1
|
Tong Y, Chen R, Lu X, Chen C, Sun G, Yu X, Lyu S, Feng M, Long Y, Gong L, Chen L. A nanobody-enzyme fusion protein targeting PD-L1 and sialic acid exerts anti-tumor effects by C-type lectin pathway-mediated tumor associated macrophages repolarizing. Int J Biol Macromol 2025; 298:139953. [PMID: 39824395 DOI: 10.1016/j.ijbiomac.2025.139953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Aberrant sialylated glycosylation in the tumor microenvironment is a novel immune suppression pathway, which has garnered significant attention as a targetable glycoimmune checkpoint for cancer immunotherapy to address the dilemma of existing therapies. However, rational drug design and in-depth mechanistic studies are urgently required for tumor sialic acid to become valuable glycoimmune targets. In this study, we explored the positive correlation of PD-L1 and sialyltransferase expression in clinical colorectal cancer tissues and identified their mutual regulation effects in macrophages. Subsequently, we characterized a new sialidase with excellent properties from human oral symbiotic bacteria and then developed a novel nanobody-enzyme fusion protein, designated as Nb16-Sia, to concurrently target the PD-L1 and sialic acid. Results from syngeneic colon tumor models reveal superior efficacy of Nb16-Sia over monotherapy and combinations, which could remodel the tumor immune microenvironment. Mechanistically, Nb16-Sia, which could repolarize macrophages from the tumor-promoting M2 to anti-tumor M1 phenotype via the C-type lectin pathway, exerted its antitumor efficacy mainly by regulating tumor-associated macrophages. Our strategy of nanobody-enzyme fusion protein effectively enables the delivery of sialidase, allows the collaboration between anti-PD-L1 nanobody and sialidase in combating tumors, and holds considerable promise for further development.
Collapse
Affiliation(s)
- Yongliang Tong
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Runqiu Chen
- Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China; Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinrong Lu
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Cuiying Chen
- Department of Research and Development, Sysdiagno (Nanjing) Biotech Co., Ltd, Nanjing, Jiangsu Province, China
| | - Guiqin Sun
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiaolu Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shaoxian Lyu
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meiqing Feng
- Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China; Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China.
| | - Yiru Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Li Chen
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China; Translational Glycomics Research Center, Fudan Zhangjiang Institute, Shanghai, China.
| |
Collapse
|
2
|
Tangsudjai S, Fujita A, Tamura T, Okuno T, Oda M, Kato K. ST3 beta-galactoside alpha-2,3-sialyltransferase 4 (St3gal4) deficiency reveals correlations among alkaline phosphatase activity, metabolic parameters, and fear-related behavior in mice. Metab Brain Dis 2025; 40:125. [PMID: 39951166 PMCID: PMC11828824 DOI: 10.1007/s11011-025-01551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
ST3 beta-galactoside alpha-2,3-sialyltransferase 4 (ST3GAL4) is a sialyltransferase involved in the biosynthesis of alpha2,3-sialic acid on glycoproteins and glycolipids. In mice, St3gal4 gene expression plays a crucial role in modulating epilepsy and anxiety/depression through its expression in thalamic neurons. Genome-wide association studies (GWAS) have identified several peripheral metabolic traits strongly associated with ST3GAL4 in humans. However, whether the symptoms observed in mice are associated with metabolic changes remains unclear. This study investigated the effects of St3gal4 deficiency on the same metabolic parameters in mice as those in humans. The parameters examined included body weight, plasma biochemistry, specifically alkaline phosphatase (ALP), protein, and cholesterol levels, and free amino acids profiles, resulting in elevated ALP and reduced tryptophan and total cholesterol (T-Cho) levels in St3gal4-knockout (KO) mice. Additionally, clearance of blood glucose was delayed in KO male mice. These findings suggest mouse St3gal4 deficiency correlated with modulated ALP, tryptophan, and T-Cho levels in the plasma. Next, brain ALP activity was compared between St3gal4-KO mice and wild-type (WT) mice, focusing on the thalamus. Fear conditioning tests assessed the relationship between behavior and ALP activity in plasma and brain. In KO mice, the enhanced tone freezing positively correlated with plasma ALP levels. Conversely, thalamic ALP activity was greatly reduced in KO mice, negatively correlating with plasma ALP. These findings suggest that mouse St3gal4 deficiency influences ALP activity in both thalamus and plasma, associating with emotional behaviors and metabolic changes.
Collapse
Affiliation(s)
- Siriporn Tangsudjai
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
- Veterinary Science, Mahidol University, Salaya Phutthamonton, Nakhonpathom, 73170, Thailand
| | - Akiko Fujita
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| | - Toshiya Tamura
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| | - Takaya Okuno
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| | - Mika Oda
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| | - Keiko Kato
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan.
| |
Collapse
|
3
|
Gu J, Isaji T. Specific sialylation of N-glycans and its novel regulatory mechanism. Glycoconj J 2024; 41:175-183. [PMID: 38958800 PMCID: PMC11329402 DOI: 10.1007/s10719-024-10157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Altered glycosylation is a common feature of cancer cells. Some subsets of glycans are found to be frequently enriched on the tumor cell surface and implicated in different tumor phenotypes. Among these, changes in sialylation have long been associated with metastatic cell behaviors such as invasion and enhanced cell survival. Sialylation typically exists in three prominent linkages: α2,3, α2,6, and α2,8, catalyzed by a group of sialyltransferases. The aberrant expression of all three linkages has been related to cancer progression. The increased α2,6 sialylation on N-glycans catalyzed by β-galactoside α2,6 sialyltransferase 1 (ST6Gal1) is frequently observed in many cancers. In contrast, functions of α2,3 sialylation on N-glycans catalyzed by at least three β-galactoside α2,3-sialyltransferases, ST3Gal3, ST3Gal4, and ST3Gal6 remain elusive due to a possibility of compensating for one another. In this minireview, we briefly describe functions of sialylation and recent findings that different α2,3 sialyltransferases specifically modify target proteins, as well as sialylation regulatory mechanisms vis a complex formation among integrin α3β1, Golgi phosphoprotein 3 (GOLPH3), phosphatidylinositol 4-kinase IIα (PI4KIIα), focal adhesion kinase (FAK) and sialyltransferase, which suggests a new concept for the regulation of glycosylation in cell biology.
Collapse
Affiliation(s)
- Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| |
Collapse
|
4
|
Zheng W, Zhang H, Huo Y, Zhang L, Sa L, Shan L, Wang T. The role of ST3GAL4 in glioma malignancy, macrophage infiltration, and prognostic outcomes. Heliyon 2024; 10:e29829. [PMID: 38707472 PMCID: PMC11066652 DOI: 10.1016/j.heliyon.2024.e29829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Background Glioma, a prevalent malignancy of the brain and spinal cord, poses a considerable threat to human health. The association between aberrant sialic acid modification and glioma progression has been suggested, but the precise mechanism is still elusive. ST3GAL4, a sialoglycosyltransferase, is implicated in increased metastatic potential and poor prognosis in various cancers; however, its specific role in glioma requires further elucidation. Methods We evaluated ST3GAL4 expression levels and their clinical relevance using the TCGA database, and we assessed immune infiltration via the Tumor Immune Evaluation Resource (TIMER) database. In vitro experiments were performed to determine the effects of ST3GAL4 knockdown on glioma cell malignancy, with additional co-culture assays to assess its impact on macrophage phenotype. Results ST3GAL4 expression was markedly elevated in glioma tissues compared to normal brain tissues, with a strong correlation to glioma patient clinical characteristics. Survival analyses and receiver operating characteristic (ROC) curves suggested that ST3GAL4 is a feasible diagnostic and prognostic biomarker for glioma. Knockdown studies revealed that ST3GAL4 inhibition reduces glioma cell line proliferation, migration, and invasion, while causing G1 phase cell cycle arrest. ST3GAL4 appears to mediate glioma progression through extracellular matrix reorganization and EMT signaling pathway activation, further contributing to M2 macrophage polarization and infiltration within the tumor microenvironment. Conclusion Our research highlights the critical role of ST3GAL4 in glioma development, positioning it as a promising candidate for diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Wenjing Zheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Han Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yi Huo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Lingling Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Longqi Sa
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Lequn Shan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Tao Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
5
|
Zhang SZ, Lobo A, Li PF, Zhang YF. Sialylated glycoproteins and sialyltransferases in digestive cancers: Mechanisms, diagnostic biomarkers, and therapeutic targets. Crit Rev Oncol Hematol 2024; 197:104330. [PMID: 38556071 DOI: 10.1016/j.critrevonc.2024.104330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Sialic acid (SA), as the ultimate epitope of polysaccharides, can act as a cap at the end of polysaccharide chains to prevent their overextension. Sialylation is the enzymatic process of transferring SA residues onto polysaccharides and is catalyzed by a group of enzymes known as sialyltransferases (SiaTs). It is noteworthy that the sialylation level of glycoproteins is significantly altered when digestive cancer occurs. And this alteration exhibits a close correlation with the progression of these cancers. In this review, from the perspective of altered SiaTs expression levels and changed glycoprotein sialylation patterns, we summarize the pathogenesis of gastric cancer (GC), colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDAC), and hepatocellular carcinoma (HCC). Furthermore, we propose potential early diagnostic biomarkers and prognostic indicators for different digestive cancers. Finally, we summarize the therapeutic value of sialylation in digestive system cancers.
Collapse
Affiliation(s)
- Shao-Ze Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Amara Lobo
- Department of Critical Care Medicine Holy Family Hospital, St Andrew's Road, Bandra (West), Mumbai 400050, India
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
6
|
Boelaars K, Rodriguez E, Huinen ZR, Liu C, Wang D, Springer BO, Olesek K, Goossens-Kruijssen L, van Ee T, Lindijer D, Tak W, de Haas A, Wehry L, Nugteren-Boogaard JP, Mikula A, de Winde CM, Mebius RE, Tuveson DA, Giovannetti E, Bijlsma MF, Wuhrer M, van Vliet SJ, van Kooyk Y. Pancreatic cancer-associated fibroblasts modulate macrophage differentiation via sialic acid-Siglec interactions. Commun Biol 2024; 7:430. [PMID: 38594506 PMCID: PMC11003967 DOI: 10.1038/s42003-024-06087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Despite recent advances in cancer immunotherapy, pancreatic ductal adenocarcinoma (PDAC) remains unresponsive due to an immunosuppressive tumor microenvironment, which is characterized by the abundance of cancer-associated fibroblasts (CAFs). Once identified, CAF-mediated immune inhibitory mechanisms could be exploited for cancer immunotherapy. Siglec receptors are increasingly recognized as immune checkpoints, and their ligands, sialic acids, are known to be overexpressed by cancer cells. Here, we unveil a previously unrecognized role of sialic acid-containing glycans on PDAC CAFs as crucial modulators of myeloid cells. Using multiplex immunohistochemistry and transcriptomics, we show that PDAC stroma is enriched in sialic acid-containing glycans compared to tumor cells and normal fibroblasts, and characterized by ST3GAL4 expression. We demonstrate that sialic acids on CAF cell lines serve as ligands for Siglec-7, -9, -10 and -15, distinct from the ligands on tumor cells, and that these receptors are found on myeloid cells in the stroma of PDAC biopsies. Furthermore, we show that CAFs drive the differentiation of monocytes to immunosuppressive tumor-associated macrophages in vitro, and that CAF sialylation plays a dominant role in this process compared to tumor cell sialylation. Collectively, our findings unravel sialic acids as a mechanism of CAF-mediated immunomodulation, which may provide targets for immunotherapy in PDAC.
Collapse
Affiliation(s)
- Kelly Boelaars
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Ernesto Rodriguez
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Zowi R Huinen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Chang Liu
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Pulmonary Medicine, De Boelelaan, 1117, Amsterdam, the Netherlands
| | - Di Wang
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Babet O Springer
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Katarzyna Olesek
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Laura Goossens-Kruijssen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Thomas van Ee
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Dimitri Lindijer
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Willemijn Tak
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Aram de Haas
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Laetitia Wehry
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Joline P Nugteren-Boogaard
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Aleksandra Mikula
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Charlotte M de Winde
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Reina E Mebius
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | | | - Elisa Giovannetti
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Medical Oncology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Maarten F Bijlsma
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Manfred Wuhrer
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Sandra J van Vliet
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands.
