasion, yet little is known about the roles of O-glycans in viral pathogenesis. Reportedly, there is no single function attributed to O-glycans for the significant paramyxovirus family. The paramyxovirus family includes many important pathogens, such as measles, mumps, parainfluenza, metapneumo- and the deadly Henipaviruses Nipah (NiV) and Hendra (HeV) viruses. Paramyxoviral cell entry requires the coordinated actions of two viral membrane glycoproteins: the attachment (HN/H/G) and fusion (F) glycoproteins. O-glycan sites in HeV G were recently identified, facilitating use of the attachment protein of this deadly paramyxovirus as a model to study O-glycan functions. We mutated the identified HeV G O-glycosylation sites and found mutants with altered cell-cell fusion, G conformation, G/F association, viral entry in a pseudotyped viral system, and, quite unexpectedly, pseudotyped viral F protein incorporation and processing phenotypes. These are all important functions of viral glycoproteins. These phenotypes were broadly conserved for equivalent NiV mutants. Thus our results identify multiple novel and pathologically important functions of paramyxoviral O-glycans, paving the way to study O-glycan functions in other paramyxoviruses and enveloped viruses.
Collapse
Affiliation(s)
- Jacquelyn A. Stone
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Anthony V. Nicola
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Linda G. Baum
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, United States of America
| | - Hector C. Aguilar
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
16
|
Horiuchi R, Hirotsu N, Miyanishi N. Comparative analysis of N-glycans in the ungerminated and germinated stages of Oryza sativa. Carbohydr Res 2015; 418:1-8. [PMID: 26513758 DOI: 10.1016/j.carres.2015.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 11/15/2022]
Abstract
All fundamental information such as signal transduction, metabolic control, infection, cell-to-cell signaling, and cell differentiation related to the growth of plants are preserved in germs. In preserving these information, glycans have a key role and are involved in the development and differentiation of organisms. Glycans which exist in rice germ are expected to have an important role in germination. In this study, we performed structural and correlation analysis of the N-glycans in rice germ before and after germination. Our results confirmed that the N-glycans in the ungerminated stage of the rice germ had low number of N-glycans consisting only of six kinds especially with high-mannose and paucimannose type N-glycans being 16.0% and 76.7%, respectively. On the other hand, after 48 hours germinated germ stage, there was an increase in the complex type N-glycans with the appearance of Lewis a structure, the most complex type and a decrease in paucimannose types. These results suggest that at least six kinds of N-glycans are utilized for long time preservation of rice seed, while the diversification of most complex types of N-glycans is produced an environment dependent for shoot formation of rice.
Collapse
Affiliation(s)
- Risa Horiuchi
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan; Research Centre for Life and Environmental Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Naoki Hirotsu
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Nobumitsu Miyanishi
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan; Research Centre for Life and Environmental Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan.
| |
Collapse
|
17
|
Vieira DB, Thur K, Sultana S, Priestman D, van der Spoel AC. Verification and refinement of cellular glycosphingolipid profiles using HPLC. Biochem Cell Biol 2015; 93:581-6. [PMID: 26393781 DOI: 10.1139/bcb-2015-0074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glycosphingolipids (GSLs) are hybrid molecules consisting of the sphingolipid ceramide linked to a mono- or oligo-saccharide. In comparison to other membrane lipids, the family of GSLs stands out because of the extensive variation in the carbohydrate headgroup. GSLs are cell surface binding partners, in cis with growth factor receptors, and in trans with bacterial toxins and viruses, and are among the host-derived membrane components of viral particles, including those of HIV. In spite of their biological relevance, GSL profiles of commonly used cell lines have been analyzed to different degrees. Here, we directly compare the GSL complements from CHO-K1, COS-7, HeLa, HEK-293, HEPG2, Jurkat, and SH-SY5Y cells using an HPLC-based method requiring modest amounts of material. Compared to previous studies, the HPLC-based analyses provided more detailed information on the complexity of the cellular GSL complement, qualitatively as well as quantitatively. In particular for cells expressing multiple GSLs, we found higher numbers of GSL species, and different levels of abundance. Our study thus extends our knowledge of biologically relevant lipids in widely used cell lines.
