1
|
Förster N, Isosaari L, Kulta O, Junnila O, Vuolanto V, Pollari M, Rautajoki KJ, Narkilahti S. Functional 3D Human Neuron-Glioblastoma Model Reveals Cellular Interactions Enabling Drug Safety Assessments. FASEB J 2025; 39:e70567. [PMID: 40277152 PMCID: PMC12023715 DOI: 10.1096/fj.202500291rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
Glioblastoma (GB) cells actively interact with the central nervous system (CNS) tumor microenvironment (TME). These interactions, particularly with neurons, require a better understanding. 3D tumor models replicating the human TME are needed to unravel pathological processes and to test novel treatments for efficacy and safety. We developed a novel 3D human coculture model for studying neuron-GB interactions. The model revealed both structural and functional interactions between cell types. Paracrine communication in the coculture model favored a tumor-supportive environment. Notably, cell-specific calcium signaling characteristics differed in cocultures compared to monocultures, highlighting the impact of interactions on cellular functionality in TME. The safety of a clinically used treatment, temozolomide, was tested in the 3D coculture model, and it selectively inhibited GB invasion while preserving neurons' morphology and functionality. The established model provides a tool for dissecting the interactions within the TME and testing the efficacy and safety of novel treatments.
Collapse
Affiliation(s)
- Nanna Förster
- NeuroGroup, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Lotta Isosaari
- NeuroGroup, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Oskari Kulta
- NeuroGroup, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Oona Junnila
- NeuroGroup, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Valtteri Vuolanto
- NeuroGroup, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Marjukka Pollari
- Department of Oncology, Tays Cancer CenterTampere University HospitalTampereFinland
| | - Kirsi J. Rautajoki
- Cancer Regulation and Immunology Group, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Tays Cancer CentreTampere University HospitalTampereFinland
| | - Susanna Narkilahti
- NeuroGroup, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| |
Collapse
|
2
|
Škarková A, Pelantová M, Tolde O, Legátová A, Mateu R, Bušek P, Garcia‐Borja E, Šedo A, Etienne‐Manneville S, Rösel D, Brábek J. Microtubule-associated NAV3 regulates invasive phenotypes in glioblastoma cells. Brain Pathol 2025; 35:e13294. [PMID: 39097525 PMCID: PMC11669409 DOI: 10.1111/bpa.13294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/17/2024] [Indexed: 08/05/2024] Open
Abstract
Glioblastomas are aggressive brain tumors for which effective therapy is still lacking, resulting in dismal survival rates. These tumors display significant phenotypic plasticity, harboring diverse cell populations ranging from tumor core cells to dispersed, highly invasive cells. Neuron navigator 3 (NAV3), a microtubule-associated protein affecting microtubule growth and dynamics, is downregulated in various cancers, including glioblastoma, and has thus been considered a tumor suppressor. In this study, we challenge this designation and unveil distinct expression patterns of NAV3 across different invasion phenotypes. Using glioblastoma cell lines and patient-derived glioma stem-like cell cultures, we disclose an upregulation of NAV3 in invading glioblastoma cells, contrasting with its lower expression in cells residing in tumor spheroid cores. Furthermore, we establish an association between low and high NAV3 expression and the amoeboid and mesenchymal invasive phenotype, respectively, and demonstrate that overexpression of NAV3 directly stimulates glioblastoma invasive behavior in both 2D and 3D environments. Consistently, we observed increased NAV3 expression in cells migrating along blood vessels in mouse xenografts. Overall, our results shed light on the role of NAV3 in glioblastoma invasion, providing insights into this lethal aspect of glioblastoma behavior.
Collapse
Affiliation(s)
- Aneta Škarková
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of ScienceCharles UniversityVestecCzech Republic
| | - Markéta Pelantová
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of ScienceCharles UniversityVestecCzech Republic
| | - Ondřej Tolde
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of ScienceCharles UniversityVestecCzech Republic
| | - Anna Legátová
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of ScienceCharles UniversityVestecCzech Republic
| | - Rosana Mateu
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Petr Bušek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Elena Garcia‐Borja
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Aleksi Šedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | | | - Daniel Rösel
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of ScienceCharles UniversityVestecCzech Republic
| | - Jan Brábek
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of ScienceCharles UniversityVestecCzech Republic
| |
Collapse
|
3
|
Ali S, Fortune K, Masur J, Viscuse PV, Devitt ME, Dreicer R, Skelton WP. Impact of DPP4 Inhibition on Survival in Patients With Metastatic Renal Cell Carcinoma and Type 2 Diabetes Mellitus. Clin Genitourin Cancer 2024; 22:102173. [PMID: 39191617 DOI: 10.1016/j.clgc.2024.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/20/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Dipeptidyl peptidase IV (DPP4) is a cell surface receptor that possesses numerous substrates implicated in tumor growth and metastasis. Prior studies have suggested an association between DPP4 inhibition and increased progression-free survival (PFS) and overall survival (OS) in colorectal and lung cancers but no benefit in breast or pancreatic cancers. However, no studies to date have explored the impact of DPP4 inhibitors (DPP4i) in patients with metastatic renal cell carcinoma (mRCC). In this study we present a first-time analysis examining the impact of DPP4i use on PFS and OS in patients with mRCC and type 2 diabetes mellitus. METHODS We performed a retrospective analysis of patients with diabetes and mRCC at the University of Virginia. The study group comprised those whose diabetic regimen included a DPP4i during mRCC treatment. The control group comprised patients whose diabetic regimen did not include a DPP4i during treatment. Cox regression analysis was utilized to determine the hazard ratios of progression and death between groups. RESULTS Fifty-nine patients were eligible for the study, with 11 in the DPP4i group and 48 in the control group. Cancer progression occurred in 81.8% of patients in the DPP4i group and 66.7% in the control group. No statistically significant differences on PFS (HR: 1.60 [95% CI, 0.75-3.43]) or OS (HR: 0.69 [95% CI, 0.28-1.70]) were found between groups. CONCLUSIONS This retrospective study explored the effect of DPP4i on outcomes in patients with mRCC and diabetes. DPP4i have been shown to have favorable effects on PFS and OS in some cancers but not in others. The results of this study suggest that DPP4i do not confer clinical benefit in patients with mRCC. Larger studies are warranted to better elucidate the effect of DPP4i in mRCC and the mechanisms underlying differential tumor response to these agents in different malignancies.
Collapse
Affiliation(s)
- Soham Ali
- Department of Medicine, University of Virginia, Charlottesville, VA
| | - Kathryn Fortune
- Department of Medicine, University of Virginia, Charlottesville, VA
| | - Jack Masur
- Department of Medicine, University of Virginia, Charlottesville, VA
| | - Paul Vincent Viscuse
- Division of Hematology-Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Michael Edward Devitt
- Division of Hematology-Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Robert Dreicer
- Division of Hematology-Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
| | - William Paul Skelton
- Division of Hematology-Oncology, Department of Medicine, University of Virginia, Charlottesville, VA.
| |
Collapse
|
4
|
Mardanyan S, Sharoyan S, Antonyan A. Diversity of amyloid beta peptide actions. Rev Neurosci 2024; 35:387-398. [PMID: 38281140 DOI: 10.1515/revneuro-2023-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/16/2023] [Indexed: 01/30/2024]
Abstract
Fibril formation by amyloidogenic proteins and peptides is considered the cause of a number of incurable diseases. One of the most known amyloid diseases is Alzheimer's disease (AD). Traditionally, amyloidogenic beta peptides Aβ40 and Aβ42 (Aβs) are considered as main causes of AD and the foremost targets in AD fight. The main efforts in pharmacology are aimed at reducing Aβs concentration to prevent their accumulation, aggregation, formation of senile plaques, neuronal death, and neurodegeneration. However, a number of publications have demonstrated certain beneficial physiological effects of Aβs. Simultaneously, it is indicated that the effects of Aβs turn into pathological due to the development of certain diseases in the body. The accumulation of C- and N-terminal truncated Aβs under diverse conditions is supposed to play a role in AD development. The significance of transformation of glutamate residue at positions 3 or 11 of Aβs catalyzed by glutaminyl cyclase making them more degradation resistant, hydrophobic, and prone to aggregation, as well as the participation of dipeptidyl peptidase IV in these transformations are discussed. The experimental data presented confirm the maintenance of physiological, nonaggregated state of Aβs by plant preparations. In conclusion, this review suggests that in the fight against AD, instead of removing Aβs, preference should be given to the treatment of common diseases. Glutaminyl cyclase and dipeptidyl peptidase IV can be considered as targets in AD treatment. Flavonoids and plant preparations that possess antiamyloidogenic propensity are proposed as beneficial neuroprotective, anticancer, and antidiabetic food additives.