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Al Saoud R, Hamrouni A, Idris A, Mousa WK, Abu Izneid T. Recent advances in the development of sialyltransferase inhibitors to control cancer metastasis: A comprehensive review. Biomed Pharmacother 2023; 165:115091. [PMID: 37421784 DOI: 10.1016/j.biopha.2023.115091] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023] Open
Abstract
Metastasis accounts for the majority of cancer-associated mortalities, representing a huge health and economic burden. One of the mechanisms that enables metastasis is hypersialylation, characterized by an overabundance of sialylated glycans on the tumor surface, which leads to repulsion and detachment of cells from the original tumor. Once the tumor cells are mobilized, sialylated glycans hijack the natural killer T-cells through self-molecular mimicry and activatea downstream cascade of molecular events that result in inhibition of cytotoxicity and inflammatory responses against cancer cells, ultimately leading to immune evasion. Sialylation is mediated by a family of enzymes known as sialyltransferases (STs), which catalyse the transfer of sialic acid residue from the donor, CMP-sialic acid, onto the terminal end of an acceptor such as N-acetylgalactosamine on the cell-surface. Upregulation of STs increases tumor hypersialylation by up to 60% which is considered a distinctive hallmark of several types of cancers such as pancreatic, breast, and ovarian cancer. Therefore, inhibiting STs has emerged as a potential strategy to prevent metastasis. In this comprehensive review, we discuss the recent advances in designing novel sialyltransferase inhibitors using ligand-based drug design and high-throughput screening of natural and synthetic entities, emphasizing the most successful approaches. We analyse the limitations and challenges of designing selective, potent, and cell-permeable ST inhibitors that hindered further development of ST inhibitors into clinical trials. We conclude by analysing emerging opportunities, including advanced delivery methods which further increase the potential of these inhibitors to enrich the clinics with novel therapeutics to combat metastasis.
Collapse
Affiliation(s)
- Ranim Al Saoud
- Pharmaceutical Sciences Program, College of Pharmacy, Al Ain University, P.O. Box 112612, Al Ain, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, P.O. Box 112612, Abu Dhabi, United Arab Emirates
| | - Amar Hamrouni
- Pharmaceutical Sciences Program, College of Pharmacy, Al Ain University, P.O. Box 112612, Al Ain, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, P.O. Box 112612, Abu Dhabi, United Arab Emirates
| | - Adi Idris
- School of Biomedical Sciences, Queensland University of Technology, Gardens Point, QLD, Australia; School of Pharmacy and Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Walaa K Mousa
- Pharmaceutical Sciences Program, College of Pharmacy, Al Ain University, P.O. Box 112612, Al Ain, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, P.O. Box 112612, Abu Dhabi, United Arab Emirates
| | - Tareq Abu Izneid
- Pharmaceutical Sciences Program, College of Pharmacy, Al Ain University, P.O. Box 112612, Al Ain, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, P.O. Box 112612, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
8
|
Costa AF, Senra E, Faria-Ramos I, Teixeira A, Morais J, Pacheco M, Reis CA, Gomes C. ST3GalIV drives SLeX biosynthesis in gastrointestinal cancer cells and associates with cancer cell motility. Glycoconj J 2023; 40:421-433. [PMID: 37074623 PMCID: PMC10335957 DOI: 10.1007/s10719-023-10113-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 04/20/2023]
Abstract
Expression of sialyl Lewis X (SLeX) is a well-documented event during malignant transformation of cancer cells, and largely associates with their invasive and metastatic properties. Glycoproteins and glycolipids are the main carriers of SLeX, whose biosynthesis is known to be performed by different glycosyltransferases, namely by the family of β-galactoside-α2,3-sialyltransferases (ST3Gals). In this study, we sought to elucidate the role of ST3GalIV in the biosynthesis of SLeX and in malignant properties of gastrointestinal (GI) cancer cells. By immunofluorescent screening, we selected SLeX-positive GI cancer cell lines and silenced ST3GalIV expression via CRISPR/Cas9. Flow cytometry, immunofluorescence and western blot analysis showed that ST3GalIV KO efficiently impaired SLeX expression in most cancer cell lines, with the exception of the colon cancer cell line LS174T. The impact of ST3GalIV KO in the biosynthesis of SLeX isomer SLeA and non sialylated Lewis X and A were also evaluated and overall, ST3GalIV KO led to a decreased expression of SLeA and an increased expression in both LeX and LeA. In addition, the abrogation of SLeX on GI cancer cells led to a reduction in cell motility. Furthermore, ST3GalVI KO was performed in LS174T ST3GalIV KO cells, resulting in the complete abolishment of SLeX expression and consequent reduced motility capacity of those cells. Overall, these findings portray ST3GalIV as the main, but not the only, enzyme driving the biosynthesis of SLeX in GI cancer cells, with a functional impact on cancer cell motility.
Collapse
Affiliation(s)
- Ana F Costa
- I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Emanuel Senra
- I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Isabel Faria-Ramos
- I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Andreia Teixeira
- I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Science, University of Porto, Porto, Portugal
| | - João Morais
- I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Mariana Pacheco
- I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Celso A Reis
- I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.
- Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Catarina Gomes
- I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.
| |
Collapse
|
9
|
Liu W, Huang X, Luo W, Liu X, Chen W. The Role of Paxillin Aberrant Expression in Cancer and Its Potential as a Target for Cancer Therapy. Int J Mol Sci 2023; 24:ijms24098245. [PMID: 37175948 PMCID: PMC10179295 DOI: 10.3390/ijms24098245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Paxillin is a multi-domain adaptor protein. As an important member of focal adhesion (FA) and a participant in regulating cell movement, paxillin plays an important role in physiological processes such as nervous system development, embryonic development, and vascular development. However, increasing evidence suggests that paxillin is aberrantly expressed in many cancers. Many scholars have also recognized that the abnormal expression of paxillin is related to the prognosis, metastases, invasion, survival, angiogenesis, and other aspects of malignant tumors, suggesting that paxillin may be a potential cancer therapeutic target. Therefore, the study of how aberrant paxillin expression affects the process of tumorigenesis and metastasis will help to develop more efficacious antitumor drugs. Herein, we review the structure of paxillin and its function and expression in tumors, paying special attention to the multifaceted effects of paxillin on tumors, the mechanism of tumorigenesis and progression, and its potential role in tumor therapy. We also hope to provide a reference for the clinical prognosis and development of new tumor therapeutic targets.
Collapse
Affiliation(s)
- Weixian Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Xinxian Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Weizhao Luo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Weichun Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
10
|
Miró L, López J, Guerrero PE, Martínez-Bosch N, Manero-Rupérez N, Moreno M, Ortiz MR, Llop E, Navarro P, Peracaula R. Sialyltransferase Inhibitor Ac 53F axNeu5Ac Reverts the Malignant Phenotype of Pancreatic Cancer Cells, and Reduces Tumor Volume and Favors T-Cell Infiltrates in Mice. Cancers (Basel) 2022; 14:cancers14246133. [PMID: 36551619 PMCID: PMC9776040 DOI: 10.3390/cancers14246133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Hypersialylation is a feature of pancreatic ductal adenocarcinoma (PDA) and it has been related to tumor malignancy and immune suppression. In this work, we have evaluated the potential of the sialyltransferase inhibitor, Ac53FaxNeu5Ac, to decrease tumor sialoglycans in PDA and to revert its malignant phenotype. Sialoglycans on PDA cells were evaluated by flow cytometry, and the functional impact of Ac53FaxNeu5Ac was assessed using E-selectin adhesion, migration, and invasion assays. PDA tumors were generated in syngeneic mice from KC cells and treated with Ac53FaxNeu5Ac to evaluate tumor growth, mice survival, and its impact on blocking sialic acid (SA) and on the tumor immune component. Ac53FaxNeu5Ac treatment on human PDA cells decreased α2,3-SA and sialyl-Lewisx, which resulted in a reduction in their E-selectin adhesion, and in their migratory and invasive capabilities. Subcutaneous murine tumors treated with Ac53FaxNeu5Ac reduced their volume, their SA expression, and modified their immune component, with an increase in CD8+ T-lymphocytes and NK cells. In conclusion, Ac53FaxNeu5Ac treatment weakened PDA cells' malignant phenotype, thereby reducing tumor growth while favoring anti-tumor immune surveillance. Altogether, these results show the positive impact of reducing SA expression by inhibiting cell sialyltransferases and open the way to use sialyltransferase inhibitors to target this dismal disease.
Collapse
Affiliation(s)
- Laura Miró
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Júlia López
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Pedro E. Guerrero
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Neus Martínez-Bosch
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, 08003 Barcelona, Spain
| | - Noemí Manero-Rupérez
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, 08003 Barcelona, Spain
| | - Mireia Moreno
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, 08003 Barcelona, Spain
| | - M. Rosa Ortiz
- Pathology Department, Josep Trueta University Hospital, 17007 Girona, Spain
| | - Esther Llop
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Pilar Navarro
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, 08003 Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB)-CSIC, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
- Correspondence: ; Tel.: +34-972418370
| |
Collapse
|
11
|
Nag S, Mandal A, Joshi A, Jain N, Srivastava RS, Singh S, Khattri A. Sialyltransferases and Neuraminidases: Potential Targets for Cancer Treatment. Diseases 2022; 10:diseases10040114. [PMID: 36547200 PMCID: PMC9777960 DOI: 10.3390/diseases10040114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Cancers are the leading cause of death, causing around 10 million deaths annually by 2020. The most common cancers are those affecting the breast, lungs, colon, and rectum. However, it has been noted that cancer metastasis is more lethal than just cancer incidence and accounts for more than 90% of cancer deaths. Thus, early detection and prevention of cancer metastasis have the capability to save millions of lives. Finding novel biomarkers and targets for screening, determination of prognosis, targeted therapies, etc., are ways of doing so. In this review, we propose various sialyltransferases and neuraminidases as potential therapeutic targets for the treatment of the most common cancers, along with a few rare ones, on the basis of existing experimental and in silico data. This compilation of available cancer studies aiming at sialyltransferases and neuraminidases will serve as a guide for scientists and researchers working on possible targets for various cancers and will also provide data about the existing drugs which inhibit the action of these enzymes.
Collapse
Affiliation(s)
- Sagorika Nag
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Abhimanyu Mandal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Aryaman Joshi
- Department of Chemical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Neeraj Jain
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ravi Shanker Srivastava
- Department of Pharmacology, Career Institute of Medical Sciences & Hospital, Lucknow 226020, India
| | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Arun Khattri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
- Correspondence: ; Tel.: +91-70-6811-1755
| |
Collapse
|
12
|
Marciel MP, Haldar B, Hwang J, Bhalerao N, Bellis SL. Role of tumor cell sialylation in pancreatic cancer progression. Adv Cancer Res 2022; 157:123-155. [PMID: 36725107 PMCID: PMC11342334 DOI: 10.1016/bs.acr.2022.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies and is currently the third leading cause of cancer death. The aggressiveness of PDAC stems from late diagnosis, early metastasis, and poor efficacy of current chemotherapies. Thus, there is an urgent need for effective biomarkers for early detection of PDAC and development of new therapeutic strategies. It has long been known that cellular glycosylation is dysregulated in pancreatic cancer cells, however, tumor-associated glycans and their cognate glycosylating enzymes have received insufficient attention as potential clinical targets. Aberrant glycosylation affects a broad range of pathways that underpin tumor initiation, metastatic progression, and resistance to cancer treatment. One of the prevalent alterations in the cancer glycome is an enrichment in a select group of sialylated glycans including sialylated, branched N-glycans, sialyl Lewis antigens, and sialylated forms of truncated O-glycans such as the sialyl Tn antigen. These modifications affect the activity of numerous cell surface receptors, which collectively impart malignant characteristics typified by enhanced cell proliferation, migration, invasion and apoptosis-resistance. Additionally, sialic acids on tumor cells engage inhibitory Siglec receptors on immune cells to dampen anti-tumor immunity, further promoting cancer progression. The goal of this review is to summarize the predominant changes in sialylation occurring in pancreatic cancer, the biological functions of sialylated glycoproteins in cancer pathogenesis, and the emerging strategies for targeting sialoglycans and Siglec receptors in cancer therapeutics.