Collapse
Affiliation(s)
- Douglas B Vieira
- a Atlantic Research Centre, Departments of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Karen Thur
- a Atlantic Research Centre, Departments of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Saki Sultana
- a Atlantic Research Centre, Departments of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - David Priestman
- b Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Aarnoud C van der Spoel
- a Atlantic Research Centre, Departments of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
18
|
Chigwechokha PK, Komatsu M, Itakura T, Shiozaki K. Nile Tilapia Neu3 sialidases: Molecular cloning, functional characterization and expression in Oreochromis niloticus. Gene 2014; 552:155-64. [DOI: 10.1016/j.gene.2014.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/09/2014] [Accepted: 09/14/2014] [Indexed: 11/16/2022]
|
19
|
Ohtake A, Daikoku S, Suzuki K, Ito Y, Kanie O. Analysis of the Cellular Dynamics of Fluorescently Tagged Glycosphingolipids by Using a Nanoliquid Chromatography–Tandem Mass Spectrometry Platform. Anal Chem 2013; 85:8475-82. [DOI: 10.1021/ac401632t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Atsuko Ohtake
- Japan Science and Technology Agency (JST), ERATO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 Japan
- RIKEN,
Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako-shi, Saitama
351-0198 Japan
| | - Shusaku Daikoku
- Japan Science and Technology Agency (JST), ERATO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 Japan
- RIKEN,
Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako-shi, Saitama
351-0198 Japan
| | - Katsuhiko Suzuki
- Japan Science and Technology Agency (JST), ERATO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 Japan
- RIKEN,
Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako-shi, Saitama
351-0198 Japan
| | - Yukishige Ito
- Japan Science and Technology Agency (JST), ERATO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 Japan
- RIKEN,
Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako-shi, Saitama
351-0198 Japan
| | - Osamu Kanie
- Japan Science and Technology Agency (JST), ERATO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 Japan
- RIKEN,
Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako-shi, Saitama
351-0198 Japan
- Tokai University, Institute of Glycoscience, 4-1-1
Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 Japan
| |
Collapse
|
20
|
Quantitative comparison of human parainfluenza virus hemagglutinin-neuraminidase receptor binding and receptor cleavage. J Virol 2013; 87:8962-70. [PMID: 23740997 DOI: 10.1128/jvi.00739-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The human parainfluenza virus (hPIV) hemagglutinin-neuraminidase (HN) protein binds (H) oligosaccharide receptors that contain N-acetylneuraminic acid (Neu5Ac) and cleaves (N) Neu5Ac from these oligosaccharides. In order to determine if one of HN's two functions is predominant, we measured the affinity of H for its ligands by a solid-phase binding assay with two glycoprotein substrates and by surface plasmon resonance with three monovalent glycans. We compared the dissociation constant (Kd) values from these experiments with previously determined Michaelis-Menten constants (Kms) for the enzyme activity. We found that glycoprotein substrates and monovalent glycans containing Neu5Acα2-3Galβ1-4GlcNAc bind HN with Kd values in the 10 to 100 μM range. Km values for HN were previously determined to be on the order of 1 mM (M. M. Tappert, D. F. Smith, and G. M. Air, J. Virol. 85:12146-12159, 2011). A Km value greater than the Kd value indicates that cleavage occurs faster than the dissociation of binding and will dominate under N-permissive conditions. We propose, therefore, that HN is a neuraminidase that can hold its substrate long enough to act as a binding protein. The N activity can therefore regulate binding by reducing virus-receptor interactions when the concentration of receptor is high.
Collapse
|
21
|
Genomic characterisation of a lentogenic Newcastle disease virus strain HX01 isolated from sick pigs in China. Virus Genes 2012; 46:264-70. [PMID: 23143787 DOI: 10.1007/s11262-012-0844-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 10/30/2012] [Indexed: 10/27/2022]
Abstract
This paper describes the complete genome sequence of HX01, an isolate of the Newcastle disease virus (NDV) collected from a swine disease outbreak. The genome is 15,186 nt long and consists of six genes in the order of 3'-NP-P-M-F-HN-L-5'. This genome has the same length as the old NDV genotypes (I-IV), whereas the new NDV genotypes (V-IX) are 15,192 nt long. Compared with the genomic sequences of the reference NDV strains, the HX01 genome is highly similar to the genome of other NDV strains. However, some unique features of the HN gene were found in HX01. HX01 possesses the motif (112)G-R-Q-G-R-L(117) at the fusion protein cleavage site, which is typical of lentogenic strains. Pathogenicity tests based on the mean death time and the intracerebral pathogenicity index also revealed the isolate's lentogenic character. Phylogenetic analysis based on the variable region of the F gene (nt 47-420) revealed that HX01 was clustered to genotype II within class II NDV. Genetically, HX01 has a high similarity with the La Sota vaccine strain based on the single gene or complete genomic but is far different from the prevalent genotype VIId NDV which circulates in fowls and waterfowls in mainland China.
Collapse
|
22
|
α2-3- and α2-6- N-linked sialic acids allow efficient interaction of Newcastle Disease Virus with target cells. Glycoconj J 2012; 29:539-49. [PMID: 22869099 PMCID: PMC7088266 DOI: 10.1007/s10719-012-9431-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/29/2012] [Accepted: 07/09/2012] [Indexed: 11/10/2022]
Abstract
Receptor recognition and binding is the first step in the viral cycle. It has been established that Newcastle Disease Virus (NDV) interacts with sialylated molecules such as gangliosides and glycoproteins at the cell surface. Nevertheless, the specific receptor(s) that mediate virus entry are not well known. We have analysed the role of the sialic acid linkage in the early steps of the viral infection cycle. Pretreatment of ELL-0 cells with both α2,3 and α2,6 specific sialidases led to the inhibition of NDV binding, fusion and infectivity, which were restored after α2,3(N)- and α2,6(N)-sialyltransferase incubation. Moreover, α2,6(N)-sialyltransferases also restored NDV activities in α2-6-linked sialic acid deficient cells. Competition with α2-6 sialic acid-binding lectins led to a reduction in the three NDV activities (binding, fusion and infectivity) suggesting a role for α2-6- linked sialic acid in NDV entry. We conclude that both α2-3- and α2-6- linked sialic acid containing glycoconjugates may be used for NDV infection. NDV was able to efficiently bind, fuse and infect the ganglioside-deficient cell line GM95 to a similar extent to that of its parental MEB4, suggesting that gangliosides are not essential for NDV binding, fusion and infectivity. Nevertheless, the fact that the interaction of NDV with cells deficient in N-glycoprotein expression such as Lec1 was less efficient prompted us to conclude that NDV requires N-linked glycoproteins for efficient attachment and entry into the host cell.