Collapse
Affiliation(s)
- Sona Mardanyan
- H. Buniatian Institute of Biochemistry of Armenian National Academy of Sciences, Yerevan 0014, Republic of Armenia
| | - Svetlana Sharoyan
- H. Buniatian Institute of Biochemistry of Armenian National Academy of Sciences, Yerevan 0014, Republic of Armenia
| | - Alvard Antonyan
- H. Buniatian Institute of Biochemistry of Armenian National Academy of Sciences, Yerevan 0014, Republic of Armenia
| |
Collapse
|
5
|
Menevse AN, Ammer LM, Vollmann-Zwerenz A, Kupczyk M, Lorenz J, Weidner L, Hussein A, Sax J, Mühlbauer J, Heuschneider N, Rohrmus C, Mai LS, Jachnik B, Stamova S, Volpin V, Durst FC, Sorrentino A, Xydia M, Milenkovic VM, Bader S, Braun FK, Wetzel C, Albert NL, Tonn JC, Bartenstein P, Proescholdt M, Schmidt NO, Linker RA, Riemenschneider MJ, Beckhove P, Hau P. TSPO acts as an immune resistance gene involved in the T cell mediated immune control of glioblastoma. Acta Neuropathol Commun 2023; 11:75. [PMID: 37158962 PMCID: PMC10165826 DOI: 10.1186/s40478-023-01550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/14/2023] [Indexed: 05/10/2023] Open
Abstract
Glioblastoma (GB) IDH-wildtype is the most malignant primary brain tumor. It is particularly resistant to current immunotherapies. Translocator protein 18 kDa (TSPO) is upregulated in GB and correlates with malignancy and poor prognosis, but also with increased immune infiltration. Here, we studied the role of TSPO in the regulation of immune resistance of human GB cells. The role of TSPO in tumor immune resistance was experimentally determined in primary brain tumor initiating cells (BTICs) and cell lines through genetic manipulation of TSPO expression and subsequent cocultures with antigen specific cytotoxic T cells and autologous tumor-infiltrating T cells. Death inducing intrinsic and extrinsic apoptotic pathways affected by TSPO were investigated. TSPO-regulated genes mediating apoptosis resistance in BTICs were identified through gene expression analysis and subsequent functional analyses. TSPO transcription in primary GB cells correlated with CD8+ T cell infiltration, cytotoxic activity of T cell infiltrate, expression of TNFR and IFNGR and with the activity of their downstream signalling pathways, as well as with the expression of TRAIL receptors. Coculture of BTICs with tumor reactive cytotoxic T cells or with T cell-derived factors induced TSPO up-regulation through T cell derived TNFα and IFNγ. Silencing of TSPO sensitized BTICs against T cell-mediated cytotoxicity. TSPO selectively protected BTICs against TRAIL-induced apoptosis by regulating apoptosis pathways. TSPO also regulated the expression of multiple genes associated with resistance against apoptosis. We conclude that TSPO expression in GB is induced through T cell-derived cytokines TNFα and IFNγ and that TSPO expression protects GB cells against cytotoxic T cell attack through TRAIL. Our data thereby provide an indication that therapeutic targeting of TSPO may be a suitable approach to sensitize GB to immune cell-mediated cytotoxicity by circumventing tumor intrinsic TRAIL resistance.
Collapse
Affiliation(s)
- Ayse N Menevse
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Laura-Marie Ammer
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Arabel Vollmann-Zwerenz
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Marcell Kupczyk
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Julia Lorenz
- Department of Neuropathology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Lorraine Weidner
- Department of Neuropathology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Abir Hussein
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Julian Sax
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Jasmin Mühlbauer
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Nicole Heuschneider
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Celine Rohrmus
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Laura S Mai
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Birgit Jachnik
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Slava Stamova
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Valentina Volpin
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Franziska C Durst
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Antonio Sorrentino
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Maria Xydia
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, Molecular Neurosciences, 93053, Regensburg, Germany
| | - Stefanie Bader
- Department of Psychiatry and Psychotherapy, University of Regensburg, Molecular Neurosciences, 93053, Regensburg, Germany
| | - Frank K Braun
- Department of Neuropathology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Christian Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Molecular Neurosciences, 93053, Regensburg, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 80336, Munich, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, 80336, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 80336, Munich, Germany
| | - Martin Proescholdt
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
- Department of Neurosurgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Nils O Schmidt
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
- Department of Neurosurgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Ralf A Linker
- Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | | | - Philipp Beckhove
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany.
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany.
- LIT - Leibniz Institute for Immunotherapy (former RCI), c/o Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany.
- Department of Neurology -NeuroOncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
6
|
Bernstein HG, Keilhoff G, Dobrowolny H, Steiner J. The many facets of CD26/dipeptidyl peptidase 4 and its inhibitors in disorders of the CNS - a critical overview. Rev Neurosci 2023; 34:1-24. [PMID: 35771831 DOI: 10.1515/revneuro-2022-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/10/2022] [Indexed: 01/11/2023]
Abstract
Dipeptidyl peptidase 4 is a serine protease that cleaves X-proline or X-alanine in the penultimate position. Natural substrates of the enzyme are glucagon-like peptide-1, glucagon inhibiting peptide, glucagon, neuropeptide Y, secretin, substance P, pituitary adenylate cyclase-activating polypeptide, endorphins, endomorphins, brain natriuretic peptide, beta-melanocyte stimulating hormone and amyloid peptides as well as some cytokines and chemokines. The enzyme is involved in the maintenance of blood glucose homeostasis and regulation of the immune system. It is expressed in many organs including the brain. DPP4 activity may be effectively depressed by DPP4 inhibitors. Apart from enzyme activity, DPP4 acts as a cell surface (co)receptor, associates with adeosine deaminase, interacts with extracellular matrix, and controls cell migration and differentiation. This review aims at revealing the impact of DPP4 and DPP4 inhibitors for several brain diseases (virus infections affecting the brain, tumours of the CNS, neurological and psychiatric disorders). Special emphasis is given to a possible involvement of DPP4 expressed in the brain.While prominent contributions of extracerebral DPP4 are evident for a majority of diseases discussed herein; a possible role of "brain" DPP4 is restricted to brain cancers and Alzheimer disease. For a number of diseases (Covid-19 infection, type 2 diabetes, Alzheimer disease, vascular dementia, Parkinson disease, Huntington disease, multiple sclerosis, stroke, and epilepsy), use of DPP4 inhibitors has been shown to have a disease-mitigating effect. However, these beneficial effects should mostly be attributed to the depression of "peripheral" DPP4, since currently used DPP4 inhibitors are not able to pass through the intact blood-brain barrier.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| |
Collapse
|
7
|
Cui C, Tian X, Wei L, Wang Y, Wang K, Fu R. New insights into the role of dipeptidyl peptidase 8 and dipeptidyl peptidase 9 and their inhibitors. Front Pharmacol 2022; 13:1002871. [PMID: 36172198 PMCID: PMC9510841 DOI: 10.3389/fphar.2022.1002871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Dipeptidyl peptidase 8 (DPP8) and 9 (DPP9) are widely expressed in mammals including humans, mainly locate in the cytoplasm. The DPP8 and DPP9 (DPP8/9) belong to serine proteolytic enzymes, they can recognize and cleave N-terminal dipeptides of specific substrates if proline is at the penultimate position. Because the localization of DPP8/9 is different from that of DPP4 and the substrates for DPP8/9 are not yet completely clear, their physiological and pathological roles are still being further explored. In this article, we will review the recent research advances focusing on the expression, regulation, and functions of DPP8/9 in physiology and pathology status. Emerging research results have shown that DPP8/9 is involved in various biological processes such as cell behavior, energy metabolism, and immune regulation, which plays an essential role in maintaining normal development and physiological functions of the body. DPP8/9 is also involved in pathological processes such as tumorigenesis, inflammation, and organ fibrosis. In recent years, related research on immune cell pyroptosis has made DPP8/9 a new potential target for the treatment of hematological diseases. In addition, DPP8/9 inhibitors also have great potential in the treatment of tumors and chronic kidney disease.
