1
|
Kremp M, Aberle T, Sock E, Bohl B, Hillgärtner S, Winkler J, Wegner M. Transcription factor Olig2 is a major downstream effector of histone demethylase Phf8 during oligodendroglial development. Glia 2024; 72:1435-1450. [PMID: 38613395 DOI: 10.1002/glia.24538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
The plant homeodomain finger protein Phf8 is a histone demethylase implicated by mutation in mice and humans in neural crest defects and neurodevelopmental disturbances. Considering its widespread expression in cell types of the central nervous system, we set out to determine the role of Phf8 in oligodendroglial cells to clarify whether oligodendroglial defects are a possible contributing factor to Phf8-dependent neurodevelopmental disorders. Using loss- and gain-of-function approaches in oligodendroglial cell lines and primary cell cultures, we show that Phf8 promotes the proliferation of rodent oligodendrocyte progenitor cells and impairs their differentiation to oligodendrocytes. Intriguingly, Phf8 has a strong positive impact on Olig2 expression by acting on several regulatory regions of the gene and changing their histone modification profile. Taking the influence of Olig2 levels on oligodendroglial proliferation and differentiation into account, Olig2 likely acts as an important downstream effector of Phf8 in these cells. In line with such an effector function, ectopic Olig2 expression in Phf8-deficient cells rescues the proliferation defect. Additionally, generation of human oligodendrocytes from induced pluripotent stem cells did not require PHF8 in a system that relies on forced expression of Olig2 during oligodendroglial induction. We conclude that Phf8 may impact nervous system development at least in part through its action in oligodendroglial cells.
Collapse
Affiliation(s)
- Marco Kremp
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tim Aberle
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Sock
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bettina Bohl
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Hillgärtner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Abteilung für Molekulare Neurologie, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Ciptasari U, van Bokhoven H. The phenomenal epigenome in neurodevelopmental disorders. Hum Mol Genet 2021; 29:R42-R50. [PMID: 32766754 PMCID: PMC7530535 DOI: 10.1093/hmg/ddaa175] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Disruption of chromatin structure due to epimutations is a leading genetic etiology of neurodevelopmental disorders, collectively known as chromatinopathies. We show that there is an increasing level of convergence from the high diversity of genes that are affected by mutations to the molecular networks and pathways involving the respective proteins, the disrupted cellular and subcellular processes, and their consequence for higher order cellular network function. This convergence is ultimately reflected by specific phenotypic features shared across the various chromatinopathies. Based on these observations, we propose that the commonly disrupted molecular and cellular anomalies might provide a rational target for the development of symptomatic interventions for defined groups of genetically distinct neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ummi Ciptasari
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud university medical center, 6500 HB Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud university medical center, 6500 HB Nijmegen, The Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud university medical center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
3
|
Iacobucci S, Padilla N, Gabrielli M, Navarro C, Lombardi M, Vicioso-Mantis M, Verderio C, de la Cruz X, Martínez-Balbás MA. The histone demethylase PHF8 regulates astrocyte differentiation and function. Development 2021; 148:268981. [PMID: 34081130 DOI: 10.1242/dev.194951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 04/15/2021] [Indexed: 12/24/2022]
Abstract
Epigenetic factors have been shown to play a crucial role in X-linked intellectual disability (XLID). Here, we investigate the contribution of the XLID-associated histone demethylase PHF8 to astrocyte differentiation and function. Using genome-wide analyses and biochemical assays in mouse astrocytic cultures, we reveal a regulatory crosstalk between PHF8 and the Notch signaling pathway that balances the expression of the master astrocytic gene Nfia. Moreover, PHF8 regulates key synaptic genes in astrocytes by maintaining low levels of H4K20me3. Accordingly, astrocytic-PHF8 depletion has a striking effect on neuronal synapse formation and maturation in vitro. These data reveal that PHF8 is crucial in astrocyte development to maintain chromatin homeostasis and limit heterochromatin formation at synaptogenic genes. Our studies provide insights into the involvement of epigenetics in intellectual disability.
Collapse
Affiliation(s)
- Simona Iacobucci
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Natalia Padilla
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Passeig de la Vall d'Hebron, 119; E-08035 Barcelona, Spain. Institut Català per la Recerca i Estudis Avançats (ICREA), Barcelona 08018, Spain
| | - Martina Gabrielli
- CNR Institute of Neuroscience, via Vanvitelli 32, 20129 Milan, Italy
| | - Claudia Navarro
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Marta Lombardi
- CNR Institute of Neuroscience, via Vanvitelli 32, 20129 Milan, Italy
| | - Marta Vicioso-Mantis
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Claudia Verderio
- CNR Institute of Neuroscience, via Vanvitelli 32, 20129 Milan, Italy
| | - Xavier de la Cruz
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Passeig de la Vall d'Hebron, 119; E-08035 Barcelona, Spain. Institut Català per la Recerca i Estudis Avançats (ICREA), Barcelona 08018, Spain
| | - Marian A Martínez-Balbás
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| |
Collapse
|
4
|
Morrison O, Thakur J. Molecular Complexes at Euchromatin, Heterochromatin and Centromeric Chromatin. Int J Mol Sci 2021; 22:6922. [PMID: 34203193 PMCID: PMC8268097 DOI: 10.3390/ijms22136922] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/19/2023] Open
Abstract
Chromatin consists of a complex of DNA and histone proteins as its core components and plays an important role in both packaging DNA and regulating DNA metabolic pathways such as DNA replication, transcription, recombination, and chromosome segregation. Proper functioning of chromatin further involves a network of interactions among molecular complexes that modify chromatin structure and organization to affect the accessibility of DNA to transcription factors leading to the activation or repression of the transcription of target DNA loci. Based on its structure and compaction state, chromatin is categorized into euchromatin, heterochromatin, and centromeric chromatin. In this review, we discuss distinct chromatin factors and molecular complexes that constitute euchromatin-open chromatin structure associated with active transcription; heterochromatin-less accessible chromatin associated with silencing; centromeric chromatin-the site of spindle binding in chromosome segregation.
Collapse
Affiliation(s)
| | - Jitendra Thakur
- Department of Biology, Emory University, 1510 Clifton Rd #2006, Atlanta, GA 30322, USA;
| |
Collapse
|
5
|
Wang J, Wang Y, Wang L, Chen WY, Sheng M. The diagnostic yield of intellectual disability: combined whole genome low-coverage sequencing and medical exome sequencing. BMC Med Genomics 2020; 13:70. [PMID: 32429945 PMCID: PMC7236547 DOI: 10.1186/s12920-020-0726-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Background Intellectual disability (ID) is a heterogeneous neurodevelopmental disorder with a complex genetic underpinning in its etiology. Chromosome microarray (CMA) is recommended as the first-tier diagnostic test for ID due to high detection rate of copy number variation (CNV). Methods To identify an appropriate clinical detection scheme for ID in Han Chinese patients, whole genome low-coverage sequencing was performed as the first-tier diagnostic test, and medical exome sequencing (MES) as the second-tier diagnostic test for patients with negative results of CNVs. Results A total of 19 pathogenic CNVs in 16/95(16.84%) ID patients and 10 pathogenic single-nucleotide variations (SNVs), including 6 novel mutations in 8/95(8.42%) ID patients were identified on whom no pathogenic CNVs were discovered. The detection rate of CNVs in ID with multiple congenital anomalies (MCA) subgroup was significantly higher than ID with autism spectrum disorders and other IDs subgroups. And the single-nucleotide variations showed a higher occurrence rate in the other IDs subgroup. Conclusions There were differences in the diagnostic yields of different variation types among the three ID subgroups. Our findings provided a new perspective on appropriate clinical detection scheme in different ID subgroups based on statistically significant differences among the three ID subgroups. The application of whole genome low-coverage sequencing as the first-tier diagnostic test for ID with MCA subgroup and MES as the first-tier diagnostic test for other ID subgroup was considered as an efficient clinical detection scheme.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Yan Wang
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, 100020, China
| | - Liwen Wang
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, 100020, China
| | - Wang Yang Chen
- Kaiumph Medical Diagnostics Co,Ltd, Beijing, 100102, China
| | - Min Sheng
- Kaiumph Medical Diagnostics Co,Ltd, Beijing, 100102, China
| |
Collapse
|
6
|
Wang F, Kang P, Li Z, Niu Q. Role of MLL in the modification of H3K4me3 in aluminium-induced cognitive dysfunction. CHEMOSPHERE 2019; 232:121-129. [PMID: 31152896 DOI: 10.1016/j.chemosphere.2019.05.099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
It is widely accepted that aluminium is neurotoxic; it primarily causes cognitive dysfunction, which has been confirmed in human and animal tissue and cell experiments (Bondy, 2010), but its toxic mechanism has yet to be fully elucidated. Epigenetics is the study of changes in gene expression that may be triggered by both genetic and environmental factors and is independent from changes in the underlying DNA sequence, resulting in a change in phenotype without a change in genotype, which in turn affects how cells read genes. Some findings emphasize the potential significance of histone lysine methylation for orderly brain development and as a molecular toolbox to study chromatin function in vivo and in vitro. The H3K4-specific methyltransferase MLL is essential for hippocampal synaptic plasticity and might be involved in cognitive dysfunction. In the present study, we established that chronic aluminium exposure results in cognitive dysfunction, causing deficits in exploratory behaviour and learning and memory, in a dose- and time-dependent manner. Furthermore, we demonstrated in vivo and in vitro that chronic aluminium exposure reduces expression of histone H3K4 tri-methylation (H3K4me3) and the activity and expression of MLL. Taken together, these results indicate that chronic aluminium exposure may reduce H3K4me3 levels through suppressing activation of MLL, which in turn affects cognitive ability.
