1
|
Muratsu J, Kamide K, Fujimoto T, Takeya Y, Sugimoto K, Taniyama Y, Morishima A, Sakaguchi K, Rakugi H. Lower body mass index potentiates the association between skipping breakfast and prevalence of proteinuria. Front Endocrinol (Lausanne) 2022; 13:916374. [PMID: 36060962 PMCID: PMC9437953 DOI: 10.3389/fendo.2022.916374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/20/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Proteinuria is an important predictor of cardiovascular disease and mortality. Several studies reported the association between skipping breakfast and the prevalence of proteinuria. Furthermore, skipping breakfast was associated with an increased risk of obesity. Although proteinuria is highly prevalent in obese individuals, the association between the prevalence of proteinuria and low body mass index (BMI) was reported in a previous cross-sectional study in asymptomatic individuals without known kidney diseases. The aim of this cross-sectional study was to assess the clinical impact of BMI on the association between skipping breakfast and the prevalence of proteinuria in normal renal function subjects. METHODS The present study included 26,888 subjects (15,875 males and 11,013 females) with an estimated glomerular filtration rate ≥60 ml/min/1.73 m2 and no history of kidney disease who underwent a health checkup in Sumitomo Hospital. The association between skipping breakfast and the prevalence of proteinuria (defined as dipstick proteinuria of ≥1+) was assessed using logistic regression models adjusted for clinically relevant factors. RESULTS Skipping breakfast was reported in 3,306 males (20.8%) and 1,514 females (13.8%). Multivariable adjusted logistic regression models showed that skipping breakfast was significantly associated with the prevalence of proteinuria above 1+. This association was evident in lower BMI subjects, even after adjusting for clinically relevant factors (adjusted odds ratios of males and females were 1.67 [1.17-2.38] and 1.92 [1.31-2.82], respectively), whereas this association was not evident in higher BMI subjects. CONCLUSION Lower BMI subjects with proteinuria might need to be careful about skipping breakfast.
Collapse
Affiliation(s)
- Jun Muratsu
- Department of Nephrology and Hypertension, Sumitomo Hospital, Osaka, Japan
- Department of Nephrology, Rinku General Medical Center, Izumisano City, Japan
- *Correspondence: Jun Muratsu,
| | - Kei Kamide
- Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Fujimoto
- Department of Nephrology and Hypertension, Sumitomo Hospital, Osaka, Japan
| | - Yasushi Takeya
- Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ken Sugimoto
- Department of General and Geriatric Medicine, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Yoshiaki Taniyama
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsuyuki Morishima
- Department of Nephrology and Hypertension, Sumitomo Hospital, Osaka, Japan
| | | | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
2
|
Penberthy KK, Ravichandran KS. Apoptotic cell recognition receptors and scavenger receptors. Immunol Rev 2016; 269:44-59. [PMID: 26683144 DOI: 10.1111/imr.12376] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phosphatidylserine recognition receptors are a highly diverse set of receptors grouped by their ability to recognize the 'eat-me' signal phosphatidylserine on apoptotic cells. Most of the phosphatidylserine recognition receptors dampen inflammation by inducing the production of anti-inflammatory mediators during the phagocytosis of apoptotic corpses. However, many phosphatidylserine receptors are also capable of recognizing other ligands, with some receptors being categorized as scavenger receptors. It is now appreciated that these receptors can elicit different downstream events for particular ligands. Therefore, how phosphatidylserine recognition receptors mediate specific signals during recognition of apoptotic cells versus other ligands, and how this might help regulate the inflammatory state of a tissue is an important question that is not fully understood. Here, we revisit the work on signaling downstream of the phosphatidylserine recognition receptor BAI1, and evaluate how these and other signaling modules mediate signaling downstream from other receptors, including Stabilin-2, MerTK, and αvβ5. We also propose the concept that phosphatidylserine recognition receptors could be viewed as a subset of scavenger receptors that are capable of eliciting anti-inflammatory responses to apoptotic cells.