Collapse
|
23
|
Ge S, Zheng D, Zhao Y, Liu H, Liu W, Sun Q, Li J, Yu S, Zuo Y, Han X, Li L, Lv Y, Wang Y, Liu X, Wang Z. Evaluating viral interference between Influenza virus and Newcastle disease virus using real-time reverse transcription-polymerase chain reaction in chicken eggs. Virol J 2012; 9:128. [PMID: 22748105 PMCID: PMC3439397 DOI: 10.1186/1743-422x-9-128] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 06/09/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Simultaneous and sequential allantoic cavity inoculations of Specific-pathogen-free (SPF) chicken eggs with Influenza virus (AIV) and Newcastle disease virus (NDV) demonstrated that the interaction of AIV and NDV during co-infection was variable. Our research revisited the replication interference potential of AIV and NDV using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) for AIV and NDV to specifically detect the viral genomes in mixed infections. RESULTS Data from this survey showed that when different doses of NDV (Lasota or F48E8) and AIV (F98 or H5N1) were simultaneously inoculated into embryonating chicken eggs (ECE), interference with the growth of NDV occurred, while interference with the growth of AIV did not occur. When equal amount of the two viruses were sequentially employed, the degree of interference was dependent upon the time of superinfection and the virulence of virus. CONCLUSION AIV have a negative impact on NDV growth if they are inoculated simultaneously or sequentially and that the degree of interference depended upon the quantity and relative virulence of the virus strains used; however, interference with AIV was not observed. Only if NDV were inoculated at an earlier time will NDV able to interfere with the growth of AIV.
Collapse
Affiliation(s)
- Shengqiang Ge
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Dongxia Zheng
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Yunling Zhao
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Hualei Liu
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Wenbo Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Qing Sun
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Jinming Li
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Songmei Yu
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Yuanyuan Zuo
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Xiuju Han
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Lin Li
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Yan Lv
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Yingli Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhiliang Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| |
Collapse
|
24
|
Sun Q, Zhao L, Song Q, Wang Z, Qiu X, Zhang W, Zhao M, Zhao G, Liu W, Liu H, Li Y, Liu X. Hybrid- and complex-type N-glycans are not essential for Newcastle disease virus infection and fusion of host cells. Glycobiology 2012; 22:369-78. [PMID: 21964725 PMCID: PMC3267530 DOI: 10.1093/glycob/cwr146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/02/2011] [Accepted: 09/18/2011] [Indexed: 11/13/2022] Open
Abstract
N-linked glycans are composed of three major types: high-mannose (Man), hybrid or complex. The functional role of hybrid- and complex-type N-glycans in Newcastle disease virus (NDV) infection and fusion was examined in N-acetylglucosaminyltransferase I (GnT I)-deficient Lec1 cells, a mutant Chinese hamster ovary (CHO) cell incapable of synthesizing hybrid- and complex-type N-glycans. We used recombinant NDV expressing green fluorescence protein or red fluorescence protein to monitor NDV infection, syncytium formation and viral yield. Flow cytometry showed that CHO-K1 and Lec1 cells had essentially the same degree of NDV infection. In contrast, Lec2 cells were found to be resistant to NDV infection. Compared with CHO-K1 cells, Lec1 cells were shown to more sensitive to fusion induced by NDV. Viral attachment was found to be comparable in both lines. We found that there were no significant differences in the yield of progeny virus produced by both CHO-K1 and Lec1 cells. Quantitative analysis revealed that NDV infection and fusion in Lec1 cells were also inhibited by treatment with sialidase. Pretreatment of Lec1 cells with Galanthus nivalis agglutinin specific for terminal α1-3-linked Man prior to inoculation with NDV rendered Lec1 cells less sensitive to cell-to-cell fusion compared with mock-treated Lec1 cells. Treatment of CHO-K1 and Lec1 cells with tunicamycin, an inhibitor of N-glycosylation, significantly blocked fusion and infection. In conclusion, our results suggest that hybrid- and complex-type N-glycans are not required for NDV infection and fusion. We propose that high-Man-type N-glycans could play an important role in the cell-to-cell fusion induced by NDV.