Collapse
Affiliation(s)
- Fei Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Pan Kang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhaoyang Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
7
|
Legault LM, Bertrand-Lehouillier V, McGraw S. Pre-implantation alcohol exposure and developmental programming of FASD: an epigenetic perspective. Biochem Cell Biol 2018; 96:117-130. [DOI: 10.1139/bcb-2017-0141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exposure to alcohol during in-utero development can permanently change the developmental programming of physiological responses, thereby increasing the risk of neurological illnesses during childhood and later adverse health outcomes associated with fetal alcohol spectrum disorder (FASD). There is an increasing body of evidence indicating that exposure to alcohol during gestation triggers lasting epigenetic alterations in offspring, long after the initial insult; together, these studies support the role of epigenetics in FASD etiology. However, we still have little information about how ethanol interferes with the fundamental epigenetic reprogramming wave (e.g., erasure and re-establishment of DNA methylation marks) that characterizes pre-implantation embryo development. This review examines key epigenetic processes that occur during pre-implantation development and especially focus on the current knowledge regarding how prenatal exposure to alcohol during this period could affect the developmental programming of the early stage pre-implantation embryo. We will also outline the current limitations of studies examining the in-vivo and in-vitro effects of alcohol exposure on embryos and underline the next critical steps to be taken if we want to better understand the implicated mechanisms to strengthen the translational potential for epigenetic markers for non-invasive early detection, and the treatment of newborns that have higher risk of developing FASD.
Collapse
Affiliation(s)
- Lisa-Marie Legault
- Department of Biochemistry and Molecular Medicine, Université de Montreal, Research Center of the CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| | - Virginie Bertrand-Lehouillier
- Department of Biochemistry and Molecular Medicine, Université de Montreal, Research Center of the CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| | - Serge McGraw
- Department of Biochemistry and Molecular Medicine, Université de Montreal, Research Center of the CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC H3T 1C5, Canada
- Obstetrics and Gynecology, Université de Montreal, Research Center of the CHU Sainte-Justine, Montreal, Canada
| |
Collapse
|
8
|
Epigenetic Etiology of Intellectual Disability. J Neurosci 2017; 37:10773-10782. [PMID: 29118205 DOI: 10.1523/jneurosci.1840-17.2017] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
Intellectual disability (ID) is a prevailing neurodevelopmental condition associated with impaired cognitive and adaptive behaviors. Many chromatin-modifying enzymes and other epigenetic regulators have been genetically associated with ID disorders (IDDs). Here we review how alterations in the function of histone modifiers, chromatin remodelers, and methyl-DNA binding proteins contribute to neurodevelopmental defects and altered brain plasticity. We also discuss how progress in human genetics has led to the generation of mouse models that unveil the molecular etiology of ID, and outline the direction in which this field is moving to identify therapeutic strategies for IDDs. Importantly, because the chromatin regulators linked to IDDs often target common downstream genes and cellular processes, the impact of research in individual syndromes goes well beyond each syndrome and can also contribute to the understanding and therapy of other IDDs. Furthermore, the investigation of these disorders helps us to understand the role of chromatin regulators in brain development, plasticity, and gene expression, thereby answering fundamental questions in neurobiology.
Collapse
|
9
|
The Emerging Role of Histone Demethylases in Renal Cell Carcinoma. J Kidney Cancer VHL 2017; 4:1-5. [PMID: 28725537 PMCID: PMC5515928 DOI: 10.15586/jkcvhl.2017.56] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/06/2017] [Indexed: 12/29/2022] Open
Abstract
Renal cell carcinoma (RCC), the most common kidney cancer, is responsible for more than 100,000 deaths per year worldwide. The molecular mechanism of RCC is poorly understood. Many studies have indicated that epigenetic changes such as DNA methylation, noncoding RNAs, and histone modifications are central to the pathogenesis of cancer. Histone demethylases (KDMs) play a central role in histone modifications. There is emerging evidence that KDMs such as KDM3A, KDM5C, KDM6A, and KDM6B play important roles in RCC. The available literature suggests that KDMs could promote RCC development and progression via hypoxia-mediated angiogenesis pathways. Small-molecule inhibitors of KDMs are being developed and used in preclinical studies; however, their clinical relevance is yet to be established. In this mini review, we summarize our current knowledge on the putative role of histone demethylases in RCC.
Collapse
|
10
|
Mirabella AC, Foster BM, Bartke T. Chromatin deregulation in disease. Chromosoma 2016; 125:75-93. [PMID: 26188466 PMCID: PMC4761009 DOI: 10.1007/s00412-015-0530-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 12/21/2022]
Abstract
The regulation of chromatin by epigenetic mechanisms plays a central role in gene expression and is essential for development and maintenance of cell identity and function. Aberrant chromatin regulation is observed in many diseases where it leads to defects in epigenetic gene regulation resulting in pathological gene expression programmes. These defects are caused by inherited or acquired mutations in genes encoding enzymes that deposit or remove DNA and histone modifications and that shape chromatin architecture. Chromatin deregulation often results in neurodevelopmental disorders and intellectual disabilities, frequently linked to physical and developmental abnormalities, but can also cause neurodegenerative diseases, immunodeficiency, or muscle wasting syndromes. Epigenetic diseases can either be of monogenic origin or manifest themselves as complex multifactorial diseases such as in congenital heart disease, autism spectrum disorders, or cancer in which mutations in chromatin regulators are contributing factors. The environment directly influences the epigenome and can induce changes that cause or predispose to diseases through risk factors such as stress, malnutrition or exposure to harmful chemicals. The plasticity of chromatin regulation makes targeting the enzymatic machinery an attractive strategy for therapeutic intervention and an increasing number of small molecule inhibitors against a variety of epigenetic regulators are in clinical use or under development. In this review, we will give an overview of the molecular lesions that underlie epigenetic diseases, and we will discuss the impact of the environment and prospects for epigenetic therapies.
Collapse
Affiliation(s)
- Anne C Mirabella
- Chromatin Biochemistry Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Benjamin M Foster
- Chromatin Biochemistry Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Till Bartke
- Chromatin Biochemistry Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
11
|
Abstract
Apolipoprotein E4 (ApoE4) is a major genetic risk factor for several neurodegenerative disorders, including Alzheimer's disease (AD). Epigenetic dysregulation, including aberrations in histone acetylation, is also associated with AD. We show here for the first time that ApoE4 increases nuclear translocation of histone deacetylases (HDACs) in human neurons, thereby reducing BDNF expression, whereas ApoE3 increases histone 3 acetylation and upregulates BDNF expression. Amyloid-β (Aβ) oligomers, which have been implicated in AD, caused effects similar to ApoE4. Blocking low-density lipoprotein receptor-related protein 1 (LRP-1) receptor with receptor-associated protein (RAP) or LRP-1 siRNA abolished the ApoE effects. ApoE3 also induced expression of protein kinase C ε (PKCε) and PKCε retained HDACs in the cytosol. PKCε activation and ApoE3 supplementation prevented ApoE4-mediated BDNF downregulation. PKCε activation also reversed Aβ oligomer- and ApoE4-induced nuclear import of HDACs, preventing the loss in BDNF. ApoE4 induced HDAC6-BDNF promoter IV binding, which reduced BDNF exon IV expression. Nuclear HDAC4 and HDAC6 were more abundant in the hippocampus of ApoE4 transgenic mice than in ApoE3 transgenic mice or wild-type controls. Nuclear translocation of HDA6 was also elevated in the hippocampus of AD patients compared with age-matched controls. These results provide new insight into the cause of synaptic loss that is the most important pathologic correlate of cognitive deficits in AD.