Collapse
Affiliation(s)
- Michael P Marciel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Barnita Haldar
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nikita Bhalerao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
13
|
Singh P, Joon A, Kumari M, Singh T, Bal A, Maan P, Ghosh S. Role of a Disease-associated ST3Gal-4 in Non-small Cell Lung Cancer. Cell Biochem Biophys 2022; 80:781-793. [PMID: 36083411 DOI: 10.1007/s12013-022-01091-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/04/2022] [Indexed: 11/24/2022]
Abstract
Sialylation promotes tumorigenesis by affecting various cancer-related events, including apoptosis inhibition, cell growth, invasion, migration, metastasis, chemo-resistance, and immunomodulation in favor of tumor progression. An altered expression of sialyltransferase enzymes is responsible for synthesizing various tumor-associated sialylated structures. In the present study, our findings have revealed a significant up-regulation of ST3Gal-4 transcript in the two major subtypes of NSCLC cell lines [squamous cell carcinoma cell line (NCI-H520) and adenocarcinoma cell line (A549)]. Thus, the role of the ST3Gal-4 gene was assessed on cancer-associated signal transduction pathways in these cells in view of proliferation, invasion, and migration. ST3Gal-4 was silenced by transfection of both the cell lines with esi-ST3Gal-4-RNA, which RT-PCR and western immunoblotting confirmed. Silencing of ST3Gal-4 resulted in a decreased expression of MAL-I interacting membrane-HSP60, identified earlier as an α2,3-sialylated glycoprotein, thus pointing towards the possible role of ST3Gal-4 in its sialylation. The proliferation, invasion, and migration of both types of NSCLC cells were reduced significantly in the ST3Gal-4 silenced cells. Our findings were substantiated by the down-regulation of β-catenin and E-cadherin, a reduced expression of activated AKT1, ERK1/2, and NF-ƙB in these cells. We propose that ST3Gal-4 may be the disease-associated sialyltransferase involved in α2,3 sialylation of the membrane proteins, including HSP60 of the NSCLC cells. This may lead to the conformational alteration of these proteins, required for the activation of E-cadherin/β-catenin, AKT, and ERK/NF-ƙB mediated signal transduction pathways in these cells, resulting in their proliferation, invasion, and migration.
Collapse
Affiliation(s)
- Praveen Singh
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | - Archana Joon
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | - Munmun Kumari
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | - Tanya Singh
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | - Amanjit Bal
- Department of Histopathology, PGIMER, Chandigarh, 160012, India
| | - Pratibha Maan
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | - Sujata Ghosh
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India.
| |
Collapse
|
14
|
Characterization of Mesothelin Glycosylation in Pancreatic Cancer: Decreased Core Fucosylated Glycoforms in Pancreatic Cancer Patients’ Sera. Biomedicines 2022; 10:biomedicines10081942. [PMID: 36009489 PMCID: PMC9405996 DOI: 10.3390/biomedicines10081942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Currently, there are no reliable biomarkers for the diagnosis of pancreatic cancer (PaC). Glycoproteomic approaches that analyze the glycan determinants on specific glycoproteins have proven useful to develop more specific cancer biomarkers than the corresponding protein levels. In PaC, mesothelin (MSLN) is a neo-expressed glycoprotein. MSLN glycosylation has not been described and could be altered in PaC. In this work, we aimed to characterize MSLN glycans from PaC cells and serum samples to assess their potential usefulness as PaC biomarkers. First, we analyzed MSLN glycans from PaC cell lines and then we developed an enzyme-linked lectin assay to measure core fucosylated-MSLN (Cf-MSLN) glycoforms. MSLN glycans from PaC cells were analyzed by glycan sequencing and through Western blotting with lectins. All of the cell lines secreted MSLN, with its three N-glycosylation sites occupied by complex-type N-glycans, which were mainly α2,3-sialylated, core fucosylated and highly branched. The Cf-MSLN glycoforms were quantified on PaC serum samples, and compared with MSLN protein levels. The Cf-MSLN was significantly decreased in PaC patients compared to control sera, while no differences were detected by using MSLN protein levels. In conclusion, Cf-MSLN glycoforms were differently expressed in PaC, which opens the way to further investigate their usefulness as PaC biomarkers.
Collapse
|
15
|
Chan C, Lustig M, Baumann N, Valerius T, van Tetering G, Leusen JHW. Targeting Myeloid Checkpoint Molecules in Combination With Antibody Therapy: A Novel Anti-Cancer Strategy With IgA Antibodies? Front Immunol 2022; 13:932155. [PMID: 35865547 PMCID: PMC9295600 DOI: 10.3389/fimmu.2022.932155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy with therapeutic antibodies has shown a lack of durable responses in some patients due to resistance mechanisms. Checkpoint molecules expressed by tumor cells have a deleterious impact on clinical responses to therapeutic antibodies. Myeloid checkpoints, which negatively regulate macrophage and neutrophil anti-tumor responses, are a novel type of checkpoint molecule. Myeloid checkpoint inhibition is currently being studied in combination with IgG-based immunotherapy. In contrast, the combination with IgA-based treatment has received minimal attention. IgA antibodies have been demonstrated to more effectively attract and activate neutrophils than their IgG counterparts. Therefore, myeloid checkpoint inhibition could be an interesting addition to IgA treatment and has the potential to significantly enhance IgA therapy.
Collapse
Affiliation(s)
- Chilam Chan
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marta Lustig
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Niklas Baumann
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Geert van Tetering
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Jeanette H. W. Leusen,
| |
Collapse
|
16
|
Lumibao JC, Tremblay JR, Hsu J, Engle DD. Altered glycosylation in pancreatic cancer and beyond. J Exp Med 2022; 219:e20211505. [PMID: 35522218 PMCID: PMC9086500 DOI: 10.1084/jem.20211505] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the deadliest cancers and is projected to soon be the second leading cause of cancer death. Median survival of PDA patients is 6-10 mo, with the majority of diagnoses occurring at later, metastatic stages that are refractory to treatment and accompanied by worsening prognoses. Glycosylation is one of the most common types of post-translational modifications. The complex landscape of glycosylation produces an extensive repertoire of glycan moieties, glycoproteins, and glycolipids, thus adding a dynamic and tunable level of intra- and intercellular signaling regulation. Aberrant glycosylation is a feature of cancer progression and influences a broad range of signaling pathways to promote disease onset and progression. However, despite being so common, the functional consequences of altered glycosylation and their potential as therapeutic targets remain poorly understood and vastly understudied in the context of PDA. In this review, the functionality of glycans as they contribute to hallmarks of PDA are highlighted as active regulators of disease onset, tumor progression, metastatic capability, therapeutic resistance, and remodeling of the tumor immune microenvironment. A deeper understanding of the functional consequences of altered glycosylation will facilitate future hypothesis-driven studies and identify novel therapeutic strategies in PDA.
Collapse
Affiliation(s)
| | | | - Jasper Hsu
- Salk Institute for Biological Studies, La Jolla, CA
| | | |
Collapse
|
17
|
Almahayni K, Spiekermann M, Fiore A, Yu G, Pedram K, Möckl L. Small molecule inhibitors of mammalian glycosylation. Matrix Biol Plus 2022; 16:100108. [PMID: 36467541 PMCID: PMC9713294 DOI: 10.1016/j.mbplus.2022.100108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 01/06/2023] Open
Abstract
Glycans are one of the fundamental biopolymers encountered in living systems. Compared to polynucleotide and polypeptide biosynthesis, polysaccharide biosynthesis is a uniquely combinatorial process to which interdependent enzymes with seemingly broad specificities contribute. The resulting intracellular cell surface, and secreted glycans play key roles in health and disease, from embryogenesis to cancer progression. The study and modulation of glycans in cell and organismal biology is aided by small molecule inhibitors of the enzymes involved in glycan biosynthesis. In this review, we survey the arsenal of currently available inhibitors, focusing on agents which have been independently validated in diverse systems. We highlight the utility of these inhibitors and drawbacks to their use, emphasizing the need for innovation for basic research as well as for therapeutic applications.
Collapse
Affiliation(s)
- Karim Almahayni
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Malte Spiekermann
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Antonio Fiore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Guoqiang Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kayvon Pedram
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA,Corresponding authors.
| | - Leonhard Möckl
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany,Corresponding authors.
| |
Collapse
|
18
|
Hugonnet M, Singh P, Haas Q, von Gunten S. The Distinct Roles of Sialyltransferases in Cancer Biology and Onco-Immunology. Front Immunol 2021; 12:799861. [PMID: 34975914 PMCID: PMC8718907 DOI: 10.3389/fimmu.2021.799861] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant glycosylation is a key feature of malignant transformation. Hypersialylation, the enhanced expression of sialic acid-terminated glycoconjugates on the cell surface, has been linked to immune evasion and metastatic spread, eventually by interaction with sialoglycan-binding lectins, including Siglecs and selectins. The biosynthesis of tumor-associated sialoglycans involves sialyltransferases, which are differentially expressed in cancer cells. In this review article, we provide an overview of the twenty human sialyltransferases and their roles in cancer biology and immunity. A better understanding of the individual contribution of select sialyltransferases to the tumor sialome may lead to more personalized strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Marjolaine Hugonnet
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| | - Pushpita Singh
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Quentin Haas
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Stephan von Gunten
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
The Cancer-Associated Antigens Sialyl Lewis a/x and Sd a: Two Opposite Faces of Terminal Glycosylation. Cancers (Basel) 2021; 13:cancers13215273. [PMID: 34771437 PMCID: PMC8582462 DOI: 10.3390/cancers13215273] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The glycosyltransferase β1,4-N-acetylgalactosaminyltransferae 2 (B4GALNT2), product of the B4GALNT2 gene is responsible for the biosynthesis of the carbohydrate antigen Sda. Both the enzyme and its cognate antigen display a restricted pattern of tissue expression and modulation in colorectal, gastric, and mammary cancers. In colorectal cancer, B4GALNT2 is generally downregulated, but patients displaying higher expression survive longer. The sialyl Lewisa and sialyl Lewisx antigens are associated with malignancy. Their biosynthesis and that of Sda are mutually exclusive. Forced expression of B4GALNT2 in colorectal cancer cell lines modulates the transcriptome towards lower malignancy, reducing stemness. These effects are independent of B4GALNT2-induced sLea/sLex inhibition. Thus, B4GALNT2 is a marker of better prognosis and a cancer-restraining enzyme in colorectal cancer, with a therapeutic potential. Abstract Terminal carbohydrate structures are particularly relevant in oncology because they can serve as cancer markers and alter the phenotype of cancer cells. The Sda antigen and the sialyl Lewisx and sialyl Lewisa (sLex and sLea) antigens are terminal structures whose biosynthesis is mutually exclusive. In this review, we describe the main features of the Sda antigen in cancer and its relationship with sLex/a antigens. Information was obtained from an extensive literature search and from The Cancer Genome Atlas (TCGA) public database. The Sda biosynthetic enzyme B4GALNT2 undergoes downregulation in colorectal (CRC) and stomach cancer, while it is ectopically expressed by a minority of breast cancer (BRCA) patients. High expression of B4GALNT2 is associated with better prognosis and a less malignant gene expression profile in CRC, while the opposite occurs in BRCA. The regulation of B4GALNT2 expression in CRC is multifactorial, involving gene methylation and miRNA expression. Forced expression of B4GALNT2 inhibited sLea/sLex and reduced malignancy and stemness in cells constitutively expressing sLex/a antigens. However, consistent effects were observed upon B4GALNT2 forced expression and in cells not expressing sLex/a antigens. Thus, B4GALNT2 and the Sda antigen exert a tumor-restraining activity in CRC and probably other gastrointestinal cancers, independently of sLex/a antigens.
Collapse
|
20
|
Dobie C, Montgomery AP, Szabo R, Yu H, Skropeta D. Synthesis and biological evaluation of selective phosphonate-bearing 1,2,3-triazole-linked sialyltransferase inhibitors. RSC Med Chem 2021; 12:1680-1689. [PMID: 34778769 DOI: 10.1039/d1md00079a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/19/2021] [Indexed: 01/01/2023] Open
Abstract
The critical role of sialyltransferase (ST) enzymes in tumour cell growth and metastasis, as well as links to multi-drug and radiation resistance, has seen STs emerge as a target for potential antimetastatic cancer treatments. One promising class of ST inhibitors that improve upon the pharmacokinetic issues of previous inhibitors is the 1,2,3-triazole-linked transition-state analogues. Herein, we present the design and synthesis of a new generation of 1,2,3-triazole-linked sialyltransferase inhibitors, along with their biological evaluation demonstrating increased potency for phosphonate bearing compounds. The six most promising inhibitors presented in this work exhibited a greater number of binding modes for hST6Gal I over hST3Gal I, with K i ranging from 3-55 μM. This work highlights phosphonate bearing triazole-linked compounds as a promising class of synthetically accessible ST inhibitors that warrant further investigation.
