1
|
Cao P, Chen S, Wang H, Chen Y. Taraxasterol mediated autophagy inhibition in pancreatic encephalopathy involves its regulation on L1 cell adhesion molecule. Cytotechnology 2025; 77:72. [PMID: 40051886 PMCID: PMC11880456 DOI: 10.1007/s10616-025-00721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025] Open
Abstract
Pancreatic encephalopathy (PE) is a frequent complication of acute pancreatitis. This study explored the mechanism of taraxasterol (TAS) in PE treatment by inhibiting pyroptosis via L1 cell adhesion molecule (L1CAM) up-regulation. PE rat models were established and treated with TAS, NLRP3 activator, and sh-L1CAM lentivirus. Serum amylase and lipase activities and Serum, hippocampus, and amygdala IL-18 and IL-1β levels were determined by ELISA, followed by TUNEL and HE staining. Rat nerve injury was evaluated by modified Neurological Severity Score (mNSS). Spontaneous behaviors, learning, memory, and emotions in rats were separately assessed by open field, new object recognition, tail suspension, and forced swimming tests. Microstructures of hippocampal CA1 region and amygdala were observed. NLRP3 + GSDMD + cells, pyroptosis markers, L1CAM, and myelin basic protein (MBP) were detected. PE rat model displayed elevated serum amylase and lipase activities and IL-18 and IL-1β levels, increased mNSS, shortened moving distance, reduced discrimination rate, prolonged immobility time, pathological damage in hippocampal CA1 region and amygdala, increased TUNEL-positive and NLRP3 + GSDMD + cells, raised NLRP3, cleaved caspase-1, GSDMD-N, IL-1β and IL-18 levels, and reduced L1CAM and MBP levels. TAS mitigated behavioral deficits and brain injury and curbed NLRP3-mediated pyroptosis in hippocampal CA1 region and amygdala in PE rats. NLRP3 activation partly averted the beneficial impacts of TAS on PE rats. TAS suppressed nerve cell pyroptosis and facilitated myelin regeneration by up-regulating L1CAM. L1CAM silencing partially abrogated TAS's effect on behavioral deficits and brain injury in PE rats. TAS treated PE by inhibiting pyroptosis via L1CAM up-regulation. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-025-00721-x.
Collapse
Affiliation(s)
- Peng Cao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuangxi Chen
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, No.69, Chuanshan Road, Shigu District, Hengyang, 421001 Hunan Province China
| | - Huiqing Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yanfang Chen
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, No.69, Chuanshan Road, Shigu District, Hengyang, 421001 Hunan Province China
| |
Collapse
|
2
|
Kang J, Mo S, Shu X, Cheng S. Effects of Baicalein Pretreatment on the NLRP3/GSDMD Pyroptosis Pathway and Neuronal Injury in Pilocarpine-Induced Status Epilepticus in the Mice. eNeuro 2025; 12:ENEURO.0319-24.2024. [PMID: 39662962 PMCID: PMC11728850 DOI: 10.1523/eneuro.0319-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024] Open
Abstract
Status epilepticus (SE) links to high mortality and morbidity. Considering the neuroprotective property of baicalein (BA), we investigated its effects on post-SE neuronal injury via the NLRP3/GSDMD pathway. Mice were subjected to SE modeling and BA interference, with seizure severity and learning and memory abilities evaluated. The histological changes, neurological injury and neuron-specific enolase (NSE)-positive cell number in hippocampal CA1 region, and cell death were assessed. Levels of the NOD-, LRR-, and pyrin domain-containing 3 (NLRP3)/gasdermin-D (GSDMD) pathway-related proteins, inflammatory factors, and Iba-1 + NLRP3+ and Iba-1 + GSDMD-N+ cells were determined. BA ameliorated post-SE cognitive dysfunction and neuronal injury in mice, as evidenced by shortened escape latency, increased number of crossing the target quadrant within 60 s and the time staying in the target quadrant, alleviated hippocampal damage, increased viable cell number, decreased neuronal injury, and increased NSE-positive cells. Mechanistically, BA repressed microglial pyroptosis, reduced inflammatory factor release, and attenuated neuronal injury by inhibiting the NLRP3/GSDMD pathway. The NLRP3 inhibitor exerted similar effects as BA on SE mice, while the NLRP3 activator partially reversed BA-improved post-SE neuronal injury in mice. Conjointly, BA reduced microglial pyroptosis in hippocampal CA1 area by inhibiting the NLRP3/GSDMD pyroptosis pathway, thereby ameliorating post-SE neuronal injury in mice.
Collapse
Affiliation(s)
- Junling Kang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang University of Chinese Medicine, Hangzhou 310005, China
| | - Shenshen Mo
- Department of Neurology, The Third Affiliated Hospital of Zhejiang University of Chinese Medicine, Hangzhou 310005, China
| | - Xiuqiong Shu
- Department of Neurology, The Third Affiliated Hospital of Zhejiang University of Chinese Medicine, Hangzhou 310005, China
| | - Shuang Cheng
- Department of Neurology, The Third Affiliated Hospital of Zhejiang University of Chinese Medicine, Hangzhou 310005, China
| |
Collapse
|
3
|
Zhao L, Zhang H, Jiang P, Xu G. Isoliquiritin counteracts cadmium-induced intestinal damage in mice through enhancing intestinal barrier function and inhibiting apoptosis. Food Chem Toxicol 2024; 186:114544. [PMID: 38401882 DOI: 10.1016/j.fct.2024.114544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Cadmium (Cd), a crucial toxic environmental pollutant, can induce damage to many organs, especially the gastrointestinal tract. Isoliquiritin (ISO), a critical flavonoid glycoside compound isolated from Glycyrrhiza uralensis, has anti-inflammatory, anticancer, antioxidant and other pharmaceutical value. However, the potential roles of ISO in Cd-induced intestinal damage have not been reported yet. This study aimed to research the beneficial effects of ISO on Cd-induced intestinal damage and identify its underlying mechanisms. Our results showed that ISO reduced inflammation by suppressing the production of pro-inflammatory cytokines and the activity of serum Lipopolysaccharide (LPS) in mice with Cd exposure. In terms of mechanism, ISO administration protected the intestinal barrier function through increasing the expression of tight junction proteins and Muc2. Furthermore, ISO could significantly suppress Cd-induced intestinal apoptosis and activation of NLRP3 inflammasome. Interestingly, inhibiting the activation of NLRP3 by nigericin completely blocking the effect of ISO on apoptosis. Most importantly, ISO markedly abrogated Cd-induced cell damage and NLRP3 inflammasome activation in vitro. Taken together, these findings suggest that ISO reduces Cd-induced intestinal damage by increasing the goblet cells, improving intestinal barrier, suppressing NLRP3 inflammasome activation and inhibiting apoptosis, which may offer a novel strategy against the toxic effects of heavy metals.
Collapse
Affiliation(s)
- Linxian Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Haina Zhang
- Department of Rehabilitation, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Peng Jiang
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Guangmeng Xu
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Shen Z, Huang D, Jia N, Zhao S, Pei C, Wang Y, Wu Y, Wang X, Shi S, Wang F, He Y, Wang Z. Protective effects of Eleutheroside E against high-altitude pulmonary edema by inhibiting NLRP3 inflammasome-mediated pyroptosis. Biomed Pharmacother 2023; 167:115607. [PMID: 37776644 DOI: 10.1016/j.biopha.2023.115607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
Eleutheroside E (EE) is a primary active component of Acanthopanax senticosus, which has been reported to inhibit the expression of inflammatory genes, but the underlying mechanisms remain elusive. High-altitude pulmonary edema (HAPE) is a severe complication of high-altitude exposure occurring after ascent above 2500 m. However, effective and safe preventative measures for HAPE still need to be improved. This study aimed to elucidate the preventative potential and underlying mechanism of EE in HAPE. Rat models of HAPE were established through hypobaric hypoxia. Mechanistically, hypobaric hypoxia aggravates oxidative stress and upregulates (pro)-inflammatory cytokines, activating NOD-like receptor protein 3 (NLRP3) inflammasome-mediated pyroptosis, eventually leading to HAPE. EE suppressed NLRP3 inflammasome-mediated pyroptosis by inhibiting the nuclear translocation of nuclear factor kappa-Β (NF-κB), thereby protecting the lung from HAPE. However, nigericin (Nig), an NLRP3 activator, partially abolished the protective effects of EE. These findings suggest EE is a promising agent for preventing HAPE induced by NLRP3 inflammasome-mediated pyroptosis.
Collapse
Affiliation(s)
- Zherui Shen
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Demei Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Nan Jia
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Sijing Zhao
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Caixia Pei
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yilan Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yongcan Wu
- Chongqing Medical University, Chongqing 400016, China
| | - Xiaomin Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shihua Shi
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Fei Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Yacong He
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; State Key Laboratory of Southwestern Chinese Medicine Resources School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhenxing Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
5
|
Li J, Xu P, Hong Y, Xie Y, Peng M, Sun R, Guo H, Zhang X, Zhu W, Wang J, Liu X. Lipocalin-2-mediated astrocyte pyroptosis promotes neuroinflammatory injury via NLRP3 inflammasome activation in cerebral ischemia/reperfusion injury. J Neuroinflammation 2023; 20:148. [PMID: 37353794 DOI: 10.1186/s12974-023-02819-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Neuroinflammation is a vital pathophysiological process during ischemic stroke. Activated astrocytes play a major role in inflammation. Lipocalin-2 (LCN2), secreted by activated astrocytes, promotes neuroinflammation. Pyroptosis is a pro-inflammatory form of programmed cell death that has emerged as a new area of research in stroke. Nevertheless, the potential role of LCN2 in astrocyte pyroptosis remains unclear. METHODS An ischemic stroke model was established by middle cerebral artery occlusion (MCAO) in vivo. In this study, in vitro, oxygen-glucose deprivation and reoxygenation (O/R) were applied to cultured astrocytes. 24p3R (the LCN2 receptor) was inhibited by astrocyte-specific adeno-associated virus (AAV-GFAP-24p3Ri). MCC950 and Nigericin sodium salt (Nig) were used to inhibit or promote the activation of NLRP3 inflammasome pharmacologically, respectively. Histological and biochemical analyses were performed to assess astrocyte and neuron death. Additionally, the neurological deficits of mice were evaluated. RESULTS LCN2 expression was significantly induced in astrocytes 24 h after stroke onset in the mouse MCAO model. Lcn2 knockout (Lcn2-/-) mice exhibited reduced infarct volume and improved neurological and cognitive functions after MCAO. LCN2 and its receptor 24p3R were colocalized in astrocytes. Mechanistically, suppression of 24p3R by AAV-GFAP-24p3Ri alleviated pyroptosis-related pore formation and the secretion of pro-inflammatory cytokines via LCN2, which was then reversed by Nig-induced NLRP3 inflammasome activation. Astrocyte pyroptosis was exacerbated in Lcn2-/- mice by intracerebroventricular administration of recombinant LCN2 (rLCN2), while this aggravation was restricted by blocking 24p3R or inhibiting NLRP3 inflammasome activation with MCC950. CONCLUSION LCN2/24p3R mediates astrocyte pyroptosis via NLRP3 inflammasome activation following cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Juanji Li
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Pengfei Xu
- Division of Life Sciences and Medicine, Department of Neurology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Ye Hong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Yi Xie
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Mengna Peng
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Rui Sun
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Hongquan Guo
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Xiaohao Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Wusheng Zhu
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Junjun Wang
- Department of Clinical Laboratory, Affiliated Jinling Hospital, Medical School of Nanjing University, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China.
| | - Xinfeng Liu
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China.