Collapse
|
12
|
Mozzetta C, Pontis J, Ait-Si-Ali S. Functional Crosstalk Between Lysine Methyltransferases on Histone Substrates: The Case of G9A/GLP and Polycomb Repressive Complex 2. Antioxid Redox Signal 2015; 22:1365-81. [PMID: 25365549 PMCID: PMC4432786 DOI: 10.1089/ars.2014.6116] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Methylation of histone H3 on lysine 9 and 27 (H3K9 and H3K27) are two epigenetic modifications that have been linked to several crucial biological processes, among which are transcriptional silencing and cell differentiation. RECENT ADVANCES Deposition of these marks is catalyzed by H3K9 lysine methyltransferases (KMTs) and polycomb repressive complex 2, respectively. Increasing evidence is emerging in favor of a functional crosstalk between these two major KMT families. CRITICAL ISSUES Here, we review the current knowledge on the mechanisms of action and function of these enzymes, with particular emphasis on their interplay in the regulation of chromatin states and biological processes. We outline their crucial roles played in tissue homeostasis, by controlling the fate of embryonic and tissue-specific stem cells, highlighting how their deregulation is often linked to the emergence of a number of malignancies and neurological disorders. FUTURE DIRECTIONS Histone methyltransferases are starting to be tested as drug targets. A new generation of highly selective chemical inhibitors is starting to emerge. These hold great promise for a rapid translation of targeting epigenetic drugs into clinical practice for a number of aggressive cancers and neurological disorders.
Collapse
Affiliation(s)
- Chiara Mozzetta
- Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, Université Paris Diderot , Sorbonne Paris Cité, Paris, France
| | | | | |
Collapse
|
13
|
In Pursuit of New Imprinting Syndromes by Epimutation Screening in Idiopathic Neurodevelopmental Disorder Patients. BIOMED RESEARCH INTERNATIONAL 2015; 2015:341986. [PMID: 26106604 PMCID: PMC4461700 DOI: 10.1155/2015/341986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 05/04/2015] [Accepted: 05/11/2015] [Indexed: 12/19/2022]
Abstract
Alterations of epigenetic mechanisms, and more specifically imprinting modifications, could be responsible of neurodevelopmental disorders such as intellectual disability (ID) or autism together with other associated clinical features in many cases. Currently only eight imprinting syndromes are defined in spite of the fact that more than 200 genes are known or predicted to be imprinted. Recent publications point out that some epimutations which cause imprinting disorders may affect simultaneously different imprinted loci, suggesting that DNA-methylation may have been altered more globally. Therefore, we hypothesised that the detection of altered methylation patterns in known imprinting loci will indirectly allow identifying new syndromes due to epimutations among patients with unexplained ID. In a screening for imprinting alterations in 412 patients with syndromic ID/autism we found five patients with altered methylation in the four genes studied: MEG3, H19, KCNQ1OT1, and SNRPN. Remarkably, the cases with partial loss of methylation in KCNQ1OT1 and SNRPN present clinical features different to those associated with the corresponding imprinting syndromes, suggesting a multilocus methylation defect in accordance with our initial hypothesis. Consequently, our results are a proof of concept that the identification of epimutations in known loci in patients with clinical features different from those associated with known syndromes will eventually lead to the definition of new imprinting disorders.
Collapse
|
14
|
Kolarova J, Tangen I, Bens S, Gillessen-Kaesbach G, Gutwein J, Kautza M, Rydzanicz M, Stephani U, Siebert R, Ammerpohl O, Caliebe A. Array-based DNA methylation analysis in individuals with developmental delay/intellectual disability and normal molecular karyotype. Eur J Med Genet 2015; 58:419-25. [PMID: 26003415 DOI: 10.1016/j.ejmg.2015.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
Despite recent progress in molecular karyotyping and clinical sequencing the cause of intellectual disability in a considerable subset of individuals affected by this phenotype remains elusive. As intellectual disability is also a feature of various imprinting disorders and some monogenic forms of intellectual disability are caused by epigenetic modifiers we hypothesized that changes in DNA methylation might be associated with or even causative in some cases of intellectual disability. Therefore, we performed a DNA methylation analysis of peripheral blood samples from 82 patients with intellectual disability and additional features using the HumanMethylation450 BeadChip. The findings were compared to that of 19 normal controls. Differentially methylated loci were validated by bisulfite pyrosequencing. On a global level, we failed to detect a robust DNA methylation signature segregating individuals with intellectual disability from controls. Using an individual approach, we identified 157 regions showing individual DNA methylation changes in at least one patient. These correlated to 107 genes including genes linked to conditions associated with intellectual disability, namely COLEC11, SHANK2, GLI2 and KCNQ2, as well as imprinted genes like FAM50B and MEG3. The latter was suggestive of an undiagnosed Temple syndrome which could be confirmed by diagnostic tests. Subsequent in-depth analysis of imprinted loci revealed DNA methylation changes at additional imprinted loci, i.e. PPIEL, IGF2R, MEG8 and MCTS2/HM13, in up to five patients. Our findings indicate that imprinting disorders are rare but probably under-diagnosed in patients with intellectual disability and moreover point to DNA methylation changes as potential alternative means to identify deregulated genes involved in the pathogenesis of intellectual disability.
Collapse
Affiliation(s)
- Julia Kolarova
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Imke Tangen
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Susanne Bens
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | - Jana Gutwein
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Monika Kautza
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Malgorzata Rydzanicz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 St, 60-479 Poznań, Poland
| | - Ulrich Stephani
- Department of Neuropediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Almuth Caliebe
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| |
Collapse
|
15
|
Van Rechem C, Whetstine JR. Examining the impact of gene variants on histone lysine methylation. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:1463-76. [PMID: 24859469 PMCID: PMC4752941 DOI: 10.1016/j.bbagrm.2014.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 02/09/2023]
Abstract
In recent years, there has been a boom in the amount of genome-wide sequencing data that has uncovered important and unappreciated links between certain genes, families of genes and enzymatic processes and diseases such as cancer. Such studies have highlighted the impact that chromatin modifying enzymes could have in cancer and other genetic diseases. In this review, we summarize characterized mutations and single nucleotide polymorphisms (SNPs) in histone lysine methyltransferases (KMTs), histone lysine demethylases (KDMs) and histones. We primarily focus on variants with strong disease correlations and discuss how they could impact histone lysine methylation dynamics and gene regulation.
Collapse
Affiliation(s)
- Capucine Van Rechem
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13th Street, Charlestown, MA 02129, USA
| | - Johnathan R Whetstine
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
16
|
Subbanna S, Basavarajappa BS. Pre-administration of G9a/GLP inhibitor during synaptogenesis prevents postnatal ethanol-induced LTP deficits and neurobehavioral abnormalities in adult mice. Exp Neurol 2014; 261:34-43. [PMID: 25017367 DOI: 10.1016/j.expneurol.2014.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/10/2014] [Accepted: 07/02/2014] [Indexed: 01/01/2023]
Abstract
It has been widely accepted that deficits in neuronal plasticity underlie the cognitive abnormalities observed in fetal alcohol spectrum disorder (FASD). Exposure of rodents to acute ethanol on postnatal day 7 (P7), which is equivalent to the third trimester of fetal development in human, induces long-term potentiation (LTP) and memory deficits in adult animals. However, the molecular mechanisms underlying these deficits are not well understood. Recently, we found that histone H3 dimethylation (H3K9me2), which is mediated by G9a (lysine dimethyltransferase), is responsible for the neurodegeneration caused by ethanol exposure in P7 mice. In addition, pharmacological inhibition of G9a prior to ethanol treatment at P7 normalized H3K9me2 proteins to basal levels and prevented neurodegeneration in neonatal mice. Here, we tested the hypothesis that pre-administration of G9a/GLP inhibitor (Bix-01294, Bix) in conditions in which ethanol induces neurodegeneration would be neuroprotective against P7 ethanol-induced deficits in LTP, memory and social recognition behavior in adult mice. Ethanol treatment at P7 induces deficits in LTP, memory and social recognition in adult mice and these deficits were prevented by Bix pretreatment at P7. Together, these findings provide physiological and behavioral evidence that the long-term harmful consequences on brain function after ethanol exposure with a third trimester equivalent have an epigenetic origin.
Collapse
Affiliation(s)
- Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
17
|
On 'polypharmacy' and multi-target agents, complementary strategies for improving the treatment of depression: a comparative appraisal. Int J Neuropsychopharmacol 2014; 17:1009-37. [PMID: 23719026 DOI: 10.1017/s1461145712001496] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Major depression is a heterogeneous disorder, both in terms of symptoms, ranging from anhedonia to cognitive impairment, and in terms of pathogenesis, with many interacting genetic, epigenetic, developmental and environmental causes. Accordingly, it seems unlikely that depressive states could be fully controlled by a drug possessing one discrete mechanism of action and, in the wake of disappointing results with several classes of highly selective agent, multi-modal treatment concepts are attracting attention. As concerns pharmacotherapy, there are essentially two core strategies. First, multi-target antidepressants that act via two or more complementary mechanisms and, second, polypharmacy, which refers to co-administration of two distinct drugs, usually in separate pills. Both multi-target agents and polypharmacy ideally couple a therapeutically unexploited action to a clinically established mechanism in order to enhance efficacy, moderate side-effects, accelerate onset of action and treat a broader range of symptoms. The melatonin MT1/MT2 agonist and 5-HT(2C) antagonist, agomelatine, which is effective in the short- and long-term treatment of depression, exemplifies the former approach, while evidence-based polypharmacy is illustrated by the adjunctive use of second-generation antipsychotics with serotonin reuptake inhibitors for treatment of resistant depression. Histone acetylation and methylation, ghrelin signalling, inflammatory modulators, metabotropic glutamate-7 receptors and trace amine-associated-1 receptors comprise attractive substrates for new multi-target and polypharmaceutical strategies. The present article outlines the rationale underpinning multi-modal approaches for treating depression, and critically compares and contrasts the pros and cons of established and potentially novel multi-target vs. polypharmaceutical treatments. On balance, the former appear the most promising for the elaboration, development and clinical implementation of innovative concepts for the more effective management of depression.
