1
|
Jia J, Ji W, Xiong N, Lin J, Yang Q. Trained immunity using probiotics and inactivated pathogens enhances resistance to Salmonella enterica serovar Typhimurium infection by activating the cGAS-STING signal pathway in mice and chickens. J Adv Res 2025:S2090-1232(25)00152-3. [PMID: 40086629 DOI: 10.1016/j.jare.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
INTRODUCTION Concerns about antibiotic resistance have prompted interest in alternative strategies for enhancing disease resistance, particularly in livestock and poultry production. OBJECTIVES This study explored the role of trained immunity in enhancing resistance to Salmonella enterica serovar Typhimurium (S. Typhimurium) infection in mice and chickens. METHODS We investigated the effects of probiotics and inactivated pathogenic bacterial strains on host immunity in Toll-like receptor 2-deficient mice (TLR2-/-) to assess whether these effects were related to bacterial outer membrane components such as peptidoglycan (PNG), lipoarabinomannan (LAM) and lipoteichoic acid (LTA). Bacterial genomes were evaluated for their ability to enhance the host immune system. Macrophage-depletion models were used to identify the key immune cells involved in trained immunity, with a focus on the cGAS-STING pathway. RESULTS Probiotics and inactivated pathogenic strains enhanced host immunity and protected against S. Typhimurium infection. As demonstrated in the TLR2-deficient mice, the effects were not dependent on bacterial outer membrane components. Instead, bacterial genomes played a significant role in activating trained immunity. Macrophages were identified as the primary cells that mediated the response with the cGAS-STING pathway playing a crucial role. The results observed using the mouse models led to investigating the potential application of trained immunity in poultry. CONCLUSION Trained immunity activated by probiotics and inactivated bacterial pathogens enhanced resistance against S. Typhimurium infection via macrophage activation and involved the cGAS-STING pathway. These findings highlight the potential of trained immunity as an alternative strategy for disease prevention in both livestock and poultry.
Collapse
Affiliation(s)
- Junpeng Jia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Wenxin Ji
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Ningna Xiong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Jian Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China.
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
2
|
Zhao H, Cai Y, Pan J, Chen Q. Role of MicroRNA in linking diabetic retinal neurodegeneration and vascular degeneration. Front Endocrinol (Lausanne) 2024; 15:1412138. [PMID: 39027475 PMCID: PMC11254631 DOI: 10.3389/fendo.2024.1412138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Diabetic retinopathy is the major cause of blindness in diabetic patients, with limited treatment options that do not always restore optimal vision. Retinal nerve degeneration and vascular degeneration are two primary pathological processes of diabetic retinopathy. The retinal nervous system and vascular cells have a close coupling relationship. The connection between neurodegeneration and vascular degeneration is not yet fully understood. Recent studies have found that microRNA plays a role in regulating diabetic retinal neurovascular degeneration and can help delay the progression of the disease. This article will review how microRNA acts as a bridge connecting diabetic retinal neurodegeneration and vascular degeneration, focusing on the mechanisms of apoptosis, oxidative stress, inflammation, and endothelial factors. The aim is to identify valuable targets for new research and clinical treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Haiyan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | | | | | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Zhong Y, Xia J, Liao L, Momeni MR. Non-coding RNAs and exosomal non-coding RNAs in diabetic retinopathy: A narrative review. Int J Biol Macromol 2024; 259:128182. [PMID: 37977468 DOI: 10.1016/j.ijbiomac.2023.128182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Diabetic retinopathy (DR) is a devastating complication of diabetes, having extensive and resilient effects on those who suffer from it. As yet, the underlying cell mechanisms of this microvascular disorder are largely unclear. Recently, growing evidence suggests that epigenetic mechanisms can be responsible for gene deregulation leading to the alteration of key processes in the development and progression of DR, in addition to the widely recognized pathological mechanisms. It is noteworthy that seemingly unending epigenetic modifications, caused by a prolonged period of hyperglycemia, may be a prominent factor that leads to metabolic memory, and brings epigenetic entities such as non-coding RNA into the equation. Consequently, further investigation is necessary to truly understand this mechanism. Exosomes are responsible for carrying signals from cells close to the vasculature that are participating in abnormal signal transduction to faraway organs and cells by sailing through the bloodstream. These signs indicate metabolic disorders. With the aid of their encased structure, they can store diverse signaling molecules, which then can be dispersed into the blood, urine, and tears. Herein, we summarized various non-coding RNAs (ncRNAs) that are related to DR pathogenesis. Moreover, we highlighted the role of exosomal ncRNAs in this disease.
Collapse
Affiliation(s)
- Yuhong Zhong
- Endocrinology Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China
| | - Juan Xia
- Endocrinology Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China
| | - Li Liao
- Department of Respiratory and Critical Care Medicine 3, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China.
| | - Mohammad Reza Momeni
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
4
|
Sharma S, Bhonde R. Applicability of mesenchymal stem cell-derived exosomes as a cell-free miRNA therapy and epigenetic modifiers for diabetes. Epigenomics 2023; 15:1323-1336. [PMID: 38018455 DOI: 10.2217/epi-2023-0302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Given that exosome nanovesicles constitute various growth factors, miRNAs and lncRNAs, they have implications for epigenetic modifications. Few studies have shown that exosomes from mesenchymal stem cells (MSCs) exhibit therapeutic effects on diabetic complications by substituting miRNAs and regulating histone modifications. Therefore, reversing epigenetic aberrations in diabetes may provide new insight into its treatment. This review discusses the impact of DNA and histone methylations on the development of diabetes and its complications. Further, we talk about miRNAs dysregulated in diabetic conditions and the possibility of utilizing mesenchymal stem cell (MSC) exosomes for the development of miRNA cell-free therapy and epigenetic modifiers in reversing diabetic-induced epigenetic alterations.
Collapse
Affiliation(s)
- Shikha Sharma
- Institute For Stem Cell Science & Regenerative Medicine, Bangalore, 560065, India
| | - Ramesh Bhonde
- Dr D.Y. Patil Vidyapeeth, Pimpri, Pune, 411018, India
| |
Collapse
|
5
|
Li J, Chen K, Li X, Zhang X, Zhang L, Yang Q, Xia Y, Xie C, Wang X, Tong J, Shen Y. Mechanistic insights into the alterations and regulation of the AKT signaling pathway in diabetic retinopathy. Cell Death Discov 2023; 9:418. [PMID: 37978169 PMCID: PMC10656479 DOI: 10.1038/s41420-023-01717-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
In the early stages of diabetic retinopathy (DR), diabetes-related hyperglycemia directly inhibits the AKT signaling pathway by increasing oxidative stress or inhibiting growth factor expression, which leads to retinal cell apoptosis, nerve proliferation and fundus microvascular disease. However, due to compensatory vascular hyperplasia in the late stage of DR, the vascular endothelial growth factor (VEGF)/phosphatidylinositol 3 kinase (PI3K)/AKT cascade is activated, resulting in opposite levels of AKT regulation compared with the early stage. Studies have shown that many factors, including insulin, insulin-like growth factor-1 (IGF-1), VEGF and others, can regulate the AKT pathway. Disruption of the insulin pathway decreases AKT activation. IGF-1 downregulation decreases the activation of AKT in DR, which abrogates the neuroprotective effect, upregulates VEGF expression and thus induces neovascularization. Although inhibiting VEGF is the main treatment for neovascularization in DR, excessive inhibition may lead to apoptosis in inner retinal neurons. AKT pathway substrates, including mammalian target of rapamycin (mTOR), forkhead box O (FOXO), glycogen synthase kinase-3 (GSK-3)/nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor kappa-B (NF-κB), are a research focus. mTOR inhibitors can delay or prevent retinal microangiopathy, whereas low mTOR activity can decrease retinal protein synthesis. Inactivated AKT fails to inhibit FOXO and thus causes apoptosis. The GSK-3/Nrf2 cascade regulates oxidation and inflammation in DR. NF-κB is activated in diabetic retinas and is involved in inflammation and apoptosis. Many pathways or vital activities, such as the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) signaling pathways, interact with the AKT pathway to influence DR development. Numerous regulatory methods can simultaneously impact the AKT pathway and other pathways, and it is essential to consider both the connections and interactions between these pathways. In this review, we summarize changes in the AKT signaling pathway in DR and targeted drugs based on these potential sites.