- Division of Life Sciences and Medicine, Department of Neurology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
6
|
Wu L, Bai S, Huang J, Cui G, Li Q, Wang J, Du X, Fu W, Li C, Wei W, Lin H, Luo ML. Nigericin Boosts Anti-Tumor Immune Response via Inducing Pyroptosis in Triple-Negative Breast Cancer. Cancers (Basel) 2023; 15:3221. [PMID: 37370831 PMCID: PMC10296105 DOI: 10.3390/cancers15123221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Although immune checkpoint inhibitors improved the clinical outcomes of advanced triple negative breast cancer (TBNC) patients, the response rate remains relatively low. Nigericin is an antibiotic derived from Streptomyces hydrophobicus. We found that nigericin caused cell death in TNBC cell lines MDA-MB-231 and 4T1 by inducing concurrent pyroptosis and apoptosis. As nigericin facilitated cellular potassium efflux, we discovered that it caused mitochondrial dysfunction, leading to mitochondrial ROS production, as well as activation of Caspase-1/GSDMD-mediated pyroptosis and Caspase-3-mediated apoptosis in TNBC cells. Notably, nigericin-induced pyroptosis could amplify the anti-tumor immune response by enhancing the infiltration and anti-tumor effect of CD4+ and CD8+ T cells. Moreover, nigericin showed a synergistic therapeutic effect when combined with anti-PD-1 antibody in TNBC treatment. Our study reveals that nigericin may be a promising anti-tumor agent, especially in combination with immune checkpoint inhibitors for advanced TNBC treatment.
Collapse
Affiliation(s)
- Lisha Wu
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shoumin Bai
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jing Huang
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Guohui Cui
- South China National Bio-Safety Laboratory, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510600, China
| | - Qingjian Li
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jingshu Wang
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xin Du
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Wenkui Fu
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Chuping Li
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Wei Wei
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Huan Lin
- Department of Breast Oncology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Man-Li Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| |
Collapse
|
7
|
Shi S, Huang D, Wu Y, Pei C, Wang Y, Shen Z, Zhao S, Jia N, Wang X, Chen B, Pan J, Wang F, Wang Z. Salidroside pretreatment alleviates PM 2.5 caused lung injury via inhibition of apoptosis and pyroptosis through regulating NLRP3 Inflammasome. Food Chem Toxicol 2023; 177:113858. [PMID: 37236293 DOI: 10.1016/j.fct.2023.113858] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Ambient fine particulate matter (PM2.5) is considered a leading cause of pathogenic particulate matter induced lung injury. And Salidroside (Sal), the major bioactive constituent isolated from Rhodiola rosea L., has been shown to ameliorate lung injury in various conditions. To uncover the possible therapy for PM2.5 related pulmonary disease, we evaluated the protective role of Sal pre-treatment on PM2.5 induced lung injury in mice by utilizing the survival analysis, hematoxylin and eosin (H&E) staining, lung injury score, lung wet-to-dry weight ratio, enzyme-linked immunosorbent assay (ELISA) kits, immunoblot, immunofluorescence, and transmission electron microscopy (TEM). Impressively, our findings strongly indicated Sal as an effective precaution against PM2.5 induced lung injury. Pre-administration of Sal before PM2.5 treatment reduced the mortality within 120 h and alleviated inflammatory responses by reducing the release of proinflammatory cytokines, including TNF-α, IL-1β, and IL-18. Meanwhile, Sal pretreatment blocked apoptosis and pyroptosis that introduced the tissue damage under PM2.5 treatment via regulating Bax/Bcl-2/caspase-3 and NF-κB/NLRP3/caspase-1 signal pathways. In summary, our research demonstrated that Sal could be a potential preventative therapy for PM2.5 caused lung injury by inhibiting the initiation and development of apoptosis and pyroptosis through down-regulating NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China; Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, 4123, Switzerland; Faculty of Science, University of Basel, Basel, 4058, Switzerland
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yongcan Wu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China; College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Sijing Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, 99907, China
| | - Jie Pan
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, 94305, United States
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
8
|
Huang D, Shen Z, Zhao S, Pei C, Jia N, Wang Y, Wu Y, Wang X, Shi S, He Y, Wang Z, Wang F. Sipeimine attenuates PM2.5-induced lung toxicity via suppression of NLRP3 inflammasome-mediated pyroptosis through activation of the PI3K/AKT pathway. Chem Biol Interact 2023; 376:110448. [PMID: 36898572 DOI: 10.1016/j.cbi.2023.110448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Exposure to fine particulate matter (PM2.5), an environmental pollutant, significantly contributes to the incidence of and risk of mortality associated with respiratory diseases. Sipeimine (Sip) is a steroidal alkaloid in fritillaries that exerts antioxidative and anti-inflammatory effects. However, protective effect of Sip for lung toxicity and its mechanism to date remains poorly understood. In the present study, we investigated the lung-protective effect of Sip via establishing the lung toxicity model of rats with orotracheal instillation of PM2.5 (7.5 mg/kg) suspension. Sprague-Dawley rats were intraperitoneally administered with Sip (15 mg/kg or 30 mg/kg) or vehicle daily for 3 days before instillation of PM2.5 suspension to establish the model of lung toxicity. The results found that Sip significantly improved pathological damage of lung tissue, mitigated inflammatory response, and inhibited lung tissue pyroptosis. We also found that PM2.5 activated the NLRP3 inflammasome as evidenced by the upregulation levels of NLRP3, cleaved-caspase-1, and ASC proteins. Importantly, PM2.5 could trigger pyroptosis by increased levels of pyroptosis-related proteins, including IL-1β, cleaved IL-1β, and GSDMD-N, membrane pore formation, and mitochondrial swelling. As expected, all these deleterious alterations were reversed by Sip pretreatment. These effects of Sip were blocked by the NLRP3 activator nigericin. Moreover, network pharmacology analysis showed that Sip may function via the PI3K/AKT signaling pathway and animal experiment validate the results, which revealed that Sip inhibited NLRP3 inflammasome-mediated pyroptosis by suppressing the phosphorylation of PI3K and AKT. Our findings demonstrated that Sip inhibited NLRP3-mediated cell pyroptosis through activation of the PI3K/AKT pathway in PM2.5-induced lung toxicity, which has a promising application value and development prospect against lung injury in the future.
Collapse
Affiliation(s)
- Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Sijing Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
9
|
Ikeda H, Kawami M, Imoto M, Kakeya H. Identification of the polyether ionophore lenoremycin through a new screening strategy for targeting cancer stem cells. J Antibiot (Tokyo) 2022; 75:671-678. [PMID: 36207416 DOI: 10.1038/s41429-022-00571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022]
Abstract
Targeting and eradicating cancer stem cells (CSCs), also termed tumor-initiating cells, are promising strategies for preventing cancer progression and recurrence. To identify candidate compounds targeting CSCs, we established a new screening strategy with colorectal CSC spheres and non-CSC spheres in three-dimensional (3D) culture system. Through chemical screening using our system with in-house microbial metabolite library, we identified polyether cation ionophores that selectively inhibited CSC sphere formation, whereas CSC spheres were resistant to conventional anticancer agents. One of the hit compounds, the most selective and effective microbial metabolite lenoremycin, decreased CSC populations via inducing reactive oxygen species production. This study demonstrated that our newly established screening system is useful for discovering agents that selectively eliminate CSCs.
Collapse
Affiliation(s)
- Hiroaki Ikeda
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Misato Kawami
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Masaya Imoto
- Department of Neurology, Division for Development of Autophagy Modulating Drugs, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
10
|
Pandey P, Khan F, Qari HA, Upadhyay TK, Alkhateeb AF, Oves M. Evidence of Metallic and Polyether Ionophores as Potent Therapeutic Drug Candidate in Cancer Management. Molecules 2022; 27:4708. [PMID: 35897885 PMCID: PMC9329979 DOI: 10.3390/molecules27154708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer remains one of the most crucial human malignancies with a higher mortality rate globally, and is predicted to escalate soon. Dysregulated ion homeostasis in cancerous cells prompted the researchers to investigate further ion homeostasis impeding agents as potent anticancerous agents. Reutilization of FDA-approved non-cancerous drugs has emerged as a practical approach to developing potent, cost-effective drugs for cancer treatment. Across the globe, most nations are incapable of fulfilling the medical demands of cancer patients due to costlier cancerous drugs. Therefore, we have inclined our review towards emphasizing recent advancements in cancer therapies involving ionophores utilization in exploring potent anticancer drugs. Numerous research reports have established the significant anticancerous potential of ionophores in several pre-clinical reports via modulating aberrant cell signaling pathways and enhancing antitumor immunity in immune cells. This review has mainly summarized the most significant ion homeostasis impeding agents, including copper, zinc, calcium, and polyether, that presented remarkable potential in cancer therapeutics via enhanced antitumor immunity and apoptosis induction. Altogether, this study could provide a robust future perspective for developing cost-effective anticancerous drugs rapidly and cost-effectively, thereby combating the limitations of currently available drugs used in cancer treatment.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India;
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India;
| | - Huda A. Qari
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India;
| | - Abdulhameed F. Alkhateeb
- Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
11
|
Huang D, Shi S, Wang Y, Wang X, Shen Z, Wang M, Pei C, Wu Y, He Y, Wang Z. Astragaloside IV alleviates PM2.5-caused lung toxicity by inhibiting inflammasome-mediated pyroptosis via NLRP3/caspase-1 axis inhibition in mice. Biomed Pharmacother 2022; 150:112978. [PMID: 35462332 DOI: 10.1016/j.biopha.2022.112978] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Exposure to particulate matter (PM)2.5 in air pollution is a serious health issue worldwide. At present, effective prevention measures and modalities of treatment for PM2.5-caused lung toxicity are lacking. This study elucidated the protective effect of astragaloside IV (Ast), a natural product from Astragalus membranaceous Bunge, against PM2.5-caused lung toxicity and its possible molecular mechanisms. The mice model of lung toxicity was performed by intratracheal instillation of PM2.5 dust suspension. The investigation was performed with Ast or in combination with nigericin, which is a NOD-like receptor protein 3 (NLRP3) activator. The results revealed that PM2.5 lead significant lung inflammation and promoted the pyroptosis pattern of cell death by upregulating pro-inflammatory cytokines and causing oxidative stress related to the NLRP3 inflammasome-mediated pyroptosis pathway. Ast protected against PM2.5 resulted lung toxicity via suppressing NLRP3 inflammasome-mediated pyroptosis via NLRP3/caspase-1 axis inhibition, thereby protecting the lung against PM2.5-induced lung inflammation and oxidative damage, eventually resulting in prolonged survival in mice. Nigericin partially reversed the protective effects of Ast. The present research provides new insights into the therapeutic potential of Ast, demonstrating that it might be a possible candidate for the prevention of PM2.5-caused respiratory diseases. Targeting the NLRP3 inflammasome might be a novel therapeutic tactic for PM2.5-caused respiratory diseases.