Collapse
Affiliation(s)
- Christopher Dobie
- Molecular Horizons and School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong NSW 2522 Australia
| | - Andrew P Montgomery
- Molecular Horizons and School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong NSW 2522 Australia
| | - Rémi Szabo
- Molecular Horizons and School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong NSW 2522 Australia
| | - Haibo Yu
- Molecular Horizons and School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong NSW 2522 Australia .,Illawarra Health and Medical Research Institute Wollongong NSW 2522 Australia
| | - Danielle Skropeta
- Molecular Horizons and School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong NSW 2522 Australia .,Illawarra Health and Medical Research Institute Wollongong NSW 2522 Australia
| |
Collapse
|
21
|
Perez SJLP, Fu CW, Li WS. Sialyltransferase Inhibitors for the Treatment of Cancer Metastasis: Current Challenges and Future Perspectives. Molecules 2021; 26:5673. [PMID: 34577144 PMCID: PMC8470674 DOI: 10.3390/molecules26185673] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 01/19/2023] Open
Abstract
Potent, cell-permeable, and subtype-selective sialyltransferase inhibitors represent an attractive family of substances that can potentially be used for the clinical treatment of cancer metastasis. These substances operate by specifically inhibiting sialyltransferase-mediated hypersialylation of cell surface glycoproteins or glycolipids, which then blocks the sialic acid recognition pathway and leads to deterioration of cell motility and invasion. A vast amount of evidence for the in vitro and in vivo effects of sialyltransferase inhibition or knockdown on tumor progression and tumor cell metastasis or colonization has been accumulated over the past decades. In this regard, this review comprehensively discusses the results of studies that have led to the recent discovery and development of sialyltransferase inhibitors, their potential biomedical applications in the treatment of cancer metastasis, and their current limitations and future opportunities.
Collapse
Affiliation(s)
- Ser John Lynon P. Perez
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; (S.J.L.P.P.); (C.-W.F.)
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chih-Wei Fu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; (S.J.L.P.P.); (C.-W.F.)
- Department of Chemistry, National Central University, Taoyuan City 32001, Taiwan
| | - Wen-Shan Li
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; (S.J.L.P.P.); (C.-W.F.)
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Chemistry, College of Science, Tamkang University, New Taipei City 251, Taiwan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
22
|
Aberrant Sialylation in Cancer: Biomarker and Potential Target for Therapeutic Intervention? Cancers (Basel) 2021; 13:cancers13092014. [PMID: 33921986 PMCID: PMC8122436 DOI: 10.3390/cancers13092014] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Sialylation is a post-translational modification that consists in the addition of sialic acid to growing glycan chains on glycoproteins and glycolipids. Aberrant sialylation is an established hallmark of several types of cancer, including breast, ovarian, pancreatic, prostate, colorectal and lung cancers, melanoma and hepatocellular carcinoma. Hypersialylation can be the effect of increased activity of sialyltransferases and results in an excess of negatively charged sialic acid on the surface of cancer cells. Sialic acid accumulation contributes to tumor progression by several paths, including stimulation of tumor invasion and migration, and enhancing immune evasion and tumor cell survival. In this review we explore the mechanisms by which sialyltransferases promote cancer progression. In addition, we provide insights into the possible use of sialyltransferases as biomarkers for cancer and summarize findings on the development of sialyltransferase inhibitors as potential anti-cancer treatments. Abstract Sialylation is an integral part of cellular function, governing many biological processes including cellular recognition, adhesion, molecular trafficking, signal transduction and endocytosis. Sialylation is controlled by the levels and the activities of sialyltransferases on glycoproteins and lipids. Altered gene expression of these enzymes in cancer yields to cancer-specific alterations of glycoprotein sialylation. Mounting evidence indicate that hypersialylation is closely associated with cancer progression and metastatic spread, and can be of prognostic significance in human cancer. Aberrant sialylation is not only a result of cancer, but also a driver of malignant phenotype, directly impacting key processes such as tumor cell dissociation and invasion, cell-cell and cell-matrix interactions, angiogenesis, resistance to apoptosis, and evasion of immune destruction. In this review we provide insights on the impact of sialylation in tumor progression, and outline the possible application of sialyltransferases as cancer biomarkers. We also summarize the most promising findings on the development of sialyltransferase inhibitors as potential anti-cancer treatments.
Collapse
|
23
|
Rodriguez E, Boelaars K, Brown K, Eveline Li RJ, Kruijssen L, Bruijns SCM, van Ee T, Schetters STT, Crommentuijn MHW, van der Horst JC, van Grieken NCT, van Vliet SJ, Kazemier G, Giovannetti E, Garcia-Vallejo JJ, van Kooyk Y. Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9. Nat Commun 2021; 12:1270. [PMID: 33627655 PMCID: PMC7904912 DOI: 10.1038/s41467-021-21550-4] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/25/2021] [Indexed: 11/09/2022] Open
Abstract
Changes in glycosylation during tumour progression are a key hallmark of cancer. One of the glycan moieties generally overexpressed in cancer are sialic acids, which can induce immunomodulatory properties via binding to Siglec receptors. We here show that Pancreatic Ductal Adenocarcinoma (PDAC) tumour cells present an increased sialylation that can be recognized by Siglec-7 and Siglec-9 on myeloid cells. We identified the expression of the α2,3 sialyltransferases ST3GAL1 and ST3GAL4 as main contributor to the synthesis of ligands for Siglec-7 and Siglec-9 in tumour cells. Analysing the myeloid composition in PDAC, using single cell and bulk transcriptomics data, we identified monocyte-derived macrophages as contributors to the poor clinical outcome. Tumour-derived sialic acids dictate monocyte to macrophage differentiation via signalling through Siglec-7 and Siglec-9. Moreover, triggering of Siglec-9 in macrophages reduce inflammatory programmes, while increasing PD-L1 and IL-10 expression, illustrating that sialic acids modulate different myeloid cells. This work highlights a critical role for sialylated glycans in controlling immune suppression and provides new potential targets for cancer immunotherapy in PDAC.
Collapse
Affiliation(s)
- Ernesto Rodriguez
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Kelly Boelaars
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Kari Brown
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - R J Eveline Li
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Laura Kruijssen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Sven C M Bruijns
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Thomas van Ee
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Sjoerd T T Schetters
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Matheus H W Crommentuijn
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Joost C van der Horst
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Nicole C T van Grieken
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam, Netherlands
| | - Sandra J van Vliet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Geert Kazemier
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Elisa Giovannetti
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Juan J Garcia-Vallejo
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands.
| |
Collapse
|
24
|
Liang C, Fukuda T, Isaji T, Duan C, Song W, Wang Y, Gu J. α1,6-Fucosyltransferase contributes to cell migration and proliferation as well as to cancer stemness features in pancreatic carcinoma. Biochim Biophys Acta Gen Subj 2021; 1865:129870. [PMID: 33571582 DOI: 10.1016/j.bbagen.2021.129870] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pancreatic carcinoma is one of the deadliest malignant diseases, in which the increased expression of α1,6-fucosyltransferase (FUT8), a sole enzyme responsible for catalyzing core fucosylation, has been reported. However, its pathological roles and regulatory mechanisms remain largely unknown. Here, we use two pancreatic adenocarcinoma cell lines, MIA PaCa-2 and PANC-1 cells, as cell models, to explore the relationship of FUT8 with the malignant transformation of PDAC. METHODS FUT8 knockout (FUT8-KO) cells were established by the CRISPR/Cas9 system. Cell migration was analyzed by transwell and wound-healing assays. Cell proliferation was examined by MTT and colony-formation assays. Cancer stemness markers and spheroid formations were used to analyzed cancer stemness features. RESULTS Deficiency of FUT8 inhibited cell migration and proliferation in both MIA PaCa-2 and PANC-1 cells compared with wild-type cells. Moreover, the expression levels of cancer stemness markers such as EpCAM, CXCR4, c-Met, and CD133 were decreased in the FUT8-KO cells compared with wild-type cells. Also, the spheroid formations in the KO cells were loose and unstable, which could be reversed by restoration with FUT8 gene in the KO cells. Additionally, FUT8-KO increased the chemosensitivity to gemcitabine, which is the first-line therapy for advanced pancreatic cancer. CONCLUSIONS FUT8-KO reduced the cell proliferation and migration. Our results are the first to suggest that the expression of FUT8 is involved in regulating the stemness features of pancreatic cancer cells. GENERAL SIGNIFICANCE FUT8 could provide novel insights for the treatment of pancreatic carcinoma.
Collapse
Affiliation(s)
- Caixia Liang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Chengwei Duan
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Wanli Song
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Yuqin Wang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| |
Collapse
|
25
|
Wu Y, Chen X, Dong W, Xu Z, Jian Y, Xu C, Zhang L, Wei A, Yu X, Wang S, Wang Y, Liu G, Sun X, Wang S. ST3Gal IV Mediates the Growth and Proliferation of Cervical Cancer Cells In Vitro and In Vivo Via the Notch/p21/CDKs Pathway. Front Oncol 2021; 10:540332. [PMID: 33598419 PMCID: PMC7882721 DOI: 10.3389/fonc.2020.540332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
ST3Gal IV is one of the principal sialyltransferases responsible for the biosynthesis of α2, 3-sialic acid to the termini N-glycans or O-glycans of glycoproteins and glycolipids. It has been reported that ST3Gal IV expression is associated with gastric carcinoma, pancreatic adenocarcinoma and breast cancer. While the expression and functions of ST3Gal IV in cervical cancer are still poorly understood. In this study, we found that ST3Gal IV was downregulated in human cervical cancer tissues compared to normal cervix tissues, and ST3Gal IV expression was negatively associated with the pathological grade of cervical cancer. ST3Gal IV upregulation inhibited the growth and proliferation of cervical cancer HeLa and SiHa cells in vitro and in vivo. Furthermore, ST3Gal IV overexpression enhanced the expression of several Notch pathway components such as Jagged1, Notch1, Hes1 and Hey1, while cell cycle protein expression like Cyclin D1, Cyclin E1, CDK2 and CDK4 were decreased. These results indicate that expression of ST3Gal IV is reduced in cervical cancer and plays a negative role in cell proliferation via Notch/p21/CDKs signaling pathway. Thus, sialyltransferase ST3Gal IV might be a target for the diagnosis and therapy of cervical cancer.
Collapse
Affiliation(s)
- Yinshuang Wu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Xixi Chen
- Department of Biological Sciences, School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Weijie Dong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Zhongyang Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Yuli Jian
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Chunyan Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Anwen Wei
- Department of Gynaecology, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, China
| | - Xiao Yu
- Department of Pathology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shidan Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Gang Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Xiaoxin Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, Dalian, China
| |
Collapse
|
26
|
Xu C, Wang S, Wu Y, Sun X, Yang D, Wang S. Recent advances in understanding the roles of sialyltransferases in tumor angiogenesis and metastasis. Glycoconj J 2021; 38:119-127. [PMID: 33411077 DOI: 10.1007/s10719-020-09967-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/25/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023]
Abstract
Abnormal glycosylation is a common characteristic of cancer cells and there is a lot of evidence that glycans can regulate the biological behavior of tumor cells. Sialylation modification, a form of glycosylation modification, plays an important role in cell recognition, cell adhesion and cell signal transduction. Abnormal sialylation on the surface of tumor cells is related to tumor migration and invasion, with abnormal expression of sialyltransferases being one of the main causes of abnormal sialylation. Recent studies provide a better understanding of the importance of the sialyltransferases, and how they influences cancer cell angiogenesis, adhesion and Epithelial-Mesenchymal Transition (EMT). The present review will provide a direction for future studies in determining the roles of sialyltransferases in cancer metastasis, and abnormal sialyltransferases are likely to be potential biomarkers for cancer.
