1
|
Zhang X, Sha Y, Wu Y, Guan H, Yang X, Wang W, Zhang W, Liu Y, Zhu L, Li Q. Targeting endothelial cells: A novel strategy for pulmonary fibrosis treatment. Eur J Pharmacol 2025; 997:177472. [PMID: 40054716 DOI: 10.1016/j.ejphar.2025.177472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/10/2025] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
Endothelial cells (ECs) are a monolayer of flat cells lining the inner surfaces of blood and lymphatic vessels. They play a key role in many physiological and pathological processes. Specifically, they maintain vascular permeability and structural stability and participate in immune responses, inflammation, coagulation, and other vital functions. ECs play a decisive role in various age-related diseases; however, their involvement in pulmonary fibrosis (PF) remains poorly understood. PF refers to a group of chronic interstitial lung diseases characterised by progressive scarring of the pulmonary parenchyma, primarily caused by aberrant tissue repair mechanisms. These changes lead to irreversible loss of lung function. Although the exact pathophysiological mechanism underlying PF has not yet been elucidated, recent studies have indicated that ECs may play a pivotal role in PF. This review outlines the involvement of pulmonary vascular ECs in PF, focusing on the regulation of vascular remodelling and endothelial barrier integrity and on the maintenance of angiogenesis through EC-specific markers, such as vascular endothelial growth factor. This review also explores processes such as endothelial-to-mesenchymal transition, immune cell interactions, anti-EC antibody reactions, metabolic dysregulation, and cellular senescence. By elucidating recent advancements in understanding the role of ECs in PF and examining drugs targeting ECs for the treatment of PF, this study provides novel insights into the pathological mechanisms of PF and the development of endothelium-based therapeutic agents.
Collapse
Affiliation(s)
- Xin Zhang
- Medical College, Anhui University of Science and Technology, Huainan, Anhui, 232001, China; Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yuxia Sha
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yu Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Haiyang Guan
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xu Yang
- Medical College, Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Wenjin Wang
- Medical College, Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Wenlong Zhang
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yunyun Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Lili Zhu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qing Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
2
|
Heo KS, Phan LP, Le NTT, Jin Y. Mechanistic insights and emerging therapeutic strategies targeting endothelial dysfunction in cardiovascular diseases. Arch Pharm Res 2025; 48:305-332. [PMID: 40301174 DOI: 10.1007/s12272-025-01542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/08/2025] [Indexed: 05/01/2025]
Abstract
Endothelial dysfunction plays a pivotal role in the pathogenesis of various cardiovascular diseases (CVDs), including atherosclerosis, hypertension, heart failure, stroke, and peripheral artery disease. It disrupts vascular homeostasis, leading to reduced nitric oxide (NO) bioavailability, increased oxidative stress, and chronic inflammation, all of which collectively drive vascular damage, atherosclerotic plaque formation, and thrombosis. Additionally, shear stress-induced alterations in blood flow patterns, particularly disturbed flow (d-flow), aggravate endothelial dysfunction. Furthermore, the endothelial-to-mesenchymal transition (EndMT), a process in which endothelial cells acquire mesenchymal-like properties, contributes to vascular remodeling and accelerates CVD progression.This review explores the significant role of epigenetic mechanisms, such as DNA methylation, histone modifications, and noncoding RNAs (ncRNAs), which serve as critical regulators of endothelial function in response to shear stress in endothelial dysfunction and the development of atherosclerosis. Furthermore, we discuss the pivotal role of endothelial dysfunction in cardiovascular and metabolic diseases, emphasizing the need for innovative therapeutic strategies beyond conventional treatments. In particular, we highlight the endothelial-protective mechanisms of emerging pharmacological agents, including proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1RAs), and sodium-glucose cotransporter 2 (SGLT2) inhibitors, along with supporting clinical evidence demonstrating their efficacy in improving endothelial function and reducing cardiovascular risk.