Collapse
Affiliation(s)
- Qing Sun
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Lixiang Zhao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Qingqing Song
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Zheng Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xusheng Qiu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Wenjun Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Mingjun Zhao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Guo Zhao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Wenbo Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Haiyan Liu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yunsen Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
25
|
Fixation of oligosaccharides to a surface may increase the susceptibility to human parainfluenza virus 1, 2, or 3 hemagglutinin-neuraminidase. J Virol 2011; 85:12146-59. [PMID: 21917945 DOI: 10.1128/jvi.05537-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The hemagglutinin-neuraminidase (HN) protein of human parainfluenza viruses (hPIVs) both binds (H) and cleaves (N) oligosaccharides that contain N-acetylneuraminic acid (Neu5Ac). H is thought to correspond to receptor binding and N to receptor-destroying activity. At present, N's role in infection remains unclear: does it destroy only receptors, or are there other targets? We previously demonstrated that hPIV1 and 3 HNs bind to oligosaccharides containing the motif Neu5Acα2-3Galβ1-4GlcNAc (M. Amonsen, D. F. Smith, R. D. Cummings, and G. M. Air, J. Virol. 81:8341-8345, 2007). In the present study, we tested the binding specificity of hPIV2 on the Consortium for Functional Glycomics' glycan array and found that hPIV2 binds to oligosaccharides containing the same motif. We determined the specificities of N on red blood cells, soluble small-molecule and glycoprotein substrates, and the glycan array and compared them to the specificities of H. hPIV2 and -3, but not hPIV1, cleaved their ligands on red blood cells. hPIV1, -2, and -3 cleaved their NeuAcα2-3 ligands on the glycan array; hPIV2 and -3 also cleaved NeuAcα2-6 ligands bound by influenza A virus. While all three HNs exhibited similar affinities for all cleavable soluble substrates, their activities were 5- to 10-fold higher on small molecules than on glycoproteins. In addition, some soluble glycoproteins were not cleaved, despite containing oligosaccharides that were cleaved on the glycan array. We conclude that the susceptibility of an oligosaccharide substrate to N increases when the substrate is fixed to a surface. These findings suggest that HN may undergo a conformational change that activates N upon receptor binding at a cell surface.
Collapse
|
26
|
Coxsackievirus A24 variant uses sialic acid-containing O-linked glycoconjugates as cellular receptors on human ocular cells. J Virol 2011; 85:11283-90. [PMID: 21880775 DOI: 10.1128/jvi.05597-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coxsackievirus A24 variant (CVA24v) is a main causative agent of acute hemorrhagic conjunctivitis (AHC), which is a highly contagious eye infection. Previously it has been suggested that CVA24v uses sialic acid-containing glycoconjugates as attachment receptors on corneal cells, but the nature of these receptors is poorly described. Here, we set out to characterize and identify the cellular components serving as receptors for CVA24v. Binding and infection experiments using corneal cells treated with deglycosylating enzymes or metabolic inhibitors of de novo glycosylation suggested that the receptor(s) used by CVA24v are constituted by sialylated O-linked glycans that are linked to one or more cell surface proteins but not to lipids. CVA24v bound better to mouse L929 cells overexpressing human P-selectin glycoprotein ligand-1 (PSGL-1) than to mock-transfected cells, suggesting that PSGL-1 is a candidate receptor for CVA24v. Finally, binding competition experiments using a library of mono- and oligosaccharides mimicking known PSGL-1 glycans suggested that CVA24v binds to Neu5Acα2,3Gal disaccharides (Neu5Ac is N-acetylneuraminic acid). These results provide further insights into the early steps of the CVA24v life cycle.
Collapse
|
27
|
Viral delivery for gene therapy against cell movement in cancer. Adv Drug Deliv Rev 2011; 63:671-7. [PMID: 21616108 DOI: 10.1016/j.addr.2011.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/15/2011] [Accepted: 05/07/2011] [Indexed: 12/17/2022]
Abstract
Viral delivery for cancer gene therapy is a promising approach, where traditional radiotherapy or chemotherapy to limit proliferation and movement of cancer cells has met resistance. Based on the new understanding of the biology of the viral vectors, therapeutic viral vectors for cancer gene therapy have been improved for greater safety and efficacy as well as transitioned from being non-replicating to replication-competent. Traditional oncolytic vectors have focused on eliminating tumor growth, while novel vectors simultaneously target epithelial-to-mesenchymal transition (EMT) in cancer cells, which could further prevent and reverse the aggressive tumor progression. In this review, we highlight the illustrative examples of cancer gene therapy in clinical trials as well as preclinical data and include proposals on methods to further enhance the safety and efficacy of oncolytic viral vectors in cancer gene therapy.