Collapse
Affiliation(s)
- Kristen K Penberthy
- Department of Microbiology, Immunology, and Cancer Biology, Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
Zolfaghari PS, Carré JE, Parker N, Curtin NA, Duchen MR, Singer M. Skeletal muscle dysfunction is associated with derangements in mitochondrial bioenergetics (but not UCP3) in a rodent model of sepsis. Am J Physiol Endocrinol Metab 2015; 308:E713-25. [PMID: 25714676 PMCID: PMC4420898 DOI: 10.1152/ajpendo.00562.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/18/2015] [Indexed: 12/31/2022]
Abstract
Muscle dysfunction is a common feature of severe sepsis and multiorgan failure. Recent evidence implicates bioenergetic dysfunction and oxidative damage as important underlying pathophysiological mechanisms. Increased abundance of uncoupling protein-3 (UCP3) in sepsis suggests increased mitochondrial proton leak, which may reduce mitochondrial coupling efficiency but limit reactive oxygen species (ROS) production. Using a murine model, we examined metabolic, cardiovascular, and skeletal muscle contractile changes following induction of peritoneal sepsis in wild-type and Ucp3(-/-) mice. Mitochondrial membrane potential (Δψm) was measured using two-photon microscopy in living diaphragm, and contractile function was measured in diaphragm muscle strips. The kinetic relationship between membrane potential and oxygen consumption was determined using a modular kinetic approach in isolated mitochondria. Sepsis was associated with significant whole body metabolic suppression, hypothermia, and cardiovascular dysfunction. Maximal force generation was reduced and fatigue accelerated in ex vivo diaphragm muscle strips from septic mice. Δψm was lower in the isolated diaphragm from septic mice despite normal substrate oxidation kinetics and proton leak in skeletal muscle mitochondria. Even though wild-type mice exhibited an absolute 26 ± 6% higher UCP3 protein abundance at 24 h, no differences were seen in whole animal or diaphragm physiology, nor in survival rates, between wild-type and Ucp3(-/-) mice. In conclusion, this murine sepsis model shows a hypometabolic phenotype with evidence of significant cardiovascular and muscle dysfunction. This was associated with lower Δψm and alterations in mitochondrial ATP turnover and the phosphorylation pathway. However, UCP3 does not play an important functional role, despite its upregulation.
Collapse
Affiliation(s)
- Parjam S Zolfaghari
- Bloomsbury Institute for Intensive Care Medicine, University College London, London, United Kingdom; Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Jane E Carré
- Bloomsbury Institute for Intensive Care Medicine, University College London, London, United Kingdom
| | - Nadeene Parker
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Nancy A Curtin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Mervyn Singer
- Bloomsbury Institute for Intensive Care Medicine, University College London, London, United Kingdom
| |
Collapse
|
4
|
Dose response of endotoxin on hepatocyte and muscle mitochondrial respiration in vitro. BIOMED RESEARCH INTERNATIONAL 2015; 2015:353074. [PMID: 25649304 PMCID: PMC4306363 DOI: 10.1155/2015/353074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/22/2014] [Accepted: 09/08/2014] [Indexed: 01/02/2023]
Abstract
Introduction. Results on mitochondrial dysfunction in sepsis are controversial. We aimed to assess effects of LPS at wide dose and time ranges on hepatocytes and isolated skeletal muscle mitochondria. Methods. Human hepatocellular carcinoma cells (HepG2) were exposed to placebo or LPS (0.1, 1, and 10 μg/mL) for 4, 8, 16, and 24 hours and primary human hepatocytes to 1 μg/mL LPS or placebo (4, 8, and 16 hours). Mitochondria from porcine skeletal muscle samples were exposed to increasing doses of LPS (0.1–100 μg/mg) for 2 and 4 hours. Respiration rates of intact and permeabilized cells and isolated mitochondria were measured by high-resolution respirometry. Results. In HepG2 cells, LPS reduced mitochondrial membrane potential and cellular ATP content but did not modify basal respiration. Stimulated complex II respiration was reduced time-dependently using 1 μg/mL LPS. In primary human hepatocytes, stimulated mitochondrial complex II respiration was reduced time-dependently using 1 μg/mL LPS. In isolated porcine skeletal muscle mitochondria, stimulated respiration decreased at high doses (50 and 100 μg/mL LPS). Conclusion. LPS reduced cellular ATP content of HepG2 cells, most likely as a result of the induced decrease in membrane potential. LPS decreased cellular and isolated mitochondrial respiration in a time-dependent, dose-dependent and complex-dependent manner.