Collapse
Affiliation(s)
- Jiayuan Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiang Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuhong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Liyue Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yutong Xia
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Xie
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiawei Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Cao J, Zhao C, Gong L, Cheng X, Yang J, Zhu M, Lv X. MiR-181 enhances proliferative and migratory potentials of retinal endothelial cells in diabetic retinopathy by targeting KLF6. Curr Eye Res 2022; 47:882-888. [PMID: 35179443 DOI: 10.1080/02713683.2022.2039206] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE We aimed to uncover the role of microRNA-181 (miR-181) in the disease onset of diabetic retinopathy (DR) and its underlying mechanism. METHODS MiR-181 levels in plasma and aqueous humor samples of non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR) and healthy subjects were analyzed by microarray and quantitative real-time polymerase chain reaction (qRT-PCR). Proliferative and migrative capacities of human retinal endothelial cells (hRECs) regulated by miR-181 were assessed. The binding between miR-181 and kruppel-like factor 6 (KLF6) was verified by dual-luciferase reporter assay. RESULTS MiR-181 was upregulated in plasma and aqueous humor samples of NPDR and PDR patients. Overexpression of miR-181 stimulated hRECs to proliferate and migrate. KLF6 was the downstream gene binding miR-181, which was involved in the regulation of hRECs by miR-181. CONCLUSIONS MiR-181 is upregulated in plasma and aqueous humor of DR patients. It enhances proliferative and migratory potentials of retinal endothelial cells by targeting KLF6.
Collapse
Affiliation(s)
- Jin Cao
- Department of Ophthalmology, Xianning Central Hospital, The First Affiliated Hospital Of Hubei University of Science And Technology, Xianning 437100, China
| | - Chujin Zhao
- Department of ENT, Xianning Central Hospital, The First Affiliated Hospital Of Hubei University Of Science And Technology, 228 Jingui Road, Xianning 437100, China
| | - Lanlan Gong
- Department of Ophthalmology, Xianning Central Hospital, The First Affiliated Hospital Of Hubei University of Science And Technology, Xianning 437100, China
| | - Xinchao Cheng
- Department of Ophthalmology, Xianning Central Hospital, The First Affiliated Hospital Of Hubei University of Science And Technology, Xianning 437100, China
| | - Jie Yang
- Department of Ophthalmology, Xianning Central Hospital, The First Affiliated Hospital Of Hubei University of Science And Technology, Xianning 437100, China
| | - Mengnan Zhu
- Department of Ophthalmology, Xianning Central Hospital, The First Affiliated Hospital Of Hubei University of Science And Technology, Xianning 437100, China
| | - Xudong Lv
- Department of Ophthalmology, Xianning Central Hospital, The First Affiliated Hospital Of Hubei University of Science And Technology, Xianning 437100, China
| |
Collapse
|
7
|
Dowling L, Duseja A, Vilaca T, Walsh JS, Goljanek-Whysall K. MicroRNAs in obesity, sarcopenia, and commonalities for sarcopenic obesity: a systematic review. J Cachexia Sarcopenia Muscle 2022; 13:68-85. [PMID: 34984856 PMCID: PMC8818592 DOI: 10.1002/jcsm.12878] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
Sarcopenic obesity is a distinct condition of sarcopenia in the context of obesity, with the cumulative health risks of both phenotypes. Differential expression of microRNAs (miRNAs) has been reported separately in people with obesity and sarcopenia and may play a role in the pathogenesis of sarcopenic obesity. However, this has not been explored to date. This study aimed to identify differentially expressed miRNAs reported in serum, plasma, and skeletal muscle of people with obesity and sarcopenia and whether there are any commonalities between these conditions. We performed a systematic review on Embase and MEDLINE (PROSPERO, CRD42020224486) for differentially expressed miRNAs (fold change >1.5 or P-value <0.05) in (i) sarcopenia or frailty and (ii) obesity or metabolic syndrome. The functions and targets of miRNAs commonly changed in both conditions, in the same direction, were searched using PubMed. Following deduplication, 247 obesity and 42 sarcopenia studies were identified for full-text screening. Screening identified 36 obesity and 6 sarcopenia studies for final inclusion. A total of 351 miRNAs were identified in obesity and 157 in sarcopenia. Fifty-five miRNAs were identified in both obesity and sarcopenia-by sample type, 48 were found in plasma and one each in serum and skeletal muscle. Twenty-four miRNAs were identified from 10 of the included studies as commonly changed in the same direction (22 in plasma and one each in serum and skeletal muscle) in obesity and sarcopenia. The majority of miRNA-validated targets identified in the literature search were members of the phosphoinositide 3-kinase/protein kinase B and transforming growth factor-β signalling pathways. The most common targets identified were insulin-like growth factor 1 (miR-424-5p, miR-483-3p, and miR-18b-5p) and members of the SMAD family (miR-483-3p, miR-92a-3p, and miR-424-5p). The majority of commonly changed miRNAs were involved in protein homeostasis, mitochondrial dynamics, determination of muscle fibre type, insulin resistance, and adipogenesis. Twenty-four miRNAs were identified as commonly dysregulated in obesity and sarcopenia with functions and targets implicated in the pathogenesis of sarcopenic obesity. Given the adverse health outcomes associated with sarcopenic obesity, understanding the pathogenesis underlying this phenotype has the potential to lead to effective screening, monitoring, or treatment strategies. Further research is now required to confirm whether these miRNAs are differentially expressed in older adults with sarcopenic obesity.
Collapse
Affiliation(s)
| | | | | | | | - Katarzyna Goljanek-Whysall
- The University of Liverpool, Liverpool, UK.,Department of Physiology, School of Medicine, Nursing and Health Sciences, College of Medicine, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
8
|
Xu Z, Tian N, Li S, Li K, Guo H, Zhang H, Jin H, An M, Yu X. Extracellular vesicles secreted from mesenchymal stem cells exert anti-apoptotic and anti-inflammatory effects via transmitting microRNA-18b in rats with diabetic retinopathy. Int Immunopharmacol 2021; 101:108234. [PMID: 34655847 DOI: 10.1016/j.intimp.2021.108234] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 12/28/2022]
Abstract
Diabetic retinopathy (DR) is a major cause of visual deficits and blindness in the working-age population and inflammatory response is a key event during DR. In this study, we investigated the anti-inflammatory properties of small extracellular vesicles (sEVs) derived from human umbilical cord mesenchymal stem cells (hUCMSCs) in a diabetic rat model and human retinal microvascular endothelial cells. After development of DR in rats subjected to diabetes induction with streptozotocin (STZ), the DR rats were treated with different concentrations of hUCMSC-sEVs. Our results showed that the treatment of the retinas of DR rats with hUCMSC-sEVs not only reduced the level of vascular leakage in the retinas of rats but also decreased the retinal thickness as well as the associated inflammation. Further, our in vitro evidences suggest that hUCMSC-sEVs repress high glucose (HG)-induced cell inflammation and apoptosis. Subsequently, we analyzed the differentially expressed microRNAs (miRNAs) in the hUCMSC-sEVs by microarray and performed in silico studies to predict the target mRNA of miR-18b. Our findings also revealed that the expression of miR-18b was significantly elevated in the retina of diabetic rats after sEV treatment. In addition, miR-18b was found to target mitogen-activated protein kinase kinase kinase 1 (MAP3K1), thereby inhibiting NF-κB p65 phosphorylation to alleviate DR. Overall, this study highlights the potential of hUCMSCs-sEVs as biomaterials for anti-inflammatory and anti-apoptotic effects in DR by transferring miR-18b.
Collapse
Affiliation(s)
- Zepeng Xu
- Department of Ophthalmology, Jiangmen Wuyi Hospital of TCM, Jiangmen 529000, Guangdong, China; The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510504, Guangdong, China
| | - Ni Tian
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510504, Guangdong, China.