Collapse
|
28
|
Ding Z, Cong YL, Chang S, Wang GM, Wang Z, Zhang QP, Wu H, Sun YZ. Genetic analysis of avian paramyxovirus-1 (Newcastle disease virus) isolates obtained from swine populations in China related to commonly utilized commercial vaccine strains. Virus Genes 2010; 41:369-76. [PMID: 20661635 DOI: 10.1007/s11262-010-0516-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 07/10/2010] [Indexed: 12/31/2022]
Abstract
Newcastle disease virus (NDV) has been thought to only infect avian species. However, at least eight NDV strains were isolated from swine populations in China during 1999-2006, four of which were characterized genetically and phylogenetically. Genetic analysis revealed that JL106 and SP13 had a (112)G-R-Q-G-R-L(117) motif at the cleavage site of F protein, while JL01 and MP01 possessed a (112)G-K-Q-G-R-L(117) motif, which indicated that all of them were typical of low-virulence viruses. Phylogenetic analysis based on the full-length F gene sequences showed that JL106 and SP13 belonged to genotype II, similar to the commonly utilized commercial La Sota vaccine strain in China. While JL01 and MP01 clustered within genotype I, genetically identical to the V4 vaccine strain. The animal trials showed that JL106 can effectively infect chickens. The present results indicated that the use of live La Sota and V4 vaccines and close contact between avian and pigs maybe resulted in cross-species infection, therefore, it is necessary to further carry out swine NDV epidemiology surveillance.
Collapse
Affiliation(s)
- Zhuang Ding
- Laboratory of Infectious Diseases, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Chan RB, Tanner L, Wenk MR. Implications for lipids during replication of enveloped viruses. Chem Phys Lipids 2010; 163:449-59. [PMID: 20230810 PMCID: PMC7124286 DOI: 10.1016/j.chemphyslip.2010.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 03/08/2010] [Indexed: 01/27/2023]
Abstract
Enveloped viruses, which include many medically important viruses such as human immunodeficiency virus, influenza virus and hepatitis C virus, are intracellular parasites that acquire lipid envelopes from their host cells. Success of replication is intimately linked to their ability to hijack host cell mechanisms, particularly those related to membrane dynamics and lipid metabolism. Despite recent progress, our knowledge of lipid mediated virus-host interactions remains highly incomplete. In addition, diverse experimental systems are used to study different stages of virus replication thus complicating comparisons. This review aims to present a unifying view of the widely diverse strategies used by enveloped viruses at distinct stages of their replication cycles.
Collapse
Affiliation(s)
- Robin B Chan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
30
|
Determination of sialic acid and gangliosides in biological samples and dairy products: A review. J Pharm Biomed Anal 2010; 51:346-57. [DOI: 10.1016/j.jpba.2009.04.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/17/2009] [Accepted: 04/23/2009] [Indexed: 11/20/2022]
|
31
|
A Baumann C, J Neubert W. Neuraminidase-deficient Sendai virus HN mutants provide protection from homologous superinfection. Arch Virol 2009; 155:217-27. [PMID: 20024589 PMCID: PMC2815292 DOI: 10.1007/s00705-009-0567-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 11/06/2009] [Indexed: 11/24/2022]
Abstract
Binding of hemagglutinin-neuraminidase proteins (HN) to sialylated receptors initiates the infection process of several paramyxoviruses, whereas later in the viral life cycle, the neuramindase (NA) activity of newly synthesized HN destroys all receptors. Prior to NA action, expressed HN has to bind the receptor. To evaluate this HN–receptor complex with respect to receptor inactivation, three temperature-sensitive Sendai virus HN mutants carrying amino acid exchanges at positions 262, 264 and/or 461 were created that uncoupled NA activity from receptor binding at 39°C. Interestingly, at elevated temperature, when there is no detectable neuramindase activity, all infected cells are protected against homologous superinfection. Mutated HN protein on the cell surface is mainly bound to sialylated cell-surface components but can be released by treatment with NA. Thus, continuous binding to HN already inactivates the receptors quantitatively. Furthermore, mutant HN bound to receptors is prevented from being incorporated into virus particles in the absence of NA. It is shown here for the first time that during paramyxoviral infection, quantitative receptor inactivation already occurs due to binding of receptors to expressed HN protein without involvement of NA and is independent of NA activity of viral progeny. NA subsequently functions in the release of HN from the complex, coupled with desialysation of receptors. These findings could have implications for further antiviral drug development.
Collapse
Affiliation(s)
- Christine A Baumann
- Department of Molecular Virology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | | |
Collapse
|
32
|
Walther W, Stein US. Newcastle disease virus: a promising vector for viral therapy, immune therapy, and gene therapy of cancer. Methods Mol Biol 2008; 542:565-605. [PMID: 19565923 PMCID: PMC7122391 DOI: 10.1007/978-1-59745-561-9_30] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review deals with the avian paramyxovirus Newcastle disease virus (NDV) and describes properties that explain its oncolytic activity, its tumor-selective replication behavior, and its immune-stimulatory capacity with human cells. The strong interferon response of normal cells upon contact with NDV appears to be the basis for the good tolerability of the virus in cancer patients and for its immune stimulatory properties, whereas the weak interferon response of tumor cells explains the tumor selectivity of replication and oncolysis. Various concepts for the use of this virus for cancer treatment are pointed out and results from clinical studies are summarized. Reverse genetics technology has made it possible recently to clone the genome and to introduce new foreign genes thus generating new recombinant viruses. These can, in the future, be used to transfer new therapeutic genes into tumors and also to immunize against new emerging pathogens. The modular nature of gene transcription, the undetectable rate of recombination, and the lack of a DNA phase in the replication cycle make NDV a suitable candidate for the rational design of a safe and stable vaccine and gene therapy vector.