Collapse
|
18
|
Kraft SJ, DeThorne LS. The Brave New World of Epigenetics: Embracing Complexity in the Study of Speech and Language Disorders. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2014. [DOI: 10.1007/s40474-014-0024-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Khrapunov S, Warren C, Cheng H, Berko E, Greally JM, Brenowitz M. Unusual characteristics of the DNA binding domain of epigenetic regulatory protein MeCP2 determine its binding specificity. Biochemistry 2014; 53:3379-91. [PMID: 24828757 PMCID: PMC4045320 DOI: 10.1021/bi500424z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/08/2014] [Indexed: 02/04/2023]
Abstract
The protein MeCP2 mediates epigenetic regulation by binding methyl-CpG (mCpG) sites on chromatin. MeCP2 consists of six domains of which one, the methyl binding domain (MBD), binds mCpG sites in duplex DNA. We show that solution conditions with physiological or greater salt concentrations or the presence of nonspecific competitor DNA is necessary for the MBD to discriminate mCpG from CpG with high specificity. The specificity for mCpG over CpG is >100-fold under these solution conditions. In contrast, the MBD does not discriminate hydroxymethyl-CpG from CpG. The MBD is unusual among site-specific DNA binding proteins in that (i) specificity is not conferred by the enhanced affinity for the specific site but rather by suppression of its affinity for generic DNA, (ii) its specific binding to mCpG is highly electrostatic, and (iii) it takes up as well as displaces monovalent cations upon DNA binding. The MBD displays an unusually high affinity for single-stranded DNA independent of modification or sequence. In addition, the MBD forms a discrete dimer on DNA via a noncooperative binding pathway. Because the affinity of the second monomer is 1 order of magnitude greater than that of nonspecific binding, the MBD dimer is a unique molecular complex. The significance of these results in the context of neuronal function and development and MeCP2-related developmental disorders such as Rett syndrome is discussed.
Collapse
Affiliation(s)
- Sergei Khrapunov
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| | - Christopher Warren
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| | - Huiyong Cheng
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| | - Esther
R. Berko
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| | - John M. Greally
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| | - Michael Brenowitz
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| |
Collapse
|
20
|
Drosophila models of early onset cognitive disorders and their clinical applications. Neurosci Biobehav Rev 2014; 46 Pt 2:326-42. [PMID: 24661984 DOI: 10.1016/j.neubiorev.2014.01.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 12/28/2022]
Abstract
The number of genes known to cause human monogenic diseases is increasing rapidly. For the extremely large, genetically and phenotypically heterogeneous group of intellectual disability (ID) disorders, more than 600 causative genes have been identified to date. However, knowledge about the molecular mechanisms and networks disrupted by these genetic aberrations is lagging behind. The fruit fly Drosophila has emerged as a powerful model organism to close this knowledge gap. This review summarizes recent achievements that have been made in this model and envisions its future contribution to our understanding of ID genetics and neuropathology. The available resources and efficiency of Drosophila place it in a position to tackle the main challenges in the field: mapping functional modules of ID genes to provide conceptually novel insights into the genetic control of cognition, tailored functional studies to improve 'next-generation' diagnostics, and identification of reversible ID phenotypes and medication. Drosophila's behavioral repertoire and powerful genetics also open up perspectives for modeling genetically complex forms of ID and neuropsychiatric disorders, which overlap in their genetic etiologies. In conclusion, Drosophila provides many opportunities to advance future medical genomics of early onset cognitive disorders.
Collapse
|
21
|
Balmer NV, Leist M. Epigenetics and transcriptomics to detect adverse drug effects in model systems of human development. Basic Clin Pharmacol Toxicol 2014; 115:59-68. [PMID: 24476462 DOI: 10.1111/bcpt.12203] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/16/2014] [Indexed: 01/01/2023]
Abstract
Prenatal exposure to environmental chemicals or drugs has been associated with functional or structural deficits and the development of diseases in later life. For example, developmental neurotoxicity (DNT) is triggered by lead, and this compound may predispose to neurodegenerative diseases in later life. The molecular memory for such late consequences of early exposure is not known, but epigenetic mechanisms (modification of the chromatin structure) could take this role. Examples and underlying mechanisms have been compiled here for the field of DNT. Moreover, we addressed the question as to what readout is suitable for addressing drug memory effects. We summarize how complex developmental processes can be modelled in vitro by using the differentiation of human stem cells. Although cellular models can never replicate the final human DNT phenotype, they can model the adverse effect that a chemical has on key biological processes essential for organ formation and function. Highly information-rich transcriptomics data may inform on these changes and form the bridge from in vitro models to human prediction. We compiled data showing that transcriptome analysis can indicate toxicity patterns of drugs. A crucial question to be answered in our systems is when and how transcriptome changes indicate adversity (as opposed to transient adaptive responses), and how drug-induced changes are perpetuated over time even after washout of the drug. We present evidence for the hypothesis that changes in the histone methylation pattern could represent the persistence detector of an early insult that is transformed to an adverse effect at later time-points in life.
Collapse
Affiliation(s)
- Nina V Balmer
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
22
|
Martínez F, Roselló M, Mayo S, Monfort S, Oltra S, Orellana C. Duplication at Xq13.3-q21.1 with syndromic intellectual disability, a probable role for the ATRX gene. Am J Med Genet A 2014; 164A:918-23. [PMID: 24458433 DOI: 10.1002/ajmg.a.36371] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 11/04/2013] [Indexed: 11/10/2022]
Abstract
Here we report on two unrelated male patients with syndromic intellectual disability (ID) due to duplication at Xq13.3-q21.1, a region of about 6 Mb and 25 genes. Among these, the most outstanding is ATRX, the causative gene of X-linked alpha-thalassemia/mental retardation. ATRX belongs to the growing list of genes implied in chromatin remodeling causing ID. Many these genes, such as MECP2, are dose-sensitive so that not only deletions and point mutations, but also duplications cause ID. Both patients have severe ID, absent expressive speech, early hypotonia, behavior problems (hyperactivity, repetitive self-stimulatory behavior), postnatal growth deficiency, microcephaly, micrognathia, cryptorchidism, low-set, posteriorly angulated ears, and downslanting palpebral fissures. These findings are also usually present among patients with loss-of-function mutations of the ATRX gene. Completely skewed X inactivation was observed in the only informative carrier mother, a constant finding among female carriers of inactivating point mutations of this gene. Participation of other duplicated genes cannot be excluded; nevertheless we propose that the increased dosage of ATRX is the major pathogenic mechanism of this X-linked disorder, a syndrome reminiscent of MECP2 duplication.
Collapse
Affiliation(s)
- Francisco Martínez
- Unidad de Genética y Diagnostico Prenatal, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Kleefstra T, Schenck A, Kramer JM, van Bokhoven H. The genetics of cognitive epigenetics. Neuropharmacology 2014; 80:83-94. [PMID: 24434855 DOI: 10.1016/j.neuropharm.2013.12.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 12/29/2013] [Accepted: 12/30/2013] [Indexed: 01/31/2023]
Abstract
Cognitive disorders (CDs) are a heterogeneous group of disorders for which the genetic foundations are rapidly being uncovered. The large number of CD-associated gene mutations presents an opportunity to identify common mechanisms of disease as well as molecular processes that are of key importance to human cognition. Given the disproportionately high number of epigenetic genes associated with CD, epigenetic regulation of gene transcription is emerging as a process of major importance in cognition. The cognate protein products of these genes often co-operate in shared protein complexes or pathways, which is reflected in similarities between the neurodevelopmental phenotypes corresponding to these mutant genes. Here we provide an overview of the genes associated with CDs, and highlight some of the epigenetic regulatory complexes involving multiple CD genes. Such common gene networks may provide a handle for designing therapeutic interventions applicable to a number of cognitive disorders with variable genetic etiology.