Collapse
Affiliation(s)
- Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Mingjie Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
12
|
Yang Z, Xie J, Fang J, Lv M, Yang M, Deng Z, Xie Y, Cai L. Nigericin exerts anticancer effects through inhibition of the SRC/STAT3/BCL-2 in osteosarcoma. Biochem Pharmacol 2022; 198:114938. [PMID: 35114189 DOI: 10.1016/j.bcp.2022.114938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/02/2022]
Abstract
The treatment of osteosarcoma has reached a bottleneck period in recent 30 years, there is an urgent need to find new drugs and treatment methods. Nigericin, an antibiotic derived from Streptomyces hygroscopicus, has exerted promising antitumoral effect in various tumors. The anticancer effect of Nigericin in human osteosarcoma has never been reported. In the present study, we explored the anticancer effects of Nigericin in osteosarcoma in vitro and in vivo. Our results showed that nigericin treatment significantly reduced tumor cell proliferation in dose-dependent and time-dependent in human osteosarcoma cells. Nigericin can inhibit cell growth of osteosarcoma cells, in addition to S-phase cycle arrest, the nigericin induces apoptosis. Furthermore, bioinformatics predicted that Nigericin exerts anticancer effects through inhibiting SRC/STAT3 signaling pathway in osteosarcoma. The direct binding between SRC and activator of transcription 3 (STAT3) was confirmed by Western blot. Nigericin can down regulate STAT3 and Bcl-2. In order to further elucidate the inhibitory effect of nigericin on SRC / STAT3 / Bcl-2 signal transduction mechanism, we established human osteosarcoma cancer cells stably expressing STAT3. Western blot confirmed that nigericin exerts anticancer effects on human osteosarcoma cancer cells by directly targeting STAT3. In addition, Nigericin can significantly inhibit tumor migration and invasion. Finally, Nigericin inhibits tumor growth in a mouse osteosarcoma model. The nigericin targeting the SRC/STAT3/BCL-2 signaling pathway may provide new insights into the molecular mechanism of nigericin on cancer cells and suggest its possible clinical application in osteosarcoma.
Collapse
Affiliation(s)
- Zhiqiang Yang
- The Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, People's Republic of China.
| | - Jiangtao Xie
- The Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, People's Republic of China.
| | - Jiayu Fang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430000, China.
| | - Minchao Lv
- The Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, People's Republic of China.
| | - Min Yang
- The Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, People's Republic of China.
| | - Zhouming Deng
- The Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, People's Republic of China.
| | - Yuanlong Xie
- The Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, People's Republic of China.
| | - Lin Cai
- The Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, People's Republic of China.
| |
Collapse
|
13
|
Zhou B, Wang C, Liu X, Wu B, Li J, Yao S, Zhang S. Combination of nigericin with cisplatin enhances the inhibitory effect of cisplatin on epithelial ovarian cancer metastasis by inhibiting slug expression via the Wnt/β-catenin signalling pathway. Oncol Lett 2021; 22:700. [PMID: 34457055 PMCID: PMC8358618 DOI: 10.3892/ol.2021.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/28/2021] [Indexed: 11/06/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal cancer among female genital tumours. Standard therapies, including postoperative chemotherapy, exhibit high proportions of recurrence and resistance. Novel therapeutic strategies are combined with chemotherapy. Emerging studies have demonstrated that nigericin, an H+, K+ and Pb2+ ionophore, exhibits promising anticancer activity in various types of malignancy, such as colorectal and epithelial ovarian cancer. Our previous study suggested that nigericin could regulate EOC cell proliferation, migration and invasion, and may be a novel chemotherapy candidate for EOC. However, to the best of our knowledge, the effects of combined therapy with cisplatin, and the associated underlying mechanisms, are not yet fully understood. The present study aimed to clarify the effects of combined chemical therapy with nigericin and cisplatin on EOC cells and to reveal its mechanism. Wound healing, Transwell, cell viability and colony formation assays were used to measure the migration, invasion and proliferation of EOC cells. Western blotting was used to detect protein expression. A slug overexpression lentivirus was used to create a slug overexpression model in SK-OV-3 cells. Small interfering RNA was used to knock down slug expression. Nigericin combined with cisplatin enhanced the inhibitory effects of cisplatin on the migration and colony formation of EOC cells. Nigericin also enhanced the inhibitory effects of cisplatin on the expression levels of MMP7, as well as the inhibitory effects of cisplatin on the expression levels of β-catenin and GSK-3β, indicating that nigericin and cisplatin regulated in the Wnt/β-catenin signalling pathway. When slug was knocked down, the effect of nigericin was weakened. Overexpression of slug could repress the inhibitory effect of nigericin on the Wnt/β-catenin signalling pathway. Furthermore, nigericin inhibited slug expression by enhancing its modification through small ubiquitin-like modifiers (SUMOs; referred to as SUMOylation). Overall, the present results demonstrated that nigericin combined with cisplatin might serve as a novel therapeutic strategy in patients with metastatic EOC because the combined therapy had higher effectiveness than single drug use. The underlying mechanism of combined therapy maybe the enhanced inhibitory effect of slug through its nigericin-induced SUMOylation.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Gynecology, Taishan Vocational College of Nursing, Taian, Shandong 271000, P.R. China
| | - Changlin Wang
- Department of Gynecology, Taishan Vocational College of Nursing, Taian, Shandong 271000, P.R. China
| | - Xiaobei Liu
- Department of Reproduction and Genetics, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Bin Wu
- Department of Gynecology, Taishan Vocational College of Nursing, Taian, Shandong 271000, P.R. China
| | - Jianwei Li
- Department of Pharmacy and Laboratory Medicine, Taishan Vocational College of Nursing, Taian, Shandong 271000, P.R. China
| | - Shujuan Yao
- Department of Gynecology, Jining Medical University Affiliated Tengzhou Central People's Hospital, Tengzhou, Shandong 277599, P.R. China
| | - Shiqian Zhang
- Department of Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
14
|
Sparstolonin B Exerts Therapeutic Effects on Collagen-Induced Arthritis by Inhibiting the NLRP3 Inflammasome and Reducing the Activity of α1,3-Fucosyltransferase. Mediators Inflamm 2021. [DOI: 10.1155/2021/8145412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective. To explore the role of α1,3-fucosyltransferase in the mediation of rheumatoid arthritic inflammation, the protective effect of Sparstolonin B on rheumatoid arthritis (RA), and the mechanisms that regulate the NLRP3 inflammasome. Methods. Forty, weighing from 260-300 g, male Sprague-Dawley rats were randomly divided into the following groups: a sham operation group (Sham group), a rheumatoid arthritis model group (RA group), an RA+Sparstolonin B treatment group (RAS group), an RA+Iguratimod group (RAI group), and an RA+SsnB+NLRP3 inflammasome activator (Nigericin) group (RASN group); ten animals were allocated to each group. We determined the arthritis index for each group of rats, and pathological changes were evaluated by hematoxylin-eosin staining. We also used ELISAs to determine the serum levels of IL-17, IL-6, TNF-α, TGF-β, IL-18, and IL-1β. TUNEL staining was used to investigate apoptosis in synovial cells. IF was used to detect the release of ROS, ASC formation, and the expression levels of FucT-V and NLRP3. Western blotting was used to detect the protein expression levels of Bc1-2, Bax, TLR4, MYD88, NF-κB, pro-caspase-1, NLRP3, FucT-V, E-Selectin, and P-Selectin. We also performed in vitro experiments with Sparstolonin B and detected changes in 1,3-fucosyltransferase activity by ELISA. The pyroptosis-related phenotype, including ASC, was identified by immunofluorescence, while levels of NLRP-3, pro-IL-1, and pro-caspase-1 were detected by western blotting. Results. Sparstolonin B was showed to alleviate joint swelling in RA rats, inhibited inflammatory cell infiltration and the release of ROS, reduced damage caused by oxidative stress, and suppressed the rate of apoptosis in synovial cells. The administration of Sparstolonin B inhibited the secretion of IL-17 from Th17 cells and triggered the secretion of TGF-β from Treg cells, thus leading to the reduced expression of TLR4, MyD88, and NF-κB, and the suppression of TNF-α secretion. Moreover, Sparstolonin B downregulated the expression of NLRP3, inhibited ASC formation in vivo and in vitro, and reduced the levels of IL-18 and IL-1β. The expression levels of FucT-V, E-Selectin, and P-Selectin were also inhibited. Interestingly, these protective effects of Sparstolonin B could be blocked in RA rats by inhibiting the activation of the NLRP3 inflammasome. Conclusion. Sparstolonin B improved inflammatory responses and oxidative stress by inhibiting the NLRP3 inflammasome, inhibiting the expression of FucT-V and downregulating the TLR4/MYD88/NF-𝜅B signaling pathway in order to rescue RA.