| | - Songtao Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510504, Guangdong, China
| | - Kunmeng Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510504, Guangdong, China
| | - Haike Guo
- Department of Ophthalmology, Shanghai Heping Eye Hospital, Shanghai 200437, China
| | - Hongyang Zhang
- Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangzhou 510120, Guangdong, China
| | - Haiying Jin
- Department of Ophthalmology, Shanghai No. 10 People's Hospital, Shanghai 200040, China
| | - Meixia An
- Department of Ophthalmology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, China
| | - Xiaoyi Yu
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510504, Guangdong, China
| |
Collapse
|
9
|
Shahcheraghi SH, Aljabali AAA, Al Zoubi MS, Mishra V, Charbe NB, Haggag YA, Shrivastava G, Almutary AG, Alnuqaydan AM, Barh D, Dua K, Chellappan DK, Gupta G, Lotfi M, Serrano-Aroca Á, Bahar B, Mishra YK, Takayama K, Panda PK, Bakshi HA, Tambuwala MM. Overview of key molecular and pharmacological targets for diabetes and associated diseases. Life Sci 2021; 278:119632. [PMID: 34019900 DOI: 10.1016/j.lfs.2021.119632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022]
Abstract
Diabetes epidemiological quantities are demonstrating one of the most important communities' health worries. The essential diabetic difficulties are including cardiomyopathy, nephropathy, inflammation, and retinopathy. Despite developments in glucose decreasing treatments and drugs, these diabetic complications are still ineffectively reversed or prohibited. Several signaling and molecular pathways are vital targets in the new therapies of diabetes. This review assesses the newest researches about the key molecules and signaling pathways as targets of molecular pharmacology in diabetes and diseases related to it for better treatment based on molecular sciences. The disease is not cured by current pharmacological strategies for type 2 diabetes. While several drug combinations are accessible that can efficiently modulate glycemia and mitigate long-term complications, these agents do not reverse pathogenesis, and in practice, they are not established to modify the patient's specific molecular profiling. Therapeutic companies have benefited from human genetics. Genome exploration, which is agnostic to the information that exists, has revealed tens of loci that impact glycemic modulation. The physiological report has begun to examine subtypes of diseases, illustrate heterogeneity and propose biochemical therapeutic pathways.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Mazhar S Al Zoubi
- Yarmouk University, Faculty of Medicine, Department of Basic Medical Sciences, Irbid, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Nitin B Charbe
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| | - Yusuf A Haggag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Yogendra Kumar Mishra
- University of Southern Denmark, Mads Clausen Institute, NanoSYD, Alsion 2, 6400 Sønderborg, Denmark
| | - Kazuo Takayama
- Center for IPS Cell Research and Application, Kyoto University, Kyoto, 606-8397, Japan
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Hamid A Bakshi
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom.
| |
Collapse
|
10
|
Biguanides drugs: Past success stories and promising future for drug discovery. Eur J Med Chem 2021; 224:113726. [PMID: 34364161 DOI: 10.1016/j.ejmech.2021.113726] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Biguanides have attracted much attention a century ago and showed resurgent interest in recent years after a long period of dormancy. They constitute an important class of therapeutic agents suitable for the treatment of a wide spectrum of diseases. Therapeutic indications of biguanides include antidiabetic, antimalarial, antiviral, antiplaque, and bactericidal applications. This review presents an extensive overview of the biological activity of biguanides and different mechanisms of action of currently marketed biguanide-containing drugs, as well as their pharmacological properties when applicable. We highlight the recent developments in research on biguanide compounds, with a primary focus on studies on metformin in the field of oncology. We aim to provide a critical overview of all main bioactive biguanide compounds and discuss future perspectives for the design of new drugs based on the biguanide fragment.
Collapse
|
11
|
Liu X, Li J, Li X. miR-142-5p regulates the progression of diabetic retinopathy by targeting IGF1. Int J Immunopathol Pharmacol 2021; 34:2058738420909041. [PMID: 32116075 PMCID: PMC7052454 DOI: 10.1177/2058738420909041] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
As one of leading causes of blindness, diabetic retinopathy (DR) is a progressive microvascular complication of diabetes mellitus (DM). Despite significant efforts have been devoted to investigate DR over the years, the molecular mechanisms still remained unclear. Emerging evidences demonstrated that microRNAs (miRNAs) were tightly associated with pathophysiological development of DR. Hence, this study was aimed to illustrate the role and molecular mechanisms of miR-412-5p in progression of DR. Streptozotocin (STZ) treatment in rats and human retinal endothelial cell (HREC) models were used to simulate DR conditions in vivo and in vitro. Hematoxylin-eosin (HE) staining was used to demonstrate the morphology of retinal tissues of rats. Qualitative real-time polymerase chain reaction (qRT-PCR) detected miR-142-5p and vascular endothelial growth factor (VEGF) expression levels. Cell counting kit-8 (CCK8) assay and immunofluorescence (IF) measured the cell proliferation rates. Western blot tested the expression status of IGF1/IGF1R-mediated signaling pathway. Dual-luciferase reporter assays demonstrated the molecular mechanism of miR-142-5p. miR-142-5p level was down-regulated in retinal tissues of DR rats and high glucose (HG)-treated HRECs. Insulin-like growth factor 1 (IGF1) was identified as a direct target of miR-142-5p. The reduced miR-142-5p level enhanced HRECs proliferation via activating IGF/IGF1R-mediated signaling pathway including p-PI3K, p-ERK, p-AKT, and VEGF activation, ultimately giving rise to cell proliferation. Either miR-142-5p overexpression or IGF1 knockdown alleviated the pathological effects on retinal tissues in DR rats. Collectively, miR-142-5p participated in DR development by targeting IGF1/p-IGF1R signaling pathway and VEGF generation. This miR-142-5p/IGF1/VEGF axis provided a novel therapeutic target for DR clinical treatment.
Collapse
Affiliation(s)
- Xiuming Liu
- Department of Ophthalmology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jianchang Li
- Department of Ophthalmology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xiaofeng Li
- Department of Ophthalmology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
12
|
Ghafouri-Fard S, Abak A, Mohaqiq M, Shoorei H, Taheri M. The Interplay Between Non-coding RNAs and Insulin-Like Growth Factor Signaling in the Pathogenesis of Neoplasia. Front Cell Dev Biol 2021; 9:634512. [PMID: 33768092 PMCID: PMC7985092 DOI: 10.3389/fcell.2021.634512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factors (IGFs) are polypeptides with similar sequences with insulin. These factors regulate cell growth, development, maturation, and aging via different processes including the interplay with MAPK, Akt, and PI3K. IGF signaling participates in the pathogenesis of neoplasia, insulin resistance, diabetes mellitus, polycystic ovarian syndrome, cerebral ischemic injury, fatty liver disease, and several other conditions. Recent investigations have demonstrated the interplay between non-coding RNAs and IGF signaling. This interplay has fundamental roles in the development of the mentioned disorders. We designed the current study to search the available data about the role of IGF-associated non-coding RNAs in the evolution of neoplasia and other conditions. As novel therapeutic strategies have been designed for modification of IGF signaling, identification of the impact of non-coding RNAs in this pathway is necessary for the prediction of response to these modalities.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mohaqiq
- School of Advancement, Centennial College, Ashtonbee Campus, Toronto, ON, Canada
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Biranjd University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Huang Q, Gong M, Tan T, Lin Y, Bao Y, Fan C. Human Umbilical Cord Mesenchymal Stem Cells-Derived Exosomal MicroRNA-18b-3p Inhibits the Occurrence of Preeclampsia by Targeting LEP. NANOSCALE RESEARCH LETTERS 2021; 16:27. [PMID: 33566191 PMCID: PMC7876216 DOI: 10.1186/s11671-021-03475-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs) expressing microRNAs have been highlighted in human diseases. However, the detailed molecular mechanism of hucMSCs-derived exosomal miR-18b-3p on preeclampsia (PE) remains further investigation. We aimed to investigate the effect of exosomes and miR-18b-3p/leptin (LEP) on occurrence of PE. The morphology of the hucMSC and hucMSC-exosomes (Exos) was identified. The exosomes were infected with different lentivirus expressing miR-18b-3p to explore the role of miR-18b-3p in PE. The PE rat model was established by intraperitoneal injection of N-nitro-L-arginine methyl ester. The expression of LEP and miR-18b-3p was tested in PE rat placenta tissues. Also, the effect of exosomes on LEP and miR-18b-3p expression was detected. The systolic blood pressure (SBP), proteinuria, inflammatory factors, the weight of fetal rat and placenta and cell apoptosis in PE rats were detected. Finally, the relationship between miR-18b-3p and LEP was verified using dual-luciferase reporter gene assay and RNA pull-down assay. Exosomes, restoring miR-18b-3p or inhibiting LEP reduced SBP and proteinuria of PE rats as well as increased the weight of fetal rat and placenta, decreased serum levels of inflammatory factors as well as suppressed apoptotic cells of PE rats, exerting a suppressive effect on PE progression. miR-18b-3p was decreased and LEP was increased in placenta tissues of PE rats. LEP was the direct target gene of miR-18b-3p. Upregulation of miR-18b-3p or treatment of the exosomes suppressed LEP expression and reduced PE occurrence, while downregulation of miR-18b-3p had contrary effects. Downregulated LEP reversed the effect of miR-18b-3p reduction on PE rats. HucMSCs-derived exosomal miR-18b-3p targets LEP to participate in the occurrence and development of PE. This study may provide a novel theoretical basis for the mechanism and investigation of PE.