Collapse
Affiliation(s)
- Chenkai Cui
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Linting Wei
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yinhong Wang
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kexin Wang
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongguo Fu
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Rongguo Fu,
| |
Collapse
|
8
|
Talianová V, Kejík Z, Kaplánek R, Veselá K, Abramenko N, Lacina L, Strnadová K, Dvořánková B, Martásek P, Masařík M, Megová MH, Bušek P, Křížová J, Zdražilová L, Hansíková H, Vlčák E, Filimonenko V, Šedo A, Smetana K, Jakubek M. New-Generation Heterocyclic Bis-Pentamethinium Salts as Potential Cytostatic Drugs with Dual IL-6R and Mitochondria-Targeting Activity. Pharmaceutics 2022; 14:pharmaceutics14081712. [PMID: 36015338 PMCID: PMC9416741 DOI: 10.3390/pharmaceutics14081712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
IL-6 signaling is involved in the pathogenesis of a number of serious diseases, including chronic inflammation and cancer. Targeting of IL-6 receptor (IL-6R) by small molecules is therefore an intensively studied strategy in cancer treatment. We describe the design, synthesis, and characteristics of two new bis-pentamethinium salts 5 and 6 (meta and para) bearing indole moieties. Molecular docking studies showed that both compounds have the potential to bind IL-6R (free energy of binding −9.5 and −8.1 kcal/mol). The interaction with IL-6R was confirmed using microscale thermophoresis analyses, which revealed that both compounds had strong affinity for the IL-6R (experimentally determined dissociation constants 26.5 ± 2.5 nM and 304 ± 27.6 nM, respectively). In addition, both compounds were cytotoxic for a broad spectrum of cancer cell lines in micromolar concentrations, most likely due to their accumulation in mitochondria and inhibition of mitochondrial respiration. In summary, the structure motif of bis-pentamethinium salts represents a promising starting point for the design of novel multitargeting compounds with the potential to inhibit IL-6 signaling and simultaneously target mitochondrial metabolism in cancer cells.
Collapse
Affiliation(s)
- Veronika Talianová
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Lukáš Lacina
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, CZ-120 00 Prague, Czech Republic
- Department of Dermatovenerology, First Faculty of Medicine, Charles University and General University Hospital, CZ-128 08 Prague, Czech Republic
| | - Karolína Strnadová
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, CZ-120 00 Prague, Czech Republic
| | - Barbora Dvořánková
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, CZ-120 00 Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
- Department of Pathological Physiology and Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Magdalena Houdová Megová
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, CZ-120 00 Prague, Czech Republic
| | - Petr Bušek
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, CZ-120 00 Prague, Czech Republic
| | - Jana Křížová
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Lucie Zdražilová
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Hana Hansíková
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Erik Vlčák
- Institute of Molecular Genetics, Academy of Sciences, CZ-140 00 Prague, Czech Republic
| | - Vlada Filimonenko
- Institute of Molecular Genetics, Academy of Sciences, CZ-140 00 Prague, Czech Republic
| | - Aleksi Šedo
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, CZ-120 00 Prague, Czech Republic
| | - Karel Smetana
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, CZ-120 00 Prague, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| |
Collapse
|
9
|
Does DPP-IV Inhibition Offer New Avenues for Therapeutic Intervention in Malignant Disease? Cancers (Basel) 2022; 14:cancers14092072. [PMID: 35565202 PMCID: PMC9103952 DOI: 10.3390/cancers14092072] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary There is growing interest in identifying the effects of antidiabetic agents on cancer risk, progression, and anti-cancer treatment due to the long-term use of these medications and the inherently increased risk of malignancies in diabetic patients. Tumor development and progression are affected by multiple mediators in the tumor microenvironment, several of which may be proteolytically modified by the multifunctional protease dipeptidyl peptidase-IV (DPP-IV, CD26). Currently, low-molecular-weight DPP-IV inhibitors (gliptins) are used in patients with type 2 diabetes based on the observation that DPP-IV inhibition enhances insulin secretion by increasing the bioavailability of incretins. However, the DPP-IV-mediated cleavage of other biopeptides and chemokines is also prevented by gliptins. The potential utility of gliptins in other areas of medicine, including cancer, is therefore being evaluated. Here, we critically review the existing evidence on the role of DPP-IV inhibitors in cancer pathogenesis, their potential to be used in anti-cancer treatment, and the possible perils associated with this approach. Abstract Dipeptidyl peptidase IV (DPP-IV, CD26) is frequently dysregulated in cancer and plays an important role in regulating multiple bioactive peptides with the potential to influence cancer progression and the recruitment of immune cells. Therefore, it represents a potential contributing factor to cancer pathogenesis and an attractive therapeutic target. Specific DPP-IV inhibitors (gliptins) are currently used in patients with type 2 diabetes mellitus to promote insulin secretion by prolonging the activity of the incretins glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Nevertheless, the modulation of the bioavailability and function of other DPP-IV substrates, including chemokines, raises the possibility that the use of these orally administered drugs with favorable side-effect profiles might be extended beyond the treatment of hyperglycemia. In this review, we critically examine the possible utilization of DPP-IV inhibition in cancer prevention and various aspects of cancer treatment and discuss the potential perils associated with the inhibition of DPP-IV in cancer. The current literature is summarized regarding the possible chemopreventive and cytotoxic effects of gliptins and their potential utility in modulating the anti-tumor immune response, enhancing hematopoietic stem cell transplantation, preventing acute graft-versus-host disease, and alleviating the side-effects of conventional anti-tumor treatments.
Collapse
|
10
|
Singh K, Hotchkiss KM, Patel KK, Wilkinson DS, Mohan AA, Cook SL, Sampson JH. Enhancing T Cell Chemotaxis and Infiltration in Glioblastoma. Cancers (Basel) 2021; 13:5367. [PMID: 34771532 PMCID: PMC8582389 DOI: 10.3390/cancers13215367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is an immunologically 'cold' tumor, which are characterized by absent or minimal numbers of tumor-infiltrating lymphocytes (TILs). For those tumors that have been invaded by lymphocytes, they are profoundly exhausted and ineffective. While many immunotherapy approaches seek to reinvigorate immune cells at the tumor, this requires TILs to be present. Therefore, to unleash the full potential of immunotherapy in glioblastoma, the trafficking of lymphocytes to the tumor is highly desirable. However, the process of T cell recruitment into the central nervous system (CNS) is tightly regulated. Naïve T cells may undergo an initial licensing process to enter the migratory phenotype necessary to enter the CNS. T cells then must express appropriate integrins and selectin ligands to interact with transmembrane proteins at the blood-brain barrier (BBB). Finally, they must interact with antigen-presenting cells and undergo further licensing to enter the parenchyma. These T cells must then navigate the tumor microenvironment, which is rich in immunosuppressive factors. Altered tumoral metabolism also interferes with T cell motility. In this review, we will describe these processes and their mediators, along with potential therapeutic approaches to enhance trafficking. We also discuss safety considerations for such approaches as well as potential counteragents.