Collapse
|
5
|
Wang Q, Zhang M, Liang B, Shirwany N, Zhu Y, Zou MH. Activation of AMP-activated protein kinase is required for berberine-induced reduction of atherosclerosis in mice: the role of uncoupling protein 2. PLoS One 2011; 6:e25436. [PMID: 21980456 PMCID: PMC3181327 DOI: 10.1371/journal.pone.0025436] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/05/2011] [Indexed: 12/15/2022] Open
Abstract
AIMS Berberine, a botanical alkaloid purified from Coptidis rhizoma, is reported to activate the AMP-activated protein kinase (AMPK). Whether AMPK is required for the protective effects of berberine in cardiovascular diseases remains unknown. This study was designed to determine whether AMPK is required for berberine-induced reduction of oxidative stress and atherosclerosis in vivo. METHODS ApoE (ApoE⁻/⁻) mice and ApoE⁻/⁻/AMPK alpha 2⁻/⁻ mice that were fed Western diets were treated with berberine for 8 weeks. Atherosclerotic aortic lesions, expression of uncoupling protein 2 (UCP2), and markers of oxidative stress were evaluated in isolated aortas. RESULTS In ApoE⁻/⁻ mice, chronic administration of berberine significantly reduced aortic lesions, markedly reduced oxidative stress and expression of adhesion molecules in aorta, and significantly increased UCP2 levels. In contrast, in ApoE⁻/⁻/AMPK alpha 2⁻/⁻ mice, berberine had little effect on those endpoints. In cultured human umbilical vein endothelial cells (HUVECs), berberine significantly increased UCP2 mRNA and protein expression in an AMPK-dependent manner. Transfection of HUVECs with nuclear respiratory factor 1 (NRF1)-specific siRNA attenuated berberine-induced expression of UCP2, whereas transfection with control siRNA did not. Finally, berberine promoted mitochondrial biogenesis that contributed to up-regulation of UCP2 expression. CONCLUSION We conclude that berberine reduces oxidative stress and vascular inflammation, and suppresses atherogenesis via a mechanism that includes stimulation of AMPK-dependent UCP2 expression.
Collapse
Affiliation(s)
- Qilong Wang
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Miao Zhang
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Bin Liang
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Najeeb Shirwany
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Yi Zhu
- Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Ming-Hui Zou
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
6
|
Abstract
Growing evidence indicates that reactive oxygen species (ROS) are not just deleterious by-products of respiratory metabolism in mitochondria, but can be essential elements for many biological responses, including in pancreatic β-cells. ROS can be a 'second-messenger signal' in response to hormone/receptor activation that serves as part of the 'code' to trigger the ultimate biological response, or it can be a 'protective signal' to increase the levels of antioxidant enzymes and small molecules to scavenge ROS, thus restoring cellular redox homeostasis. In pancreatic β-cells evidence is emerging that acute and transient glucose-dependent ROS contributes to normal glucose-stimulated insulin secretion (GSIS). However, chronic and persistent elevation of ROS, resulting from inflammation or excessive metabolic fuels such as glucose and fatty acids, may elevate antioxidant enzymes such that they blunt ROS and redox signalling, thus impairing β-cell function. An interesting mitochondrial protein whose main function appears to be the control of ROS is uncoupling protein 2 (UCP2). Despite continuing investigation of the exact mechanism by which UCP2 is 'activated', it is clear that UCP2 levels and/or activity impact the efficacy of GSIS in pancreatic islets. This review will focus on the paradoxical roles of ROS in pancreatic β-cell function and the regulatory role of UCP2 in ROS signalling and GSIS.