Collapse
|
15
|
Tezcan G, Garanina EE, Alsaadi M, Gilazieva ZE, Martinova EV, Markelova MI, Arkhipova SS, Hamza S, McIntyre A, Rizvanov AA, Khaiboullina SF. Therapeutic Potential of Pharmacological Targeting NLRP3 Inflammasome Complex in Cancer. Front Immunol 2021; 11:607881. [PMID: 33613529 PMCID: PMC7887322 DOI: 10.3389/fimmu.2020.607881] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Dysregulation of NLRP3 inflammasome complex formation can promote chronic inflammation by increased release of IL-1β. However, the effect of NLRP3 complex formation on tumor progression remains controversial. Therefore, we sought to determine the effect of NLRP3 modulation on the growth of the different types of cancer cells, derived from lung, breast, and prostate cancers as well as neuroblastoma and glioblastoma in-vitro. Method The effect of Caspase 1 inhibitor (VX765) and combination of LPS/Nigericin on NLRP3 inflammasome activity was analyzed in A549 (lung cancer), MCF-7 (breast cancer), PC3 (prostate cancer), SH-SY5Y (neuroblastoma), and U138MG (glioblastoma) cells. Human fibroblasts were used as control cells. The effect of VX765 and LPS/Nigericin on NLRP3 expression was analyzed using western blot, while IL-1β and IL-18 secretion was detected by ELISA. Tumor cell viability and progression were determined using Annexin V, cell proliferation assay, LDH assay, sphere formation assay, transmission electron microscopy, and a multiplex cytokine assay. Also, angiogenesis was investigated by a tube formation assay. VEGF and MMPs secretion were detected by ELISA and a multiplex assay, respectively. Statistical analysis was done using one-way ANOVA with Tukey’s analyses and Kruskal–Wallis one-way analysis of variance. Results LPS/Nigericin increased NRLP3 protein expression as well as IL-1β and IL-18 secretion in PC3 and U138MG cells compared to A549, MCF7, SH-SY5Y cells, and fibroblasts. In contrast, MIF expression was commonly found upregulated in A549, PC3, SH-SY5Y, and U138MG cells and fibroblasts after Nigericin treatment. Nigericin and a combination of LPS/Nigericin decreased the cell viability and proliferation. Also, LPS/Nigericin significantly increased tumorsphere size in PC3 and U138MG cells. In contrast, the sphere size was reduced in MCF7 and SH-SY5Y cells treated with LPS/Nigericin, while no effect was detected in A549 cells. VX765 increased secretion of CCL24 in A549, MCF7, PC3, and fibroblasts as well as CCL11 and CCL26 in SH-SY5Y cells. Also, VX765 significantly increased the production of VEGF and MMPs and stimulated angiogenesis in all tumor cell lines. Discussion Our data suggest that NLRP3 activation using Nigericin could be a novel therapeutic approach to control the growth of tumors producing a low level of IL-1β and IL-18.
Collapse
Affiliation(s)
- Gulcin Tezcan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa, Turkey
| | - Ekaterina E Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Mohammad Alsaadi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Zarema E Gilazieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ekaterina V Martinova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Maria I Markelova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Svetlana S Arkhipova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Shaimaa Hamza
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alan McIntyre
- Centre for Cancer Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Svetlana F Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Microbiology and Immunology, University of Nevada, Reno, NV, United States
| |
Collapse
|
16
|
Gao G, Liu F, Xu Z, Wan D, Han Y, Kuang Y, Wang Q, Zhi Q. Evidence of nigericin as a potential therapeutic candidate for cancers: A review. Biomed Pharmacother 2021; 137:111262. [PMID: 33508621 DOI: 10.1016/j.biopha.2021.111262] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Emerging studies have shown that nigericin, an H+, K+ and Pb2+ ionophore, has exhibited a promising anti-cancer activity in various cancers. However, its anti-cancer mechanisms have not been fully elucidated. In this review, the recent progresses on the use of nigericin in human cancers have been summarized. By exchanging H+ and K+ across cell membranes, nigericin shows promising anti-cancer activities in in vitro and in vivo as a single agent or in combination with other anti-cancer drugs through decreasing intracellular pH (pHi). The underlying mechanisms of nigericin also include the inactivation of Wnt/β-catenin signals, blockade of Androgen Receptor (AR) signaling, and activation of Stress-Activated Protein Kinase/c-Jun N-terminal Kinase (SAPK/JNK) signaling pathways. In many cancers, nigericin is proved to specifically target putative Cancer Stem Cells (CSCs), and its synergistic effects on photodynamic therapy are also reported. Other mechanisms of nigericin including influencing the mitochondrial membrane potentials, inducing an increase in drug accumulation and autophagy, controlling insulin accumulation in nuclei, and increasing the cytotoxic activity of liposome-entrapped drugs, are also discussed. Notably, the potential adverse effects such as teratogenic effects, insulin resistance and eryptosis shall not be ignored. Taken together, these reports suggest that treatment of cancer cells with nigericin may offer a novel therapeutic strategy and future potential of translation to clinics.
Collapse
Affiliation(s)
- Guanzhuang Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Fei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhihua Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Daiwei Wan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Ye Han
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yuting Kuang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qiang Wang
- Department of General Surgery, Jiangsu Shengze Hospital, Wujiang, Jiangsu, 215228, China.
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
17
|
Garcia-Princival IMR, Princival JL, Dias da Silva E, de Arruda Lima SM, Carregosa JC, Wisniewski A, de Lucena CCO, Halwass F, Alves Franca JA, Ferreira LFGR, Hernandes MZ, Saraiva KLA, Peixoto CA, Baratte B, Robert T, Bach S, Gomes DC, Guedes Paiva PM, Marchand P, Rodrigues MDD, Gonçalves da Silva T. Streptomyces hygroscopicus UFPEDA 3370: A valuable source of the potent cytotoxic agent nigericin and its evaluation against human colorectal cancer cells. Chem Biol Interact 2020; 333:109316. [PMID: 33285127 DOI: 10.1016/j.cbi.2020.109316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/15/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022]
Abstract
Streptomyces hygroscopicus UFPEDA 3370 was fermented in submerged cultivation and the biomass extract was partitioned, obtaining a fraction purified named EB1. After purification of EB1 fraction, nigericin free acid was obtained and identified. Nigericin presented cytotoxic activity against several cancer cell lines, being most active against HL-60 (human leukemia) and HCT-116 (human colon carcinoma) cell lines, presenting IC50 and (IS) values: 0.0014 μM, (30.0) and 0.0138 μM (3.0), respectively. On HCT-116, nigericin caused apoptosis and autophagy. In this study, nigericin was also screened both in vitro and in silico against a panel of cancer-related kinases. Nigericin was able to inhibit both JAK3 and GSK-3β kinases in vitro and its binding affinities were mapped through the intermolecular interactions with each target in silico.
Collapse
Affiliation(s)
| | - Jefferson Luiz Princival
- Departamento de Química Fundamental, Av. Jornalista Anibal Fernandes, s/n, Universidade Federal de Pernambuco, Recife, Pernambuco, 50740-560, Brazil
| | - Emmanuel Dias da Silva
- Departamento de Química Fundamental, Av. Jornalista Anibal Fernandes, s/n, Universidade Federal de Pernambuco, Recife, Pernambuco, 50740-560, Brazil
| | - Sandrine Maria de Arruda Lima
- Departamento de Antibióticos, Rua Prof. Moraes Rego, 1235, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Jhonattas Carvalho Carregosa
- Departamento de Química, Av. Marechal Rondon, s/n, Universidade Federal de Sergipe, Aracaju, Sergipe, 49100-000, Brazil
| | - Alberto Wisniewski
- Departamento de Química, Av. Marechal Rondon, s/n, Universidade Federal de Sergipe, Aracaju, Sergipe, 49100-000, Brazil
| | - Caio Cézar Oliveira de Lucena
- Departamento de Antibióticos, Rua Prof. Moraes Rego, 1235, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Fernando Halwass
- Departamento de Química Fundamental, Av. Jornalista Anibal Fernandes, s/n, Universidade Federal de Pernambuco, Recife, Pernambuco, 50740-560, Brazil
| | - José Adonias Alves Franca
- Departamento de Química Fundamental, Av. Jornalista Anibal Fernandes, s/n, Universidade Federal de Pernambuco, Recife, Pernambuco, 50740-560, Brazil
| | - Luiz Felipe Gomes Rebello Ferreira
- Laboratório de Química Teórica Medicinal (LQTM), Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Av. Prof. Artur de Sá - Cidade Universitária, Recife, PE, 50740-521, Brazil
| | - Marcelo Zaldini Hernandes
- Laboratório de Química Teórica Medicinal (LQTM), Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Av. Prof. Artur de Sá - Cidade Universitária, Recife, PE, 50740-521, Brazil
| | | | - Christina Alves Peixoto
- Laboratório de Ultraestrutura. Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife, PE, Brazil; Instituto de Ciências e Tecnologia em Neuroimunomodulação (INCT-NIM), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, RJ, Brazil
| | - Blandine Baratte
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, F-29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Kinase Inhibitor Specialized Screening Facility - KISSf, Station Biologique, F-29688, Roscoff, France.
| | - Thomas Robert
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, F-29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Kinase Inhibitor Specialized Screening Facility - KISSf, Station Biologique, F-29688, Roscoff, France
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, F-29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Kinase Inhibitor Specialized Screening Facility - KISSf, Station Biologique, F-29688, Roscoff, France.
| | - Dayene Correia Gomes
- Departamento de Bioquímica, Rua Prof. Moraes Rego, SN, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Patricia Maria Guedes Paiva
- Departamento de Bioquímica, Rua Prof. Moraes Rego, SN, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Pascal Marchand
- Universite de Nantes, Cibles et médicaments des infections et du cancer, IICiMed, EA 1155, Nantes, F-44000, France
| | - Maria do Desterro Rodrigues
- Departamento de Antibióticos, Rua Prof. Moraes Rego, 1235, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Teresinha Gonçalves da Silva
- Departamento de Antibióticos, Rua Prof. Moraes Rego, 1235, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil.
| |
Collapse
|
18
|
Sahu AK, Said MS, Hingamire T, Gaur M, Khan A, Shanmugam D, Barvkar VT, Dharne MS, Bharde AA, Dastager SG. Approach to nigericin derivatives and their therapeutic potential. RSC Adv 2020; 10:43085-43091. [PMID: 35514935 PMCID: PMC9058090 DOI: 10.1039/d0ra05137c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/12/2020] [Indexed: 11/21/2022] Open
Abstract
A new nigericin analogue that has been chemically modified was synthesized through a fluorination process from the parent nigericin, produced from a novel Streptomyces strain DASNCL-29. Fermentation strategies were designed for the optimised production of nigericin molecule and subjected for purification and structural analysis. The fermentation process resulted in the highest yield of nigericin (33% (w/w)). Initially, nigericin produced from the strain DASNCL-29 demonstrated polymorphism in its crystal structure, i.e., monoclinic and orthorhombic crystal lattices when crystallised with methanol and hexane, respectively. Furthermore, nigericin produced has been subjected to chemical modification by fluorination to enhance its efficacy. Two fluorinated analogues revealed that they possess a very potent antibacterial activity against Gram positive and Gram negative bacteria. To date, the nigericin molecule has not been reported for any reaction against Gram-negative bacteria, which are increasingly becoming resistant to antibiotics. For the first time, fluorinated analogues of nigericin have shown promising activity. In vitro cytotoxicity analysis of fluorinated analogues demonstrated tenfold lesser toxicity than the parent nigericin. This is the first type of study where the fluorinated analogues of nigericin showed very encouraging activity against Gram-negative organisms; moreover, they can be used as a candidate for treating many serious infections.