Collapse
Affiliation(s)
- Qin Huang
- Department of Obstetrics and Gynecology, Renmin Hosptial of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Meng Gong
- Department of Obstetrics and Gynecology, Renmin Hosptial of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Tuantuan Tan
- Ultrasound Imaging Department, Renmin Hosptial of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yunong Lin
- Department of Statistics, UW-Madison, Madison, 53703, USA
| | - Yan Bao
- Department of Obstetrics and Gynecology, Renmin Hosptial of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Cuifang Fan
- Department of Obstetrics and Gynecology, Renmin Hosptial of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
14
|
Wang Q, Zhang X, Wang K, Zhu L, Qiu B, Chen X, Lin X, Nie Y. An In Vitro Model of Diabetic Retinal Vascular Endothelial Dysfunction and Neuroretinal Degeneration. J Diabetes Res 2021; 2021:9765119. [PMID: 34805414 PMCID: PMC8598328 DOI: 10.1155/2021/9765119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/09/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a leading cause of blindness in working-age populations. Proper in vitro DR models are crucial for exploring pathophysiology and identifying novel therapeutic targets. This study establishes a rational in vitro diabetic retinal neuronal-endothelial dysfunction model and a comprehensive downstream validation system. METHODS Human retinal vascular endothelial cells (HRMECs) and retinal ganglion cells (RGCs) were treated with different glucose concentrations with mannitol as matched osmotic controls. Cell proliferation and viability were evaluated by the Cell Counting Kit-8. Cell migration was measured using a transwell migration assay. Cell sprouting was assessed by a tube formation assay. The VEGF expression was assessed by ELISA. RGCs were labeled by neurons and RGC markers TUJ1 and BRN3A for quantitative and morphological analysis. Apoptosis was detected using PI/Hoechst staining and TUNEL assay and quantified by ImageJ. RESULTS Cell proliferation and migration in HRMECs were significantly higher in the 25 mM glucose-treated group (p < 0.001) but lower in the 50 mM and 100 mM groups (p < 0.001). The permeability and the apoptotic index in HRMECs were statistically higher in the 25 mM, 50 mM, and 100 mM groups (p < 0.05). The tube formation assay found that all the parameters were significantly higher in the 25 mM and 50 mM groups (p < 0.001) concomitant with the elevated VEGFA expression in HRMECs (p = 0.016). Cell viability was significantly lower in the 50 mM, 100 mM, and 150 mM groups in RGCs (p 50mM = 0.013, p 100mM = 0.019, and p 150mM = 0.002). Apoptosis was significantly elevated, but the proportion of RGCs with neurite extension was significantly lower in the 50 mM, 100 mM, and 150 mM groups (p 50mM < 0.001, p 100mM < 0.001, and p 150mM < 0.001). CONCLUSIONS We have optimized glucose concentrations to model diabetic retinal endothelial (25-50 mM) or neuronal (50-100 mM) dysfunction in vitro, which have a wide range of downstream applications.
Collapse
Affiliation(s)
- Qiyun Wang
- Beijing Institute of Ophthalmology, Tongren Eye Center, Beijing Tongren Hospital, Capital Medical Univeristy, Beijing, China
- Beijing Retinal and Choroidal Vascular Diseases Study Group, China
| | - Xinyuan Zhang
- Beijing Institute of Ophthalmology, Tongren Eye Center, Beijing Tongren Hospital, Capital Medical Univeristy, Beijing, China
- Beijing Retinal and Choroidal Vascular Diseases Study Group, China
| | - Kaiyue Wang
- Beijing Institute of Ophthalmology, Tongren Eye Center, Beijing Tongren Hospital, Capital Medical Univeristy, Beijing, China
| | - Ling Zhu
- Save Sight Institute, Department of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Bingjie Qiu
- Beijing Institute of Ophthalmology, Tongren Eye Center, Beijing Tongren Hospital, Capital Medical Univeristy, Beijing, China
- Beijing Retinal and Choroidal Vascular Diseases Study Group, China
| | - Xiaosi Chen
- Beijing Institute of Ophthalmology, Tongren Eye Center, Beijing Tongren Hospital, Capital Medical Univeristy, Beijing, China
- Beijing Retinal and Choroidal Vascular Diseases Study Group, China
| | - Xiao Lin
- Beijing Institute of Ophthalmology, Tongren Eye Center, Beijing Tongren Hospital, Capital Medical Univeristy, Beijing, China
| | - Yao Nie
- Beijing Institute of Ophthalmology, Tongren Eye Center, Beijing Tongren Hospital, Capital Medical Univeristy, Beijing, China
- Beijing Retinal and Choroidal Vascular Diseases Study Group, China
| |
Collapse
|
15
|
Wang G, Lin F, Wan Q, Wu J, Luo M. Mechanisms of action of metformin and its regulatory effect on microRNAs related to angiogenesis. Pharmacol Res 2020; 164:105390. [PMID: 33352227 DOI: 10.1016/j.phrs.2020.105390] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Angiogenesis is rapidly initiated in response to pathological conditions and is a key target for pharmaceutical intervention in various malignancies. Anti-angiogenic therapy has emerged as a potential and effective therapeutic strategy for treating cancer and cardiovascular-related diseases. Metformin, a first-line oral antidiabetic agent for type 2 diabetes mellitus (T2DM), not only reduces blood glucose levels and improves insulin sensitivity and exerts cardioprotective effects but also shows benefits against cancers, cardiovascular diseases, and other diverse diseases and regulates angiogenesis. MicroRNAs (miRNAs) are endogenous noncoding RNA molecules with a length of approximately 19-25 bases that are widely involved in controlling various human biological processes. A large number of miRNAs are involved in the regulation of cardiovascular cell function and angiogenesis, of which miR-21 not only regulates vascular cell proliferation, migration and apoptosis but also plays an important role in angiogenesis. The relationship between metformin and abnormal miRNA expression has gradually been revealed in the context of numerous diseases and has received increasing attention. This paper reviews the drug-target interactions and drug repositioning events of metformin that influences vascular cells and has benefits on angiogenesis-mediated effects. Furthermore, we use miR-21 as an example to explain the specific molecular mechanism underlying metformin-mediated regulation of the miRNA signaling pathway controlling angiogenesis and vascular protective effects. These findings may provide a new therapeutic target and theoretical basis for the clinical prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Fang Lin
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qin Wan
- Department of Endocrinology, Nephropathy Clinical Medical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
16
|
KCNQ1OT1/miR-18b/HMGA2 axis regulates high glucose-induced proliferation, oxidative stress, and extracellular matrix accumulation in mesangial cells. Mol Cell Biochem 2020; 476:321-331. [PMID: 32989627 DOI: 10.1007/s11010-020-03909-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
Abstract
The dysregulated long noncoding RNAs (lncRNAs) are associated with the pathogenesis of diabetic nephropathy (DN). LncRNA potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (KCNQ1OT1) plays an important role in diabetes, but the role and mechanism of KCNQ1OT1 in DN are largely unknown. Serum samples were collected from 30 DN patients and normal volunteers. High glucose (HG)-challenged human mesangial cells (HMCs) were used as a cell model of DN. KCNQ1OT1, microRNA-18b (miR-18b), and high mobility group protein A2 (HMGA2) abundances were examined via quantitative reverse transcription polymerase chain reaction or western blot. Cell proliferation was assessed via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide. Oxidative stress was assessed via the levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and SOD2. Extracellular matrix (ECM) accumulation was investigated by the levels of fibronectin (FN), collagen I (Col I), and Col IV. The relationship between miR-18b and KCNQ1OT1 or HMGA2 was determined via dual-luciferase reporter analysis, RNA immunoprecipitation, and pull-down. KCNQ1OT1 expression was increased and miR-18b expression was decreased in DN patients and HG-challenged HMCs. miR-18b was targeted via KCNQ1OT1. Knockdown of KCNQ1OT1 weakened HG-caused proliferation, oxidative stress, and ECM accumulation of HMCs by increasing miR-18b. HMGA2 was targeted via miR-18b. miR-18b alleviated HG-induced cell proliferation, oxidative stress, and ECM accumulation by decreasing HMGA2. Silence of KCNQ1OT1 reduced HMGA2 expression via miR-18b. KCNQ1OT1 knockdown attenuated HG-induced proliferation, oxidative stress, and ECM accumulation of HMCs by regulating miR-18b/HMGA2 axis.