Collapse
Affiliation(s)
- J Pi
- Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
7
|
Aguirre E, Cadenas S. GDP and carboxyatractylate inhibit 4-hydroxynonenal-activated proton conductance to differing degrees in mitochondria from skeletal muscle and heart. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1716-26. [PMID: 20599679 DOI: 10.1016/j.bbabio.2010.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 06/15/2010] [Accepted: 06/19/2010] [Indexed: 12/17/2022]
Abstract
The lipid peroxidation product 4-hydroxynonenal (HNE) increases the proton conductance of the inner mitochondrial membrane through effects on uncoupling proteins (UCPs) and the adenine nucleotide translocase (ANT); however, the relative contribution of the two carriers to these effects is unclear. To clarify this we isolated mitochondria from skeletal muscle and heart of wild-type and Ucp3 knockout (Ucp3KO) mice. To increase UCP3 expression, some mice were i.p. injected with LPS (12mg/kg body weight). In spite of the increased UCP3 expression levels, basal proton conductance did not change. HNE increased the proton conductance of skeletal muscle and heart mitochondria. In skeletal muscle, this increase was lower in Ucp3KO mice and higher in LPS-treated wild-type mice, and was partially abolished by GDP (UCPs inhibitor) and completely abolished by carboxyatractylate (ANT inhibitor) or addition of both inhibitors. GDP had no effect on HNE-induced conductance in heart mitochondria, but carboxyatractylate or administration of both inhibitors had a partial effect. GDP-mediated inhibition of HNE-activated proton conductance in skeletal muscle mitochondria was not observed in Ucp3KO mice, indicating that GDP is specific for UCP3, at least in muscle. Carboxyatractylate was able to inhibit UCP3, probably through an indirect mechanism. Our results are consistent with the conclusion that, in skeletal muscle, HNE-induced increase in proton conductance is mediated by UCP3 (30%) and ANT, whereas in the heart the increase is mediated by ANT and other carriers, possibly including UCP3.
Collapse
Affiliation(s)
- Enara Aguirre
- Department of Regenerative Cardiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | |
Collapse
|
8
|
Pi J, Zhang Q, Fu J, Woods CG, Hou Y, Corkey BE, Collins S, Andersen ME. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicol Appl Pharmacol 2010; 244:77-83. [PMID: 19501608 PMCID: PMC2837798 DOI: 10.1016/j.taap.2009.05.025] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 05/22/2009] [Accepted: 05/27/2009] [Indexed: 12/16/2022]
Abstract
This review focuses on the emerging evidence that reactive oxygen species (ROS) derived from glucose metabolism, such as H(2)O(2), act as metabolic signaling molecules for glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. Particular emphasis is placed on the potential inhibitory role of endogenous antioxidants, which rise in response to oxidative stress, in glucose-triggered ROS and GSIS. We propose that cellular adaptive response to oxidative stress challenge, such as nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant induction, plays paradoxical roles in pancreatic beta-cell function. On the one hand, induction of antioxidant enzymes protects beta-cells from oxidative damage and possible cell death, thus minimizing oxidative damage-related impairment of insulin secretion. On the other hand, the induction of antioxidant enzymes by Nrf2 activation blunts glucose-triggered ROS signaling, thus resulting in reduced GSIS. These two premises are potentially relevant to impairment of beta-cells occurring in the late and early stage of Type 2 diabetes, respectively. In addition, we summarized our recent findings that persistent oxidative stress due to absence of uncoupling protein 2 activates cellular adaptive response which is associated with impaired pancreatic beta-cell function.
Collapse
Affiliation(s)
- Jingbo Pi
- Division of Translational Biology, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ellett JD, Evans ZP, Atkinson C, Schmidt MG, Schnellmann RG, Chavin KD. Toll-like receptor 4 is a key mediator of murine steatotic liver warm ischemia/reperfusion injury. Liver Transpl 2009; 15:1101-9. [PMID: 19718644 PMCID: PMC2938042 DOI: 10.1002/lt.21782] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Steatotic donors are routinely rejected for transplantation because of their increased rate of primary nonfunction. These grafts are more sensitive to ischemia/reperfusion (I/R) during transplantation. Removal of endotoxin before reperfusion improves liver performance post-I/R. We hypothesize that the main modality of injury in steatotic livers is toll-like receptor 4 (TLR4) signaling. We fed 4-week-old control and TLR4-deficient (TLR4KO) mice a normal diet (ND) or a 60% high-fat diet (HFD) for 4 weeks to induce steatosis. Mice were subjected to total hepatic ischemia (35 minutes) and reperfusion (1 or 24 hours). Survival improved and liver pathology decreased at 24 hours in TLR4KO HFD animals compared to control HFD animals. An investigation of infiltrates showed that neutrophils and CD4+ cells were increased at 24 hours in control HFD animals, whereas TLR4KO HFD animals were similar to ND controls. Messenger RNA levels of interleukin 6 (IL-6), IL-12, and interferon gamma were elevated at 1 hour in control HFD animals, whereas TLR4KO HFD animals were similar to ND controls. IL-10 levels at 1 hour of reperfusion in control HFD and TLR4KO animals were decreased versus control ND animals. In conclusion, these improvements in liver function in TLR4KO HFD animals implicate TLR4 as a mediator of steatotic graft failure after I/R.