Collapse
Affiliation(s)
- Amit Kumar Sahu
- Academy of Scientific and Innovative Research (AcSIR), CSIR National Chemical Laboratory Pune-411008 India
- National Collection of Industrial Microorganisms (NCIM), CSIR National Chemical Laboratory Pune-411008 India
- Biochemical Sciences Division, CSIR National Chemical Laboratory Pune-411008 India
| | - Madhukar S Said
- Academy of Scientific and Innovative Research (AcSIR), CSIR National Chemical Laboratory Pune-411008 India
- Organic Chemistry Division, CSIR National Chemical Laboratory Pune-411008 India
| | - Tejashri Hingamire
- Academy of Scientific and Innovative Research (AcSIR), CSIR National Chemical Laboratory Pune-411008 India
- Biochemical Sciences Division, CSIR National Chemical Laboratory Pune-411008 India
| | - Megha Gaur
- Department of Microbiology, Savitribai Phule-Pune University Pune-411007 India
| | - Abujunaid Khan
- Academy of Scientific and Innovative Research (AcSIR), CSIR National Chemical Laboratory Pune-411008 India
- National Collection of Industrial Microorganisms (NCIM), CSIR National Chemical Laboratory Pune-411008 India
- Biochemical Sciences Division, CSIR National Chemical Laboratory Pune-411008 India
| | - Dhanasekaran Shanmugam
- Academy of Scientific and Innovative Research (AcSIR), CSIR National Chemical Laboratory Pune-411008 India
- Biochemical Sciences Division, CSIR National Chemical Laboratory Pune-411008 India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule-Pune University Pune-411007 India
| | - Mahesh S Dharne
- Academy of Scientific and Innovative Research (AcSIR), CSIR National Chemical Laboratory Pune-411008 India
- National Collection of Industrial Microorganisms (NCIM), CSIR National Chemical Laboratory Pune-411008 India
- Biochemical Sciences Division, CSIR National Chemical Laboratory Pune-411008 India
| | - Atul A Bharde
- Department of Microbiology, Savitribai Phule-Pune University Pune-411007 India
| | - Syed G Dastager
- Academy of Scientific and Innovative Research (AcSIR), CSIR National Chemical Laboratory Pune-411008 India
- National Collection of Industrial Microorganisms (NCIM), CSIR National Chemical Laboratory Pune-411008 India
| |
Collapse
|
19
|
Xu Z, Gao G, Liu F, Han Y, Dai C, Wang S, Wei G, Kuang Y, Wan D, Zhi Q, Xu Y. Molecular Screening for Nigericin Treatment in Pancreatic Cancer by High-Throughput RNA Sequencing. Front Oncol 2020; 10:1282. [PMID: 32850392 PMCID: PMC7411259 DOI: 10.3389/fonc.2020.01282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022] Open
Abstract
Objectives: Nigericin, an antibiotic derived from Streptomyces hygroscopicus, has been proved to exhibit promising anti-cancer effects on a variety of cancers. Our previous study investigated the potential anti-cancer properties in pancreatic cancer (PC), and demonstrated that nigericin could inhibit the cell viabilities in concentration- and time-dependent manners via differentially expressed circular RNAs (circRNAs). However, the knowledge of nigericin associated with long non-coding RNA (lncRNA) and mRNA in pancreatic cancer (PC) has not been studied. This study is to elucidate the underlying mechanism from the perspective of lncRNA and mRNA. Methods: The continuously varying molecules (lncRNAs and mRNAs) were comprehensively screened by high-throughput RNA sequencing. Results: Our data showed that 76 lncRNAs and 172 mRNAs were common differentially expressed in the nigericin anti-cancer process. Subsequently, the bioinformatics analyses, including Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, coding and non-coding co-expression network, cis- and trans-regulation predictions and protein-protein interaction (PPI) network, were applied to annotate the potential regulatory mechanisms among these coding and non-coding RNAs during the nigericin anti-cancer process. Conclusions: These findings provided new insight into the molecular mechanism of nigericin toward cancer cells, and suggested a possible clinical application in PC.
Collapse
Affiliation(s)
- Zhihua Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guanzhuang Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ye Han
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chen Dai
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sentai Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guobang Wei
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuting Kuang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Daiwei Wan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| |
Collapse
|
20
|
Li F, Song X, Li X, Zhang X, Feng X, Wang L, Xu L, Luo J, Zhu B, Ren W, Yu H, Yu Y. Lgr5 maintains stemness and regulates cell property in nasopharyngeal carcinoma through Wnt/β-catenin signaling pathway. Stem Cell Res 2020; 47:101916. [PMID: 32721896 DOI: 10.1016/j.scr.2020.101916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/28/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignant tumor in Southern China and Southeast Asia. In this study, we found that Leucine rich repeat containing G protein-coupled receptor 5 (Lgr5) was highly expressed in NPC tissues and marked NPC stem cells. Lgr5high tumors showed differential transcriptional landscape compared to Lgr5not high tumors. Lgr5 expression was associated with the clinicopathologic features in NPC and was able to regulate the stemness and viability of NPC cell line CNE1 and HNE1. Meanwhile, the migration, invasion and epithelial-mesenchymal transition (EMT) was modulated by Lgr5 via Wnt/β-catenin signaling pathway. Furthermore, Lgr5 could regulate the sensitivity of NPC cells to chemotherapy drugs. Xenografted tumors from Lgr5-overexpressed CNE1 cells showed stronger tumor forming capacity and higher expression level of stem cell markers. Thus, we characterized previously unidentified role of Lgr5 in NPC cells, potential serving as a NPC stem cell biomarker and a therapeutic target against NPC.
Collapse
Affiliation(s)
- Fangqi Li
- School of Life Sciences, Shanghai University, Shanghai 200444 China
| | - Xiaole Song
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical, Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031 China
| | - Xuewen Li
- School of Life Sciences, Shanghai University, Shanghai 200444 China
| | - Xiujuan Zhang
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical, Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031 China
| | - Xiaoyu Feng
- School of Life Sciences, Shanghai University, Shanghai 200444 China
| | - Li Wang
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical, Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031 China
| | - Lun Xu
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical, Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031 China
| | - Jiqin Luo
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical, Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031 China
| | - Bijun Zhu
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical, Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031 China
| | - Wenwen Ren
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical, Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031 China.
| | - Hongmeng Yu
- School of Life Sciences, Shanghai University, Shanghai 200444 China.
| | - Yiqun Yu
- School of Life Sciences, Shanghai University, Shanghai 200444 China; Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical, Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031 China.
| |
Collapse
|
21
|
High-throughput sequencing of circRNAs reveals novel insights into mechanisms of nigericin in pancreatic cancer. BMC Genomics 2019; 20:716. [PMID: 31533620 PMCID: PMC6749718 DOI: 10.1186/s12864-019-6032-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Our previous study had proved that nigericin could reduce colorectal cancer cell proliferation in dose- and time-dependent manners by targeting Wnt/β-catenin signaling. To better elucidate its potential anti-cancer mechanism, two pancreatic cancer (PC) cell lines were exposed to increasing concentrations of nigericin for different time periods, and the high-throughput sequencing was performed to explore the circRNA expression profiles after nigericin exposure on pancreatic cancer (PC) cells. RESULTS In this study, a total of 183 common differentially expressed circRNAs were identified, and the reliability and validity of the sequencing data were verified by the PCR analysis. According to the parental genes of circRNAs, the GO analysis was performed to predict the most enriched terms in the biological process, cellular components and molecular functions. The KEGG analysis and pathway-pathway network exhibited the potential signal pathways and their regulatory relationships. Meanwhile, a potential competing endogenous RNA (ceRNA) mechanism through a circRNA-miRNA-mRNA network was applied to annotate potential functions of these common differentially expressed circRNAs, and these predicted miRNAs or mRNAs might be involved in nigericin damage. CONCLUSIONS By the bioinformatics method, our data will facilitate the understanding of nigericin in PC cells, and provide new insight into the molecular mechanism of nigericin toward cancer cells. This is the first report that discusses the potential functions of nigericin in cancers through the bioinformatics method. Our data will facilitate the understanding of nigericin-mediated anti-cancer mechanisms in PC.
Collapse
|
22
|
Sproule A, Correa H, Decken A, Haltli B, Berrué F, Overy DP, Kerr RG. Terrosamycins A and B, Bioactive Polyether Ionophores from Streptomyces sp. RKND004 from Prince Edward Island Sediment. Mar Drugs 2019; 17:md17060347. [PMID: 31212620 PMCID: PMC6627438 DOI: 10.3390/md17060347] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 11/16/2022] Open
Abstract
Terrosamycins A (1) and B (2), two polycyclic polyether natural products, were purified from the fermentation broth of Streptomyces sp. RKND004 isolated from Prince Edward Island sediment. The one strain-many compounds (OSMAC) approach coupled with UPLC-HRMS-based metabolomics screening led to the identification of these compounds. The structure of 1 was determined from analysis of NMR, HRMS, and X-ray diffraction data. NMR experiments performed on 2 revealed the presence of two methoxy groups replacing two hydroxy groups in 1. Like other polyether ionophores, 1 and 2 exhibited excellent antibiotic activity against Gram-positive pathogens. Interestingly, the terrosamycins also exhibited activity against two breast cancer cell lines.
Collapse
Affiliation(s)
- Amanda Sproule
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Hebelin Correa
- Nautilus Biosciences Croda, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Andreas Decken
- Department of Chemistry, University of New Brunswick, 30 Dineen Drive, Fredericton, NB E3B 5A3, Canada.
| | - Bradley Haltli
- Nautilus Biosciences Croda, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3 Canada.
| | - Fabrice Berrué
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - David P Overy
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Russell G Kerr
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
- Nautilus Biosciences Croda, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3 Canada.
| |
Collapse
|
23
|
Vanneste M, Huang Q, Li M, Moose D, Zhao L, Stamnes MA, Schultz M, Wu M, Henry MD. High content screening identifies monensin as an EMT-selective cytotoxic compound. Sci Rep 2019; 9:1200. [PMID: 30718715 PMCID: PMC6361972 DOI: 10.1038/s41598-018-38019-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/11/2018] [Indexed: 01/03/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is implicated in cancer metastasis and drug resistance. Specifically targeting cancer cells in an EMT-like state may have therapeutic value. In this study, we developed a cell imaging-based high-content screening protocol to identify EMT-selective cytotoxic compounds. Among the 2,640 compounds tested, salinomycin and monensin, both monovalent cation ionophores, displayed a potent and selective cytotoxic effect against EMT-like cells. The mechanism of action of monensin was further evaluated. Monensin (10 nM) induced apoptosis, cell cycle arrest, and an increase in reactive oxygen species (ROS) production in TEM 4-18 cells. In addition, monensin rapidly induced swelling of Golgi apparatus and perturbed mitochondrial function. These are previously known effects of monensin, albeit occurring at much higher concentrations in the micromolar range. The cytotoxic effect of monensin was not blocked by inhibitors of ferroptosis. To explore the generality of our findings, we evaluated the toxicity of monensin in 24 human cancer cell lines and classified them as resistant or sensitive based on IC50 cutoff of 100 nM. Gene Set Enrichment Analysis identified EMT as the top enriched gene set in the sensitive group. Importantly, increased monensin sensitivity in EMT-like cells is associated with elevated uptake of 3H-monensin compared to resistant cells.