Collapse
Affiliation(s)
- Wolfgang Walther
- Molecular Medicine (MDC), Max Delbrück Center for, Robert-Rössle-Str. 10, Berlin, 13125 Germany
| | - Ulrike S. Stein
- Molecular Medicine (MDC), Max Delbrück Center for, Robert-Rössle-Str. 10, Berlin, 13125 Germany
| |
Collapse
|
33
|
Xu M, Chang S, Ding Z, Gao HW, Wan JY, Liu WS, Liu LN, Gao Y, Xu J. Genomic analysis of Newcastle disease virus strain NA-1 isolated from geese in China. Arch Virol 2008; 153:1281-9. [DOI: 10.1007/s00705-008-0115-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 04/22/2008] [Indexed: 11/30/2022]
|
34
|
Over-expression of mammalian sialidase NEU3 reduces Newcastle disease virus entry and propagation in COS7 cells. Biochim Biophys Acta Gen Subj 2008; 1780:504-12. [DOI: 10.1016/j.bbagen.2007.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/18/2007] [Accepted: 11/21/2007] [Indexed: 02/05/2023]
|
35
|
Solid-phase capture of pathogenic bacteria by using gangliosides and detection with real-time PCR. Appl Environ Microbiol 2008; 74:2254-8. [PMID: 18263751 DOI: 10.1128/aem.02601-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a method for concentrating pathogens from samples without enrichment. Immobilized gangliosides concentrated bacteria for detection with real-time PCR. A sensitivity of approximately 4 CFU/ml (3 h) in samples without competing microflora was achieved. Samples with competing microflora had a sensitivity of 40,000 CFU/ml. The variance was less than one cycle.
Collapse
|
36
|
Cantín C, Holguera J, Ferreira L, Villar E, Muñoz-Barroso I. Newcastle disease virus may enter cells by caveolae-mediated endocytosis. J Gen Virol 2007; 88:559-569. [PMID: 17251575 DOI: 10.1099/vir.0.82150-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The entry into cells of Newcastle disease virus (NDV), a prototype member of the paramyxoviruses, is believed to occur by direct fusion at the plasma membrane through a pH-independent mechanism. In addition, NDV may enter host cells by an endocytic pathway. Treatment of cells with drugs that block caveolae-dependent endocytosis reduced NDV fusion and infectivity, the degree of inhibition being dependent on virus concentration. The inhibitory effect was reduced greatly when drugs were added after virus adsorption. Cells treated with methyl beta-cyclodextrin, a drug that sequesters cholesterol from membranes, reduced the extent of fusion, infectivity and virus-cell binding; this indicates that cholesterol plays a role in NDV entry. Double-labelling immunofluorescence assays performed with anti-NDV monoclonal antibodies and antibodies against the early endosome marker EEA1 revealed the localization of the virus in these intracellular structures. Using fluorescence microscopy, it was found that cell-cell fusion was enhanced at low pH. It is concluded that NDV may infect cells through a caveolae-dependent endocytic pathway, suggesting that this pathway could be an alternative route for virus entry into cells.
Collapse
Affiliation(s)
- Celia Cantín
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Javier Holguera
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Laura Ferreira
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Enrique Villar
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Isabel Muñoz-Barroso
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| |
Collapse
|
37
|
Examination of the activity of HN and F glycoprotein antigens of the outer envelope of Newcastle disease virus by using fusional, hemolytic, hemagglutination and hemadsorption tests, in vitro. ACTA VET-BEOGRAD 2007. [DOI: 10.2298/avb0701003n] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
38
|
Madhujith T, Shahidi F. Optimization of the extraction of antioxidative constituents of six barley cultivars and their antioxidant properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:8048-57. [PMID: 17032008 DOI: 10.1021/jf061558e] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Response surface methodology (RSM) was used to predict the optimum conditions of extraction of barley samples (organic solvent percent in the extraction medium, temperature, and time). Antioxidant capacity in the barley meals was highest under optimum extraction conditions of 80.2% methanol and 60.5 degrees C for 38.36 min as predicted by RSM. Phenolic antioxidative compounds of six barley cultivars, namely, Falcon, AC Metcalfe, Tercel, Tyto, Phoenix, and Peregrine, were extracted under the conditions obtained by RSM after defatting with hexane, and subsequently the extracts were assessed for their antioxidant and antiradical activities and metal chelation efficacy. The potential of barley extracts in inhibiting peroxyl and hydroxyl radical induced supercoiled DNA double-strand scission was also studied. Total phenolic content as measured according to Folin-Ciocalteu's method ranged from 13.58 to 22.93 mg of ferulic acid equiv/g of defatted material, with the highest content in Peregrine. Total antioxidant activity as measured by Trolox equivalent antioxidant capacity ranged from 3.74 to 6.82 micromol/g of defatted material. Metal chelation capacity of the extracts as measured by 2,2'-bipyridyl competition assay varied from 1.1 to 2.1 micromol of ethylenediaminetetraacetic acid equiv/g of defatted material. IC(50) values for 1,1-diphenyl-2-picrylhydrazyl radical as measured by electron paramagnetic resonance ranged from 1.51 to 3.33 mg/mL, whereas the corresponding values for hydroxyl radical ranged between 2.20 and 9.65 mg/mL. Inhibition of peroxyl radical induced supercoiled DNA scission ranged from 78.2 to 92.1% at the concentration of 4 mg/mL of extracts, whereas the corresponding values for hydroxyl radical induced DNA scission ranged from 53.1 to 65.3%.