Collapse
Affiliation(s)
- Tjitske Kleefstra
- Radboud University Medical Center, Department of Human Genetics, Nijmegen Center for Molecular Life Sciences (NCMLS), Nijmegen, The Netherlands
| | - Annette Schenck
- Radboud University Medical Center, Department of Human Genetics, Nijmegen Center for Molecular Life Sciences (NCMLS), Nijmegen, The Netherlands
| | - Jamie M Kramer
- Radboud University Medical Center, Department of Human Genetics, Nijmegen Center for Molecular Life Sciences (NCMLS), Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Radboud University Medical Center, Department of Human Genetics, Nijmegen Center for Molecular Life Sciences (NCMLS), Nijmegen, The Netherlands; Radboud University Medical Center, Department of Cognitive Neurosciences, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Application of “Omics” Technologies to In Vitro Toxicology. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2014. [DOI: 10.1007/978-1-4939-0521-8_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
25
|
van de Vondervoort IIGM, Gordebeke PM, Khoshab N, Tiesinga PHE, Buitelaar JK, Kozicz T, Aschrafi A, Glennon JC. Long non-coding RNAs in neurodevelopmental disorders. Front Mol Neurosci 2013; 6:53. [PMID: 24415997 PMCID: PMC3874560 DOI: 10.3389/fnmol.2013.00053] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/09/2013] [Indexed: 12/30/2022] Open
Abstract
Recent studies have emphasized an important role for long non-coding RNAs (lncRNA) in epigenetic regulation, development, and disease. Despite growing interest in lncRNAs, the mechanisms by which lncRNAs control cellular processes are still elusive. Improved understanding of these mechanisms is critical, because the majority of the mammalian genome is transcribed, in most cases resulting in non-coding RNA products. Recent studies have suggested the involvement of lncRNA in neurobehavioral and neurodevelopmental disorders, highlighting the functional importance of this subclass of brain-enriched RNAs. Impaired expression of lnRNAs has been implicated in several forms of intellectual disability disorders. However, the role of this family of RNAs in cognitive function is largely unknown. Here we provide an overview of recently identified mechanisms of neuronal development involving lncRNAs, and the consequences of lncRNA deregulation for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ilse I G M van de Vondervoort
- Department of Cognitive Neuroscience, RadboudUMC Nijmegen, Netherlands ; Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behavior Nijmegen, Netherlands
| | - Peter M Gordebeke
- Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behavior Nijmegen, Netherlands ; Department of Neuroinformatics, Radboud University Nijmegen, Netherlands
| | - Nima Khoshab
- Department of Neuroinformatics, Radboud University Nijmegen, Netherlands
| | - Paul H E Tiesinga
- Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behavior Nijmegen, Netherlands ; Department of Neuroinformatics, Radboud University Nijmegen, Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, RadboudUMC Nijmegen, Netherlands
| | - Tamas Kozicz
- Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behavior Nijmegen, Netherlands ; Department of Anatomy, Radboud University Nijmegen, Netherlands
| | - Armaz Aschrafi
- Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behavior Nijmegen, Netherlands ; Department of Neuroinformatics, Radboud University Nijmegen, Netherlands
| | - Jeffrey C Glennon
- Department of Cognitive Neuroscience, RadboudUMC Nijmegen, Netherlands ; Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behavior Nijmegen, Netherlands
| |
Collapse
|
26
|
Jarome TJ, Lubin FD. Histone lysine methylation: critical regulator of memory and behavior. Rev Neurosci 2013; 24:375-87. [PMID: 23729618 DOI: 10.1515/revneuro-2013-0008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/26/2013] [Indexed: 12/31/2022]
Abstract
Histone lysine methylation is a well-established transcriptional mechanism for the regulation of gene expression changes in eukaryotic cells and is now believed to function in neurons of the central nervous system to mediate the process of memory formation and behavior. In mature neurons, methylation of histone proteins can serve to both activate and repress gene transcription. This is in stark contrast to other epigenetic modifications, including histone acetylation and DNA methylation, which have largely been associated with one transcriptional state in the brain. In this review, we discuss the evidence for histone methylation mechanisms in the coordination of complex cognitive processes such as long-term memory formation and storage. In addition, we address the current literature highlighting the role of histone methylation in intellectual disability, addiction, schizophrenia, autism, depression, and neurodegeneration. Further, we discuss histone methylation within the context of other epigenetic modifications and the potential advantages of exploring this newly identified mechanism of cognition, emphasizing the possibility that this molecular process may provide an alternative locus for intervention in long-term psychopathologies that cannot be clearly linked to genes or environment alone.
Collapse
|
27
|
Abstract
As for many human diseases, the incidence of obesity and its associated health risks are sexually dimorphic: worldwide the rate of obesity is higher in women. Sex differences in metabolism, appetite, body composition, and fat deposition are contributing biological factors. Gonadal hormones regulate the development of many sexually dimorphic traits in humans and animals, and, in addition, studies in mice indicate a role for direct genetic effects of sex chromosome dosage on body weight, deposition of fat, and circadian timing of feeding behavior. Specifically, mice of either sex with 2 X chromosomes, typical of normal females, have heavier body weights, gain more weight, and eat more food during the light portion of the day than mice of either sex with a single X chromosome. Here we test the effects of X chromosome dosage on body weight and report that gonadal females with 2 X chromosomes express higher levels of GH gene (Gh) mRNA in the preoptic area (POA) of the hypothalamus than females with 1 X chromosome and males. Furthermore, Gh expression in the POA of the hypothalamus of mice with 2 X chromosomes correlated with body weight; GH is known to have orexigenic properties. Acute infusion of GH into the POA increased immediate food intake in normal (XY) males. We propose that X inactivation-escaping genes modulate Gh expression and food intake, and this is part of the mechanism by which individuals with 2 X chromosomes are heavier than individuals with a single X chromosome.
Collapse
Affiliation(s)
- Paul J Bonthuis
- PO Box 800733, University of Virginia School of Medicine, Charlottesville, Virginia 22908.
| | | |
Collapse
|
28
|
Parkel S, Lopez-Atalaya JP, Barco A. Histone H3 lysine methylation in cognition and intellectual disability disorders. Learn Mem 2013; 20:570-9. [PMID: 24045506 DOI: 10.1101/lm.029363.112] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent research indicates that epigenetic mechanisms and, in particular, the post-translational modification (PTM) of histones may contribute to memory encoding and storage. Among the dozens of possible histone PTMs, the methylation/demethylation of lysines in the N-terminal tail of histone H3 exhibits particularly strong links with cognitive abilities. First, the persistence and tight association with distinct transcriptional states of the gene make these modifications particularly suitable for being part of the molecular underpinnings of memory storage. Second, correlative evidence indicates that the methylation/demethylation of lysines in histone H3 is actively regulated during memory processes. Third, several enzymes regulating these PTMs are associated with intellectual disability disorders. We review here these three lines of evidence and discuss the potential role of epigenetic mechanisms centered on the methylation of lysine residues on histone H3 in neuroplasticity and neurodevelopmental disorders associated with intellectual disability.
Collapse
Affiliation(s)
- Sven Parkel
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant 03550, Alicante, Spain
| | | | | |
Collapse
|
29
|
Willemsen M, Kleefstra T. Making headway with genetic diagnostics of intellectual disabilities. Clin Genet 2013; 85:101-10. [DOI: 10.1111/cge.12244] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 01/31/2023]
Affiliation(s)
- M.H. Willemsen
- Department of Human Genetics; Radboud University Medical Centre; Nijmegen The Netherlands
| | - T. Kleefstra
- Department of Human Genetics; Radboud University Medical Centre; Nijmegen The Netherlands
| |
Collapse
|
30
|
Epigenetic control of cytokine gene expression: regulation of the TNF/LT locus and T helper cell differentiation. Adv Immunol 2013; 118:37-128. [PMID: 23683942 DOI: 10.1016/b978-0-12-407708-9.00002-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epigenetics encompasses transient and heritable modifications to DNA and nucleosomes in the native chromatin context. For example, enzymatic addition of chemical moieties to the N-terminal "tails" of histones, particularly acetylation and methylation of lysine residues in the histone tails of H3 and H4, plays a key role in regulation of gene transcription. The modified histones, which are physically associated with gene regulatory regions that typically occur within conserved noncoding sequences, play a functional role in active, poised, or repressed gene transcription. The "histone code" defined by these modifications, along with the chromatin-binding acetylases, deacetylases, methylases, demethylases, and other enzymes that direct modifications resulting in specific patterns of histone modification, shows considerable evolutionary conservation from yeast to humans. Direct modifications at the DNA level, such as cytosine methylation at CpG motifs that represses promoter activity, are another highly conserved epigenetic mechanism of gene regulation. Furthermore, epigenetic modifications at the nucleosome or DNA level can also be coupled with higher-order intra- or interchromosomal interactions that influence the location of regulatory elements and that can place them in an environment of specific nucleoprotein complexes associated with transcription. In the mammalian immune system, epigenetic gene regulation is a crucial mechanism for a range of physiological processes, including the innate host immune response to pathogens and T cell differentiation driven by specific patterns of cytokine gene expression. Here, we will review current findings regarding epigenetic regulation of cytokine genes important in innate and/or adaptive immune responses, with a special focus upon the tumor necrosis factor/lymphotoxin locus and cytokine-driven CD4+ T cell differentiation into the Th1, Th2, and Th17 lineages.