Collapse
Affiliation(s)
- Marion Vanneste
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Qin Huang
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Mengshi Li
- Human Toxicology, University of Iowa, Iowa City, IA, 52242, USA
| | - Devon Moose
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Mark A Stamnes
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael Schultz
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA.,Human Toxicology, University of Iowa, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Meng Wu
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA.,University of Iowa High Throughput Screening Facility (UIHTS), University of Iowa, Iowa City, IA, 52242, USA.,Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael D Henry
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA. .,Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA. .,Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA. .,Department of Urology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA. .,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
24
|
Enhanced Production and Quantitative Evaluation of Nigericin from the Algerian Soil-Living Streptomyces youssoufiensis SF10 Strain. FERMENTATION 2019. [DOI: 10.3390/fermentation5010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nigericin, one of the main ionophoric polyethers produced by various Streptomyces strains, presents relevant biological activities including antibacterial and recently studied antitumor properties. This work describes the influence of different culture conditions on the production of this metabolite by Streptomyces sp. SF10, isolated from a semi-arid soil sample collected at Chélia Mountain, in Khenchela (Northeastern Algeria) and identified as Streptomyces youssoufiensis. The extracts from the strain, cultured in a solid state or submerged fermentation conditions, using several carbon sources at different pH values, in the presence or absence of iron (II) sulfate and in co-culture with other Streptomyces species, were analyzed using a high-performance liquid chromatography (HPLC) system equipped with an evaporative light scattering detector (ELSD). The best culture conditions provided a concentration of nigericin of 0.490 ± 0.001 mg/mL in the extract. The HPLC-ELSD method, optimized here for the quantitative detection of nigericin, can find wider applications in the analysis of several other metabolites characterized by a similar polycyclic polyether structure or, more generally, by the lack of significant chromophores in their molecular structure.
Collapse
|
25
|
Dynamism, Sensitivity, and Consequences of Mesenchymal and Stem-Like Phenotype of Cancer Cells. Stem Cells Int 2018; 2018:4516454. [PMID: 30405720 PMCID: PMC6199882 DOI: 10.1155/2018/4516454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/17/2018] [Indexed: 12/16/2022] Open
Abstract
There are remarkable similarities in the description of cancer stem cells (CSCs) and cancer cells with mesenchymal phenotype. Both cell types are highly tumorigenic, resistant against common anticancer treatment, and thought to cause metastatic growth. Moreover, cancer cells are able to switch between CSC and non-CSC phenotypes and vice versa, to ensure the necessary balance within the tumor. Likewise, cancer cells can switch between epithelial and mesenchymal phenotypes via well-described transition (EMT/MET) that is thought to be crucial for tumor propagation. In this review, we discuss whether, and to which extend, the CSCs and mesenchymal cancer cells are overlapping phenomena in terms of mechanisms, origin, and implication for cancer treatment. As well, we describe the dynamism of both phenotypes and involvement of the tumor microenvironment in CSC reversion and in EMT.
Collapse
|
26
|
Kaushik V, Yakisich JS, Kumar A, Azad N, Iyer AKV. Ionophores: Potential Use as Anticancer Drugs and Chemosensitizers. Cancers (Basel) 2018; 10:E360. [PMID: 30262730 PMCID: PMC6211070 DOI: 10.3390/cancers10100360] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023] Open
Abstract
Ion homeostasis is extremely important for the survival of both normal as well as neoplastic cells. The altered ion homeostasis found in cancer cells prompted the investigation of several ionophores as potential anticancer agents. Few ionophores, such as Salinomycin, Nigericin and Obatoclax, have demonstrated potent anticancer activities against cancer stem-like cells that are considered highly resistant to chemotherapy and responsible for tumor relapse. The preclinical success of these compounds in in vitro and in vivo models have not been translated into clinical trials. At present, phase I/II clinical trials demonstrated limited benefit of Obatoclax alone or in combination with other anticancer drugs. However, future development in targeted drug delivery may be useful to improve the efficacy of these compounds. Alternatively, these compounds may be used as leading molecules for the development of less toxic derivatives.
Collapse
Affiliation(s)
- Vivek Kaushik
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| | - Juan Sebastian Yakisich
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| | - Anil Kumar
- Great Plains Health, North Platte, NE 69101, USA.
| | - Neelam Azad
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| | - Anand K V Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| |
Collapse
|
27
|
Leulmi N, Sighel D, Defant A, Khenaka K, Boulahrouf A, Mancini I. Nigericin and grisorixin methyl ester from the Algerian soil-living Streptomyces youssoufiensis SF10 strain: a computational study on their epimeric structures and evaluation of glioblastoma stem cells growth inhibition. Nat Prod Res 2018. [DOI: 10.1080/14786419.2018.1446014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Nassima Leulmi
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy
- Microbiological Laboratory Engineering and Application, Department of Microbiology, Mentouri Brothers University, Constantine, Algeria
- Department of Cellular and Molecular Biology, University Abbes Laghrour Khenchela, Khenchela, Algeria
| | - Denise Sighel
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Andrea Defant
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy
| | - Karima Khenaka
- Microbiological Laboratory Engineering and Application, Department of Microbiology, Mentouri Brothers University, Constantine, Algeria
| | - Abderrahmane Boulahrouf
- Microbiological Laboratory Engineering and Application, Department of Microbiology, Mentouri Brothers University, Constantine, Algeria
| | - Ines Mancini
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy
| |
Collapse
|
28
|
Liu F, Li W, Hua S, Han Y, Xu Z, Wan D, Wang Y, Chen W, Kuang Y, Shi J, Zhi Q. Nigericin Exerts Anticancer Effects on Human Colorectal Cancer Cells by Inhibiting Wnt/β-catenin Signaling Pathway. Mol Cancer Ther 2018; 17:952-965. [PMID: 29483216 DOI: 10.1158/1535-7163.mct-17-0906] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/20/2017] [Accepted: 02/07/2018] [Indexed: 11/16/2022]
Abstract
Nigericin, an antibiotic derived from Streptomyces hygroscopicus, which works by acting as an H+, K+, and Pb2+ ionophore, has exhibited promising anticancer activity. The main purpose of this study is to investigate its inhibitory effects on Wnt/β-catenin signaling pathway in colorectal cancer cells and clarify the underlying mechanism. We exposed two colorectal cancer lines (SW620 and KM12) to increasing concentrations of nigericin for different time periods and the 50% inhibiting concentration (IC50) values were evaluated. Our data showed that nigericin treatment significantly reduced tumor cell proliferation in dose- and time-dependent manners in colorectal cancer cells. The subsequent experiments in vitro and in vivo implied that nigericin could significantly suppress the tumor growth, migration, and invasion, and induce the apoptosis of colorectal cancer cells. Our results of Western blot and immunofluorescence assay showed that nigericin could suppress the Wnt/β-catenin signaling pathway in colorectal cancer cells with dose-dependent increased expressions of downstream effectors and target proteins. To further elucidate the inhibitory effects of nigericin via a β-catenin-dependent signaling mechanism, we established the stably β-catenin overexpression colorectal cancer cells. Western blot, SuperTOPFlash luciferase reporter, and immunoprecipitation assays all confirmed β-catenin as a critical intermediary and player in Wnt/β-catenin pathway, and nigericin exerted anticancer effects on colorectal cancer cells by directly targeting the β-catenin destruction complex. These results suggested that Wnt/β-catenin signaling might have an essential role in colorectal cancer progression. Nigericin targeting Wnt/β-catenin signaling might provide new insight into the molecular mechanism of nigericin toward cancer cells, and suggest possible clinical application in colorectal cancer. Mol Cancer Ther; 17(5); 952-65. ©2018 AACR.
Collapse
Affiliation(s)
- Fei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shangbo Hua
- Department of General Surgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Ye Han
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhihua Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Daiwei Wan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuting Kuang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianming Shi
- Department of Oncology, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, China.
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
29
|
Yakisich JS, Azad N, Kaushik V, O’Doherty GA, Iyer AKV. Nigericin decreases the viability of multidrug-resistant cancer cells and lung tumorspheres and potentiates the effects of cardiac glycosides. Tumour Biol 2017; 39:1010428317694310. [DOI: 10.1177/1010428317694310] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Multiple factors including tumor heterogeneity and intrinsic or acquired resistance have been associated with drug resistance in lung cancer. Increased stemness and the plasticity of cancer cells have been identified as important mechanisms of resistance; therefore, treatments targeting cancer cells independent of stemness phenotype would be much more effective in treating lung cancer. In this article, we have characterized the anticancer effects of the antibiotic Nigericin in cells displaying varying degrees of stemness and resistance to anticancer drugs, arising from (1) routine culture conditions, (2) prolonged periods of serum starvation. These cells are highly resistant to conventional anticancer drugs such as Paclitaxel, Hydroxyurea, Colchicine, Obatoclax, Wortmannin, and LY294002, and the multidrug-resistant phenotype of cells growing under prolonged periods of serum starvation is likely the result of extensive rewiring of signaling pathways, and (3) lung tumorspheres that are enriched for cancer stem-like cells. We found that Nigericin potently inhibited the viability of cells growing under routine culture conditions, prolonged periods of serum starvation, and lung tumorspheres. In addition, we found that Nigericin downregulated the expression of key proteins in the Wnt canonical signaling pathway such as LRP6, Wnt5a/b, and β-catenin, but promotes β-catenin translocation into the nucleus. The antitumor effects of Nigericin were potentiated by the Wnt activator HLY78 and by therapeutic levels of the US Food and Drug Administration–approved drug Digitoxin and its novel synthetic analog MonoD. We believe that Nigericin may be used in a co-therapy model in combination with other novel chemotherapeutic agents in order to achieve potent inhibition of cancers that display varying degrees of stemness, potentially leading to sustained anticancer effects.