Collapse
|
17
|
Wang M, Zheng H, Zhou X, Zhang J, Shao G. miR-122 promotes diabetic retinopathy through targeting TIMP3. Anim Cells Syst (Seoul) 2020; 24:275-281. [PMID: 33209201 PMCID: PMC7646554 DOI: 10.1080/19768354.2020.1816580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy (DR) is a primary complication of diabetes mellitus. DR can cause severe vision loss for patients. miR-122 is elevated in DR patients, while its role in DR is unclear. Hence, the purpose of this study was to analyze the effect of miR-122 on the function of high glucose-induced REC cells and the underlying molecular mechanisms. In this study, our results revealed that miR-122 was up-regulated in high glucose-induced human retinal pigment epithelial cells (ARPE-19). High glucose decreased the cell viability of ARPE-19 cells, which was then restored by miR-122 knockdown. In addition, miR-122 knockdown suppressed apoptosis of high glucose-induced ARPE-19 cells. High glucose also inhibited B-cell lymphoma-2 (Bcl-2) level and increased cleaved caspase-3 level in ARPE-19 cells, which were reversed by miR-122 knockdown. Tissue inhibitor of metalloproteinases-3 (TIMP3) was a direct target of miR-122. TIMP3 was decreased in high glucose-induced ARPE-19 cells, and the decrease was abrogated by miR-122 knockdown. In addition, the effects of miR-122 overexpression in cell viability and apoptosis of high glucose-induced ARPE-19 were abolished by overexpression of TIMP3. In conclusion, the effect and mechanism of miR-122 on high glucose-induced ARPE-19 cells were demonstrated for the first time. miR-122 promoted diabetic retinopathy through targeting TIMP3, making miR-122 a promising target for diabetic retinopathy therapy.
Collapse
Affiliation(s)
- Mingliang Wang
- Department of Ophthalmology, Hangzhou Lin'an District People's Hospital, Hangzhou City, People's Republic of China
| | - Huifen Zheng
- Department of Ophthalmology, Hangzhou Lin'an District People's Hospital, Hangzhou City, People's Republic of China
| | - Xianbo Zhou
- Department of Ophthalmology, Hangzhou Lin'an District People's Hospital, Hangzhou City, People's Republic of China
| | - Jiwei Zhang
- Department of Ophthalmology, Hangzhou Lin'an District People's Hospital, Hangzhou City, People's Republic of China
| | - Guanghui Shao
- Department of Ophthalmology, Dongying Shengli Hospital of Traditional Chinese Medicine, Dongying City, People's Republic of China
| |
Collapse
|
18
|
Paschou SA, Siasos G, Katsiki N, Tentolouris N, Tousoulis D. The Role of microRNAs in the Development of Type 2 Diabetes Complications. Curr Pharm Des 2020; 26:5969-5979. [PMID: 33138753 DOI: 10.2174/1381612826666201102102233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
MicroRNAs represent a class of small (19-25 nucleotides) single-strand pieces of RNA that are noncoding ones. They are synthesized by RNA polymerase II from transcripts that fold back on themselves. They mostly act as gene regulatory agents that pair with complementary sequences on mRNA and produce silencing complexes, which, in turn, suppress coding genes at a post-transcriptional level. There is now evidence that microRNAs may affect insulin secretion or insulin action, as they can alter pancreatic beta cells development, insulin production, as well as insulin signaling. Any molecular disorder that affects these pathways can deteriorate insulin resistance and lead to type 2 diabetes mellitus (T2DM) onset. Furthermore, the expression of several microRNAs is up- or down-regulated in the presence of diabetic microvascular complications (i.e., peripheral neuropathy, nephropathy, retinopathy, foot ulcers), as well as in patients with coronary heart disease, stroke, and peripheral artery disease. However, more evidence is needed, specifically regarding T2DM patients, to establish the use of such microRNAs as diagnostical biomarkers or therapeutic targets in daily practice.
Collapse
Affiliation(s)
- Stavroula A Paschou
- Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
| | - Gerasimos Siasos
- Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
| | - Niki Katsiki
- First Department of Internal Medicine, Diabetes Centre, Division of Endocrinology and Metabolism, AHEPA University Hospital, Thessaloniki, Greece
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tousoulis
- Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
19
|
MiRNA-144-3p inhibits high glucose induced cell proliferation through suppressing FGF16. Biosci Rep 2019; 39:BSR20181788. [PMID: 31292167 PMCID: PMC6658725 DOI: 10.1042/bsr20181788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 06/22/2019] [Accepted: 07/06/2019] [Indexed: 12/25/2022] Open
Abstract
As a major cause of blindness, diabetic retinopathy (DR) is often found in the developed countries. Our previous study identified a down-regulated miRNA: miR-144-3p in response to hyperglycemia. The present study aims to investigate the role of miR-144-3p in proliferation of microvascular epithelial cells. Endothelial cells were treated with different concentrations of glucose, after which miR-144-3p were detected with real-time PCR assay. MiR-144-3p mimics or inhibitors were used to increase or knockdown the level of this miRNA. Western blotting assay and ELISA assay were used to measure the expression and concentration of VEGF protein. 5-Bromo-2-deoxyUridine (BrdU) labeled cell cycle assay was used to detect cells in S phase. MiRNA targets were predicted by using a TargetScan tool, and were further verified by luciferase reporter assay. In the present study, we focussed on a significantly down-regulated miRNA, miR-144-3p, and investigated its role in high glucose (HG) induced cell proliferation. Our data showed that miR-144-3p mimics significantly inhibited HG induced cell proliferation and reduced the percentage of cells in S phase. HG induced up-regulation of VEGF was also prohibited by miR-144-3p mimics. Through wound-healing assay, we found that miR-144-3p suppressed cell migration after HG treatments. Moreover, we predicted and proved that fibroblast growth factor (FGF)16 is a direct target of miR-144-3p. Finally, miR-144-3p attenuated HG induced MAPK activation. In conclusion, we demonstrated that miR-144-3p inhibited high glucose-induced cell proliferation through suppressing FGF16 and MAPK signaling pathway, suggesting a possible role of miR-144-FGF16 in the development of DR.
Collapse
|
20
|
Sun G, Li F, Ma X, Sun J, Jiang R, Tian Y, Han R, Li G, Wang Y, Li Z, Kang X, Li W. gga-miRNA-18b-3p Inhibits Intramuscular Adipocytes Differentiation in Chicken by Targeting the ACOT13 Gene. Cells 2019; 8:E556. [PMID: 31181634 PMCID: PMC6627633 DOI: 10.3390/cells8060556] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
Abstract
Intramuscular fat (IMF) is the most important evaluating indicator of chicken meat quality, the content of which is positively correlated with tenderness, flavor, and succulence of the meat. Chicken IMF deposition process is regulated by many factors, including genetic, nutrition, and environment. Although large number of omics' studies focused on the IMF deposition process, the molecular mechanism of chicken IMF deposition is still poorly understood. In order to study the role of miRNAs in chicken intramuscular adipogenesis, the intramuscular adipocyte differentiation model (IMF-preadipocytes and IMF-adipocytes) was established and subject to miRNA-Seq. A total of 117 differentially expressed miRNAs between two groups were obtained. Target genes prediction and functional enrichment analysis revealed that eight pathways involved in lipid metabolism related processes, such as fatty acid metabolism and fatty acid elongation. Meanwhile a putative miRNA, gga-miR-18b-3p, was identified be served a function in the intramuscular adipocyte differentiation. Luciferase assay suggested that the gga-miR-18b-3p targeted to the 3'UTR of ACOT13. Subsequent functional experiments demonstrated that gga-miR-18b-3p acted as an inhibitor of intramuscular adipocyte differentiation by targeting ACOT13. Our findings laid a new theoretical foundation for the study of lipid metabolism, and also provided a potential target to improve the meat quality in the poultry industry.
Collapse
Affiliation(s)
- Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Fang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xiangfei Ma
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Junwei Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
21
|
Hu Q, Liu F, Yan T, Wu M, Ye M, Shi G, Lv S, Zhu X. MicroRNA‑576‑3p inhibits the migration and proangiogenic abilities of hypoxia‑treated glioma cells through hypoxia‑inducible factor‑1α. Int J Mol Med 2019; 43:2387-2397. [PMID: 31017266 PMCID: PMC6488173 DOI: 10.3892/ijmm.2019.4157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/26/2019] [Indexed: 12/24/2022] Open
Abstract
The most common and aggressive type of brain cancer in adults is glioblastoma multiforme (GBM), and hypoxia is a common feature of glioblastoma. As the histological features of glioma include capillary endothelial cell proliferation, they are highly prone to invading the surrounding normal brain tissue, which is often one of the reasons for the failure of treatment. However, the mechanisms involved in this process are not fully understood. MicroRNAs (miRs) are a class of non‑coding RNA that are able to inhibit the malignant progression of tumor cells through the regulation of downstream genes. In the present study, the low expression of miR‑576‑3p was detected in glioma samples and hypoxia‑treated glioma cells using a reverse transcription‑quantitative polymerase chain reaction. The present study focused on the effects of miR‑576‑3p on hypoxia‑induced glioma. The results of the functional experiments revealed that the overexpression of miR‑576‑3p significantly inhibited the migration and pro‑angiogenic abilities of the glioma cells under hypoxic conditions (P<0.05) compared with in the lentivirus‑miR‑negative control group. Furthermore, luciferase reporter gene assays were used to validate the hypothesis that miR‑576‑3p interacts with the 3'‑untranslated region of hypoxia‑inducible factor‑1α (HIF‑1α) and induces a reduction in the protein levels of matrix metalloproteinase‑2 and vascular endothelial growth factor. Rescue experiments demonstrated that the restoration of HIF‑1α expression attenuated the effect of miR‑576‑3p on the migration and proangiogenic abilities of glioma cells. In conclusion, the present study confirms that miR‑576‑3p is a novel GBM inhibitor and its inhibition of the migration and proangiogenic capacity of hypoxia‑induced glioma cells is mediated by HIF‑1α.