Collapse
|
31
|
Ronan JL, Wu W, Crabtree GR. From neural development to cognition: unexpected roles for chromatin. Nat Rev Genet 2013; 14:347-59. [PMID: 23568486 PMCID: PMC4010428 DOI: 10.1038/nrg3413] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent genome-sequencing studies in human neurodevelopmental and psychiatric disorders have uncovered mutations in many chromatin regulators. These human genetic studies, along with studies in model organisms, are providing insight into chromatin regulatory mechanisms in neural development and how alterations to these mechanisms can cause cognitive deficits, such as intellectual disability. We discuss several implicated chromatin regulators, including BAF (also known as SWI/SNF) and CHD8 chromatin remodellers, HDAC4 and the Polycomb component EZH2. Interestingly, mutations in EZH2 and certain BAF complex components have roles in both neurodevelopmental disorders and cancer, and overlapping point mutations are suggesting functionally important residues and domains. We speculate on the contribution of these similar mutations to disparate disorders.
Collapse
|
32
|
Using C. elegans to Decipher the Cellular and Molecular Mechanisms Underlying Neurodevelopmental Disorders. Mol Neurobiol 2013; 48:465-89. [DOI: 10.1007/s12035-013-8434-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
|
33
|
Li J, Zhao G, Gao X. Development of neurodevelopmental disorders: a regulatory mechanism involving bromodomain-containing proteins. J Neurodev Disord 2013; 5:4. [PMID: 23425632 PMCID: PMC3585942 DOI: 10.1186/1866-1955-5-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 01/25/2013] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental disorders are classified as diseases that cause abnormal functions of the brain or central nervous system. Children with neurodevelopmental disorders show impaired language and speech abilities, learning and memory damage, and poor motor skills. However, we still know very little about the molecular etiology of these disorders. Recent evidence implicates the bromodomain-containing proteins (BCPs) in the initiation and development of neurodevelopmental disorders. BCPs have a particular domain, the bromodomain (Brd), which was originally identified as specifically binding acetyl-lysine residues at the N-terminus of histone proteins in vitro and in vivo. Other domains of BCPs are responsible for binding partner proteins to form regulatory complexes. Once these complexes are assembled, BCPs alter chromosomal states and regulate gene expression. Some BCP complexes bind nucleosomes, are involved in basal transcription regulation, and influence the transcription of many genes. However, most BCPs are involved in targeting. For example, some BCPs function as a recruitment platform or scaffold through their Brds-binding targeting sites. Others are recruited to form a complex to bind the targeting sites of their partners. The regulation mediated by these proteins is especially critical during normal and abnormal development. Mutant BCPs or dysfunctional BCP-containing complexes are implicated in the initiation and development of neurodevelopmental disorders. However, the pathogenic molecular mechanisms are not fully understood. In this review, we focus on the roles of regulatory BCPs associated with neurodevelopmental disorders, including mental retardation, Fragile X syndrome (FRX), Williams syndrome (WS), Rett syndrome and Rubinstein-Taybi syndrome (RTS). A better understanding of the molecular pathogenesis, based upon the roles of BCPs, will lead to screening of targets for the treatment of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Junlin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, People's Republic of China.
| | | | | |
Collapse
|
34
|
Berdasco M, Esteller M. Genetic syndromes caused by mutations in epigenetic genes. Hum Genet 2013; 132:359-83. [PMID: 23370504 DOI: 10.1007/s00439-013-1271-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/18/2013] [Indexed: 12/21/2022]
Abstract
The orchestrated organization of epigenetic factors that control chromatin dynamism, including DNA methylation, histone marks, non-coding RNAs (ncRNAs) and chromatin-remodeling proteins, is essential for the proper function of tissue homeostasis, cell identity and development. Indeed, deregulation of epigenetic profiles has been described in several human pathologies, including complex diseases (such as cancer, cardiovascular and neurological diseases), metabolic pathologies (type 2 diabetes and obesity) and imprinting disorders. Over the last decade it has become increasingly clear that mutations of genes involved in epigenetic mechanism, such as DNA methyltransferases, methyl-binding domain proteins, histone deacetylases, histone methylases and members of the SWI/SNF family of chromatin remodelers are linked to human disorders, including Immunodeficiency Centromeric instability Facial syndrome 1, Rett syndrome, Rubinstein-Taybi syndrome, Sotos syndrome or alpha-thalassemia/mental retardation X-linked syndrome, among others. As new members of the epigenetic machinery are described, the number of human syndromes associated with epigenetic alterations increases. As recent examples, mutations of histone demethylases and members of the non-coding RNA machinery have recently been associated with Kabuki syndrome, Claes-Jensen X-linked mental retardation syndrome and Goiter syndrome. In this review, we describe the variety of germline mutations of epigenetic modifiers that are known to be associated with human disorders, and discuss the therapeutic potential of epigenetic drugs as palliative care strategies in the treatment of such disorders.
Collapse
Affiliation(s)
- María Berdasco
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Av. Gran Via 199-203, 08908 L'Hospitalet de LLobregat, Barcelona, Catalonia, Spain
| | | |
Collapse
|
35
|
Millan MJ. An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy. Neuropharmacology 2012; 68:2-82. [PMID: 23246909 DOI: 10.1016/j.neuropharm.2012.11.015] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/11/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022]
Abstract
Neurodevelopmental disorders (NDDs) are characterized by aberrant and delayed early-life development of the brain, leading to deficits in language, cognition, motor behaviour and other functional domains, often accompanied by somatic symptoms. Environmental factors like perinatal infection, malnutrition and trauma can increase the risk of the heterogeneous, multifactorial and polygenic disorders, autism and schizophrenia. Conversely, discrete genetic anomalies are involved in Down, Rett and Fragile X syndromes, tuberous sclerosis and neurofibromatosis, the less familiar Phelan-McDermid, Sotos, Kleefstra, Coffin-Lowry and "ATRX" syndromes, and the disorders of imprinting, Angelman and Prader-Willi syndromes. NDDs have been termed "synaptopathies" in reference to structural and functional disturbance of synaptic plasticity, several involve abnormal Ras-Kinase signalling ("rasopathies"), and many are characterized by disrupted cerebral connectivity and an imbalance between excitatory and inhibitory transmission. However, at a different level of integration, NDDs are accompanied by aberrant "epigenetic" regulation of processes critical for normal and orderly development of the brain. Epigenetics refers to potentially-heritable (by mitosis and/or meiosis) mechanisms controlling gene expression without changes in DNA sequence. In certain NDDs, prototypical epigenetic processes of DNA methylation and covalent histone marking are impacted. Conversely, others involve anomalies in chromatin-modelling, mRNA splicing/editing, mRNA translation, ribosome biogenesis and/or the regulatory actions of small nucleolar RNAs and micro-RNAs. Since epigenetic mechanisms are modifiable, this raises the hope of novel therapy, though questions remain concerning efficacy and safety. The above issues are critically surveyed in this review, which advocates a broad-based epigenetic framework for understanding and ultimately treating a diverse assemblage of NDDs ("epigenopathies") lying at the interface of genetic, developmental and environmental processes. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Mark J Millan
- Unit for Research and Discovery in Neuroscience, IDR Servier, 125 chemin de ronde, 78290 Croissy sur Seine, Paris, France.
| |
Collapse
|
36
|
Balemans MCM, Kasri NN, Kopanitsa MV, Afinowi NO, Ramakers G, Peters TA, Beynon AJ, Janssen SM, van Summeren RCJ, Eeftens JM, Eikelenboom N, Benevento M, Tachibana M, Shinkai Y, Kleefstra T, van Bokhoven H, Van der Zee CEEM. Hippocampal dysfunction in the Euchromatin histone methyltransferase 1 heterozygous knockout mouse model for Kleefstra syndrome. Hum Mol Genet 2012; 22:852-66. [PMID: 23175442 DOI: 10.1093/hmg/dds490] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Euchromatin histone methyltransferase 1 (EHMT1) is a highly conserved protein that catalyzes mono- and dimethylation of histone H3 lysine 9, thereby epigenetically regulating transcription. Kleefstra syndrome (KS), is caused by haploinsufficiency of the EHMT1 gene, and is an example of an emerging group of intellectual disability (ID) disorders caused by genes encoding epigenetic regulators of neuronal gene activity. Little is known about the mechanisms underlying this disorder, prompting us to study the Euchromatin histone methyltransferase 1 heterozygous knockout (Ehmt1(+/-)) mice as a model for KS. In agreement with the cognitive disturbances observed in patients with KS, we detected deficits in fear extinction learning and both novel and spatial object recognition in Ehmt1(+/-) mice. These learning and memory deficits were associated with a significant reduction in dendritic arborization and the number of mature spines in hippocampal CA1 pyramidal neurons of Ehmt1(+/-) mice. In-depth analysis of the electrophysiological properties of CA3-CA1 synapses revealed no differences in basal synaptic transmission or theta-burst induced long-term potentiation (LTP). However, paired-pulse facilitation (PPF) was significantly increased in Ehmt1(+/-) neurons, pointing to a potential deficiency in presynaptic neurotransmitter release. Accordingly, a reduction in the frequency of miniature excitatory post-synaptic currents (mEPSCs) was observed in Ehmt1(+/-) neurons. These data demonstrate that Ehmt1 haploinsufficiency in mice leads to learning deficits and synaptic dysfunction, providing a possible mechanism for the ID phenotype in patients with KS.