Collapse
Affiliation(s)
- Kirit Singh
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA; (K.M.H.); (K.K.P.); (D.S.W.); (A.A.M.); (S.L.C.)
| | | | | | | | | | | | - John H. Sampson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA; (K.M.H.); (K.K.P.); (D.S.W.); (A.A.M.); (S.L.C.)
| |
Collapse
|
11
|
De Zutter A, Van Damme J, Struyf S. The Role of Post-Translational Modifications of Chemokines by CD26 in Cancer. Cancers (Basel) 2021; 13:cancers13174247. [PMID: 34503058 PMCID: PMC8428238 DOI: 10.3390/cancers13174247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Chemokines are a large family of small chemotactic cytokines that fulfill a central function in cancer. Both tumor-promoting and -impeding roles have been ascribed to chemokines, which they exert in a direct or indirect manner. An important post-translational modification that regulates chemokine activity is the NH2-terminal truncation by peptidases. CD26 is a dipeptidyl peptidase (DPPIV), which typically clips a NH2-terminal dipeptide from the chemokine. With a certain degree of selectivity in terms of chemokine substrate, CD26 only recognizes chemokines with a penultimate proline or alanine. Chemokines can be protected against CD26 recognition by specific amino acid residues within the chemokine structure, by oligomerization or by binding to cellular glycosaminoglycans (GAGs). Upon truncation, the binding affinity for receptors and GAGs is altered, which influences chemokine function. The consequences of CD26-mediated clipping vary, as unchanged, enhanced, and reduced activities are reported. In tumors, CD26 most likely has the most profound effect on CXCL12 and the interferon (IFN)-inducible CXCR3 ligands, which are converted into receptor antagonists upon truncation. Depending on the tumor type, expression of CD26 is upregulated or downregulated and often results in the preferential generation of the chemokine isoform most favorable for tumor progression. Considering the tight relationship between chemokine sequence and chemokine binding specificity, molecules with the appropriate characteristics can be chemically engineered to provide innovative therapeutic strategies in a cancer setting.
Collapse
|
12
|
Balaziova E, Vymola P, Hrabal P, Mateu R, Zubal M, Tomas R, Netuka D, Kramar F, Zemanova Z, Svobodova K, Brabec M, Sedo A, Busek P. Fibroblast Activation Protein Expressing Mesenchymal Cells Promote Glioblastoma Angiogenesis. Cancers (Basel) 2021; 13:cancers13133304. [PMID: 34282761 PMCID: PMC8267680 DOI: 10.3390/cancers13133304] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The perivascular niche in glioblastoma is crucial for maintaining a tumour- permissive microenvironment. In various extracranial cancers, mesenchymal cells that express fibroblast activation protein (FAP) are an important stromal component and a potential therapeutic target. In this study, we examine their functions in the glioblastoma microenvironment where their role is so far largely unexplored. Glioblastoma-associated FAP+ mesenchymal cells are localised around activated endothelial cells and their presence positively correlates with vascular density. They represent a subpopulation of stromal, non-tumorigenic cells which mostly lack the chromosomal aberrations characteristic of glioma cells. By soluble factors they induce angiogenic sprouting, chemotaxis of endothelial cells, contribute to destabilisation of blood vessels, and increase the migration and growth of glioma cells. Taken together, we identified a subpopulation of FAP+ mesenchymal cells in the perivascular niche in glioblastoma that may contribute to tumour progression by promoting angiogenesis and supporting dissemination of transformed cells into the surrounding tissue. Abstract Fibroblast activation protein (FAP) is a membrane-bound protease that is upregulated in a wide range of tumours and viewed as a marker of tumour-promoting stroma. Previously, we demonstrated increased FAP expression in glioblastomas and described its localisation in cancer and stromal cells. In this study, we show that FAP+ stromal cells are mostly localised in the vicinity of activated CD105+ endothelial cells and their quantity positively correlates with glioblastoma vascularisation. FAP+ mesenchymal cells derived from human glioblastomas are non-tumorigenic and mostly lack the cytogenetic aberrations characteristic of glioblastomas. Conditioned media from these cells induce angiogenic sprouting and chemotaxis of endothelial cells and promote migration and growth of glioma cells. In a chorioallantoic membrane assay, co-application of FAP+ mesenchymal cells with glioma cells was associated with enhanced abnormal angiogenesis, as evidenced by an increased number of erythrocytes in vessel-like structures and higher occurrence of haemorrhages. FAP+ mesenchymal cells express proangiogenic factors, but in comparison to normal pericytes exhibit decreased levels of antiangiogenic molecules and an increased Angiopoietin 2/1 ratio. Our results show that FAP+ mesenchymal cells promote angiogenesis and glioma cell migration and growth by paracrine communication and in this manner, they may thus contribute to glioblastoma progression.
Collapse
Affiliation(s)
- Eva Balaziova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (E.B.); (P.V.); (R.M.); (M.Z.)
| | - Petr Vymola
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (E.B.); (P.V.); (R.M.); (M.Z.)
| | - Petr Hrabal
- Department of Pathology, Military University Hospital, 169 02 Prague, Czech Republic;
| | - Rosana Mateu
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (E.B.); (P.V.); (R.M.); (M.Z.)
| | - Michal Zubal
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (E.B.); (P.V.); (R.M.); (M.Z.)
| | - Robert Tomas
- Departments of Neurosurgery, Na Homolce Hospital, 150 00 Prague, Czech Republic;
| | - David Netuka
- Department of Neurosurgery and Neurooncology, First Faculty of Medicine, Charles University and Military University Hospital, 168 02 Prague, Czech Republic; (D.N.); (F.K.)
| | - Filip Kramar
- Department of Neurosurgery and Neurooncology, First Faculty of Medicine, Charles University and Military University Hospital, 168 02 Prague, Czech Republic; (D.N.); (F.K.)
| | - Zuzana Zemanova
- Center of Oncocytogenomics, Institute of Clinical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (Z.Z.); (K.S.)
| | - Karla Svobodova
- Center of Oncocytogenomics, Institute of Clinical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (Z.Z.); (K.S.)
| | - Marek Brabec
- Institute of Computer Science, The Czech Academy of Sciences, 128 00 Prague, Czech Republic;
| | - Aleksi Sedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (E.B.); (P.V.); (R.M.); (M.Z.)
- Correspondence: (A.S.); (P.B.)
| | - Petr Busek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (E.B.); (P.V.); (R.M.); (M.Z.)
- Correspondence: (A.S.); (P.B.)
| |
Collapse
|
13
|
Manocha E, Bugatti A, Belleri M, Zani A, Marsico S, Caccuri F, Presta M, Caruso A. Avian Reovirus P17 Suppresses Angiogenesis by Promoting DPP4 Secretion. Cells 2021; 10:cells10020259. [PMID: 33525607 PMCID: PMC7911508 DOI: 10.3390/cells10020259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
Avian reovirus p17 (ARV p17) is a non-structural protein known to activate autophagy, interfere with gene transcription and induce a significant tumor cell growth inhibition in vitro and in vivo. In this study, we show that ARV p17 is capable of exerting potent antiangiogenic properties. The viral protein significantly inhibited the physiological angiogenesis of human endothelial cells (ECs) by affecting migration, capillary-like structure and new vessel formation. ARV p17 was not only able to suppress the EC physiological angiogenesis but also rendered ECs insensitive to two different potent proangiogenic inducers, such as VEGF-A and FGF-2 in the three-dimensional (3D) Matrigel and spheroid assay. ARV p17 was found to exert its antiangiogenic activity by upregulating transcription and release of the well-known tumor suppressor molecule dipeptidyl peptidase 4 (DPP4). The ability of ARV p17 to impact on angiogenesis is completely new and highlights the “two compartments” activity of the viral protein that is expected to hamper the tumor parenchymal/stromal crosstalk. The complex antitumor activities of ARV p17 open the way to a new promising field of research aimed to develop new therapeutic approaches for treating tumor and cancer metastasis.
Collapse
Affiliation(s)
- Ekta Manocha
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.M.); (A.B.); (A.Z.); (F.C.)
| | - Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.M.); (A.B.); (A.Z.); (F.C.)
| | - Mirella Belleri
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.B.); (M.P.)
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.M.); (A.B.); (A.Z.); (F.C.)
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy;
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.M.); (A.B.); (A.Z.); (F.C.)
| | - Marco Presta
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.B.); (M.P.)
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.M.); (A.B.); (A.Z.); (F.C.)