Collapse
Affiliation(s)
- Qing Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University
| | - Feng Liu
- Department of Neurosurgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006
| | - Tengfeng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University
| | - Minhua Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University
| | - Guangyao Shi
- Queen Mary School, Medical College, Nanchang University School of Medicine, Nanchang, Jiangxi 330031, P.R. China
| | - Shigang Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University
| |
Collapse
|
22
|
Liu B, Liu Y, Wang L, Hou C, An M. The effects of pressure intervention on wound healing and scar formation in a Bama minipig model. Burns 2019; 45:413-422. [DOI: 10.1016/j.burns.2018.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/16/2018] [Accepted: 09/05/2018] [Indexed: 01/16/2023]
|
23
|
Xi G, Wai C, Clemmons D. Inhibition of Aberrant IGF-I Signaling in Diabetic Male Rat Retina Prevents and Reverses Changes of Diabetic Retinopathy. J Diabetes Res 2019; 2019:6456032. [PMID: 31049357 PMCID: PMC6458945 DOI: 10.1155/2019/6456032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/23/2018] [Indexed: 12/18/2022] Open
Abstract
Hyperglycemia results in inhibition of cleavage of integrin-associated protein (IAP) thereby allowing it to bind to SHPS-1 which results in pathophysiologic changes in endothelial function. This study determined if an anti-rat IAP antibody directed against the SHPS-1 binding site which disrupts IAP/SHPS-1 association could inhibit these pathophysiologic changes. The anti-IAP antibody inhibited IGF-I-stimulated SHPS-1, p52Shc, MAP kinase phosphorylation, and proliferation in endothelial cells. To determine if it could reverse established pathophysiologic changes in vivo, this antibody or normal rat IgG F(ab)2 was injected intraperitoneally for 6 weeks into rats that had diabetes for 4 weeks. Optical coherence tomography (OCT) showed that retinal thickness increased at 4 weeks and this increase was maintained in rats treated with the control antibody for an additional 6 weeks. The increase was reversed by anti-IAP antibody treatment (84.6 ± 2.0 compared to 92.3 ± 2.5 μm, p < 0.01). This value was similar to nondiabetic animals (82.2 ± 1.6 μm, p, NS). The anti-IAP antibody also decreased retinal vascular permeability (0.62 ± 0.12 vs. 0.96 ± 0.25%/g/h, p < 0.001). To determine if it was effective after local injection, this antibody or control was administered via intravitreal injection. After 3 weeks, retinal thickness increased to 6.4 ± 2.8% in diabetic rats, and IAP antibody treatment prevented this increase (0.8 ± 2.5%, p < 0.01). It also prevented the increase of retinal vascular permeability (0.92 ± 0.62 vs. 1.63 ± 0.99%/g/h, p < 0.001). Biochemical analyses of retinal extracts showed that the anti-IAP antibody inhibited IAP/SHPS-1 association and SHPS-1 phosphorylation. This resulted in inhibition of AKT activation and VEGF synthesis in the retina: changes associated with increased vascular permeability. We conclude the anti-rat IAP antibody disrupts IAP/SHPS-1 association and attenuates aberrant IGF-I signaling thereby preventing or reversing the progression of retinal pathophysiological changes.
Collapse
Affiliation(s)
- Gang Xi
- Division of Endocrinology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Christine Wai
- Division of Endocrinology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - David Clemmons
- Division of Endocrinology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| |
Collapse
|
24
|
Yang Z, Li J, Feng G, Wang Y, Yang G, Liu Y, Zhang S, Feng J, Zhang X. Hepatitis B virus X protein enhances hepatocarcinogenesis by depressing the targeting of NUSAP1 mRNA by miR- 18b. Cancer Biol Med 2019; 16:276-287. [PMID: 31516748 PMCID: PMC6713641 DOI: 10.20892/j.issn.2095-3941.2018.0283] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objective The aim of this study was to investigate the underlying mechanism whereby HBx modulates the targeting of NUSAP1 by miR-18b to enhance hepatocarcinogenesis. Methods We employed an integrated approach of bioinformatics analysis and molecular experiments in hepatoma cells, HBV transgenic mice, and clinical liver cancer tissues to investigate the role of HBx-regulated miR-18b in the development of liver cancer. Results In this study, we report that the HBx-mediated tumor suppressor miR-18b modulates hepatocarcinogenesis during the host-HBV interaction. The expression levels of miR-18b were lower in clinical HBV-positive liver cancer tissues and liver tissues of HBV-transgenic mice. Interestingly, HBx inhibited miR-18b expression by inducing the methylation of CpG islands in its promoter. Accordingly, we tested the hypothesis that HBx enhanced hepatocarcinogenesis by increasing the expression of target genes of miR-18b. Moreover, we identified nucleolar spindle-associated protein 1 (NUSAP1) as one of the target genes of miR-18b. NUSAP1 was expressed at high levels in liver cancer tissues. Interestingly, HBx up-regulated NUSAP1 by suppressing miR-18b. Functionally, miR-18b significantly inhibited the proliferation of hepatoma cells by depressing NUSAP1 levels in vivo and in vitro. Conclusions Thus, we conclude that the targeting of NUSAP1 mRNA by the tumor suppressor miR-18b is controlled by HBx-modulated promoter methylation during the host-virus interaction, leading to hepatocarcinogenesis. Our findings provide new insights into the mechanism by which HBx-mediated miRNAs modulate hepatocarcinogenesis.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiong Li
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guoxing Feng
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuan Wang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guang Yang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunxia Liu
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuqin Zhang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinyan Feng
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaodong Zhang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Huang Z, Li N, Shan Y, Liang C. Hsa-miRNA-29a protects against high glucose-induced damage in human umbilical vein endothelial cells. J Cell Biochem 2018; 120:5860-5868. [PMID: 30520097 DOI: 10.1002/jcb.27871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/19/2018] [Indexed: 12/30/2022]
Abstract
Sustained exposure to high glucose (HG) results in dysfunction of vascular endothelial cells. Hence, diabetic patients often suffer from secondary vascular damages, such as vascular sclerosis and thrombogenesis, which may eventually cause cardiovascular problems. Thus, elucidating how HG results in vascular endothelial cell damage and finding an approach for prevention are important to prevent and treat vascular damages in diabetic patients. In the current study, we first showed that 72-hour exposure to HG-decreased hsa-miRNA-29a and increased the expression of Bcl-2 associated X protein (Bax), which subsequently inhibited Bcl-2 and promoted the expression of apoptotic protease activating factor-1 and activation of caspase-3, thus directly triggering the mitochondrial apoptotic pathway in human umbilical vein endothelial cells (HUVECs). Study of the underlying mechanism showed that hsa-miRNA-29a/Bax plays an essential role in the decreased proliferation and increased apoptosis of HUVECs induced by HG, and overexpression of hsa-miRNA-29a effectively inhibits HG-induced apoptosis and restores the proliferation and tube formation of HUVECs exposed to HG by inhibiting its target gene Bax. In short, our study demonstrates that hsa-miRNA-29a is a promising target for the prevention and treatment of vascular injury in diabetic patients.