Collapse
Affiliation(s)
- Monique C M Balemans
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schmidt MH, Petermann F, Schipper M. Epigenetik–Revolution der Entwicklungspsychopathologie? KINDHEIT UND ENTWICKLUNG 2012. [DOI: 10.1026/0942-5403/a000091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Die Epigenetik, die sich mit der Bedeutung der Gene im Kontext der menschlichen Entwicklung beschäftigt, konnte zeigen, dass genetische Wirkungen auf die Entwicklung immer auf einer Wechselwirkung zwischen Genom und Umwelt basieren. Die Annahme, der genetische Einfluss auf die (psychische) Entwicklung sei konstant und nur durch gentechnologische Maßnahmen veränderbar, ist demnach offenbar ein Fehlschluss. Es werden Grundbegriffe der Epigenetik und aktuelle Forschungsergebnisse erörtert. Desweiteren wird diskutiert, ob epigenetische Prozesse die Pathogenese psychischer Störungen beeinflussen und ob diese Prozesse an bestimmte Entwicklungsphasen gebunden sind. Anschließend wird die Epigenetik im Kontext der Klinischen Kinderpsychologie betrachtet. Es wird diskutiert, ob die Epigenetik die Entwicklungspsychopathologie grundlegend verändert und welche Konsequenzen die neuen epigenetischen Erkenntnisse für die Klinische Kinderpsychologie bereithalten.
Collapse
Affiliation(s)
- Martin H. Schmidt
- Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg
| | - Franz Petermann
- Zentrum für Klinische Psychologie und Rehabilitation der Universität Bremen
| | - Marc Schipper
- Zentrum für Klinische Psychologie und Rehabilitation der Universität Bremen
| |
Collapse
|
38
|
Genome-wide DNA methylation analysis in patients with familial ATR-X mental retardation syndrome. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
39
|
Asensio-Juan E, Gallego C, Martínez-Balbás MA. The histone demethylase PHF8 is essential for cytoskeleton dynamics. Nucleic Acids Res 2012; 40:9429-40. [PMID: 22850744 PMCID: PMC3479184 DOI: 10.1093/nar/gks716] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
PHF8 is a histone demethylase associated with X-linked mental retardation. It has been described as a transcriptional co-activator involved in cell cycle progression, but its physiological role is still poorly understood. Here we show that PHF8 controls the expression of genes involved in cell adhesion and cytoskeleton organization such as RhoA, Rac1 and GSK3β. A lack of PHF8 not only results in a cell cycle delay but also in a disorganized actin cytoskeleton and impaired cell adhesion. Our data demonstrate that PHF8 directly regulates the expression of these genes by demethylating H4K20me1 at promoters. Moreover, c-Myc transcription factor cooperates with PHF8 to regulate the analysed promoters. Further analysis in neurons shows that depletion of PHF8 results in down-regulation of cytoskeleton genes and leads to a deficient neurite outgrowth. Overall, our results suggest that the mental retardation phenotype associated with loss of function of PHF8 could be due to abnormal neuronal connections as a result of alterations in cytoskeleton function.
Collapse
Affiliation(s)
- Elena Asensio-Juan
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, Spanish Research Council (CSIC), Barcelona Science Park, Barcelona 08028, Spain
| | | | | |
Collapse
|
40
|
Wynder C, Stalker L, Doughty ML. Role of H3K4 demethylases in complex neurodevelopmental diseases. Epigenomics 2012; 2:407-18. [PMID: 22121901 DOI: 10.2217/epi.10.12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Significant neurological disorders can result from subtle perturbations of gene regulation that are often linked to epigenetic regulation. Proteins that regulate the methylation of lysine 4 of histone H3 (H3K4) and play a central role in epigenetic regulation, and mutations in genes encoding these enzymes have been identified in both autism and Rett syndrome. The H3K4 demethylases remove methyl groups from lysine 4 leading to loss of RNA polymerase binding and transcriptional repression. When these proteins are mutated, brain development is altered. Currently, little is known regarding how these gene regulators function at the genomic level. In this article, we will discuss findings that link H3K4 demethylases to neurodevelopment and neurological disease.
Collapse
Affiliation(s)
- Christopher Wynder
- McMaster Stem Cell & Cancer Institute, McMaster University, Hamilton, Ontario L8N 3Z5 Canada.
| | | | | |
Collapse
|
41
|
Abstract
Epigenetic regulation of gene expression is a dynamic and reversible process that establishes normal cellular phenotypes but also contributes to human diseases. At the molecular level, epigenetic regulation involves hierarchical covalent modification of DNA and the proteins that package DNA, such as histones. Here, we review the key protein families that mediate epigenetic signalling through the acetylation and methylation of histones, including histone deacetylases, protein methyltransferases, lysine demethylases, bromodomain-containing proteins and proteins that bind to methylated histones. These protein families are emerging as druggable classes of enzymes and druggable classes of protein-protein interaction domains. In this article, we discuss the known links with disease, basic molecular mechanisms of action and recent progress in the pharmacological modulation of each class of proteins.
Collapse
|
42
|
Hoyer J, Ekici AB, Endele S, Popp B, Zweier C, Wiesener A, Wohlleber E, Dufke A, Rossier E, Petsch C, Zweier M, Göhring I, Zink AM, Rappold G, Schröck E, Wieczorek D, Riess O, Engels H, Rauch A, Reis A. Haploinsufficiency of ARID1B, a member of the SWI/SNF-a chromatin-remodeling complex, is a frequent cause of intellectual disability. Am J Hum Genet 2012; 90:565-72. [PMID: 22405089 DOI: 10.1016/j.ajhg.2012.02.007] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/24/2012] [Accepted: 02/07/2012] [Indexed: 11/17/2022] Open
Abstract
Intellectual disability (ID) is a clinically and genetically heterogeneous common condition that remains etiologically unresolved in the majority of cases. Although several hundred diseased genes have been identified in X-linked, autosomal-recessive, or syndromic types of ID, the establishment of an etiological basis remains a difficult task in unspecific, sporadic cases. Just recently, de novo mutations in SYNGAP1, STXBP1, MEF2C, and GRIN2B were reported as relatively common causes of ID in such individuals. On the basis of a patient with severe ID and a 2.5 Mb microdeletion including ARID1B in chromosomal region 6q25, we performed mutational analysis in 887 unselected patients with unexplained ID. In this cohort, we found eight (0.9%) additional de novo nonsense or frameshift mutations predicted to cause haploinsufficiency. Our findings indicate that haploinsufficiency of ARID1B, a member of the SWI/SNF-A chromatin-remodeling complex, is a common cause of ID, and they add to the growing evidence that chromatin-remodeling defects are an important contributor to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Juliane Hoyer
- Institute of Human Genetics, University of Erlangen-Nuremberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hagenston AM, Bading H. Calcium signaling in synapse-to-nucleus communication. Cold Spring Harb Perspect Biol 2011; 3:a004564. [PMID: 21791697 DOI: 10.1101/cshperspect.a004564] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Changes in the intracellular concentration of calcium ions in neurons are involved in neurite growth, development, and remodeling, regulation of neuronal excitability, increases and decreases in the strength of synaptic connections, and the activation of survival and programmed cell death pathways. An important aspect of the signals that trigger these processes is that they are frequently initiated in the form of glutamatergic neurotransmission within dendritic trees, while their completion involves specific changes in the patterns of genes expressed within neuronal nuclei. Accordingly, two prominent aims of research concerned with calcium signaling in neurons are determination of the mechanisms governing information conveyance between synapse and nucleus, and discovery of the rules dictating translation of specific patterns of inputs into appropriate and specific transcriptional responses. In this article, we present an overview of the avenues by which glutamatergic excitation of dendrites may be communicated to the neuronal nucleus and the primary calcium-dependent signaling pathways by which synaptic activity can invoke changes in neuronal gene expression programs.
Collapse
Affiliation(s)
- Anna M Hagenston
- CellNetworks-Cluster of Excellence, Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
44
|
Abstract
Mutations in more than 450 different genes have been associated with intellectual disability (ID) and related cognitive disorders (CDs), such as autism. It is to be expected that this number will increase three to fourfold in the next years due to the rapid implementation of innovative high-throughput sequencing technology in genetics labs. Numerous functional relationships have been identified between the products of individual ID genes, and common molecular and cellular pathways onto which these networks converge are beginning to emerge. Prominent examples are genes involved in synaptic plasticity, Ras and Rho GTPase signaling, and epigenetic genes that encode modifiers of the chromatin structure. It thus seems that there might be common pathological patterns in ID, despite its bewildering genetic heterogeneity. These common pathways provide attractive opportunities for knowledge-based therapeutic interventions.