- Correspondence:
| |
Collapse
|
14
|
Moffitt LR, Bilandzic M, Wilson AL, Chen Y, Gorrell MD, Oehler MK, Plebanski M, Stephens AN. Hypoxia Regulates DPP4 Expression, Proteolytic Inactivation, and Shedding from Ovarian Cancer Cells. Int J Mol Sci 2020; 21:8110. [PMID: 33143089 PMCID: PMC7672561 DOI: 10.3390/ijms21218110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 01/03/2023] Open
Abstract
The treatment of ovarian cancer has not significantly changed in decades and it remains one of the most lethal malignancies in women. The serine protease dipeptidyl peptidase 4 (DPP4) plays key roles in metabolism and immunity, and its expression has been associated with either pro- or anti-tumour effects in multiple tumour types. In this study, we provide the first evidence that DPP4 expression and enzyme activity are uncoupled under hypoxic conditions in ovarian cancer cells. Whilst we identified strong up-regulation of DPP4 mRNA expression under hypoxic growth, the specific activity of secreted DPP4 was paradoxically decreased. Further investigation revealed matrix metalloproteinases (MMP)-dependent inactivation and proteolytic shedding of DPP4 from the cell surface, mediated by at least MMP10 and MMP13. This is the first report of uncoupled DPP4 expression and activity in ovarian cancer cells, and suggests a previously unrecognized, cell- and tissue-type-dependent mechanism for the regulation of DPP4 in solid tumours. Further studies are necessary to identify the functional consequences of DPP4 processing and its potential prognostic or therapeutic value.
Collapse
Affiliation(s)
- Laura R. Moffitt
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia; (L.R.M.); (M.B.); (A.L.W.); (Y.C.)
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Maree Bilandzic
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia; (L.R.M.); (M.B.); (A.L.W.); (Y.C.)
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Amy L. Wilson
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia; (L.R.M.); (M.B.); (A.L.W.); (Y.C.)
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Yiqian Chen
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia; (L.R.M.); (M.B.); (A.L.W.); (Y.C.)
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Mark D. Gorrell
- Centenary Institute, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia;
| | - Martin K. Oehler
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia;
- Robinson Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia;
| | - Andrew N. Stephens
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia; (L.R.M.); (M.B.); (A.L.W.); (Y.C.)
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| |
Collapse
|
15
|
Handl J, Čapek J, Majtnerová P, Báčová J, Roušar T. The effect of repeated passaging on the susceptibility of human proximal tubular HK-2 cells to toxic compounds. Physiol Res 2020; 69:731-738. [PMID: 32672047 DOI: 10.33549/physiolres.934491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human proximal tubular HK-2 cell line is an immortalized cell line commonly used for studying proximal tubular toxicity. Even as their use is presently increasing, there unfortunately are no studies focused on functional changes in HK-2 cells associated with passaging. The aim of the present study, therefore, was to evaluate the functional stability of HK-2 cells during 13 weeks of continuous passaging after 6 and 24 h of treatment with model nephrotoxic compounds (i.e., acetaminophen, cisplatin, CdCl(2)). Short tandem repeat profile, the doubling time, cell diameter, glutathione concentration, and intracellular dehydrogenase activity were measured in HK-2 cells at each tested passage. The results showed that HK-2 cells exhibit stable morphology, cell size, and cell renewal during passaging. Mean doubling time was determined to be 54 h. On the other hand, we observed a significant effect of passaging on the susceptibility of HK-2 cells to toxic compounds. The largest difference in results was found in both cadmium and cisplatin treated cells across passages. We conclude that the outcomes of scientific studies on HK-2 cells can be affected by the number of passages even after medium-term cultivation and passaging for 13 weeks.
Collapse
Affiliation(s)
- J Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic.
| | | | | | | | | |
Collapse
|
16
|
Liu HJ, Hu HM, Li GZ, Zhang Y, Wu F, Liu X, Wang KY, Zhang CB, Jiang T. Ferroptosis-Related Gene Signature Predicts Glioma Cell Death and Glioma Patient Progression. Front Cell Dev Biol 2020; 8:538. [PMID: 32733879 PMCID: PMC7363771 DOI: 10.3389/fcell.2020.00538] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/08/2020] [Indexed: 01/10/2023] Open
Abstract
Glioma is a fatal brain tumor characterized by rapid proliferation and treatment resistance. Ferroptosis is a newly discovered programmed cell death and plays a crucial role in the occurrence and progression of tumors. In this study, we identified ferroptosis specific markers to reveal the relationship between ferroptosis-related genes and glioma by analyzing whole transcriptome data from Chinese Glioma Genome Atlas, The Cancer Genome Atlas dataset, GSE16011 dataset, and the Repository of Molecular Brain Neoplasia Data dataset. Nineteen ferroptosis-related genes with clinical and pathological features of glioma were identified as highly correlated. Functional assays in glioma cell lines indicated the association of ferroptosis with temozolomide resistance, autophagy, and glioma cell migration. Therefore, the identified ferroptosis-related genes were significantly correlated with glioma progression.
Collapse
Affiliation(s)
- Han-Jie Liu
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Hui-Min Hu
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Guan-Zhang Li
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Ying Zhang
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Fan Wu
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Xiu Liu
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Kuan-Yu Wang
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Chuan-Bao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital of Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| |
Collapse
|
17
|
Han Y, Sun Y, Zhang Y, Xia Q. High DPP4 expression predicts poor prognosis in patients with low-grade glioma. Mol Biol Rep 2020; 47:2189-2196. [PMID: 32076999 DOI: 10.1007/s11033-020-05321-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/13/2020] [Indexed: 11/25/2022]
Abstract
Dipeptidyl peptidase-IV (DPP4) plays a key role in tumor development; however, its role in glioma pathogenesis has not been determined. Here, we aimed to investigate the expression pattern of DPP4 and explore the association between expression and patient prognosis in glioma. DPP4 levels were investigated using qRT-PCR, immunohistochemistry and western blot in a rat model of glioma and also in patient samples. The relationship between DPP4 levels, WHO pathological grade gliomas, and isocitrate dehydrogenase 1 and 2 (IDH1/2) status was assessed in patient samples. Our data indicated that DPP4 levels were markedly increased in a rat model of glioma (p < 0.05, p < 0.01) and aslo in patient samples. Furthermore, the elevation of DPP4 levels in the samples obtained from pateints was associated with the pathogical grade of glioma and the IDH1/2 status (p < 0.01, p < 0.001). High DPP4 levels decreased the survival probability of patients with low-grade glioma (LGG). The data from patient samples showed that DPP4 expression increased with the pathological grade. Increased expression of DPP4 could be a promising index for determining the prognosis of glioma.
Collapse
Affiliation(s)
- Yadi Han
- Department of Clinical Laboratory Science, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
- Zhengzhou Key Laboratory of Digestive Tumor Markers, No. 127 Dongming Road, Zhengzhou, 450008, China
| | - Yuxue Sun
- Department of Neurosurgery, Renmin Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Yusong Zhang
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China.
| | - Qingxin Xia
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China.
| |
Collapse
|
18
|
Li L, van Breugel PC, Loayza-Puch F, Ugalde AP, Korkmaz G, Messika-Gold N, Han R, Lopes R, Barbera EP, Teunissen H, de Wit E, Soares RJ, Nielsen BS, Holmstrøm K, Martínez-Herrera DJ, Huarte M, Louloupi A, Drost J, Elkon R, Agami R. LncRNA-OIS1 regulates DPP4 activation to modulate senescence induced by RAS. Nucleic Acids Res 2019; 46:4213-4227. [PMID: 29481642 PMCID: PMC5934637 DOI: 10.1093/nar/gky087] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/29/2018] [Indexed: 12/15/2022] Open
Abstract
Oncogene-induced senescence (OIS), provoked in response to oncogenic activation, is considered an important tumor suppressor mechanism. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nt without a protein-coding capacity. Functional studies showed that deregulated lncRNA expression promote tumorigenesis and metastasis and that lncRNAs may exhibit tumor-suppressive and oncogenic function. Here, we first identified lncRNAs that were differentially expressed between senescent and non-senescent human fibroblast cells. Using RNA interference, we performed a loss-function screen targeting the differentially expressed lncRNAs, and identified lncRNA-OIS1 (lncRNA#32, AC008063.3 or ENSG00000233397) as a lncRNA required for OIS. Knockdown of lncRNA-OIS1 triggered bypass of senescence, higher proliferation rate, lower abundance of the cell-cycle inhibitor CDKN1A and high expression of cell-cycle-associated genes. Subcellular inspection of lncRNA-OIS1 indicated nuclear and cytosolic localization in both normal culture conditions as well as following oncogene induction. Interestingly, silencing lncRNA-OIS1 diminished the senescent-associated induction of a nearby gene (Dipeptidyl Peptidase 4, DPP4) with established role in tumor suppression. Intriguingly, similar to lncRNA-OIS1, silencing DPP4 caused senescence bypass, and ectopic expression of DPP4 in lncRNA-OIS1 knockdown cells restored the senescent phenotype. Thus, our data indicate that lncRNA-OIS1 links oncogenic induction and senescence with the activation of the tumor suppressor DPP4.