Collapse
Affiliation(s)
- Juan Sebastian Yakisich
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| | - Neelam Azad
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| | - Vivek Kaushik
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| | | | - Anand Krishnan V Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| |
Collapse
|
30
|
Lv JW, Zhou GQ, Li JX, Tang LL, Mao YP, Lin AH, Ma J, Sun Y. Magnetic Resonance Imaging-Detected Tumor Residue after Intensity-Modulated Radiation Therapy and its Association with Post-Radiation Plasma Epstein-Barr Virus Deoxyribonucleic Acid in Nasopharyngeal Carcinoma. J Cancer 2017; 8:861-869. [PMID: 28382149 PMCID: PMC5381175 DOI: 10.7150/jca.17957] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/23/2016] [Indexed: 01/15/2023] Open
Abstract
Purpose: To evaluate the prognostic value of magnetic resonance imaging (MRI)-detected tumor residue after intensity-modulated radiation therapy (IMRT) and its association with post-treatment plasma Epstein-Barr virus deoxyribonucleic acid (EBV DNA) in nasopharyngeal carcinoma (NPC). Methods and materials: A prospective database of patients with histologically-proven NPC was used to retrospectively analyze 664 cases. Pre- and post-treatment MRI scans were independently reviewed by two senior radiologists who were blinded to clinical findings. Factors significantly associated with MRI-detected tumor residue were identified and included in the following multivariate logistic regression model. Residual risk model were established. Receiver operating characteristic (ROC) identify the optimal cut-off risk score for tumor residue. Results: MRI-detected residual tumor at three months after IMRT was associated with poor prognosis. The 5-year survival rates for the non-residual and residual groups were: OS (93.8% vs. 76.6%, P<0.001), PFS (84.7% vs. 67.9%, P=0.006), LRFS (93.4% vs. 80.4%, P=0.002), and DMFS (90.3% vs. 87.9%, P=0.305), respectively. Three-month post-treatment EBV DNA was significantly associated with tumor residue (P<0.001). A residual risk score model was established, consisting of T and N categories and post-treatment EBV DNA. ROC identified 22.74 as the optimal cut-off risk score for tumor residue. High-risk score was independently associated with poor treatment outcomes. Conclusions: MRI-detected tumor residue was an independent adverse prognostic factor in NPC; and significantly associated with three-month post-treatment EBV DNA. As limited resources in some endemic areas prevent patients from undergoing routine post-treatment imaging, our study identifies a selection risk-model, providing a cost-effective reference for the selection of follow-up strategies and clinical decision-making.
Collapse
Affiliation(s)
- Jia-Wei Lv
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center
| | - Guan-Qun Zhou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center
| | - Jia-Xiang Li
- Department of Oncology, First People's Hospital of Zhaoqing, Guangdong, People's Republic of China
| | - Ling-Long Tang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center
| | - Yan-Ping Mao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Ai-Hua Lin
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center
| |
Collapse
|
31
|
Yuan Y, Du Y, Hu XY, Liu MY, Du JK, Liu XM, Yu HE, Wang TZ, Pu JX, Zhong Q, Zou QF. Longikaurin A, a natural ent-kaurane, suppresses stemness in nasopharyngeal carcinoma cells. Oncol Lett 2017; 13:1672-1680. [PMID: 28454308 PMCID: PMC5403627 DOI: 10.3892/ol.2017.5625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/27/2016] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs) are a small proportion of tumor cells that may be responsible for tumor metastasis and recurrence. Our recent research indicated that longikaurin A (LK-A) exhibited anti-tumor activity in nasopharyngeal carcinoma (NPC) both in vitro and in vivo. Here, we further investigated whether LK-A could suppress the stemness of NPC cells. Sphere formation assay was used to assess the self-renewal ability of the cells treated with LK-A. Side population (SP) was determined by flow cytometry to measure the influence of LK-A on NPC SPs. The expression of the c-myc and fibronectin was detected by western blotting. The cytotoxicity of LK-A in combination with cisplatin to NPC cells was determined by MTT assay. Colony formation assay was used to verify whether LK-A could sensitize NPC cells to radiation and reverse the radiotherapy resistance. In the present study, we found that LK-A reduced the number and size of spheroid formation and decreased the SP cell percentage of the S18 cell line at a low concentration. Furthermore, LK-A treatment downregulated the expression of c-myc and fibronectin in NPC cell lines. Moreover, LK-A could significantly enhance the chemotherapeutic and radiotherapeutic sensitivity of NPC cell lines and reverse acquired radiotherapy resistance of Sune2-IR. Our data revealed that LK-A could suppress the stemness of NPC cells and may enhance the efficacy of radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Yan Yuan
- Section 3 of Internal Medicine, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Yong Du
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Xiao-Ye Hu
- Section 3 of Internal Medicine, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Mei-Yuan Liu
- Section 3 of Internal Medicine, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Ji-Ke Du
- Section 3 of Internal Medicine, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Xue-Min Liu
- Section 3 of Internal Medicine, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Hong-En Yu
- Section 3 of Internal Medicine, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Tian-Zhu Wang
- Section 3 of Internal Medicine, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Jian-Xin Pu
- Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650000, P.R. China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Qing-Feng Zou
- Section 3 of Internal Medicine, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| |
Collapse
|
32
|
Chu Q, Huang H, Huang T, Cao L, Peng L, Shi S, Zheng L, Xu L, Zhang S, Huang J, Li X, Qian C, Huang B. Extracellular serglycin upregulates the CD44 receptor in an autocrine manner to maintain self-renewal in nasopharyngeal carcinoma cells by reciprocally activating the MAPK/β-catenin axis. Cell Death Dis 2016; 7:e2456. [PMID: 27809309 PMCID: PMC5260886 DOI: 10.1038/cddis.2016.287] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/01/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022]
Abstract
Serglycin is a proteoglycan that was first found to be secreted by hematopoietic cells. As an extracellular matrix (ECM) component, serglycin promotes nasopharyngeal carcinoma (NPC) metastasis and serves as an independent, unfavorable NPC prognostic indicator. The detailed mechanism underlying the roles of serglycin in cancer progression remains to be clarified. Here, we report that serglycin knockdown in NPC cells inhibited cell sphere formation and tumor seeding abilities. Serglycin downregulation enhanced high-metastasis NPC cell sensitivity to chemotherapy. It has been reported that serglycin is a novel ligand for the stem cell marker CD44. Interestingly, we found a positive correlation between serglycin expression and CD44 in nasopharyngeal tissues and NPC cell lines. Further study revealed that CD44 was an ERK-dependent downstream effector of serglycin signaling, and serglycin activated the MAPK/β-catenin axis to induce CD44 receptor expression in a positive feedback loop. Taken together, our novel findings suggest that ECM serglycin upregulated CD44 receptor expression to maintain NPC stemness by interacting with CD44 and activating the MAPK/β-catenin pathway, resulting in NPC cell chemoresistance. These findings suggest that the intervention of serglycin/CD44 axis and downstream signaling pathway is a rational strategy for targeting NPC cancer stem cell therapy.
Collapse
Affiliation(s)
- Qiaoqiao Chu
- Department of Pharmacy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hongbing Huang
- Department of Pharmacy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tiejun Huang
- Department of Nuclear Medicine, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Li Cao
- Department of Pharmacy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lixia Peng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Simei Shi
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lisheng Zheng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Liang Xu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shijun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jialing Huang
- Department of Pathology, Saint Barnabas Medical Center, Livingston, NJ, USA
| | - Xinjian Li
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chaonan Qian
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Bijun Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
33
|
Hegazy AM, Yamada D, Kobayashi M, Kohno S, Ueno M, Ali MAE, Ohta K, Tadokoro Y, Ino Y, Todo T, Soga T, Takahashi C, Hirao A. Therapeutic Strategy for Targeting Aggressive Malignant Gliomas by Disrupting Their Energy Balance. J Biol Chem 2016; 291:21496-21509. [PMID: 27519418 DOI: 10.1074/jbc.m116.734756] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/02/2016] [Indexed: 12/21/2022] Open
Abstract
Although abnormal metabolic regulation is a critical determinant of cancer cell behavior, it is still unclear how an altered balance between ATP production and consumption contributes to malignancy. Here we show that disruption of this energy balance efficiently suppresses aggressive malignant gliomas driven by mammalian target of rapamycin complex 1 (mTORC1) hyperactivation. In a mouse glioma model, mTORC1 hyperactivation induced by conditional Tsc1 deletion increased numbers of glioma-initiating cells (GICs) in vitro and in vivo Metabolic analysis revealed that mTORC1 hyperactivation enhanced mitochondrial biogenesis, as evidenced by elevations in oxygen consumption rate and ATP production. Inhibition of mitochondrial ATP synthetase was more effective in repressing sphere formation by Tsc1-deficient glioma cells than that by Tsc1-competent glioma cells, indicating a crucial function for mitochondrial bioenergetic capacity in GIC expansion. To translate this observation into the development of novel therapeutics targeting malignant gliomas, we screened drug libraries for small molecule compounds showing greater efficacy in inhibiting the proliferation/survival of Tsc1-deficient cells compared with controls. We identified several compounds able to preferentially inhibit mitochondrial activity, dramatically reducing ATP levels and blocking glioma sphere formation. In human patient-derived glioma cells, nigericin, which reportedly suppresses cancer stem cell properties, induced AMPK phosphorylation that was associated with mTORC1 inactivation and induction of autophagy and led to a marked decrease in sphere formation with loss of GIC marker expression. Furthermore, malignant characteristics of human glioma cells were markedly suppressed by nigericin treatment in vivo Thus, targeting mTORC1-driven processes, particularly those involved in maintaining a cancer cell's energy balance, may be an effective therapeutic strategy for glioma patients.
Collapse
Affiliation(s)
| | | | | | - Susumu Kohno
- Division of Oncology and Molecular Biology, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-0934
| | | | | | | | | | - Yasushi Ino
- the Laboratory of Innovative Cancer Therapy, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, and
| | - Tomoki Todo
- the Laboratory of Innovative Cancer Therapy, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, and
| | - Tomoyoshi Soga
- the Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-0934
| | | |
Collapse
|
34
|
Bissinger R, Malik A, Bouguerra G, Zhou Y, Singh Y, Abbès S, Lang F. Triggering of Suicidal Erythrocyte Death by the Antibiotic Ionophore Nigericin. Basic Clin Pharmacol Toxicol 2015; 118:381-9. [DOI: 10.1111/bcpt.12503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Rosi Bissinger
- Department of Physiology; University of Tuebingen; Tuebingen Germany
| | - Abaid Malik
- Department of Physiology; University of Tuebingen; Tuebingen Germany
| | - Ghada Bouguerra
- Department of Physiology; University of Tuebingen; Tuebingen Germany
- Laboratoire d'Hématologie Moléculaire et Cellulaire; Institut Pasteur de Tunis; Université de Tunis-El Manar; Tunis Tunisia
| | - Yuetao Zhou
- Department of Physiology; University of Tuebingen; Tuebingen Germany
| | - Yogesh Singh
- Department of Physiology; University of Tuebingen; Tuebingen Germany
| | - Salem Abbès
- Laboratoire d'Hématologie Moléculaire et Cellulaire; Institut Pasteur de Tunis; Université de Tunis-El Manar; Tunis Tunisia
| | - Florian Lang
- Department of Physiology; University of Tuebingen; Tuebingen Germany
| |
Collapse
|
35
|
Deng CC, Xu M, Li J, Luo XL, Zhu YJ, Jiang R, Zhang MX, Lei JJ, Lian YF, Zou X, You R, Chen LZ, Feng QS, Bei JX, Chen MY, Zeng YX. Unconjugated Bilirubin Is a Novel Prognostic Biomarker for Nasopharyngeal Carcinoma and Inhibits Its Metastasis via Antioxidation Activity. Cancer Prev Res (Phila) 2015; 9:180-8. [DOI: 10.1158/1940-6207.capr-15-0257] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/16/2015] [Indexed: 11/16/2022]
|
36
|
Wang J, Huang Y, Guan Z, Zhang JL, Su HK, Zhang W, Yue CF, Yan M, Guan S, Liu QQ. E3-ligase Skp2 predicts poor prognosis and maintains cancer stem cell pool in nasopharyngeal carcinoma. Oncotarget 2015; 5:5591-601. [PMID: 25015320 PMCID: PMC4170633 DOI: 10.18632/oncotarget.2149] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the severe head and neck carcinomas, which is rare in west countries but has high incidence in Southern Asia especially South China. Although NPC is relatively sensitive to radiotherapy, the prognosis of patients is poor due to the advanced stage at the time of diagnosis. Therefore, it is important to understand the mechanisms involved in tumorigenesis and develop early diagnostic techniques. S-phase kinase associated protein 2 (Skp2) is overexpressed in several human cancers and associates with poor prognosis. However, its function in NPC has not been fully addressed. In this study we found Skp2 was highly expressed in NPC specimen and correlated with poor prognosis. We generated Skp2 knockdown cells to further delineate its role in NPC development. Knockdown of Skp2 partially reduced cell proliferation, promoted cellular senescence, and decreased the population of stem cell like aldehyde dehydrogenase1 positive cells as well as their self-renewal ability. Our study not only interprets the predictive role of Skp2 in the poor prognosis of NPC patients, but also reveals that Skp2 regulates the NPC cancer stem cell maintenance, which shed lights on the target therapy and early diagnosis of NPC in clinical application.