Collapse
Affiliation(s)
- Kyung-Sun Heo
- Department of Pharmacology, Chungnam National University, College of Pharmacy, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - Lan Phuong Phan
- Department of Pharmacology, Chungnam National University, College of Pharmacy, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Nhi Thi Thao Le
- Department of Pharmacology, Chungnam National University, College of Pharmacy, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Yujin Jin
- Department of Pharmacology, Chungnam National University, College of Pharmacy, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| |
Collapse
|
3
|
Lu Z, Li Y, Lu C, Meng Z, Bai L, Huang F, Zeng Z. Inhibition of Endothelial-Mesenchymal Transition Mediated by Activin Receptor Type IIA Attenuates Valvular Injury Induced by Group A Streptococcus in Lewis Rats. FRONT BIOSCI-LANDMRK 2025; 30:26370. [PMID: 39862082 DOI: 10.31083/fbl26370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/04/2024] [Accepted: 11/11/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Rheumatic heart disease (RHD), which is caused mainly by Group A Streptococcus, leads to fibrotic damage to heart valves. Recently, endothelial‒mesenchymal transition (EndMT), in which activin plays an important role, has been shown to be an important factor in RHD valvular injury. However, the mechanism of activin activity and EndMT in RHD valvular injury is not clear. METHODS Our study was divided into two parts: in vivo and in vitro. We constructed a small interfering RNA (ACVR2A-siRNA) by silencing activin receptor type IIA (ACVR2A) and an adeno-associated virus (AAV-ACVR2A) containing a sequence that silenced ACVR2A. The EndMT cell model was established via human umbilical vein endothelial cells (HUVECs), and the RHD animal model was established via female Lewis rats. ACVR2A-siRNA and AAV-ACVR2A were used in the above experiments. RESULTS EndMT occurred in the valvular tissues of RHD rats, and activin and its associated intranuclear transcription factors were also activated during this process, with inflammatory infiltration and fibrotic damage also occurring in the valvular tissues. After inhibition of ACVR2A, EndMT in valvular tissues was also inhibited, and inflammatory infiltration and fibrosis were reduced. Endothelial cell experiments suggested that mesenchymal transition could be stimulated by activin and that inhibition of ACVR2A attenuated mesenchymal transition. CONCLUSIONS Activin plays an important role in signal transduction during EndMT after activation, and inhibition of ACVR2A may attenuate RHD valvular damage by mediating EndMT. Targeting ACVR2A may be a therapeutic strategy to alleviate RHD valvular injury.
Collapse
Affiliation(s)
- Zirong Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, 530021 Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 530021 Nanning, Guangxi, China
| | - Yuan Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, 530021 Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 530021 Nanning, Guangxi, China
| | - Chuanghong Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, 530021 Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 530021 Nanning, Guangxi, China
| | - Zhongyuan Meng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, 530021 Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 530021 Nanning, Guangxi, China
| | - Ling Bai
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, 530021 Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 530021 Nanning, Guangxi, China
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, 530021 Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 530021 Nanning, Guangxi, China
| | - Zhiyu Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, 530021 Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 530021 Nanning, Guangxi, China
| |
Collapse
|
4
|
Liang J, Cheng S, Song Q, Tang Y, Wang Q, Chen H, Feng J, Yang L, Li S, Wang Z, Fan J, Huang C. Effect of Mesenchymal Stem Cell-Derived Extracellular Vesicles Induced by Advanced Glycation End Products on Energy Metabolism in Vascular Endothelial Cells. Kidney Int Rep 2025; 10:227-246. [PMID: 39810759 PMCID: PMC11725971 DOI: 10.1016/j.ekir.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Advanced glycation end products (AGEs) play a critical role in the development of vascular diseases in diabetes. Although stem cell therapies often involve exposure to AGEs, the impact of this environment on extracellular vesicles (EVs) and endothelial cell metabolism remains unclear. Methods Human umbilical cord mesenchymal stem cells (MSCs) were treated with either 0 ng/ml or 100 ng/ml AGEs in a serum-free medium for 48 hours, after which MSC-EVs were isolated. The EVs were characterized by morphology, particle size, and protein markers of MSC-EVs, and microRNA (miRNA) sequencing was performed to identify differentially expressed miRNAs. MSC-EVs were cocultured with human umbilical vein endothelial cells (HUVECs) to assess effects on cell viability, metabolic activity, oxidative stress, and antioxidant capacity. Tube formation and glucose transporter protein analyses were conducted to evaluate the angiogenic ability and glucose metabolism capacity. Results MSC-EVs ranged from 30 to 150 nm, which is consistent with exosomal properties. AGEs treatment reduced MSC viability but had minimal effect on EV morphology and protein markers. miRNA sequencing showed downregulation of hsa-miR-223-3p and hsa-miR-126-3p_R-1, with upregulation of hsa-miR-574-5p, implicating changes in glycolytic and oxidative phosphorylation pathways. MSC-EVs treated with AGEs decreased HUVEC viability (P < 0.05), pH (P < 0.05), adenosine triphosphate (ATP) metabolism (P < 0.05), glucose metabolism (P < 0.05), while enhancing glycolysis processes, including glycolytic activity, capacity, and reserve (P < 0.05). This likely resulted from impaired mitochondrial function, including reduced ATP production, maximal respiration, basal respiration, and spare respiratory capacity (P < 0.05), or increased reactive oxygen species (ROS) (P < 0.05) and glucose-6-phosphate dehydrogenase (G6PD) activity (P < 0.05). In addition, AGEs reduced glucose transporter types 1, 3, and 4 (GLUT1, GLUT3, GLUT4), and synthesis of cytochrome c oxidase 2 expression (P < 0.05), along with angiogenic capacity (P < 0.05) in HUVECs. Conclusion Exposure to AGEs diminishes the therapeutic potential of MSC-derived EVs by disrupting energy metabolism and promoting metabolic reprogramming in endothelial cells. These findings suggest that adjusting the dosage or frequency of MSC-EVs may enhance their efficacy for treating diabetes-related vascular conditions. Further research is warranted to evaluate AGEs' broader impact on various cell types and metabolic pathways for improved exosome-based therapies.