Collapse
Affiliation(s)
- Terrence Madhujith
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X9
| | | |
Collapse
|
39
|
Rojek JM, Spiropoulou CF, Kunz S. Characterization of the cellular receptors for the South American hemorrhagic fever viruses Junin, Guanarito, and Machupo. Virology 2006; 349:476-91. [PMID: 16574183 DOI: 10.1016/j.virol.2006.02.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 12/19/2005] [Accepted: 02/23/2006] [Indexed: 12/01/2022]
Abstract
The New World arenaviruses Junin, Machupo, and Guanarito are the causative agents of hemorrhagic fevers (HF) with high mortality in humans. The cellular receptor for Old World arenaviruses and one subgroup of the New World arenaviruses (Clade C) have been identified as alpha-dystroglycan (alpha-DG). In contrast, the receptor(s) of the South American HF viruses, which belong to the Clade B New World arenaviruses, are currently unknown. To begin to characterize the cellular receptors used by these pathogens, we generated recombinant retroviral pseudotypes with the glycoproteins of Guanarito, Junin, and Machupo. Infection with the South American HF viruses is independent of alpha-DG and functional receptors for Guanarito, Junin, and Machupo were found on most human cell types and cells derived from non-human primate and rodents. Guanarito, Junin, and Machupo share a common receptor, which is distinct from the receptor(s) used by the closely related non-pathogenic Clade B virus Amapari, and the genetically more distant Clade A and C New World arenaviruses. We show that the cellular receptor(s) for the South American HF viruses are proteins or protein-linked entities and that infection is not dependent on protein-linked N-glycans, O-glycans, or glycosaminoglycans.
Collapse
Affiliation(s)
- Jillian M Rojek
- Molecular and Integrative Neuroscience Department (MIND), The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
40
|
Villar E, Barroso IM. Role of sialic acid-containing molecules in paramyxovirus entry into the host cell: A minireview. Glycoconj J 2006; 23:5-17. [PMID: 16575518 DOI: 10.1007/s10719-006-5433-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sialic acid-containing compounds play a key role in the initial steps of the paramyxovirus life cycle. As enveloped viruses, their entry into the host cell consists of two main events: binding to the host cell and membrane fusion. Virus adsorption occurs at the surface of the host cell with the recognition of specific receptor molecules located at the cell membrane by specific viral attachment proteins. The viral attachment protein present in some paramyxoviruses (Respirovirus, Rubulavirus and Avulavirus) is the HN glycoprotein, which binds to cellular sialic acid-containing molecules and exhibits sialidase and fusion promotion activities. Gangliosides of the gangliotetraose series bearing the sialic acid N-acetylneuraminic (Neu5Ac) on the terminal galactose attached in alpha2-3 linkage, such as GD1a, GT1b, and GQ1b, and neolacto-series gangliosides are the major receptors for Sendai virus. Much less is known about the receptors for other paramyxoviruses than for Sendai virus. Human parainfluenza viruses 1 and 3 preferentially recognize oligosaccharides containing N-acetyllactosaminoglycan branches with terminal Neu5Acalpha2-3Gal. In the case of Newcastle disease virus, has been reported the absence of a specific pattern of the gangliosides that interact with the virus. Additionally, several works have described the use of sialylated glycoproteins as paramyxovirus receptors. Accordingly, the design of specific sialic acid analogs to inhibit the sialidase and/or receptor binding activity of viral attachment proteins is an important antiviral strategy. In spite of all these data, the exact nature of paramyxovirus receptors, apart from their sialylated nature, and the mechanism(s) of viral attachment to the cell surface are poorly understood.
Collapse
Affiliation(s)
- Enrique Villar
- Departamento de Bioquímica y Biología Molecular, Edificio Departamental, Universidad de Salamanca, Plaza Doctores de la Reina s/n, Lab. 108, Salamanca 37007, Spain.
| | | |
Collapse
|
41
|
Imperiali M, Thoma C, Pavoni E, Brancaccio A, Callewaert N, Oxenius A. O Mannosylation of alpha-dystroglycan is essential for lymphocytic choriomeningitis virus receptor function. J Virol 2006; 79:14297-308. [PMID: 16254364 PMCID: PMC1280192 DOI: 10.1128/jvi.79.22.14297-14308.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alpha-dystroglycan (alpha-DG) was identified as a common receptor for lymphocytic choriomeningitis virus (LCMV) and several other arenaviruses including the human pathogenic Lassa fever virus. Initial work postulated that interactions between arenavirus glycoproteins and alpha-DG are based on protein-protein interactions. We found, however, that susceptibility toward LCMV infection differed in various cell lines despite them expressing comparable levels of DG, suggesting that posttranslational modifications of alpha-DG would be involved in viral receptor function. Here, we demonstrate that glycosylation of alpha-DG, and in particular, O mannosylation, which is a rare type of O-linked glycosylation in mammals, is essential for LCMV receptor function. Cells that are defective in components of the O-mannosylation pathway showed strikingly reduced LCMV infectibility. As defective O mannosylation is associated with severe clinical symptoms in mammals such as congenital muscular dystrophies, it is likely that LCMV and potentially other arenaviruses may have selected this conserved and crucial posttranslational modification as the primary target structure for cell entry and infection.