Collapse
Affiliation(s)
- Li Li
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Pieter C van Breugel
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Fabricio Loayza-Puch
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Alejandro Pineiro Ugalde
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Gozde Korkmaz
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Naama Messika-Gold
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, 69978, Tel Aviv University, Tel Aviv, Israel
| | - Ruiqi Han
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Rui Lopes
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Eric P Barbera
- Division of Molecular Genetics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Hans Teunissen
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | | | | | - Kim Holmstrøm
- Bioneer A/S, Kogle Allé 2, DK-2970 Hørsholm, Denmark
| | | | - Maite Huarte
- Institute of Health Research of Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Annita Louloupi
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Jarno Drost
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, 69978, Tel Aviv University, Tel Aviv, Israel
| | - Reuven Agami
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands.,Erasmus MC, Rotterdam University, 3000 CA Rotterdam, The Netherlands.,Oncode institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
19
|
Enz N, Vliegen G, De Meester I, Jungraithmayr W. CD26/DPP4 - a potential biomarker and target for cancer therapy. Pharmacol Ther 2019; 198:135-159. [PMID: 30822465 DOI: 10.1016/j.pharmthera.2019.02.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD26/dipeptidyl peptidase (DPP)4 is a membrane-bound protein found in many cell types of the body, and a soluble form is present in body fluids. There is longstanding evidence that various primary tumors and also metastases express CD26/DPP4 to a variable extent. By cleaving dipeptides from peptides with a proline or alanine in the penultimate position at the N-terminus, it regulates the activity of incretin hormones, chemokines and many other peptides. Due to these effects and interactions with other molecules, a tumor promoting or suppressing role can be attributed to CD26/DPP4. In this review, we discuss the existing evidence on the expression of soluble or membrane-bound CD26/DPP4 in malignant diseases, along with the most recent findings on CD26/DPP4 as a therapeutic target in specific malignancies. The expression and possible involvement of the related DPP8 and DPP9 in cancer are also reviewed. A higher expression of CD26/DPP4 is found in a wide variety of tumor entities, however more research on CD26/DPP4 in the tumor microenvironment is needed to fully explore its use as a tumor biomarker. Circulating soluble CD26/DPP4 has also been studied as a cancer biomarker, however, the observed decrease in most cancer patients does not seem to be cancer specific. Encouraging results from experimental work and a recently reported first phase clinical trial targeting CD26/DPP4 in mesothelioma, renal and urological tumors pave the way for follow-up clinical studies, also in other tumor entities, possibly leading to the development of more effective complementary therapies against cancer.
Collapse
Affiliation(s)
- Njanja Enz
- Department of Thoracic Surgery, University Hospital Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Gwendolyn Vliegen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, University Hospital Rostock, Schillingallee 35, 18057 Rostock, Germany.
| |
Collapse
|
20
|
Identification of microRNAs differentially expressed in glioblastoma stem-like cells and their association with patient survival. Sci Rep 2018; 8:2836. [PMID: 29434344 PMCID: PMC5809429 DOI: 10.1038/s41598-018-20929-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/25/2018] [Indexed: 01/29/2023] Open
Abstract
Glioblastoma stem-like cells (GSCs) are critical for the aggressiveness and progression of glioblastoma (GBM) and contribute to its resistance to adjuvant treatment. MicroRNAs (miRNAs) are small, non-coding RNAs controlling gene expression at the post-transcriptional level, which are known to be important regulators of the stem-like features. Moreover, miRNAs have been previously proved to be promising diagnostic biomarkers in several cancers including GBM. Using global expression analysis of miRNAs in 10 paired in-vitro as well as in-vivo characterized primary GSC and non-stem glioblastoma cultures, we identified a miRNA signature associated with the stem-like phenotype in GBM. 51 most deregulated miRNAs classified the cell cultures into GSC and non-stem cell clusters and identified a subgroup of GSC cultures with more pronounced stem-cell characteristics. The importance of the identified miRNA signature was further supported by demonstrating that a Risk Score based on the expression of seven miRNAs overexpressed in GSC predicted overall survival in GBM patients in the TCGA dataset independently of the IDH1 status. In summary, we identified miRNAs differentially expressed in GSCs and described their association with GBM patient survival. We propose that these miRNAs participate on GSC features and could represent helpful prognostic markers and potential therapeutic targets in GBM.
Collapse
|
21
|
Smebye ML, Agostini A, Johannessen B, Thorsen J, Davidson B, Tropé CG, Heim S, Skotheim RI, Micci F. Involvement of DPP9 in gene fusions in serous ovarian carcinoma. BMC Cancer 2017; 17:642. [PMID: 28893231 PMCID: PMC5594496 DOI: 10.1186/s12885-017-3625-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/28/2017] [Indexed: 12/18/2022] Open
Abstract
Background A fusion gene is a hybrid gene consisting of parts from two previously independent genes. Chromosomal rearrangements leading to gene breakage are frequent in high-grade serous ovarian carcinomas and have been reported as a common mechanism for inactivating tumor suppressor genes. However, no fusion genes have been repeatedly reported to be recurrent driver events in ovarian carcinogenesis. We combined genomic and transcriptomic information to identify novel fusion gene candidates and aberrantly expressed genes in ovarian carcinomas. Methods Examined were 19 previously karyotyped ovarian carcinomas (18 of the serous histotype and one undifferentiated). First, karyotypic aberrations were compared to fusion gene candidates identified by RNA sequencing (RNA-seq). In addition, we used exon-level gene expression microarrays as a screening tool to identify aberrantly expressed genes possibly involved in gene fusion events, and compared the findings to the RNA-seq data. Results We found a DPP9-PPP6R3 fusion transcript in one tumor showing a matching genomic 11;19-translocation. Another tumor had a rearrangement of DPP9 with PLIN3. Both rearrangements were associated with diminished expression of the 3′ end of DPP9 corresponding to the breakpoints identified by RNA-seq. For the exon-level expression analysis, candidate fusion partner genes were ranked according to deviating expression compared to the median of the sample set. The results were collated with data obtained from the RNA-seq analysis. Several fusion candidates were identified, among them TMEM123-MMP27, ZBTB46-WFDC13, and PLXNB1-PRKAR2A, all of which led to stronger expression of the 3′ genes. In view of our previous findings of nonrandom rearrangements of chromosome 19 in this cancer type, particular emphasis was given to changes of this chromosome and a DDA1-FAM129C fusion event was identified. Conclusions We have identified novel fusion gene candidates in high-grade serous ovarian carcinoma. DPP9 was involved in two different fusion transcripts that both resulted in deregulated expression of the 3′ end of the transcript and thus possible loss of the active domains in the DPP9 protein. The identified rearrangements might play a role in tumorigenesis or tumor progression. Electronic supplementary material The online version of this article (10.1186/s12885-017-3625-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marianne Lislerud Smebye
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Antonio Agostini
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Bjarne Johannessen
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway.,Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Jim Thorsen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Ben Davidson
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Claes Göran Tropé
- Department of Gynecology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rolf Inge Skotheim
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway.,Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway. .,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
22
|
Lee JJ, Wang TY, Liu CL, Chien MN, Chen MJ, Hsu YC, Leung CH, Cheng SP. Dipeptidyl Peptidase IV as a Prognostic Marker and Therapeutic Target in Papillary Thyroid Carcinoma. J Clin Endocrinol Metab 2017; 102:2930-2940. [PMID: 28575350 DOI: 10.1210/jc.2017-00346] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022]
Abstract
CONTEXT Dipeptidyl peptidase IV (DPP4) is overexpressed in thyroid cancer and certain malignancies. Furthermore, DPP4 has been identified as a discriminatory marker for thyroid cancer. However, it remains unclear whether DPP4 expression plays a prognostic role. OBJECTIVE The aim of this study was to investigate the expression and function of DPP4 in thyroid cancer and the mechanisms involved. DESIGN We determined the expression of DPP4 by immunohistochemistry in tissue microarrays of thyroid tumors. In vitro functional studies were performed after genetic and pharmacological inhibition of DPP4. Gene expression and pathway analyses were used to identify downstream targets. The therapeutic potential of DPP4 inhibition was evaluated in a mouse xenograft model. RESULTS High DPP4 expression was associated with extrathyroidal extension (P < 0.001), BRAF mutation (P < 0.001), and advanced tumor stage (P = 0.007) in papillary thyroid cancer. Patients in the high-DPP4 expression group were less likely to be classified as having no evidence of disease at final follow-up (P = 0.042). DPP4 silencing or treatment with DPP4 inhibitors significantly suppressed colony formation, cell migration, and invasion. Analysis of differentially expressed genes after DPP4 knockdown suggested that the transforming growth factor-β signaling pathway is involved. In vivo experiments revealed that sitagliptin treatment reduced tumor growth and xenograft transforming growth factor-β receptor I expression. CONCLUSIONS Increased DPP4 expression is associated with cellular invasion and more aggressive disease in papillary thyroid cancer. Targeting DPP4 may be a therapeutic strategy for DPP4-expressing thyroid cancer.