Collapse
Affiliation(s)
- Justin D. Ellett
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Zachary P. Evans
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Carl Atkinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Michael G. Schmidt
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Rick G. Schnellmann
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC
| | - Kenneth D. Chavin
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
- Division of Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
10
|
Mujahid A, Akiba Y, Toyomizu M. Olive oil-supplemented diet alleviates acute heat stress-induced mitochondrial ROS production in chicken skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2009; 297:R690-8. [DOI: 10.1152/ajpregu.90974.2008] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have previously shown that avian uncoupling protein (avUCP) is downregulated on exposure to acute heat stress, stimulating mitochondrial reactive oxygen species (ROS) production and oxidative damage. In this study, we investigated whether upregulation of avUCP could attenuate oxidative damage caused by acute heat stress. Broiler chickens ( Gallus gallus) were fed either a control diet or an olive oil-supplemented diet (6.7%), which has been shown to increase the expression of UCP3 in mammals, for 8 days and then exposed either to heat stress (34°C, 12 h) or kept at a thermoneutral temperature (25°C). Skeletal muscle mitochondrial ROS (measured as H2O2) production, avUCP expression, oxidative damage, mitochondrial membrane potential, and oxygen consumption were studied. We confirmed that heat stress increased mitochondrial ROS production and malondialdehyde levels and decreased the amount of avUCP. As expected, feeding birds an olive oil-supplemented diet increased the expression of avUCP in skeletal muscle mitochondria and decreased ROS production and oxidative damage. Studies on mitochondrial function showed that heat stress increased membrane potential in state 4, which was reversed by feeding birds an olive oil-supplemented diet, although no differences in basal proton leak were observed between control and heat-stressed groups. These results show that under heat stress, mitochondrial ROS production and olive oil-induced reduction of ROS production may occur due to changes in respiratory chain activity as well as avUCP expression in skeletal muscle mitochondria.
Collapse
|
11
|
Pi J, Bai Y, Daniel KW, Liu D, Lyght O, Edelstein D, Brownlee M, Corkey BE, Collins S. Persistent oxidative stress due to absence of uncoupling protein 2 associated with impaired pancreatic beta-cell function. Endocrinology 2009; 150:3040-8. [PMID: 19246534 PMCID: PMC2703519 DOI: 10.1210/en.2008-1642] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Uncoupling protein (UCP) 2 is a widely expressed mitochondrial protein whose precise function is still unclear but has been linked to mitochondria-derived reactive oxygen species production. Thus, the chronic absence of UCP2 has the potential to promote persistent reactive oxygen species accumulation and an oxidative stress response. Here, we show that Ucp2-/- mice on three highly congenic (N >10) strain backgrounds (C57BL/6J, A/J, 129/SvImJ), including two independently generated sources of Ucp2-null animals, all exhibit increased oxidative stress. Ucp2-null animals exhibit a decreased ratio of reduced glutathione to its oxidized form in blood and tissues that normally express UCP2, including pancreatic islets. Islets from Ucp2-/- mice exhibit elevated levels of numerous antioxidant enzymes, increased nitrotyrosine and F4/80 staining, but no change in insulin content. Contrary to results in Ucp2-/- mice of mixed 129/B6 strain background, glucose-stimulated insulin secretion in Ucp2-/- islets of each congenic strain was significantly decreased. These data show that the chronic absence of UCP2 causes oxidative stress, including in islets, and is accompanied by impaired glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Jingbo Pi
- Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Alán L, Smolková K, Kronusová E, Santorová J, Jezek P. Absolute levels of transcripts for mitochondrial uncoupling proteins UCP2, UCP3, UCP4, and UCP5 show different patterns in rat and mice tissues. J Bioenerg Biomembr 2009; 41:71-8. [PMID: 19242784 DOI: 10.1007/s10863-009-9201-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 01/29/2009] [Indexed: 12/11/2022]
Abstract
Existing controversies led us to analyze absolute mRNA levels of mitochondrial uncoupling proteins (UCP1-UCP5). Individual UCP isoform mRNA levels varied by up to four orders of magnitude in rat and mouse tissues. UCP2 mRNA content was relatively high (0.4 to 0.8 pg per 10 ng of total mRNA) in rat spleen, rat and mouse lung, and rat heart. Levels of the same order of magnitude were found for UCP3 mRNA in rat and mouse skeletal muscle, for UCP4 and UCP5 mRNA in mouse brain, and for UCP2 and UCP5 mRNA in mouse white adipose tissue. Significant differences in pattern were found for rat vs. mouse tissues, such as the dominance of UCP3/UCP5 vs. UCP2 transcript in mouse heart and vice versa in rat heart; or UCP2 (UCP5) dominance in rat brain contrary to 10-fold higher UCP4 and UCP5 dominance in mouse brain. We predict high antioxidant/antiapoptotic UCP function in tissues with higher UCP mRNA content.