Collapse
Affiliation(s)
- Mauro Imperiali
- Institute for Microbiology, ETH Zurich, 8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
42
|
Kunz S, Rojek JM, Kanagawa M, Spiropoulou CF, Barresi R, Campbell KP, Oldstone MBA. Posttranslational modification of alpha-dystroglycan, the cellular receptor for arenaviruses, by the glycosyltransferase LARGE is critical for virus binding. J Virol 2006; 79:14282-96. [PMID: 16254363 PMCID: PMC1280193 DOI: 10.1128/jvi.79.22.14282-14296.2005] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The receptor for lymphocytic choriomeningitis virus (LCMV), the human pathogenic Lassa fever virus (LFV), and clade C New World arenaviruses is alpha-dystroglycan (alpha-DG), a cell surface receptor for proteins of the extracellular matrix (ECM). Specific posttranslational modification of alpha-DG by the glycosyltransferase LARGE is critical for its function as an ECM receptor. In the present study, we show that LARGE-dependent modification is also crucial for alpha-DG's function as a cellular receptor for arenaviruses. Virus binding involves the mucin-type domain of alpha-DG and depends on modification by LARGE. A crucial role of the LARGE-dependent glycosylation of alpha-DG for virus binding is found for several isolates of LCMV, LFV, and the arenaviruses Mobala and Oliveros. Since the posttranslational modification by LARGE is crucial for alpha-DG recognition by both arenaviruses and the host-derived ligand laminin, it also influences competition between virus and laminin for alpha-DG. Hence, LARGE-dependent glycosylation of alpha-DG has important implications for the virus-host cell interaction and the pathogenesis of LFV in humans.
Collapse
Affiliation(s)
- Stefan Kunz
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Radin NS. Preventing the binding of pathogens to the host by controlling sphingolipid metabolism. Microbes Infect 2006; 8:938-45. [PMID: 16460984 DOI: 10.1016/j.micinf.2005.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 09/05/2005] [Accepted: 09/06/2005] [Indexed: 11/16/2022]
Abstract
The binding of many pathogens and toxins to human cells can be inhibited by (1) depleting host cells of their surface glycosphingolipids; (2) coating the binding sites on pathogens (adhesins) with glycosphingolipid-like substances (decoys); (3) coating the host's glycosphingolipids with substances that compete with the pathogen for binding. Details of using these methods are described.
Collapse
Affiliation(s)
- Norman S Radin
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
44
|
Examination of the activity of glycoprotein HN and F antigens of the outer envelope of the parainfluenza virus type 3 by using fusional, hemolytic and hemagglutination tests, in vitro. ACTA VET-BEOGRAD 2006. [DOI: 10.2298/avb0606431n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
45
|
Chu JJH, Leong PWH, Ng ML. Characterization of plasma membrane-associated proteins from Aedes albopictus mosquito (C6/36) cells that mediate West Nile virus binding and infection. Virology 2005; 339:249-60. [PMID: 15992848 DOI: 10.1016/j.virol.2005.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 04/25/2005] [Accepted: 05/20/2005] [Indexed: 11/20/2022]
Abstract
This study isolated and characterized the West Nile virus (WNV) putative receptor molecule(s) from Aedes albopictus mosquito (C6/36) cells. The binding of WNV to C6/36 cells was saturated with 5000 particles per cell. The entry of WNV into C6/36 cells was strongly inhibited when pretreated with proteinase K and to a lesser extent with sodium periodate. However, pretreatment of C6/36 cells with phospholipases, glycosidases, heparinases and neurimidase had no effect on virus entry. By using virus overlay protein blot assay, WNV was observed to bind to the 140-kDa, 95-kDa, 70-kDa and 55-kDa plasma membrane-associated molecules isolated from C6/36 cells. Murine antibodies generated against the 95-kDa and 70-kDa membrane proteins effectively blocked WNV, Japanese encephalitis virus (JEV) and Dengue virus (DV) serotype 2 infection in C6/36 cells. In addition, the binding of the recombinant-WNV envelope domain III protein to C6/36 cells can be inhibited by the anti-95-kDa and anti-70-kDa membrane protein antibodies. These data strongly supported the possibility that the 95-kDa and 70-kDa plasma membrane-associated proteins are part of a receptor complex for mosquito-borne flaviviruses (WNV, JEV and DV) on mosquito cells.
Collapse
Affiliation(s)
- J J H Chu
- Flavivirology Laboratory, Department of Microbiology, 5 Science Drive 2, National University of Singapore, 117597, Singapore
| | | | | |
Collapse
|