Collapse
Affiliation(s)
- Jie-Jen Lee
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan
- Graduate Institute of Medical Sciences and Department of Pharmacology, Taipei Medical University, Taipei 11031, Taiwan
| | - Tao-Yeuan Wang
- Department of Pathology, MacKay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan
| | - Chien-Liang Liu
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan
| | - Ming-Nan Chien
- Division of Endocrinology and Metabolism, Department of Internal Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan
| | - Ming-Jen Chen
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan
- Graduate Institute of Medical Sciences and Department of Pharmacology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 32001, Taiwan
| | - Ching-Hsiang Leung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan
- Graduate Institute of Medical Sciences and Department of Pharmacology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
23
|
Krepela E, Busek P, Hilser M, Vanickova Z, Sedo A. Species-specific real-time RT-PCR analysis of expression of stromal cell genes in a tumor xenotransplantation model in mice. Biochem Biophys Res Commun 2017; 491:126-133. [PMID: 28711492 DOI: 10.1016/j.bbrc.2017.07.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/11/2017] [Indexed: 01/05/2023]
Abstract
Human tumor xenografts in mice together with the species-specific analysis of expressed genes allow to study the molecular processes driving tumor growth and progression in vivo and help to develop and evaluate anticancer therapies. In the present work, we designed and validated species-specific real-time RT-PCR assays for discrimination and quantitation of expression of human and mouse transcripts in cancer and stromal cells including dipeptidyl peptidase (DPP) 4, DPP8, DPP9, fibroblast activation protein (FAP) and CXC chemokine receptor 4 in mixed human-mouse biological samples. Using single species RNA samples and mixed human-mouse RNA samples, we formulated and characterized two-step real-time RT-PCR assays to quantitate expression of the indicated transcripts and described analytical performance of the assays. We also demonstrated the applicability of these assays for species-specific quantitation of transcriptional expression of mouse stromal cell genes including Dpp4, Dpp8, Dpp9, Fap and Cxcr4 in mixed human-mouse RNA samples from human glioma cell-derived tumor xenografts growing in mouse brain.
Collapse
Affiliation(s)
- Evzen Krepela
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Petr Busek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marek Hilser
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zdislava Vanickova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Aleksi Sedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
24
|
Matrasova I, Busek P, Balaziova E, Sedo A. Heterogeneity of molecular forms of dipeptidyl peptidase-IV and fibroblast activation protein in human glioblastomas. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 161:252-260. [PMID: 28452380 DOI: 10.5507/bp.2017.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/17/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND AIMS Proteolytic enzymes contribute to the progression of various cancers. We previously reported increased expression of the proline specific peptidases dipeptidyl peptidase-IV (DPP-IV) and its closest paralogue fibroblast activation protein (FAP) in human glioblastomas. Here we analyze the molecular heterogeneity of DPP-IV and FAP in glioblastomas. METHODS ELISA, isoelectric focusing, 1D and 2D electrophoresis followed by WB or enzyme overlay assay were utilized to analyze DPP-IV and FAP isoforms. Cell fractionation using a Percoll gradient and deglycosylation with PNGase F were performed to analyze the possible basis of DPP-IV and FAP microheterogeneity. RESULTS Molecular forms of DPP-IV with an estimated molecular weight of 140-160 kDa and a pI predominantly 5.8 were detected in human glioblastoma; in some tumors additional isoforms with a more acidic (3.5-5.5) as well as alkaline (8.1) pI were revealed. Using 2D electrophoresis, two to three molecular forms of FAP with an alkaline (7.0-8.5) pI and an estimated MW of 120-140 kDa were identified in glioblastoma tissues. In glioma cell lines in vitro, several isoforms of both enzymes were expressed, however the alkalic forms present in glioblastoma tissues were not detected. Removal of N-linked oligosaccharides decreased the estimated molecular weight of both enzymes; the overall pattern of molecular forms nevertheless remained unchanged. CONCLUSION Several isoforms of DPP-IV and FAP are present in glioblastoma tissue. The absence of alkaline isoforms of both enzymes in glioma cell lines however suggests that isoforms from other, most likely stromal, cell types contribute to the overall pattern seen in glioblastoma tissues.
Collapse
Affiliation(s)
- Ivana Matrasova
- Institute of Biochemistry and Experimental Oncology, 1st Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 12853 Prague 2, Czech Republic
| | - Petr Busek
- Institute of Biochemistry and Experimental Oncology, 1st Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 12853 Prague 2, Czech Republic
| | - Eva Balaziova
- Institute of Biochemistry and Experimental Oncology, 1st Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 12853 Prague 2, Czech Republic
| | - Aleksi Sedo
- Institute of Biochemistry and Experimental Oncology, 1st Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 12853 Prague 2, Czech Republic
| |
Collapse
|
25
|
Maus A, Peters GJ. Glutamate and α-ketoglutarate: key players in glioma metabolism. Amino Acids 2017; 49:21-32. [PMID: 27752843 PMCID: PMC5241329 DOI: 10.1007/s00726-016-2342-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM), or grade IV astrocytoma, is the most common type of primary brain tumor. It has a devastating prognosis with a 2-year-overall survival rate of only 26 % after standard treatment, which includes surgery, radiation, and adjuvant chemotherapy with temozolomide. Also lower grade gliomas are difficult to treat, because they diffusely spread into the brain, where extensive removal of tissue is critical. Better understanding of the cancer's biology is a key for the development of more effective therapy approaches. The discovery of isocitrate dehydrogenase (IDH) mutations in leukemia and glioma drew attention to specific metabolic aberrations in IDH-mutant gliomas. In the center of the metabolic alterations is α-ketoglutarate (αKG), an intermediate metabolite in the tricarboxylic acid (TCA) cycle, and the associated amino acid glutamate (Glu). This article highlights the role of these metabolites in glioma energy and lipid production and indicates possible weak spots of IDH-mutant and IDH-wt gliomas.