Collapse
Affiliation(s)
- Chunyan Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Shidan Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Yinshuang Wu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Xiaoxin Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, People's Republic of China.
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, People's Republic of China.
| |
Collapse
|
27
|
Mucin-Type O-GalNAc Glycosylation in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:25-60. [PMID: 34495529 DOI: 10.1007/978-3-030-70115-4_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mucin-type GalNAc O-glycosylation is one of the most abundant and unique post-translational modifications. The combination of proteome-wide mapping of GalNAc O-glycosylation sites and genetic studies with knockout animals and genome-wide analyses in humans have been instrumental in our understanding of GalNAc O-glycosylation. Combined, such studies have revealed well-defined functions of O-glycans at single sites in proteins, including the regulation of pro-protein processing and proteolytic cleavage, as well as modulation of receptor functions and ligand binding. In addition to isolated O-glycans, multiple clustered O-glycans have an important function in mammalian biology by providing structural support and stability of mucins essential for protecting our inner epithelial surfaces, especially in the airways and gastrointestinal tract. Here the many O-glycans also provide binding sites for both endogenous and pathogen-derived carbohydrate-binding proteins regulating critical developmental programs and helping maintain epithelial homeostasis with commensal organisms. Finally, O-glycan changes have been identified in several diseases, most notably in cancer and inflammation, where the disease-specific changes can be used for glycan-targeted therapies. This chapter will review the biosynthesis, the biology, and the translational perspectives of GalNAc O-glycans.
Collapse
|
28
|
Fu CW, Tsai HE, Chen WS, Chang TT, Chen CL, Hsiao PW, Li WS. Sialyltransferase Inhibitors Suppress Breast Cancer Metastasis. J Med Chem 2020; 64:527-542. [PMID: 33371679 DOI: 10.1021/acs.jmedchem.0c01477] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report the synthesis and evaluation of a series of cell-permeable and N- versus O-selective sialyltransferase inhibitors. Inhibitor design entailed the functionalization of lithocholic acid at C(3) and at the cyclopentane ring side chain. Among the series, FCW34 and FCW66 were shown to inhibit MDA-MB-231 cell migration as effectively as ST3GALIII-gene knockdown did. FCW34 was shown to inhibit tumor growth, reduce angiogenesis, and delay cancer cell metastasis in animal models. Furthermore, FCW34 inhibited vessel development and suppressed angiogenic activity in transgenic zebrafish models. Our results provide clear evidence that FCW34-induced sialyltransferase inhibition reduces cancer cell metastasis by decreasing N-glycan sialylation, thus altering the regulation of talin/integrin/FAK/paxillin and integrin/NFκB signaling pathways.
Collapse
Affiliation(s)
- Chih-Wei Fu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.,Department of Chemistry, National Central University, Taoyuan City 320, Taiwan
| | - Han-En Tsai
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Sheng Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.,Department of Chemistry, National Central University, Taoyuan City 320, Taiwan
| | - Tzu-Ting Chang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Ling Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Shan Li
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.,Ph.D Program in Biotechnology Research and Development, Taipei Medical University, Taipei 110, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Chemistry, College of Science, Tamkang University, New Taipei City 251, Taiwan
| |
Collapse
|
29
|
McDowell CT, Klamer Z, Hall J, West CA, Wisniewski L, Powers TW, Angel PM, Mehta AS, Lewin DN, Haab BB, Drake RR. Imaging Mass Spectrometry and Lectin Analysis of N-Linked Glycans in Carbohydrate Antigen-Defined Pancreatic Cancer Tissues. Mol Cell Proteomics 2020; 20:100012. [PMID: 33581409 PMCID: PMC8724603 DOI: 10.1074/mcp.ra120.002256] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
The early detection of pancreatic ductal adenocarcinoma (PDAC) is a complex clinical obstacle yet is key to improving the overall likelihood of patient survival. Current and prospective carbohydrate biomarkers carbohydrate antigen 19-9 (CA19-9) and sialylated tumor-related antigen (sTRA) are sufficient for surveilling disease progression yet are not approved for delineating PDAC from other abdominal cancers and noncancerous pancreatic pathologies. To further understand these glycan epitopes, an imaging mass spectrometry (IMS) approach was used to assess the N-glycome of the human pancreas and pancreatic cancer in a cohort of patients with PDAC represented by tissue microarrays and whole-tissue sections. Orthogonally, these same tissues were characterized by multiround immunofluorescence that defined expression of CA19-9 and sTRA as well as other lectins toward carbohydrate epitopes with the potential to improve PDAC diagnosis. These analyses revealed distinct differences not only in N-glycan spatial localization across both healthy and diseased tissues but importantly between different biomarker-categorized tissue samples. Unique sulfated biantennary N-glycans were detected specifically in normal pancreatic islets. N-glycans from CA19-9-expressing tissues tended to be biantennary, triantennary, and tetra-antennary structures with both core and terminal fucose residues and bisecting GlcNAc. These N-glycans were detected in less abundance in sTRA-expressing tumor tissues, which favored triantennary and tetra-antennary structures with polylactosamine extensions. Increased sialylation of N-glycans was detected in all tumor tissues. A candidate new biomarker derived from IMS was further explored by fluorescence staining with selected lectins on the same tissues. The lectins confirmed the expression of the epitopes in cancer cells and revealed different tumor-associated staining patterns between glycans with bisecting GlcNAc and those with terminal GlcNAc. Thus, the combination of lectin-immunohistochemistry and lectin-IMS techniques produces more complete information for tumor classification than the individual analyses alone. These findings potentiate the development of early assessment technologies to rapidly and specifically identify PDAC in the clinic that may directly impact patient outcomes.
Collapse
Affiliation(s)
- Colin T McDowell
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Zachary Klamer
- Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Johnathan Hall
- Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Connor A West
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Thomas W Powers
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David N Lewin
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Brian B Haab
- Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
30
|
Quantitative structural analysis of glycans expressed within tumors derived from pancreatic cancer patient-derived xenograft mouse models. Biochem Biophys Res Commun 2020; 534:310-316. [PMID: 33288196 DOI: 10.1016/j.bbrc.2020.11.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an intractable malignancy for which novel therapeutic targets are in high demand. To uncover glycans expressed within PDAC, we previously performed glycome profiling of PDAC cell lines using lectin microarray and found that the lectin rBC2LCN with specificity to a Fucα1-2Galβ1-3 motif exhibited strong binding to a PDAC cell line (Capan-1) and to all tumor tissues derived from 69 pancreatic cancer patients. Nevertheless, no information was available as to whether glycans containing the Fucα1-2Galβ1-3 motif are expressed within PDAC. Here we used HPLC combined with MALDI-TOFMS to perform a structural and quantitative glycome analysis targeting both N- and O-glycans derived from two types of patient-derived PDAC xenograft mouse models, PC3 (well-differentiated) and PC42 (poorly-differentiated). A higher percentage of highly branched and sialylated complex-type N-glycans was detected in PC42 relative to PC3. The percentage of core 1 O-glycans was higher in PC42 relative to PC3, whereas that of core 3 O-glycans was higher in PC3. Cancer-related glycan epitopes such as Lewis A and Lewis Y were detected in core 3 O-glycans of both PC3 and PC42. H-type3 containing the Fucα1-2Galβ1-3 motif was detected in Core 2 O-glycans in both models, explaining the molecular mechanism of the binding of rBC2LCN to PDAC.
Collapse
|
31
|
Deschepper FM, Zoppi R, Pirro M, Hensbergen PJ, Dall’Olio F, Kotsias M, Gardner RA, Spencer DI, Videira PA. L1CAM as an E-selectin Ligand in Colon Cancer. Int J Mol Sci 2020; 21:ijms21218286. [PMID: 33167483 PMCID: PMC7672641 DOI: 10.3390/ijms21218286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Metastasis is the main cause of death among colorectal cancer (CRC) patients. E-selectin and its carbohydrate ligands, including sialyl Lewis X (sLeX) antigen, are key players in the binding of circulating tumor cells to the endothelium, which is one of the major events leading to organ invasion. Nevertheless, the identity of the glycoprotein scaffolds presenting these glycans in CRC remains unclear. In this study, we firstly have characterized the glycoengineered cell line SW620 transfected with the fucosyltransferase 6 (FUT6) coding for the α1,3-fucosyltransferase 6 (FUT6), which is the main enzyme responsible for the synthesis of sLeX in CRC. The SW620FUT6 cell line expressed high levels of sLeX antigen and E-selectin ligands. Moreover, it displayed increased migration ability. E-selectin ligand glycoproteins were isolated from the SW620FUT6 cell line, identified by mass spectrometry, and validated by flow cytometry and Western blot (WB). The most prominent E-selectin ligand we identified was the neural cell adhesion molecule L1 (L1CAM). Previous studies have shown association of L1CAM with metastasis in cancer, thus the novel role as E-selectin counter-receptor contributes to understand the molecular mechanism involving L1CAM in metastasis formation.
Collapse
Affiliation(s)
- Fanny M. Deschepper
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.M.D.); (R.Z.)
| | - Roberta Zoppi
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.M.D.); (R.Z.)
| | - Martina Pirro
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (M.P.); (P.J.H.)
| | - Paul J. Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (M.P.); (P.J.H.)
| | - Fabio Dall’Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy;
| | - Maximillianos Kotsias
- Ludger Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, UK; (M.K.); (R.A.G.); (D.I.R.S.)
| | - Richard A. Gardner
- Ludger Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, UK; (M.K.); (R.A.G.); (D.I.R.S.)
| | - Daniel I.R. Spencer
- Ludger Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, UK; (M.K.); (R.A.G.); (D.I.R.S.)
| | - Paula A. Videira
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.M.D.); (R.Z.)
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), 2829-516 Caparica, Portugal
- Correspondence:
| |
Collapse
|
32
|
Thomas D, Rathinavel AK, Radhakrishnan P. Altered glycosylation in cancer: A promising target for biomarkers and therapeutics. Biochim Biophys Acta Rev Cancer 2020; 1875:188464. [PMID: 33157161 DOI: 10.1016/j.bbcan.2020.188464] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Glycosylation is a well-regulated cell and microenvironment specific post-translational modification. Several glycosyltransferases and glycosidases orchestrate the addition of defined glycan structures on the proteins and lipids. Recent advances and systemic approaches in glycomics have significantly contributed to a better understanding of instrumental roles of glycans in health and diseases. Emerging research evidence recognized aberrantly glycosylated proteins as the modulators of the malignant phenotype of cancer cells. The Cancer Genome Atlas has identified alterations in the expressions of glycosylation-specific genes that are correlated with cancer progression. However, the mechanistic basis remains poorly explored. Recent researches have shown that specific changes in the glycan structures are associated with 'stemness' and epithelial-to-mesenchymal transition of cancer cells. Moreover, epigenetic changes in the glycosylation pattern make the tumor cells capable of escaping immunosurveillance mechanisms. The deciphering roles of glycans in cancer emphasize that glycans can serve as a source for the development of novel clinical biomarkers. The ability of glycans in intervening various stages of tumor progression and the biosynthetic pathways involved in glycan structures constitute a promising target for cancer therapy. Advances in the knowledge of innovative strategies for identifying the mechanisms of glycan-binding proteins are hoped to hold great potential in cancer therapy. This review discusses the fundamental role of glycans in regulating tumorigenesis and tumor progression and provides insights into the influence of glycans in the current tactics of targeted therapies in the clinical setting.