Collapse
Affiliation(s)
- Lukás Alán
- Department of Membrane Transport Biophysics, No.75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
13
|
Parker N, Affourtit C, Vidal-Puig A, Brand MD. Energization-dependent endogenous activation of proton conductance in skeletal muscle mitochondria. Biochem J 2008; 412:131-9. [PMID: 18251717 PMCID: PMC2474556 DOI: 10.1042/bj20080006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 01/30/2008] [Accepted: 02/06/2008] [Indexed: 01/22/2023]
Abstract
Leak of protons into the mitochondrial matrix during substrate oxidation partially uncouples electron transport from phosphorylation of ADP, but the functions and source of basal and inducible proton leak in vivo remain controversial. In the present study we describe an endogenous activation of proton conductance in mitochondria isolated from rat and mouse skeletal muscle following addition of respiratory substrate. This endogenous activation increased with time, required a high membrane potential and was diminished by high concentrations of serum albumin. Inhibition of this endogenous activation by GDP [classically considered specific for UCPs (uncoupling proteins)], carboxyatractylate and bongkrekate (considered specific for the adenine nucleotide translocase) was examined in skeletal muscle mitochondria from wild-type and Ucp3-knockout mice. Proton conductance through endogenously activated UCP3 was calculated as the difference in leak between mitochondria from wild-type and Ucp3-knockout mice, and was found to be inhibited by carboxyatractylate and bongkrekate, but not GDP. Proton conductance in mitochondria from Ucp3-knockout mice was strongly inhibited by carboxyatractylate, bongkrekate and partially by GDP. We conclude the following: (i) at high protonmotive force, an endogenously generated activator stimulates proton conductance catalysed partly by UCP3 and partly by the adenine nucleotide translocase; (ii) GDP is not a specific inhibitor of UCP3, but also inhibits proton translocation by the adenine nucleotide translocase; and (iii) the inhibition of UCP3 by carboxyatractylate and bongkrekate is likely to be indirect, acting through the adenine nucleotide translocase.
Collapse
MESH Headings
- Animals
- Atractyloside/analogs & derivatives
- Atractyloside/pharmacology
- Bongkrekic Acid/pharmacology
- Energy Metabolism/drug effects
- Energy Metabolism/genetics
- Energy Metabolism/physiology
- Female
- Ion Channels/genetics
- Ion Channels/metabolism
- Ion Channels/physiology
- Male
- Malonates/pharmacology
- Membrane Potential, Mitochondrial/genetics
- Membrane Potential, Mitochondrial/physiology
- Mice
- Mice, Knockout
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/physiology
- Mitochondrial ADP, ATP Translocases/physiology
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Mitochondrial Proteins/physiology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Nitrogen Oxides/pharmacology
- Palmitates/pharmacology
- Proton Pumps/genetics
- Proton Pumps/metabolism
- Rats
- Rats, Wistar
- Serum Albumin, Bovine/pharmacology
- Time Factors
- Uncoupling Agents/pharmacology
- Uncoupling Protein 3
Collapse
Affiliation(s)
- Nadeene Parker
- MRC Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 0XY, UK.