Collapse
Affiliation(s)
- Jiabin Liang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sihang Cheng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Qide Song
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yukuan Tang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Wang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hanwei Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Panyu Health Management Center, Guangzhou, China
| | - Jie Feng
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Yang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shunli Li
- Panyu Health Management Center, Guangzhou, China
| | - Zhiwei Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinghui Fan
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chen Huang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Zhou Z, Xie Y, Wei Q, Zhang X, Xu Z. Revisiting the role of MicroRNAs in the pathogenesis of idiopathic pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1470875. [PMID: 39479511 PMCID: PMC11521927 DOI: 10.3389/fcell.2024.1470875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a prevalent chronic pulmonary fibrosis disease characterized by alveolar epithelial cell damage, fibroblast proliferation and activation, excessive extracellular matrix deposition, and abnormal epithelial-mesenchymal transition (EMT), resulting in tissue remodeling and irreversible structural distortion. The mortality rate of IPF is very high, with a median survival time of 2-3 years after diagnosis. The exact cause of IPF remains unknown, but increasing evidence supports the central role of epigenetic changes, particularly microRNA (miRNA), in IPF. Approximately 10% of miRNAs in IPF lung tissue exhibit differential expression compared to normal lung tissue. Diverse miRNA phenotypes exert either a pro-fibrotic or anti-fibrotic influence on the progression of IPF. In the context of IPF, epigenetic factors such as DNA methylation and long non-coding RNAs (lncRNAs) regulate differentially expressed miRNAs, which in turn modulate various signaling pathways implicated in this process, including transforming growth factor-β1 (TGF-β1)/Smad, mitogen-activated protein kinase (MAPK), and phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) pathways. Therefore, this review presents the epidemiology of IPF, discusses the multifaceted regulatory roles of miRNAs in IPF, and explores the impact of miRNAs on IPF through various pathways, particularly the TGF-β1/Smad pathway and its constituent structures. Consequently, we investigate the potential for targeting miRNAs as a treatment for IPF, thereby contributing to advancements in IPF research.
Collapse
Affiliation(s)
| | | | | | | | - Zhihao Xu
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
6
|
Kang S, Wu Q, Shen J, Wu C. CD27 is not an ideal marker for human memory B cells and can be modulated by IL-21 upon stimulated by Anti-CD40. Sci Rep 2024; 14:23742. [PMID: 39390111 PMCID: PMC11467254 DOI: 10.1038/s41598-024-75636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
B cells play a key role in humoral immune responses by producing antibodies. Although there are numerous research on memory B cells definition markers and cytokines on B cell development, different studies have yielded contradictory conclusions due to species studied, the different cells and stimulating agents used. In the current study, we conducted a detailed characterization of B cells in human CBMCs, PBMCs and tonsil, including expression of Igs, activation and memory markers. Furthermore, we found that considerable amounts of IgA and IgG were expressed by CD27- B cells. These "Atypical" memory B cells corresponded to approximately 50% of IgG+ and IgA+B cells in blood, this proportion even reached 90% in tonsil. In addition, we investigated the effect of IL-21 and TGF-β1 on the membrane-bound form and secreted form of Igs using PBMCs and purified blood B cells. There were actual differences between the effect of cytokines on Igs secretion and surface expression. Our study will be helpful to advance the knowledge and understanding of humoral memory.
Collapse
Affiliation(s)
- Shuangpeng Kang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, People's Republic of China.
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, 1501 Leifeng Road, 410219, Changsha, People's Republic of China.
| | - Qiongli Wu
- Shenzhen Experimental Education School, Shenzhen, People's Republic of China
| | - Juan Shen
- Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Changyou Wu
- Clinical Research Center of Clifford Hospital, Guangzhou, People's Republic of China.