Collapse
Affiliation(s)
- Divya Thomas
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashok Kumar Rathinavel
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
33
|
Guerrero PE, Duran A, Ortiz MR, Castro E, Garcia-Velasco A, Llop E, Peracaula R. Microfibril associated protein 4 (MFAP4) is a carrier of the tumor associated carbohydrate sialyl-Lewis x (sLe x) in pancreatic adenocarcinoma. J Proteomics 2020; 231:104004. [PMID: 33038510 DOI: 10.1016/j.jprot.2020.104004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/04/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
Late diagnosis of pancreatic ductal adenocarcinoma (PDA) is one of the reasons of its low 5-year survival rate and it is due to its unspecific symptoms during the first stages of the disease and the lack of reliable serological markers. Since PDA shows an altered glycan expression, here we have focused on finding novel potential biomarkers, namely glycoproteins that express the tumor associated carbohydrate structure sialyl-Lewis x (sLex), which is described in PDA. Through a glycoproteomic approach, we have analyzed target proteins containing sLex from PDA tissues by 2DE and immunodetection techniques, and have identified by mass spectrometry the protein MFAP4 as a carrier of sLex in PDA. MFAP4 showed a higher expression in PDA tissues compared with pancreatic control tissues. In addition, the colocalization of sLex over MFAP4 was found only in PDA and not in control pancreatic tissues. The analysis of MFAP4 expression in PDA cell lines and their secretome, in combination with immunohistochemistry of pancreatic tissues, revealed that MFAP4 was not produced by PDA cells, but it was found in the pancreatic extracellular matrix. The specificity of MFAP4 glycoform containing sLex in PDA tissues shows its relevance as a potential PDA biomarker. SIGNIFICANCE: Despite advances in the field of cancer research, pancreatic ductal adenocarcinoma (PDA) lacks of a specific and sensitive biomarker for its early detection, when curative resection is still possible before metastases arise. Thus, efforts to discover new PDA biomarkers represent the first line in the fight against the increase of its incidence reported in recent years. Glycan alterations on glycoconjugates, such as glycoproteins have emerged as a rich source for the identification of novel cancer markers. In the present work, we aimed to shed light on novel biomarkers based on altered glycosylation in PDA, in particular those glycoproteins of PDA tissues carrying the tumor carbohydrate antigen sialyl-Lewis x (sLex). Through a glycoproteomic approach, we have shown that the glycoprotein MFAP4 carries sLex in PDA tissues and not in control pancreatic tissues. MFAP4 is found in the extracellular matrix in PDA and although its role in cancer progression is unclear, its sLex glycoform could be a potential biomarker in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Pedro Enrique Guerrero
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain
| | - Adrià Duran
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain
| | - Maria Rosa Ortiz
- Pathology Department, Josep Trueta University Hospital, 17007 Girona, Spain
| | - Ernesto Castro
- Hepato-biliary and Pancreatic Surgery Unit, Josep Trueta University Hospital, 17007 Girona, Spain
| | | | - Esther Llop
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain..
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain..
| |
Collapse
|
34
|
Guerrero PE, Miró L, Wong BS, Massaguer A, Martínez-Bosch N, de Llorens R, Navarro P, Konstantopoulos K, Llop E, Peracaula R. Knockdown of α2,3-Sialyltransferases Impairs Pancreatic Cancer Cell Migration, Invasion and E-selectin-Dependent Adhesion. Int J Mol Sci 2020; 21:ijms21176239. [PMID: 32872308 PMCID: PMC7503936 DOI: 10.3390/ijms21176239] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant sialylation is frequently found in pancreatic ductal adenocarcinoma (PDA). α2,3-Sialyltransferases (α2,3-STs) ST3GAL3 and ST3GAL4 are overexpressed in PDA tissues and are responsible for increased biosynthesis of sialyl-Lewis (sLe) antigens, which play an important role in metastasis. This study addresses the effect of α2,3-STs knockdown on the migratory and invasive phenotype of PDA cells, and on E-selectin-dependent adhesion. Characterization of the cell sialome, the α2,3-STs and fucosyltransferases involved in the biosynthesis of sLe antigens, using a panel of human PDA cells showed differences in the levels of sialylated determinants and α2,3-STs expression, reflecting their phenotypic heterogeneity. Knockdown of ST3GAL3 and ST3GAL4 in BxPC-3 and Capan-1 cells, which expressed moderate to high levels of sLe antigens and α2,3-STs, led to a significant reduction in sLex and in most cases in sLea, with slight increases in the α2,6-sialic acid content. Moreover, ST3GAL3 and ST3GAL4 downregulation resulted in a significant decrease in cell migration and invasion. Binding and rolling to E-selectin, which represent key steps in metastasis, were also markedly impaired in the α2,3-STs knockdown cells. Our results indicate that inhibition of ST3GAL3 and ST3GAL4 may be a novel strategy to block PDA metastasis, which is one of the reasons for its dismal prognosis.
Collapse
Affiliation(s)
- Pedro Enrique Guerrero
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, 17003 Girona, Spain; (P.E.G.); (L.M.); (A.M.); (R.d.L.)
| | - Laura Miró
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, 17003 Girona, Spain; (P.E.G.); (L.M.); (A.M.); (R.d.L.)
| | - Bin S. Wong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (B.S.W.); (K.K.)
| | - Anna Massaguer
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, 17003 Girona, Spain; (P.E.G.); (L.M.); (A.M.); (R.d.L.)
| | - Neus Martínez-Bosch
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, 08003 Barcelona, Spain; (N.M.-B.); (P.N.)
| | - Rafael de Llorens
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, 17003 Girona, Spain; (P.E.G.); (L.M.); (A.M.); (R.d.L.)
| | - Pilar Navarro
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, 08003 Barcelona, Spain; (N.M.-B.); (P.N.)
- Institute of Biomedical Research of Barcelona (IIBB)-CSIC, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (B.S.W.); (K.K.)
| | - Esther Llop
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, 17003 Girona, Spain; (P.E.G.); (L.M.); (A.M.); (R.d.L.)
- Correspondence: (E.L.); (R.P.); Tel.: +972-418370 (R.P.); Fax: +972-41-82-41 (R.P.)
| | - Rosa Peracaula
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, 17003 Girona, Spain; (P.E.G.); (L.M.); (A.M.); (R.d.L.)
- Correspondence: (E.L.); (R.P.); Tel.: +972-418370 (R.P.); Fax: +972-41-82-41 (R.P.)
| |
Collapse
|
35
|
Rasheduzzaman M, Kulasinghe A, Dolcetti R, Kenny L, Johnson NW, Kolarich D, Punyadeera C. Protein glycosylation in head and neck cancers: From diagnosis to treatment. Biochim Biophys Acta Rev Cancer 2020; 1874:188422. [PMID: 32853734 DOI: 10.1016/j.bbcan.2020.188422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
Abstract
Glycosylation is the most common post-translational modification (PTM) of proteins. Malignant tumour cells frequently undergo an alteration in surface protein glycosylation. This phenomenon is also common in cancers of the head and neck, most of which are squamous cell carcinomas (HNSCC). It affects cell functions, including proliferation, motility and invasiveness, thus increasing the propensity to metastasise. HNSCC represents the sixth most frequent malignancy worldwide. These neoplasms, which arise from the mucous membranes of the various anatomical subsites of the upper aero-digestive tract, are heterogeneous in terms of aetiology and clinico-pathologic features. With current treatments, only about 50% of HNSCC patients survive beyond 5-years. Therefore, there is the pressing need to dissect NHSCC heterogeneity to inform treatment choices. In particular, reliable biomarkers of predictive and prognostic value are eagerly needed. This review describes the current state of the art and bio-pathological meaning of glycosylation signatures associated with HNSCC and explores the possible role of tumour specific glycoproteins as potential biomarkers and attractive therapeutic targets. We have also compiled data relating to altered glycosylation and the nature of glycoproteins as tools for the identification of circulating tumour cells (CTCs) in the new era of liquid biopsy.
Collapse
Affiliation(s)
- Mohammad Rasheduzzaman
- Saliva and Liquid Biopsy Translational Laboratory, The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia; Translational Research Institute, Woolloongabba, QLD, Australia
| | - Arutha Kulasinghe
- Saliva and Liquid Biopsy Translational Laboratory, The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia; Translational Research Institute, Woolloongabba, QLD, Australia
| | - Riccardo Dolcetti
- Translational Research Institute, Woolloongabba, QLD, Australia.; The University of Queensland Diamantina Institute, 37 Kent Street Woolloongabba, QLD 4102, Australia
| | - Liz Kenny
- Department of Radiation Oncology, Cancer Care Services, Royal Brisbane and Women's Hospital, Joyce Tweddell Building, Herston, QLD, 4029, Australia
| | - Newell W Johnson
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia; Faculty of Dentistry, Oral and Craniofacial Sciences, King's College, London, United Kingdom
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics, Griffith University, QLD, Australia.
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Laboratory, The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia; Translational Research Institute, Woolloongabba, QLD, Australia..
| |
Collapse
|
36
|
Complementary Use of Carbohydrate Antigens Lewis a, Lewis b, and Sialyl-Lewis a (CA19.9 Epitope) in Gastrointestinal Cancers: Biological Rationale Towards A Personalized Clinical Application. Cancers (Basel) 2020; 12:cancers12061509. [PMID: 32527016 PMCID: PMC7352550 DOI: 10.3390/cancers12061509] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
Carbohydrate antigen 19.9 (CA19.9) is used as a tumor marker for clinical and research purposes assuming that it is abundantly produced by gastrointestinal cancer cells due to a cancer-associated aberrant glycosylation favoring its synthesis. Recent data has instead suggested a different picture, where immunodetection on tissue sections matches biochemical and molecular data. In addition to CA19.9, structurally related carbohydrate antigens Lewis a and Lewis b are, in fact, undetectable in colon cancer, due to the down-regulation of a galactosyltransferase necessary for their synthesis. In the pancreas, no differential expression of CA19.9 or cognate glycosyltransferases occurs in cancer. Ductal cells only express such Lewis antigens in a pattern affected by the relative levels of each glycosyltransferase, which are genetically and epigenetically determined. The elevation of circulating antigens seems to depend on the obstruction of neoplastic ducts and loss of polarity occurring in malignant ductal cells. Circulating Lewis a and Lewis b are indeed promising candidates for monitoring pancreatic cancer patients that are negative for CA19.9, but not for improving the low diagnostic performance of such an antigen. Insufficient biological data are available for gastric and bile duct cancer. Studying each patient in a personalized manner determining all Lewis antigens in the surgical specimens and in the blood, together with the status of the tissue-specific glycosylation machinery, promises fruitful advances in translational research and clinical practice.
Collapse
|
37
|
Gupta R, Leon F, Thompson CM, Nimmakayala R, Karmakar S, Nallasamy P, Chugh S, Prajapati DR, Rachagani S, Kumar S, Ponnusamy MP. Global analysis of human glycosyltransferases reveals novel targets for pancreatic cancer pathogenesis. Br J Cancer 2020; 122:1661-1672. [PMID: 32203219 PMCID: PMC7251111 DOI: 10.1038/s41416-020-0772-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Several reports have shown the role of glycosylation in pancreatic cancer (PC), but a global systematic screening of specific glycosyltransferases (glycoTs) in its progression remains unknown. METHODS We demonstrate a rigorous top-down approach using TCGA-based RNA-Seq analysis, multi-step validation using RT-qPCR, immunoblots and immunohistochemistry. We identified six unique glycoTs (B3GNT3, B4GALNT3, FUT3, FUT6, GCNT3 and MGAT3) in PC pathogenesis and studied their function using CRISPR/Cas9-based KD systems. RESULTS Serial metastatic in vitro models using T3M4 and HPAF/CD18, generated in house, exhibited decreases in B3GNT3, FUT3 and GCNT3 expression on increasing metastatic potential. Immunohistochemistry identified clinical significance for GCNT3, B4GALNT3 and MGAT3 in PC. Furthermore, the effects of B3GNT3, FUT3, GCNT3 and MGAT3 were shown on proliferation, migration, EMT and stem cell markers in CD18 cell line. Talniflumate, GCNT3 inhibitor, reduced colony formation and migration in T3M4 and CD18 cells. Moreover, we found that loss of GCNT3 suppresses PC progression and metastasis by downregulating cell cycle genes and β-catenin/MUC4 axis. For GCNT3, proteomics revealed downregulation of MUC5AC, MUC1, MUC5B including many other proteins. CONCLUSIONS Collectively, we demonstrate a critical role of O- and N-linked glycoTs in PC progression and delineate the mechanism encompassing the role of GCNT3 in PC.