Collapse
Affiliation(s)
- Andreas Maus
- Department of Medical Oncology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
- University of Gottingen, Gottingen, Germany
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Busek P, Balaziova E, Matrasova I, Hilser M, Tomas R, Syrucek M, Zemanova Z, Krepela E, Belacek J, Sedo A. Fibroblast activation protein alpha is expressed by transformed and stromal cells and is associated with mesenchymal features in glioblastoma. Tumour Biol 2016; 37:13961-13971. [PMID: 27492457 DOI: 10.1007/s13277-016-5274-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/15/2016] [Indexed: 12/16/2022] Open
Abstract
Glioblastomas are deadly neoplasms resistant to current treatment modalities. Fibroblast activation protein (FAP) is a protease which is not expressed in most of the normal adult tissues but is characteristically present in the stroma of extracranial malignancies. FAP is considered a potential therapeutic target and is associated with a worse patient outcome in some cancers. The FAP localization in the glioma microenvironment and its relation to patient survival are unknown. By analyzing 56 gliomas and 15 non-tumorous brain samples, we demonstrate increased FAP expression in a subgroup of high-grade gliomas, in particular on the protein level. FAP expression was most elevated in the mesenchymal subtype of glioblastoma. It was neither associated with glioblastoma patient survival in our patient cohort nor in publicly available datasets. FAP was expressed in both transformed and stromal cells; the latter were frequently localized around dysplastic blood vessels and commonly expressed mesenchymal markers. In a mouse xenotransplantation model, FAP was expressed in glioma cells in a subgroup of tumors that typically did not express the astrocytic marker GFAP. Endogenous FAP was frequently upregulated and part of the FAP+ host cells coexpressed the CXCR4 chemokine receptor. In summary, FAP is expressed by several constituents of the glioblastoma microenvironment, including stromal non-malignant mesenchymal cells recruited to and/or activated in response to glioma growth. The limited expression of FAP in healthy tissues together with its presence in both transformed and stromal cells suggests that FAP may be a candidate target for specific delivery of therapeutic agents in glioblastoma.
Collapse
Affiliation(s)
- Petr Busek
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 128 53, Prague 2, Czech Republic.
| | - Eva Balaziova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 128 53, Prague 2, Czech Republic
| | - Ivana Matrasova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 128 53, Prague 2, Czech Republic
| | - Marek Hilser
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 128 53, Prague 2, Czech Republic
| | - Robert Tomas
- Department of Neurosurgery, Na Homolce Hospital, Roentgenova 2, 150 30, Prague 5, Czech Republic
| | - Martin Syrucek
- Department of Pathology, Na Homolce Hospital, Roentgenova 2, 150 30, Prague 5, Czech Republic
| | - Zuzana Zemanova
- Institute of Clinical Biochemistry and Laboratory Diagnostics of the First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, U Nemocnice 2, 128 01, Prague 2, Czech Republic
| | - Evzen Krepela
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 128 53, Prague 2, Czech Republic
| | - Jaromir Belacek
- Institute of Biophysics and Bioinformatics, First Faculty of Medicine, Charles University in Prague, Salmovská 1, 120 00, Prague 2, Czech Republic
| | - Aleksi Sedo
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 128 53, Prague 2, Czech Republic.
| |
Collapse
|
27
|
Beckenkamp A, Davies S, Willig JB, Buffon A. DPPIV/CD26: a tumor suppressor or a marker of malignancy? Tumour Biol 2016; 37:7059-73. [DOI: 10.1007/s13277-016-5005-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/25/2016] [Indexed: 12/12/2022] Open
|
28
|
Beckenkamp A, Willig JB, Santana DB, Nascimento J, Paccez JD, Zerbini LF, Bruno AN, Pilger DA, Wink MR, Buffon A. Differential Expression and Enzymatic Activity of DPPIV/CD26 Affects Migration Ability of Cervical Carcinoma Cells. PLoS One 2015. [PMID: 26222679 PMCID: PMC4519168 DOI: 10.1371/journal.pone.0134305] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dipeptidyl peptidase IV (DPPIV/CD26) is a transmembrane glycoprotein that inactivates or degrades some bioactive peptides and chemokines. For this reason, it regulates cell proliferation, migration and adhesion, showing its role in cancer processes. This enzyme is found mainly anchored onto the cell membrane, although it also has a soluble form, an enzymatically active isoform. In the present study, we investigated DPPIV/CD26 activity and expression in cervical cancer cell lines (SiHa, HeLa and C33A) and non-tumorigenic HaCaT cells. The effect of the DPPIV/CD26 inhibitor (sitagliptin phosphate) on cell migration and adhesion was also evaluated. Cervical cancer cells and keratinocytes exhibited DPPIV/CD26 enzymatic activity both membrane-bound and in soluble form. DPPIV/CD26 expression was observed in HaCaT, SiHa and C33A, while in HeLa cells it was almost undetectable. We observed higher migratory capacity of HeLa, when compared to SiHa. But in the presence of sitagliptin SiHa showed an increase in migration, indicating that, at least in part, cell migration is regulated by DPPIV/CD26 activity. Furthermore, in the presence of sitagliptin phosphate, SiHa and HeLa cells exhibited a significant reduction in adhesion. However this mechanism seems to be mediated independent of DPPIV/CD26. This study demonstrates, for the first time, the activity and expression of DPPIV/CD26 in cervical cancer cells and the effect of sitagliptin phosphate on cell migration and adhesion.
Collapse
Affiliation(s)
- Aline Beckenkamp
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Júlia Biz Willig
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Danielle Bertodo Santana
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jéssica Nascimento
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Juliano Domiraci Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cancer Genomics Group, Cape Town, South Africa
| | - Luiz Fernando Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cancer Genomics Group, Cape Town, South Africa
| | | | - Diogo André Pilger
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Andréia Buffon
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- * E-mail:
| |
Collapse
|
29
|
Trylcova J, Busek P, Smetana K, Balaziova E, Dvorankova B, Mifkova A, Sedo A. Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro. Tumour Biol 2015; 36:5873-9. [DOI: 10.1007/s13277-015-3259-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/13/2015] [Indexed: 12/13/2022] Open
|
30
|
Co-expression of the homologous proteases fibroblast activation protein and dipeptidyl peptidase-IV in the adult human Langerhans islets. Histochem Cell Biol 2014; 143:497-504. [PMID: 25361590 DOI: 10.1007/s00418-014-1292-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2014] [Indexed: 02/05/2023]
Abstract
Fibroblast activation protein (FAP, seprase, EC 3.4.21.B28) and dipeptidyl peptidase-IV (DPP-IV, CD26, EC 3.4.14.5) are homologous serine proteases implicated in the modulation of the bioavailability and thus the function of a number of biologically active peptides. In spite of their generally nonoverlapping expression patterns, DPP-IV and FAP are co-expressed and probably co-regulated in certain cell types suggesting that for some biological processes their functional synergy is essential. By an in situ enzymatic activity assay, we show an abundant DPP-IV-like enzymatic activity sensitive to a highly specific DPP-IV inhibitor sitagliptin and corresponding DPP-IV immunoreactivity in the adult human islets of Langerhans. Moreover, the homologous protease FAP was present in the human endocrine pancreas and was co-expressed with DPP-IV. DPP-IV and FAP were found in the pancreatic alpha cells as determined by the co-localization with glucagon immunoreactivity. In summary, we show abundant enzymatic activity of the canonical DPP-IV (CD26) in Langerhans islets in the natural tissue context and demonstrate for the first time the co-expression of FAP and DPP-IV in pancreatic alpha cells in adult humans. Given their ability to proteolytically modify several biologically active peptides, both proteases have the potential to modulate the paracrine signaling in the human Langerhans islets.
Collapse
|
31
|
Sharoyan S, Antonyan A, Mardanyan S, Harutyunyan H, Movsisyan N, Hovnanyan N, Hovnanyan K. Interaction of dipeptydil peptidase IV with amyloid peptides. Neurochem Int 2013; 62:1048-54. [DOI: 10.1016/j.neuint.2013.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/26/2013] [Accepted: 03/30/2013] [Indexed: 01/14/2023]
|