Collapse
Affiliation(s)
- Jing Wang
- State key laboratory of oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Research Laboratory, Sun Yat-sen University Cancer Center, Guangzhou, China. Department of Research Laboratory, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Huang
- State key laboratory of oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Research Laboratory, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhong Guan
- Department of Otorhinolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jia-Liang Zhang
- Department of Otorhinolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong-Kai Su
- State key laboratory of oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Research Laboratory, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Zhang
- State key laboratory of oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Research Laboratory, Sun Yat-sen University Cancer Center, Guangzhou, China. Department of Research Laboratory, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cai-Feng Yue
- State key laboratory of oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Research Laboratory, Sun Yat-sen University Cancer Center, Guangzhou, China. Department of Research Laboratory, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Min Yan
- State key laboratory of oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Research Laboratory, Sun Yat-sen University Cancer Center, Guangzhou, China. Department of Research Laboratory, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Su Guan
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, China
| | - Quentin Qiang Liu
- State key laboratory of oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Research Laboratory, Sun Yat-sen University Cancer Center, Guangzhou, China. Department of Research Laboratory, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
37
|
Wei P, Niu M, Pan S, Zhou Y, Shuai C, Wang J, Peng S, Li G. Cancer stem-like cell: a novel target for nasopharyngeal carcinoma therapy. Stem Cell Res Ther 2015; 5:44. [PMID: 25158069 PMCID: PMC4055123 DOI: 10.1186/scrt433] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the most common cancer originating in the nasopharynx, and is extremely common in southern regions of China. Although the standard combination of radiotherapy and chemotherapy has improved the efficiency in patients with NPC, relapse and early metastasis are still the common causes of mortality. Cancer stem-like cells (CSCs) or tumor initial cells are hypothesized to be involved in cancer metastasis and recurrence. Over the past decade, increasing numbers of studies have been carried out to identify CSCs from human NPC cells and tissues. The present paper will summarize the investigations on nasopharyngeal CSCs, including isolation, characteristics, and therapeutic approaches. Although there are still numerous challenges to translate basic research into clinical applications, understanding the molecular details of CSCs is essential for developing effective strategies to prevent the recurrence and metastasis of NPC.
Collapse
|
38
|
He Y, Zhou Q, Shen L, Zhao Y, Lei M, Wei R, Shen L, Cao S. A retrospective study of the prognostic value of MRI-derived residual tumors at the end of intensity-modulated radiotherapy in 358 patients with locally-advanced nasopharyngeal carcinoma. Radiat Oncol 2015; 10:89. [PMID: 25881159 PMCID: PMC4464998 DOI: 10.1186/s13014-015-0401-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 04/06/2015] [Indexed: 11/10/2022] Open
Abstract
Objective To retrospectively analyze the prognostic value of magnetic resonance imaging (MRI)-derived residual tumors after intensity-modulated radiation therapy (IMRT) in the patients with locally-advanced nasopharyngeal carcinoma. Methods A total of 358 patients with locally-advanced nasopharyngeal carcinoma who received IMRT were classified as having residual tumors or no residual tumor based on MRI at the end of radiotherapy. The χ2 test, log-rank test, Cox proportional hazards regression model and Kaplan-Meir survival curves were used to investigate the relationship of clinicopathological features and residual tumors and to assess the prognostic value of residual tumors. Results The 3-year overall survival (OS) rate was 73% in the residual tumor group and 90% in the no residual tumor group (HR 2.15, 95% CI 1.21-3.82,, P = 0.007); 3-year local relapse-free survival (LRFS) was 89% in the residual tumor group and 97% in the no residual tumor group (HR 4.46, 95% CI 1.61-12.38, P = 0.002); 3-year disease free survival (DFS) was 67% in the residual tumor group and 82% in the no residual tumor group (HR 2.21, 95% CI 1.40-3.48, P = 0.001). A high prescribed radiation dose (>73.92 Gy) did not increase the percentage volume of the GTVnx receiving 95% of the prescribed dose (GTVnx V95%) or improve any survival outcome. Conclusion The presence of a residual tumor after IMRT was a significant negative independent prognostic factor for OS, LRFS and DFS. Although IMRT have improved the distribution of radiotherapy doses into the tumors, residual tumors detected by MRI after IMRT are still associated with poor prognosis in patients with advanced nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Yuxiang He
- Department of Oncology, Xiangya Hospital, Central South University, Hunan Province, No. 87, Xiangya Road, Changsha, Hunan Province, 410008, P.R. China.
| | - Qin Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Hunan Province, No. 87, Xiangya Road, Changsha, Hunan Province, 410008, P.R. China.
| | - Lin Shen
- Department of Oncology, Xiangya Hospital, Central South University, Hunan Province, No. 87, Xiangya Road, Changsha, Hunan Province, 410008, P.R. China.
| | - Yajie Zhao
- Department of Oncology, Xiangya Hospital, Central South University, Hunan Province, No. 87, Xiangya Road, Changsha, Hunan Province, 410008, P.R. China.
| | - Mingjun Lei
- Department of Oncology, Xiangya Hospital, Central South University, Hunan Province, No. 87, Xiangya Road, Changsha, Hunan Province, 410008, P.R. China.
| | - Rui Wei
- Department of Oncology, Xiangya Hospital, Central South University, Hunan Province, No. 87, Xiangya Road, Changsha, Hunan Province, 410008, P.R. China.
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Hunan Province, No. 87, Xiangya Road, Changsha, Hunan Province, 410008, P.R. China.
| | - Shousong Cao
- Department of Oncology, Xiangya Hospital, Central South University, Hunan Province, No. 87, Xiangya Road, Changsha, Hunan Province, 410008, P.R. China.
| |
Collapse
|
39
|
Zong D, Yin L, Zhong Q, Guo WJ, Xu JH, Jiang N, Lin ZR, Li MZ, Han P, Xu L, He X, Zeng MS. ZNF488 Enhances the Invasion and Tumorigenesis in Nasopharyngeal Carcinoma Via the Wnt Signaling Pathway Involving Epithelial Mesenchymal Transition. Cancer Res Treat 2015; 48:334-44. [PMID: 25779368 PMCID: PMC4720103 DOI: 10.4143/crt.2014.311] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/05/2014] [Indexed: 02/06/2023] Open
Abstract
Purpose The purpose of this study was to investigate the function of Zinc finger protein 488 (ZNF488) in nasopharyngeal carcinoma (NPC). Materials and Methods The endogenous expression of ZNF488 in NPC tissues, normal nasopharyngeal epithelium tissues and NPC cell lines were detected by quantitative reverse transcription polymerase chain reaction. ZNF488 over-expressing and knock-down NPC cell line models were established through retroviral vector pMSCV mediated over-expression and small interfering RNA (siRNA) mediated knock-down. The invasion and migration capacities were evaluated by wound healing and transwell invasion assays in ZNF488 over-expressing and control cell lines. Soft-agar colony formation and a xenograft experiment were performed to study tumorigenic ability in vitro and in vivo. Immunofluorescence and western blotting analysis were used to examine protein changes followed by ZNF488 over-expression. Microarray analysis was performed to explore gene expression profilings, while luciferase reporter assay to evaluate the transcriptive activity of Tcf/Lef. Results ZNF488 was over-expressed in NPC tissues compared with normal tissues, especially higher in 5-8F and S18, which are well-established high metastatic NPC clones. Functional studies indicate that over-expression of ZNF488 provokes invasion, whereas knock-down of ZNF488 alleviates invasive capability. Moreover, over-expression of ZNF488 promotes NPC tumor growth both in vitro and in vivo. Our data further show that over-expression of ZNF488 induces epithelial mesenchymal transition (EMT) by activating the WNT/β-catenin signaling pathway. Conclusion Our data strongly suggest that ZNF488 acts as an oncogene, promoting invasion and tumorigenesis by activating the Wnt/β-catenin pathway to induce EMT in NPC.
Collapse
Affiliation(s)
- Dan Zong
- Jiangsu Cancer Hospital, Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Li Yin
- Jiangsu Cancer Hospital, Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wen-Jie Guo
- Jiangsu Cancer Hospital, Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Jian-Hua Xu
- Jiangsu Cancer Hospital, Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Ning Jiang
- Jiangsu Cancer Hospital, Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Zhi-Rui Lin
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Man-Zhi Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ping Han
- Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lin Xu
- Jiangsu Cancer Hospital, Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Xia He
- Jiangsu Cancer Hospital, Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
40
|
Draft Genome Sequence of Streptomyces sp. Strain PRh5, a Novel Endophytic Actinomycete Isolated from Dongxiang Wild Rice Root. GENOME ANNOUNCEMENTS 2014; 2:2/2/e00012-14. [PMID: 24744320 PMCID: PMC3990736 DOI: 10.1128/genomea.00012-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the draft genome sequence of Streptomyces sp. strain PRh5 (China Center for Type Culture Collection [CCTCC] number 2013487), which is used to produce nigericin and nocardamine. The genome sequence will allow for the characterization of the molecular mechanisms underlying its beneficial properties.
Collapse
|