Collapse
Affiliation(s)
- Rohitesh Gupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Frank Leon
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Christopher M Thompson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ramakrishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saswati Karmakar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Seema Chugh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dipakkumar R Prajapati
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
38
|
Martínez-Morales PL, Ortiz-Mateos CA, Reyes-Pineda J, Reyes-Vallejo T, Aguilar-Lemarroy A, Jave-Suárez LF, Santos-López G, Reyes-Leyva J, Milflores-Flores L, Vallejo-Ruiz V. Identification and characterization of the V3 promoter of the ST3GAL4 gene. Biosci Trends 2020; 14:144-150. [DOI: 10.5582/bst.2019.01331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Patricia L. Martínez-Morales
- CONACYT- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Oriente, Metepec, Puebla, Mexico
| | | | - Jonatan Reyes-Pineda
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Adriana Aguilar-Lemarroy
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Occidente, Guadalajara, Jalisco, Mexico
| | - Luis F. Jave-Suárez
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Occidente, Guadalajara, Jalisco, Mexico
| | - Gerardo Santos-López
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular, Metepec, Puebla, Mexico
| | - Julio Reyes-Leyva
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular, Metepec, Puebla, Mexico
| | | | - Verónica Vallejo-Ruiz
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular, Metepec, Puebla, Mexico
| |
Collapse
|
39
|
Cheng J, Wang R, Zhong G, Chen X, Cheng Y, Li W, Yang Y. ST6GAL2 Downregulation Inhibits Cell Adhesion and Invasion and is Associated with Improved Patient Survival in Breast Cancer. Onco Targets Ther 2020; 13:903-914. [PMID: 32099394 PMCID: PMC6996233 DOI: 10.2147/ott.s230847] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Breast cancer is one of the most common and serious types of cancer, with a particularly unfavorable prognosis. Although dysregulation of β-galactoside α 2,6-sialyltransferase 2 (ST6GAL2) has been observed in multiple cancers, the mechanism involved remains to be clarified. In this study, we focused on the potential function of ST6GAL2 in the regulation of breast cancer. METHODS Flow cytometry and CCK-8 were used to measure markers of the cell cycle proliferation, adhesion, and invasion. Real-time PCR and immunohistochemistry analysis were used to detect the expression levels of ST6GAL2 in breast cancer tissues. Western blot was used to analyze the expression level of genes correlated with focal adhesion and metastasis pathways in breast cancer cells. RESULTS ST6GAL2 expression levels were higher in breast cancer tissues as compared to healthy tissues. ST6GAL2 expression was associated with tumor stage, survival time, and estrogen receptor (ER)/progesterone receptor (PR)/human epidermal growth factor receptor 2 (HER2) status of breast cancer patients. Silence of ST6GAL2 inhibited cancer progression by arresting cell cycle progression at G0/G1 phase and inhibiting cell adhesion and invasion. ST6GAL2 was positively correlated with focal adhesion and metastasis pathways, and its downregulation inhibited the expression of ICAM-1, VCAM-1, CD24, MMP2, MMP9, and CXCR4. CONCLUSION These findings indicated that ST6GAL2 might serve as a useful potential target for treatment of breast cancer.
Collapse
Affiliation(s)
- Junchi Cheng
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310000, People’s Republic of China
| | - Rong Wang
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310000, People’s Republic of China
| | - Guansheng Zhong
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou310003, People’s Republic of China
| | - Xi Chen
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310000, People’s Republic of China
| | - Yun Cheng
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310000, People’s Republic of China
| | - Wei Li
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310000, People’s Republic of China
| | - Yunshan Yang
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310000, People’s Republic of China
| |
Collapse
|
40
|
Mehta KA, Patel KA, Pandya SJ, Patel PS. "Aberrant sialylation plays a significant role in oral squamous cell carcinoma progression". J Oral Pathol Med 2020; 49:253-259. [PMID: 31747460 DOI: 10.1111/jop.12976] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/05/2019] [Accepted: 11/17/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Aberrant glycosylation, mainly sialylation and fucosylation, is recently considered as a major hallmark of cancer. Aberrant sialylation has long been associated with various neoplastic diseases. However, role of aberrant sialylation in oral cancer is still in its infancy. The present study aimed to examine mRNA expressions of α-2, 3, α-2, 6 sialyltransferase (ST) families and sialidase in 160 human oral cancer tissues. METHODS mRNA expression of ST3GAL1, ST3GAL2, ST3GAL3, ST3GAL4, ST3GAL6, ST6GAL1, and neuraminidase 3 (NEU3) was analyzed by RT-qPCR in 80 paired malignant and adjacent normal tissues from oral cancer patients. RESULTS The results indicated significant (P ≤ .05) down-regulation of various STs (ST3GAL1, ST3GAL2, ST3GAL3, ST3GAL4, ST3GAL6, and ST6GAL1) and sialidases (NEU3) in malignant tissues as compared to adjacent normal tissues. Higher mRNA levels of ST3GAL2 and ST3GAL3 were significantly associated with advanced stage of the disease, lymph node involvement, and perineural invasion, which denote their role in progression and metastasis of oral cancer. Present study also revealed altered sialylation patterns according to anatomical site of the disease and tobacco habit. CONCLUSION The study demonstrated significant role of elevated mRNA levels of ST3GAL2 and ST3GAL3 in disease progression and metastasis of oral carcinoma.
Collapse
Affiliation(s)
- Kruti A Mehta
- Molecular Oncology Laboratory, Cancer Biology Department, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India.,Life Science Department, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Kinjal A Patel
- Molecular Oncology Laboratory, Cancer Biology Department, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Shashank J Pandya
- Surgical Oncology Department, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Prabhudas S Patel
- Molecular Oncology Laboratory, Cancer Biology Department, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India.,Life Science Department, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
41
|
Qi F, Isaji T, Duan C, Yang J, Wang Y, Fukuda T, Gu J. ST3GAL3, ST3GAL4, and ST3GAL6 differ in their regulation of biological functions via the specificities for the α2,3-sialylation of target proteins. FASEB J 2019; 34:881-897. [PMID: 31914669 DOI: 10.1096/fj.201901793r] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
The α2,3-sialylation of N-glycans is considered important but complicated because the functions of the three β-galactoside α2,3-sialyltransferases, ST3GAL3, ST3GAL4, and ST3GAL6, could be compensating for one another. To distinguish their specific functions, we established each individual knockout (KO) cell line. Loss of either the ST3GAL3 or ST3GAL6 genes decreased cell proliferation and colony formation, as opposed to the effect in the ST3GAL4 KO cells. The phosphorylation levels of ERK and AKT were significantly suppressed in the ST3GAL6 KO and ST3GAL3 KO cells, respectively. The cell aggregations were clearly observed in the KO cells, particularly the ST3GAL3 KO and ST3GAL6 KO cells, and the expression levels of E-cadherin and claudin-1 were enhanced in both those cell lines, but were suppressed in the ST3GAL4 KO cells. Those alterations were reversed with an overexpression of each corresponding gene in rescued cells. Of particular interest, the α2,3-sialylation levels of β1 integrin were clearly suppressed in the ST3GAL4 KO cells, but these were increased in the ST3GAL3 KO and ST3GAL6 KO cells, whereas the α2,3-sialylation levels of EGFR were significantly decreased in the ST3GAL6 KO cells. The decrease in α2,3-sialylation increased the α2,6-sialylation on β1, but not EGFR. Furthermore, a cross-restoration of each of the three genes in ST3GAL6 KO cells showed that overexpression of ST3GAL6 sufficiently rescued the total α2,3-sialylation levels, cell morphology, and α2,3-sialylation of EGFR, whereas the α2,3-sialylation levels of β1 were greatly enhanced by an overexpression of ST3GAL4. These results clearly demonstrate that the three α2,3-sialyltransferases modify characteristic target proteins and regulate cell biological functions in different ways.
Collapse
Affiliation(s)
- Feng Qi
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Department of Pharmacy, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Chengwei Duan
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jie Yang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yuqin Wang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, China
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
42
|
Computational analysis of the structure, glycosylation and CMP binding of human ST3GAL sialyltransferases. Carbohydr Res 2019; 486:107823. [PMID: 31557542 DOI: 10.1016/j.carres.2019.107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 11/24/2022]
Abstract
Sialyltransferases (STs) are the fundamental enzymes which are related to many biological processes such as cell signalling, cellular recognition, cell-cell and host-pathogen interactions and metastasis of cancer. All STs catalyse the terminal sialic acid addition from CMP donor to the glycan units. ST3GAL family is one of the most important STs and divided into the six subfamily in mouse and humans which are ST3Gal I, ST3Gal II, ST3Gal III, ST3Gal IV, ST3Gal V, and ST3Gal VI. The members of the ST3GAL family transfer sialic acid to the terminal galactose residues of glycochains through an α2,3-linkage. There are many reports on the ST3GAL function in mammals but, there is a paucity of information about structure of human ST3GAL family. Herein, we investigated the structure, glycosylation and CMP binding site of human ST3GAL family using computational methods. We found for the first time N-glycosylation positions in ST3Gal IV and VI, mucin type glycosylation in ST3Gal III and O-GlcNAcylation in ST3Gal V and their relation with sialylmotifs. In addition, we predicted CMP binding positions of human ST3GAL enzyme family on three-dimensional structure using molecular docking and first demonstrated the sialylmotifs relation with the CMP binding positions in ST3Gal III-VI subfamilies.
Collapse
|
43
|
I-branched carbohydrates as emerging effectors of malignant progression. Proc Natl Acad Sci U S A 2019; 116:13729-13737. [PMID: 31213534 DOI: 10.1073/pnas.1900268116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cell surface carbohydrates, termed "glycans," are ubiquitous posttranslational effectors that can tune cancer progression. Often aberrantly displayed or found at atypical levels on cancer cells, glycans can impact essentially all progressive steps, from malignant transformation to metastases formation. Glycans are structural entities that can directly bind promalignant glycan-binding proteins and help elicit optimal receptor-ligand activity of growth factor receptors, integrins, integrin ligands, lectins, and other type-1 transmembrane proteins. Because glycans play an integral role in a cancer cell's malignant activity and are frequently uniquely expressed, preclinical studies on the suitability of glycans as anticancer therapeutic targets and their promise as biomarkers of disease progression continue to intensify. While sialylation and fucosylation have predominated the focus of cancer-associated glycan modifications, the emergence of blood group I antigens (or I-branched glycans) as key cell surface moieties capable of modulating cancer virulence has reenergized investigations into the role of the glycome in malignant progression. I-branched glycans catalyzed principally by the I-branching enzyme GCNT2 are now indicated in several malignancies. In this Perspective, the putative role of GCNT2/I-branching in cancer progression is discussed, including exciting insights on how I-branches can potentially antagonize the cancer-promoting activity of β-galactose-binding galectins.
Collapse
|
44
|
Munkley J. The glycosylation landscape of pancreatic cancer. Oncol Lett 2019; 17:2569-2575. [PMID: 30854032 PMCID: PMC6388511 DOI: 10.3892/ol.2019.9885] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
Pancreatic adenocarcinoma is a lethal disease with a 5-year survival rate of <5%, the lowest of all types of cancer. The diagnosis of pancreatic cancer relies on imaging and tissue biopsy, and the only curative therapy is complete surgical resection. Pancreatic cancer has the propensity to metastasise at an early stage and the majority of patients are diagnosed when surgery is no longer an option. Hence, there is an urgent need to identify biomarkers to enable early diagnosis, and to develop new therapeutic strategies. One approach for this involves targeting cancer-associated glycans. The most widely used serological marker in pancreatic cancer is the carbohydrate antigen CA 19-9 which contains a glycan known as sialyl Lewis A (sLeA). The CA 19-9 assay is used routinely to monitor response to treatment, but concerns have been raised about its sensitivity and specificity as a diagnostic biomarker. In addition to sLeA, a wide range of alterations to other important glycans have been observed in pancreatic cancer. These include increases in the sialyl Lewis X antigen (sLex), an increase in truncated O-glycans (Tn and sTn), increased branched and fucosylated N-glycans, upregulation of specific proteoglycans and galectins, and increased O-GlcNAcylation. Growing evidence supports crucial roles for glycans in all stages of cancer progression, and it is well established that glycans regulate tumour proliferation, invasion and metastasis. The present review describes the biological significance of glycans in pancreatic cancer, and discusses the clinical value of exploiting aberrant glycosylation to improve the diagnosis and treatment of this deadly disease.