Collapse
Affiliation(s)
- Hans van Bokhoven
- Molecular Neurogenetics Unit, Department of Human Genetics, Nijmegen Center for Molecular Life Sciences, Radboud University, Nijmegen Medical Center, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
45
|
Harvard C, Strong E, Mercier E, Colnaghi R, Alcantara D, Chow E, Martell S, Tyson C, Hrynchak M, McGillivray B, Hamilton S, Marles S, Mhanni A, Dawson AJ, Pavlidis P, Qiao Y, Holden JJ, Lewis SME, O'Driscoll M, Rajcan-Separovic E. Understanding the impact of 1q21.1 copy number variant. Orphanet J Rare Dis 2011; 6:54. [PMID: 21824431 PMCID: PMC3180300 DOI: 10.1186/1750-1172-6-54] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 08/08/2011] [Indexed: 01/10/2023] Open
Abstract
Background 1q21.1 Copy Number Variant (CNV) is associated with a highly variable phenotype ranging from congenital anomalies, learning deficits/intellectual disability (ID), to a normal phenotype. Hence, the clinical significance of this CNV can be difficult to evaluate. Here we described the consequences of the 1q21.1 CNV on genome-wide gene expression and function of selected candidate genes within 1q21.1 using cell lines from clinically well described subjects. Methods and Results Eight subjects from 3 families were included in the study: six with a 1q21.1 deletion and two with a 1q21.1 duplication. High resolution Affymetrix 2.7M array was used to refine the 1q21.1 CNV breakpoints and exclude the presence of secondary CNVs of pathogenic relevance. Whole genome expression profiling, studied in lymphoblast cell lines (LBCs) from 5 subjects, showed enrichment of genes from 1q21.1 in the top 100 genes ranked based on correlation of expression with 1q21.1 copy number. The function of two top genes from 1q21.1, CHD1L/ALC1 and PRKAB2, was studied in detail in LBCs from a deletion and a duplication carrier. CHD1L/ALC1 is an enzyme with a role in chromatin modification and DNA damage response while PRKAB2 is a member of the AMP kinase complex, which senses and maintains systemic and cellular energy balance. The protein levels for CHD1L/ALC1 and PRKAB2 were changed in concordance with their copy number in both LBCs. A defect in chromatin remodeling was documented based on impaired decatenation (chromatid untangling) checkpoint (DCC) in both LBCs. This defect, reproduced by CHD1L/ALC1 siRNA, identifies a new role of CHD1L/ALC1 in DCC. Both LBCs also showed elevated levels of micronuclei following treatment with a Topoisomerase II inhibitor suggesting increased DNA breaks. AMP kinase function, specifically in the deletion containing LBCs, was attenuated. Conclusion Our studies are unique as they show for the first time that the 1q21.1 CNV not only causes changes in the expression of its key integral genes, associated with changes at the protein level, but also results in changes in their known function, in the case of AMPK, and newly identified function such as DCC activation in the case of CHD1L/ALC1. Our results support the use of patient lymphoblasts for dissecting the functional sequelae of genes integral to CNVs in carrier cell lines, ultimately enhancing understanding of biological processes which may contribute to the clinical phenotype.
Collapse
Affiliation(s)
- Chansonette Harvard
- Child and Family Research Institute, Molecular Cytogenetics and Array Laboratory, 950 West 28th Avenue, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
D'Aiuto L, Di Maio R, Mohan KN, Minervini C, Saporiti F, Soreca I, Greenamyre JT, Chaillet JR. Mouse ES cells overexpressing DNMT1 produce abnormal neurons with upregulated NMDA/NR1 subunit. Differentiation 2011; 82:9-17. [PMID: 21492995 PMCID: PMC3115397 DOI: 10.1016/j.diff.2011.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
Abstract
High levels of DNA methyltransferase 1 (DNMT1), hypermethylation, and downregulation of GAD(67) and reelin have been described in GABAergic interneurons of patients with schizophrenia (SZ) and bipolar (BP) disorders. However, overexpression of DNMT1 is lethal, making it difficult to assess the direct effect of high levels of DNMT1 on neuronal development in vivo. We therefore used Dnmt1(tet/tet) mouse ES cells that overexpress DNMT1 as an in vitro model to investigate the impact of high levels of DNMT1 on neuronal differentiation. Although there is down-regulation of DNMT1 during early stages of differentiation in wild type and Dnmt1(tet/tet) ES cell lines, neurons derived from Dnmt1(tet/tet) cells showed abnormal dendritic arborization and branching. The Dnmt1(tet/tet) neuronal cells also showed elevated levels of functional N-methyl d-aspartate receptor (NMDAR), a feature also reported in some neurological and neurodegenerative disorders. Considering the roles of reelin and GAD(67) in neuronal networking and excitatory/inhibitory balance, respectively, we studied methylation of these genes' promoters in Dnmt1(tet/tet) ES cells and neurons. Both reelin and GAD(67) promoters were not hypermethylated in the Dnmt1(tet/tet) ES cells and neurons, suggesting that overexpression of DNMT1 may not directly result in methylation-mediated repression of these two genes. Taken together, our results suggest that overexpression of DNMT1 in ES cells results in an epigenetic change prior to the onset of differentiation. This epigenetic change in turn results in abnormal neuronal differentiation and upregulation of functional NMDA receptor.
Collapse
Affiliation(s)
- Leonardo D'Aiuto
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Roberto Di Maio
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Ri.MED Foundation Palermo, Italy
| | - K. Naga Mohan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Crescenzio Minervini
- Department of Surgery, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA 15213, USA
| | - Federica Saporiti
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Isabella Soreca
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA 15213, USA
| | | | - J. Richard Chaillet
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
47
|
The Histone Demethylase PHF8 and Neural Development*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Zahir FR, Brown CJ. Epigenetic impacts on neurodevelopment: pathophysiological mechanisms and genetic modes of action. Pediatr Res 2011; 69:92R-100R. [PMID: 21293311 DOI: 10.1203/pdr.0b013e318213565e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Disruptions of genes that are involved in epigenetic functions are known to be causative for several mental retardation/intellectual disability (MR/ID) syndromes. Recent work has highlighted genes with epigenetic functions as being implicated in autism spectrum disorders (ASDs) and schizophrenia (SCZ). The gene-environment interaction is an important factor of pathogenicity for these complex disorders. Epigenetic modifications offer a mechanism by which we can explain how the environment interacts with, and is able to dynamically regulate, the genome. This review aims to provide an overview of the role of epigenetic deregulation in the etiopathology for neurodevelopment disease.
Collapse
Affiliation(s)
- Farah R Zahir
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada.
| | | |
Collapse
|
49
|
Franklin TB, Mansuy IM. The involvement of epigenetic defects in mental retardation. Neurobiol Learn Mem 2011; 96:61-7. [PMID: 21549207 DOI: 10.1016/j.nlm.2011.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/17/2011] [Accepted: 04/08/2011] [Indexed: 01/22/2023]
Abstract
Mental retardation is a group of cognitive disorders with a significant worldwide prevalence rate. This high rate, together with the considerable familial and societal burden resulting from these disorders, makes it an important focus for prevention and intervention. While the diseases associated with mental retardation are diverse, a significant number are linked with disruptions in epigenetic mechanisms, mainly due to loss-of-function mutations in genes that are key components of the epigenetic machinery. Additionally, several disorders classed as imprinting syndromes are associated with mental retardation. This review will discuss the epigenetic abnormalities associated with mental retardation, and will highlight their importance for diagnosis, treatment, and prevention of these disorders.
Collapse
Affiliation(s)
- Tamara B Franklin
- Brain Research Institute, Swiss Federal Institute of Technology, Zurich, Switzerland.
| | | |
Collapse
|
50
|
Kosztolányi G. Hypothesis: epigenetic effects will require a review of the genetics of child development. J Community Genet 2011; 2:91-6. [PMID: 22109793 DOI: 10.1007/s12687-011-0044-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 02/10/2011] [Indexed: 01/05/2023] Open
Abstract
The worldwide prevalence of developmental disorders in children including birth defects, mental dysfunctions, as well as early-life abnormalities leading to the predisposition for adult diseases is one of the major unsolved problems in medicine and societies. Child development is influenced by both genes and the environment; however, the role of the environment is more emphatic, since the genome is most vulnerable to environmental factors during early development due to the high cellular differentiation rate. This inherent characteristic of child development lays the stress on a probabilistic rather than a deterministic view with regard to the manifestation of developmental disorders. Therefore, the analysis of gene-environment interactions in child development, beyond providing information about the developmental disorders of children, has an additional value that contributes to the knowledge on epigenetics in general and the interface between the genome and the environment playing a significant part in causing a wide range of diseases, in particular. The present study, rather than attempting to give a complete overview on epigenetics, is intended to illustrate that the issue of child development is an attractive target to extend the scope of genetics both in health and disease. Since the results might be extrapolated to the understanding of the pathomechanism of many age-dependent multifactorial diseases, the importance of studying gene-environment interaction in child development also lies in identifying new and potentially modifiable risk factors for diseases that are, therefore, of public health significance.
Collapse
Affiliation(s)
- György Kosztolányi
- Department of Medical Genetics, University of Pécs, József A.u.7, 7623, Pécs, Hungary,
| |
Collapse
|