| | | | | | | |
Collapse
|
14
|
Beck V, Jabůrek M, Demina T, Rupprecht A, Porter RK, Jezek P, Pohl EE. Polyunsaturated fatty acids activate human uncoupling proteins 1 and 2 in planar lipid bilayers. FASEB J 2007; 21:1137-44. [PMID: 17242157 DOI: 10.1096/fj.06-7489com] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Uncoupling proteins 1 (UCP1) and 2 (UCP2) belong to the family of mitochondrial anion transporters and share 59% sequence identity with each other. Whereas UCP1 was shown to be responsible for the rapid production of heat in brown adipose tissue, the primary function and transport properties of ubiquitously expressed UCP2 are controversially discussed. Here, for the first time, the activation pattern of the recombinant human UCP2 in comparison to the recombinant human UCP1 are studied using a well-defined system of planar lipid bilayers. It is shown that despite apparently different physiological functions, hUCP2 exhibited its protonophoric function similar to hUCP1--exclusively in the presence of long-chain fatty acids (FA). The calculated hUCP2 transport rate of 4.5 s(-1) is the same order of magnitude, as shown previously for UCP1. It leads to the conclusion that the differences in the activity of both proteins in living mitochondria are based exclusively on their different expression level. Both proteins are activated much more effectively by polyunsaturated than by saturated FA. The proton and total membrane conductances increased in the range palmitic < oleic < eicosatrienoic < linoleic < retinoic < arachidonic acids. The higher uncoupling protein (UCP)-dependent conductance in the presence of polyunsaturated FA is explained on the basis of the FA cycling hypothesis.
Collapse
Affiliation(s)
- Valeri Beck
- Institute of Cell Biology and Neurobiology, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Dlasková A, Spacek T, Skobisová E, Santorová J, Jezek P. Certain aspects of uncoupling due to mitochondrial uncoupling proteins in vitro and in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:467-73. [PMID: 16781660 DOI: 10.1016/j.bbabio.2006.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 04/21/2006] [Accepted: 05/05/2006] [Indexed: 01/12/2023]
Abstract
Thermogenic uncoupling has been proven only for UCP1 in brown adipose tissue. All other isoforms of UCPs are potentially acting in suppression of mitochondrial reactive oxygen species (ROS) production. In this contribution we show that BAT mitochondria can be uncoupled by lauric acid in the range of approximately 100 nM when endogenous fatty acids are combusted by carnitine cycle and beta-oxidation is properly separated from the uncoupling effect. Respiration increased up to 3 times when related to the lowest fatty acid content (BSA present plus carnitine cycle). We also illustrated that any effect leading to more coupled states leads to enhanced H2O2 generation and any effect resulting in uncoupling gives reduced H2O2 generation in BAT mitochondria. Finally, we report doubling of plant UCP transcript in cells as well as amount of protein detected by 3H-GTP-binding sites in mitochondria of shoots and roots of maize seedlings subjected to the salt stress.
Collapse
Affiliation(s)
- Andrea Dlasková
- Department No.75, Membrane Transport Biophysics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 14220 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
16
|
Abstract
The uncoupling proteins (UCPs) are attracting an increased interest as potential therapeutic targets in a number of important diseases. UCP2 is expressed in several tissues, but its physiological functions as well as potential therapeutic applications are still unclear. Unlike UCP1, UCP2 does not seem to be important to thermogenesis or weight control, but appears to have an important role in the regulation of production of reactive oxygen species, inhibition of inflammation, and inhibition of cell death. These are central features in, for example, neurodegenerative and cardiovascular disease, and experimental evidence suggests that an increased expression and activity of UCP2 in models of these diseases has a beneficial effect on disease progression, implicating a potential therapeutic role for UCP2. UCP2 has an important role in the pathogenesis of type 2 diabetes by inhibiting insulin secretion in islet beta cells. At the same time, type 2 diabetes is associated with increased risk of cardiovascular disease and atherosclerosis where an increased expression of UCP2 appears to be beneficial. This illustrates that therapeutic applications involving UCP2 likely will have to regulate expression and activity in a tissue-specific manner.
Collapse
Affiliation(s)
- Gustav Mattiasson
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund, Sweden.
| | | |
Collapse
|