Collapse
Affiliation(s)
- Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
45
|
Josic D, Martinovic T, Pavelic K. Glycosylation and metastases. Electrophoresis 2018; 40:140-150. [PMID: 30246896 DOI: 10.1002/elps.201800238] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022]
Abstract
The change of cellular glycosylation is one of the key events in malignant transformation and neoplastic progression, and tumor-related glycosylation alterations are promising targets in both tumor diagnosis and therapy. Both malignant transformation and neoplastic progression are the consequence of gene expression alterations and alterations in protein expression. Micro environmental factors such as extracellular matrix (ECM) also play an important role in their growth and metastasis. Tumor-associated glycans are important biomarker candidates for cancer diagnosis and prognosis, and analytical methods for their detection were developed recently. Glycoproteomics that use mass spectrometry for identification of cancer antigens and structural analysis of glycans play a key role in the investigation of changes of glycosylation during malignant transformation and tumor development and metastasis. Deep understanding of glycan remodeling in cancer and the role of glycosyltransferases that are involved in this process will require a detailed profiling of glycosylation patterns of tumor cells, and corresponding analytical methods for their detection were developed.
Collapse
Affiliation(s)
- Djuro Josic
- Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA.,Department of Biotechnology, Centre for High-throughput technologies, University of Rijeka, Rijeka, Croatia.,University Juraj Dobrila, Pula, Croatia
| | - Tamara Martinovic
- Department of Biotechnology, Centre for High-throughput technologies, University of Rijeka, Rijeka, Croatia
| | - Kresimir Pavelic
- Department of Biotechnology, Centre for High-throughput technologies, University of Rijeka, Rijeka, Croatia.,University Juraj Dobrila, Pula, Croatia
| |
Collapse
|
46
|
Llop E, Guerrero PE, Duran A, Barrabés S, Massaguer A, Ferri MJ, Albiol-Quer M, de Llorens R, Peracaula R. Glycoprotein biomarkers for the detection of pancreatic ductal adenocarcinoma. World J Gastroenterol 2018; 24:2537-2554. [PMID: 29962812 PMCID: PMC6021768 DOI: 10.3748/wjg.v24.i24.2537] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/04/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PaC) shows a clear tendency to increase in the next years and therefore represents an important health and social challenge. Currently, there is an important need to find biomarkers for PaC early detection because the existing ones are not useful for that purpose. Recent studies have indicated that there is a large window of time for PaC early detection, which opens the possibility to find early biomarkers that could greatly improve the dismal prognosis of this tumor. The present manuscript reviews the state of the art of the existing PaC biomarkers. It focuses on the anomalous glycosylation process and its role in PaC. Glycan structures of glycoconjugates such as glycoproteins are modified in tumors and these modifications can be detected in biological fluids of the cancer patients. Several studies have found serum glycoproteins with altered glycan chains in PaC patients, but they have not shown enough specificity for PaC. To find more specific cancer glycoproteins we propose to analyze the glycan moieties of a battery of glycoproteins that have been reported to increase in PaC tissues and that can also be found in serum. The combination of these new candidate glycoproteins with their aberrant glycosylation together with the existing biomarkers could result in a panel, which would expect to give better results as a new tool for early diagnosis of PaC and to monitor the disease.
Collapse
Affiliation(s)
- Esther Llop
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Pedro E Guerrero
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Adrià Duran
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Sílvia Barrabés
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Anna Massaguer
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - María José Ferri
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
- Clinic Laboratory, University Hospital Dr Josep Trueta, Girona 17007, Spain
| | - Maite Albiol-Quer
- Department of Surgery, Hepato-biliary and Pancreatic Surgery Unit, University Hospital Dr Josep Trueta, Girona 17007, Spain
| | - Rafael de Llorens
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Rosa Peracaula
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| |
Collapse
|
47
|
Rodrigues E, Macauley MS. Hypersialylation in Cancer: Modulation of Inflammation and Therapeutic Opportunities. Cancers (Basel) 2018; 10:cancers10060207. [PMID: 29912148 PMCID: PMC6025361 DOI: 10.3390/cancers10060207] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
Cell surface glycosylation is dynamic and often changes in response to cellular differentiation under physiological or pathophysiological conditions. Altered glycosylation on cancers cells is gaining attention due its wide-spread occurrence across a variety of cancer types and recent studies that have documented functional roles for aberrant glycosylation in driving cancer progression at various stages. One change in glycosylation that can correlate with cancer stage and disease prognosis is hypersialylation. Increased levels of sialic acid are pervasive in cancer and a growing body of evidence demonstrates how hypersialylation is advantageous to cancer cells, particularly from the perspective of modulating immune cell responses. Sialic acid-binding receptors, such as Siglecs and Selectins, are well-positioned to be exploited by cancer hypersialylation. Evidence is also mounting that Siglecs modulate key immune cell types in the tumor microenvironment, particularly those responsible for maintaining the appropriate inflammatory environment. From these studies have come new and innovative ways to block the effects of hypersialylation by directly reducing sialic acid on cancer cells or blocking interactions between sialic acid and Siglecs or Selectins. Here we review recent works examining how cancer cells become hypersialylated, how hypersialylation benefits cancer cells and tumors, and proposed therapies to abrogate hypersialylation of cancer.
Collapse
Affiliation(s)
- Emily Rodrigues
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
48
|
Zhan L, Chen L, Chen Z. Knockdown of FUT3 disrupts the proliferation, migration, tumorigenesis and TGF-β induced EMT in pancreatic cancer cells. Oncol Lett 2018; 16:924-930. [PMID: 29963165 PMCID: PMC6019892 DOI: 10.3892/ol.2018.8738] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 03/07/2018] [Indexed: 12/20/2022] Open
Abstract
Fucosyltransferases (FUTs) are critical for glycoproteins and glycolipid chains and serve an important role in the adhesive interaction between selectins and their ligands, which contribute to tumor cell spread and metastasis. While multiple cancer cell lines heavily express FUT3, the present study investigated the expression level of FUT3 in different human pancreatic cancer cell lines. Forced expression and knockdown of FUT3 in different pancreatic cancer cell line demonstrated that FUT3 is important in cell proliferation. Using wound healing and transwell assays, it was observed that the migratory ability was decreased in FUT3 downregulated Capan-1 cell line, compared with the normal Capan-1 cell line. Furthermore, it was demonstrated that the knockdown of FUT3 impaired the adhesion of Capan-1 with E-selectin and inhibited transforming growth factor (TGF)-β-induced epithelial-mesenchymal transition. These data suggest that the knockdown of FUT3 inhibits the tumorigenesis in vivo and FUT3 may be a promising target aiming at reducing the metastatic virulence of pancreatic cancer cells.
Collapse
Affiliation(s)
- Ling Zhan
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Lianyu Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
49
|
Roa-de La Cruz L, Martínez-Morales P, Morán-Cruz I, Milflores-Flores L, Rosas-Murrieta N, González-Ramírez C, Ortiz-Mateos C, Monterrosas-Santamaría R, González-Frías C, Rodea-Ávila C, Apresa-García T, Aguilar-Lemarroy A, Jave-Suarez L, Santos-López G, Reyes-Leyva J, Vallejo-Ruiz V. Expression analysis of ST3GAL4 transcripts in cervical cancer cells. Mol Med Rep 2018; 18:617-621. [PMID: 29749491 DOI: 10.3892/mmr.2018.8938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 03/01/2018] [Indexed: 11/06/2022] Open
Abstract
ST3GAL4 gene expression is altered in different cancer types, including cervical cancer. Several mRNA transcripts have been reported for this gene; however, their expression levels in cervical cancer have not been analyzed. ST3GAL4 encodes for β‑galactosidase α‑2,3‑sialyltransferase 4, involved in the biosynthesis of the tumour antigens sLe(x) and sulfo‑sLe(x). The present study evaluated the presence of three mRNA variants (V1, V2 and V3) in cervical cancer cell lines, detecting the three variants. Additionally, the expression level of the V1 transcript of the ST3GAL4 gene was determined by reverse transcription‑quantitative polymerase chain reaction in cervical cell lines and in normal, premalignant and cervical cancer tissue. The V1 transcript of the ST3GAL4 demonstrated significant decreased expression in premalignant and malignant cervical tissues. The results suggested that deregulation of this gene could occur prior to the presence of cancer and demonstrated the importance of evaluating the expression level of V1, and its association with disease progression.
Collapse
Affiliation(s)
- Lorena Roa-de La Cruz
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular, C.P. Metepec, Puebla 74360, Mexico
| | | | - Irene Morán-Cruz
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular, C.P. Metepec, Puebla 74360, Mexico
| | - Lorena Milflores-Flores
- Escuela de Biología, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla 72570, Mexico
| | - Nora Rosas-Murrieta
- Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias Benemérita Universidad Autónoma de Puebla, Puebla, Puebla 72570, Mexico
| | - César González-Ramírez
- Instituto Mexicano del Seguro Social, Hospital General de Zona No. 15, Tehuacán, Puebla 75710, Mexico
| | - Claudia Ortiz-Mateos
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular, C.P. Metepec, Puebla 74360, Mexico
| | - Ricardo Monterrosas-Santamaría
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular, C.P. Metepec, Puebla 74360, Mexico
| | - Celestina González-Frías
- Instituto Mexicano del Seguro Social, Hospital General Regional No. 36, Puebla, Puebla 72090, Mexico
| | - Carlos Rodea-Ávila
- Instituto Mexicano del Seguro Social, Centro Médico Nacional sXXI, Mexico City 06720, Mexico
| | - Teresa Apresa-García
- Instituto Mexicano del Seguro Social, Centro Médico Nacional sXXI, Mexico City 06720, Mexico
| | - Adriana Aguilar-Lemarroy
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Occidente, Guadalajara, Jalisco 44340, Mexico
| | - Luis Jave-Suarez
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Occidente, Guadalajara, Jalisco 44340, Mexico
| | - Gerardo Santos-López
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular, C.P. Metepec, Puebla 74360, Mexico
| | - Julio Reyes-Leyva
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular, C.P. Metepec, Puebla 74360, Mexico
| | - Verónica Vallejo-Ruiz
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular, C.P. Metepec, Puebla 74360, Mexico
| |
Collapse
|
50
|
Association of cytosolic sialidase Neu2 with plasma membrane enhances Fas-mediated apoptosis by impairing PI3K-Akt/mTOR-mediated pathway in pancreatic cancer cells. Cell Death Dis 2018; 9:210. [PMID: 29434218 PMCID: PMC5833727 DOI: 10.1038/s41419-017-0191-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 12/27/2022]
Abstract
Modulation of sialylation by sialyltransferases and sialidases plays essential role in carcinogenesis. There are few reports on sialyltransferase, however, the contribution of cytosolic sialidase (Neu2) remains unexplored in pancreatic ductal adenocarcinoma (PDAC). We observed lower expression of Neu2 in different PDAC cells, patient tissues, and a significant strong association with clinicopathological characteristics. Neu2 overexpression guided drug-resistant MIAPaCa2 and AsPC1 cells toward apoptosis as evidenced by decreased Bcl2/Bax ratio, activation of caspase-3/caspase-6/caspase-8, PARP reduction, reduced CDK2/CDK4/CDK6, and cyclin-B1/cyclin-E with unaffected caspase-9. Neu2-overexpressed cells exhibited higher expression of Fas/CD95-death receptor, FasL, FADD, and Bid cleavage confirming extrinsic pathway-mediated apoptosis. α2,6-linked sialylation of Fas helps cancer cells to survive, which is a substrate for Neu2. Therefore, their removal should enhance Fas-mediated apoptosis. Neu2-overexpressed cells indeed showed increased enzyme activity even on membrane. Interestingly, this membrane-bound Neu2 exhibited enhanced association with Fas causing its desialylation and activation as corroborated by decreased association of Fas with α2,6-sialic acid-binding lectin. Additionally, enhanced cytosolic Neu2 inhibited the expression of several growth factor-mediated signaling molecules involved in PI3K/Akt–mTOR pathway probably through desialylation which in turn also causes Fas activation. Furthermore, Neu2-overexpressed cells exhibited reduced cell migration, invasion with decreased VEGF, VEGFR, and MMP9 levels. To the best of our knowledge, this is the first report of cytosolic Neu2 on membrane, its association with Fas, enhanced desialylation, activation, and Fas-mediated apoptosis. Taken together, our study ascertains a novel concept by which the function of Fas/CD95 could be modulated indicating a critical role of upstream Neu2 as a promising target for inducing apoptosis in pancreatic cancer.
Collapse
|