Collapse
Affiliation(s)
- Zhigang Huang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Na Li
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yi Shan
- Department of Emergency and ICU, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chun Liang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
26
|
Liu J, Ning C, Li B, Li R, Wu W, Liu H. Transcriptome comparison between prenatal and postnatal Large White livers identifies differences in the expression level of genes related to metabolism and postnatal growth. Gene 2018; 686:92-103. [PMID: 30321659 DOI: 10.1016/j.gene.2018.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/06/2018] [Accepted: 10/11/2018] [Indexed: 11/16/2022]
Abstract
The current study examined the liver transcriptomic profiles of the Large White different in developmental periods. It was performed on pigs of two developmental stages: 70-day fetus (P70) and 70-day piglets (D70). The objective of the study was to identify genes associated with Large White liver lipid metabolism, growth and development. We sequenced eight sRNA libraries of liver samples from four Large White at P70 and D70 respectively. We totally obtained 19,202 genes. 4916 of them were found to be differentially expressed (DEGs) (p < 0.05, fold change ≥ 1), of which 2502 were up-regulated and 2414 were down-regulated. GO enrichment and KEGG pathway analysis indicated that ACACA, ACADM, ACAA2 and HADH were simultaneously enriched in diverse pathways related to lipid metabolism, and so they were considered to be the promising candidate genes which could affect the porcine liver lipid metabolism. Notably, the gene insulin-like growth factor 1 (IGF1) which participated in somatotropic axis signaling was found to be up-regulated in D70 compared with P70. miRWalk and TargetScan softwares were used to screen the miRNAs which bound to the 3' untranslated region (3'UTR) of IGF1. After integration analysis with miRNAs sequencing data, miR-18b and miR-130b-3p were selected for further study. MiR-18b and miR-130b-3p were down-regulated in D70 compared with P70. Dual luciferase assays indicated that miR-18b and miR-130b-3p could obviously decrease (p < 0.05) the fluorescence activity of the group transfected with the wild-type vector of IGF1 3'UTR, while the relative luciferase activity of the group transfected with the mutant vector of IGF1 3'UTR did not change significantly. Taken together, it indicated that miR-18b and miR-130b-3p could target IGF1 directly.
Collapse
Affiliation(s)
- Jingge Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 21009, PR China
| | - Caibo Ning
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 21009, PR China.
| | - Bojiang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 21009, PR China
| | - Rongyang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 21009, PR China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 21009, PR China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 21009, PR China.
| |
Collapse
|
27
|
Colon Epithelial MicroRNA Network in Fatty Liver. Can J Gastroenterol Hepatol 2018; 2018:8246103. [PMID: 30345259 PMCID: PMC6174781 DOI: 10.1155/2018/8246103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND & AIMS Intestinal barrier alterations are associated with fatty liver (FL) and metabolic syndrome (MetS), but microRNA (miR) signaling pathways in MetS-FL pathogenesis remain unclear. This study investigates an epithelial-focused miR network in colorectal cell models based on the previously reported MetS-FL miR trio of hsa-miR-142-3p, hsa-miR-18b, and hsa-miR-890. METHODS Each miR mimic construct of MetS-FL miR trio was transfected into human colorectal cells, CRL-1790 or Caco-2. Global miRNome changes posttransfection were profiled (nCounter® Human v3 miRNA, NanoString Technologies). Changes in barrier (transepithelial electrical resistance, TEER) and epithelial cell junction structure (Occludin and Zona Occludens-1/ZO-1 immunofluorescence staining-confocal microscopy) were examined pre- and posttransfection in Caco-2 cell monolayers. A signaling network was constructed from the MetS-FL miR trio, MetS-FL miR-induced colorectal miRNome changes, ZO-1, and Occludin. RESULTS Transfection of CRL-1790 cells with each MetS-FL miR mimic led to global changes in the cellular miRNome profile, with 288 miRs being altered in expression by more than twofold. Eleven miRs with known cytoskeletal and metabolic roles were commonly altered in expression by all three miR mimics. Transfection of Caco-2 cell monolayers with each MetS-FL miR mimic induced barrier-associated TEER variations and led to structural modifications of ZO-1 and Occludin within epithelial cell junctions. Pathway analysis incorporating the MetS-FL miR trio, eleven common target miRs, ZO-1, and Occludin revealed a signaling network centered on TNF and AKT2, which highlights injury, inflammation, and hyperplasia. CONCLUSIONS Colon-specific changes in epithelial barriers, cell junction structure, and a miRNome signaling network are described from functional studies of a MetS-FL miR trio signature.
Collapse
|
28
|
Qiu F, Tong H, Wang Y, Tao J, Wang H, Chen L. Inhibition of miR-21-5p suppresses high glucose-induced proliferation and angiogenesis of human retinal microvascular endothelial cells by the regulation of AKT and ERK pathways via maspin. Biosci Biotechnol Biochem 2018; 82:1366-1376. [PMID: 29658404 DOI: 10.1080/09168451.2018.1459179] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of the present study is to investigate the role of miR-21-5p in angiogenesis of human retinal microvascular endothelial cells (HRMECs). HRMECs were incubated with 5 mM glucose, 30 mM glucose or 30 mM mannitol for 24 h, 48 h or 72 h. Then, HRMECs exposed to 30 mM glucose were transfected with miR-21-5p inhibitor. We found that high glucose increased the expression of miR-21-5p, VEGF, VEGFR2 and cell proliferation activity. Inhibition of miR-21-5p reduced high glucose-induced proliferation, migration, tube formation of HRMECs, and reversed the decreased expression of maspin as well as the abnormal activation of PI3K/AKT and ERK pathways. Down-regulation of maspin by siRNA significantly increased the activities of PI3K/AKT and ERK pathways. In conclusion, inhibition of miR-21-5p could suppress high glucose-induced proliferation and angiogenesis of HRMECs, and these effects may partly dependent on the regulation of PI3K/AKT and ERK pathways via its target protein maspin.
Collapse
Affiliation(s)
- Feng Qiu
- a Department of Ophthalmology , The First Affiliated Hospital of China Medical University , Shenyang , People's Republic of China.,b Department of Ophthalmology , Shenyang Fourth People's Hospital , Shenyang , People's Republic of China
| | - Huijuan Tong
- c Department of Nursing , Shenyang Medical College , Shenyang , People's Republic of China
| | - Yawen Wang
- b Department of Ophthalmology , Shenyang Fourth People's Hospital , Shenyang , People's Republic of China
| | - Jun Tao
- b Department of Ophthalmology , Shenyang Fourth People's Hospital , Shenyang , People's Republic of China
| | - Hailin Wang
- b Department of Ophthalmology , Shenyang Fourth People's Hospital , Shenyang , People's Republic of China
| | - Lei Chen
- a Department of Ophthalmology , The First Affiliated Hospital of China Medical University , Shenyang , People's Republic of China
| |
Collapse
|
29
|
Roles of miRNAs and long noncoding RNAs in the progression of diabetic retinopathy. Biosci Rep 2017; 37:BSR20171157. [PMID: 29074557 PMCID: PMC5705777 DOI: 10.1042/bsr20171157] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults across the world. The pathogenesis of DR is multifactorial and the molecular mechanisms are still not fully understood. Accumulating evidence has demonstrated that noncoding RNAs (ncRNAs) may be aberrantly expressed and may play vital roles in the development of DR. Amongst ncRNAs, miRNAs and long ncRNAs (lncRNAs) are known for their regulatory functions. Here, we summarize the functions and mechanisms of known aberrantly expressed miRNAs and lncRNAs in DR. Additionally, a novel lncRNA–mRNA–miRNA network is included in this review. We highlight original studies that provide detailed data about the mechanisms of miRNAs and lncRNAs, their applications as diagnostic or prognostic biomarkers, and their potential therapeutic targets. In conclusion, this review will help us gain a better understanding of the molecular mechanisms by which miRNAs and lncRNAs perform their functions in DR, and provide general strategies and directions for future research.
Collapse
|
30
|
Wen YY, Liu WT, Sun HR, Ge X, Shi ZM, Wang M, Li W, Zhang JY, Liu LZ, Jiang BH. IGF-1-mediated PKM2/β-catenin/miR-152 regulatory circuit in breast cancer. Sci Rep 2017; 7:15897. [PMID: 29162853 PMCID: PMC5698474 DOI: 10.1038/s41598-017-15607-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/30/2017] [Indexed: 01/26/2023] Open
Abstract
Dysregulation of miRNAs is important in breast cancer initiation and malignant progression. Recently we showed that miR-152 downregulation is associated with breast cancer development, yet the underlying mechanism of miR-152 remains to be well elucidated. In this study, we identified β-catenin as a new direct target of miR-152. MiR-152 inhibited cell proliferation by targeting and inhibiting both β-catenin and PKM2 expression. We found that miR-152 expression sensitized the breast cancer cells to paclitaxel treatment by inhibiting β-catenin and PKM2 expression. Intriguingly, IGF-1 induced β-catenin and PKM2 expression and enhanced β-catenin and PKM2 interaction. Subsequently, IGF-1-induced β-catenin and PKM2 complex translocated into the nucleus, which in turn activated expression of miR-152. These results suggested a regulatory circuit between miR-152, β-catenin and PKM2 in breast cancer. By using human clinical specimens, we also showed that miR-152 expression levels were negatively correlated with β-catenin and PKM2 levels in breast cancer tissues. Our findings provide new insights into a mechanism of miR-152 involved in β-catenin and PKM2 inhibition which would have clinical implication for the cancer development and new treatment option in the future.
Collapse
Affiliation(s)
- Yi-Yang Wen
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, and Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei-Tao Liu
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, and Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao-Ran Sun
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, and Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Ge
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, and Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhu-Mei Shi
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, and Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Wang
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, and Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Li
- Department of Pathology, Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, China
| | - Jian-Ying Zhang
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, United States of America
| | - Ling-Zhi Liu
- The Center for Molecular Carcinogenesis, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, United States of America
| | - Bing-Hua Jiang
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, and Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China.
- The Center for Molecular Carcinogenesis, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, United States of America.
| |
Collapse
|
31
|
Upregulation of MicroRNA 18b Contributes to the Development of Colorectal Cancer by Inhibiting CDKN2B. Mol Cell Biol 2017; 37:MCB.00391-17. [PMID: 28784723 DOI: 10.1128/mcb.00391-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) exhibit aberrant expression in the initiation and progression of a variety of human cancers, including colorectal cancer (CRC). However, the exact mechanisms are not well defined. miRNA expression profiles were characterized by microarrays in CRC samples, and miRNA 18b (miR-18b) was increased significantly in tumor tissues. The expression of miR-18b was confirmed in the CRC cell lines SW480 and HCT116 and 44 clinical specimens by quantitative real-time PCR (qRT-PCR). Multiple linear regression analysis showed a strong correlation of miR-18b expression with lymph node and distant metastasis. Overexpression of miR-18b promoted cell proliferation by facilitating cell cycle progression, and knockdown of miR-18b significantly suppressed migration in CRC cells. CDKN2B was identified as a target of miR-18b by high-throughput RNA sequencing and bioinformatics. After transfection with a miR-18b mimic, expression of CDKN2B was reduced significantly in CRC cells, and the effect was restored when a miR-18b inhibitor was transfected. A luciferase assay indicated miR-18b directly binds to the 3' untranslated region (UTR) of CDKN2B. Expression of CDKN2B was downregulated in patient cancer tissues and negatively correlated with miR-18b. In a model of ectopic expression of miR-18b and CDKN2B, CDKN2B overexpression antagonized the effects of miR-18b in vitro and in vivo The data show that miR-18b is involved in CRC carcinogenesis through targeting CDKN2B.
Collapse
|
32
|
Zhang X, Zhao L, Hambly B, Bao S, Wang K. Diabetic retinopathy: reversibility of epigenetic modifications and new therapeutic targets. Cell Biosci 2017; 7:42. [PMID: 28815013 PMCID: PMC5557533 DOI: 10.1186/s13578-017-0167-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022] Open
Abstract
In recent years, considerable progress has been made in the molecular mechanisms of epigenetics in disease development and progression, the reversible characteristics of epigenetic modification provide new insights for the treatment of such diseases. The pathogenesis of diabetic retinopathy (DR) has not yet been fully understood, treatment of refractory and recurrent diabetic macular edema remains a big change in clinical practice. This review emphasizes that reversibility of epigenetic modification could provide a new strategy for the prevention and treatment of diseases.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Lab, Capital Medical University, Beijing, 100730 People’s Republic of China
| | - Lin Zhao
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Lab, Capital Medical University, Beijing, 100730 People’s Republic of China
| | - Brett Hambly
- Charles Perkins Centre, The University of Sydney, Level 4 West, D17, Camperdown, NSW 2006 Australia
| | - Shisan Bao
- Charles Perkins Centre, The University of Sydney, Level 4 West, D17, Camperdown, NSW 2006 Australia
| | - Kaiyue Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Lab, Capital Medical University, Beijing, 100730 People’s Republic of China
| |
Collapse
|
33
|
Ye EA, Steinle JJ. miR-146a suppresses STAT3/VEGF pathways and reduces apoptosis through IL-6 signaling in primary human retinal microvascular endothelial cells in high glucose conditions. Vision Res 2017; 139:15-22. [PMID: 28433754 DOI: 10.1016/j.visres.2017.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/26/2017] [Accepted: 03/30/2017] [Indexed: 01/10/2023]
Abstract
microRNA (miRNA) play critical roles in the pathological processes of diabetic retinopathy, including inflammatory responses, insulin signaling, and angiogenesis. In addition to their regulatory functions on gene expression, miRNA is considered as a potential therapeutic target, as well as a diagnostic marker for many diseases. Our understanding on the pathological mechanisms underlying diabetic retinopathy is still incomplete and additional investigations are required to develop novel therapeutic strategies. The aim of this study was to investigate our hypothesis that miR-146a plays a role in suppressing pro-inflammatory pathways, involving STAT3 and VEGF, through regulating IL-6 signaling to reduce apoptosis of human retinal endothelial cells (REC) in high glucose conditions. Human REC were cultured in normal (5mM) glucose or high glucose medium (25mM) for 3days. We performed transfections on REC with miRNA mimics (hsa-miR-146a-5p). Overexpression of miR-146a reduced IL-6 levels, STAT3 phosphorylation, and VEGF levels in REC cultured in high glucose. Cellular apoptosis was decreased in REC overexpressing miR-146a, as demonstrated by the inhibition of DNA fragmentation. More importantly, we demonstrated that the regulatory role of miR-146a on STAT3/VEGF and apoptosis was mediated by IL-6 receptor signaling in REC. Overall, we report that miR-146a suppressed IL-6 signaling, leading to reduced levels of STAT3 and VEGF in REC in high glucose conditions, leading to decreased apoptosis. The outcome suggests that miR-146a is a potential molecular target for inhibiting inflammation and apoptosis in the diabetic retina through the suppression of the IL-6-mediated STAT3/VEGF pathway.
Collapse
Affiliation(s)
- Eun-Ah Ye
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jena J Steinle
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States; Ophthalmology, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
34
|
Sharma S, Mathew AB, Chugh J. miRNAs: Nanomachines That Micromanage the Pathophysiology of Diabetes Mellitus. Adv Clin Chem 2017; 82:199-264. [PMID: 28939211 DOI: 10.1016/bs.acc.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus (DM) refers to a combination of heterogeneous complex metabolic disorders that are associated with episodes of hyperglycemia and glucose intolerance occurring as a result of defects in insulin secretion, action, or both. The prevalence of DM is increasing at an alarming rate, and there exists a need to develop better therapeutics and prognostic markers for earlier detection and diagnosis. In this review, after giving a brief introduction of diabetes mellitus and microRNA (miRNA) biogenesis pathway, we first describe various in vitro and animal model systems that have been developed to study diabetes. Further, we elaborate on the significant roles played by miRNAs as regulators of gene expression in the context of development of diabetes and its secondary complications. The different approaches to quantify miRNAs and their potential to be used as therapeutic targets for alleviation of diabetes have also been discussed.
Collapse
|
35
|
Chen L, Li B, Chen B, Shao Y, Luo Q, Shi X, Chen Y. Thymoquinone Alleviates the Experimental Diabetic Peripheral Neuropathy by Modulation of Inflammation. Sci Rep 2016; 6:31656. [PMID: 27545310 PMCID: PMC4992870 DOI: 10.1038/srep31656] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/22/2016] [Indexed: 12/22/2022] Open
Abstract
Thymoquinone has been reported to exhibit antioxidant and anti-inflammatory effects. Inflammation plays an important role in pathogenesis of diabetic peripheral neuropathy. This study investigated the effects of TQ on proliferation and apoptosis of Schwann cells exposed to high glucose conditions and electrophysiological and morphological changes of the sciatic nerve in a DPN rat model as well as relevant inflammatory mechanism. Cell proliferation and apoptosis of Schwann cells were measured using the Cell Counting Kit-8 and flow cytometry. DPN model was established in streptozotocin-induced diabetic rats. Nerve conduction velocity was measured before and after treatment. Morphologic changes were observed by H&E staining and transmission electron microscopy. COX-2, IL-1β, IL-6, and Caspase-3 expression was investigated by western blotting and Bio-Plex ProTM Assays. Finally, TQ alleviated the inhibition of Schwann cell proliferation and protected against Schwann cell apoptosis. It improved nerve conduction velocity, and alleviated the DPN-induced morphological changes and demyelination of the sciatic nerve. COX-2, IL-1β, IL-6 and Caspase-3 expression in sciatic nerve or isolated cultured Schwann cells, were also decreased by TQ. These results indicate TQ has a protective effect on peripheral nerves in a DPN rat model. The mechanism may be mediated partly by the modulation of the inflammatory reaction.
Collapse
Affiliation(s)
- Long Chen
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai 201508, P. R. China.,Department of Neurology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Bing Li
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P. R.China
| | - Biqin Chen
- Department of Pediatric, Jinshan Hospital, Fudan University, Shanghai 201508, P. R.China
| | - Yiye Shao
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai 201508, P. R. China.,Department of Neurology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Qiong Luo
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai 201508, P. R. China.,Department of Neurology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Xiaohong Shi
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai 201508, P. R.China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai 201508, P. R. China.,Department of Neurology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|