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, 510080, Guangzhou, People's Republic of China.
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, 1501 Leifeng Road, 410219, Changsha, People's Republic of China.
| |
Collapse
|
7
|
Liu M, Li Z, Zhang H, Cao T, Feng X, Wang X, Wang Z. Inhibition of BMP4 alleviates diabetic retinal vascular dysfunction via the VEGF and smad1/5 signalling. Arch Physiol Biochem 2024; 130:529-536. [PMID: 37074680 DOI: 10.1080/13813455.2023.2190054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/25/2022] [Accepted: 03/01/2023] [Indexed: 04/20/2023]
Abstract
Objective:The aim of our study was to determine the molecular mechanism of BMP4 (bone morphogenetic protein 4) in DR (diabetic retinopathy).Methods: Human retinal endothelial cell (HRECs) induced by high glucose to simulate one of the pathogenesis in the diabetic retinopathy (DR) model. RT-qPCR and western blot were used to detect the mRNA and protein levels of BMP4 in the STZ/HG group. Flow cytometry and TUNEL staining were performed to detect the apoptosis. Angiogenesis was evaluated by tube formation assay. Transwell assay and wound healing assay were used to detect cell migration ability. H&E staining was used to evaluate the pathological changes.Results: BMP4 was significantly upregulated in the STZ/HG group. Sh-BMP4 significantly inhibited the migration and angiogenesis of RVECs induced by HG. In addition, both in vivo and in vitro experiments confirmed that sh-BMP4 could significantly promote RVECs apoptosis in the HG/STZ group. Western blot results showed that sh-BMP4 could down-regulate the expressions of p-smad1, p-smad5 and VEGF.Conclusions: Inhibition of BMP4 could alleviate the damage of diabetic retinopathy by regulating the p-smad1/5/VEGF signaling axis, inhibiting angiogenesis and promoting apoptosis.
Collapse
Affiliation(s)
- Mingyuan Liu
- Anesthesiology Department, Cangzhou Central Hospital, Cangzhou, Hebei Province, P.R. China
| | - Zhaoxia Li
- Ophthalmology Department, Cangzhou Central Hospital, Cangzhou, Hebei Province, P.R. China
| | - Huiqin Zhang
- Ophthalmology Department, Cangzhou Central Hospital, Cangzhou, Hebei Province, P.R. China
| | - Tingting Cao
- Ophthalmology Department, Cangzhou Central Hospital, Cangzhou, Hebei Province, P.R. China
| | - Xueyan Feng
- Ophthalmology Department, Cangzhou Central Hospital, Cangzhou, Hebei Province, P.R. China
| | - Xi Wang
- Pneumology Department, Cangzhou Central Hospital, Cangzhou, Hebei Province, P.R. China
| | - Zhixue Wang
- Ophthalmology Department, Cangzhou Central Hospital, Cangzhou, Hebei Province, P.R. China
| |
Collapse
|
8
|
Wang X, Cui L, Wang Y, Zeng Z, Wang H, Tian L, Guo J, Chen Y. Mechanistic investigation of wogonin in delaying the progression of endothelial mesenchymal transition by targeting the TGF-β1 pathway in pulmonary hypertension. Eur J Pharmacol 2024; 978:176786. [PMID: 38942264 DOI: 10.1016/j.ejphar.2024.176786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/15/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Pulmonary hypertension (PH) is characterized by pulmonary vascular remodeling, which endothelial-to-mesenchymal transition (EndMT) being its main progressive phase. Wogonin, a flavonoid extracted from the root of Scutellaria baicalensis Georgi, hinders the abnormal proliferation of cells and has been employed in the treatment of several cardiopulmonary diseases. This study was designed to investigate how wogonin affected EndMT during PH. Monocrotaline (MCT) was used to induce PH in rats. Binding capacity of TGF-β1 receptor to wogonin detected by molecular docking and molecular dynamics. EndMT model was established in pulmonary microvascular endothelial cells (PMVECs) by transforming growth factor beta-1 (TGF-β1). The result demonstrated that wogonin (20 mg/kg/day) attenuated right ventricular systolic pressure (RVSP), right ventricular hypertrophy and pulmonary vascular thickness in PH rats. EndMT in the pulmonary vascular was inhibited after wogonin treatment as evidenced by the restored expression of CD31 and decreased expression of α-SMA. Wogonin has strong affinity for both TGFBRI and TGFBRII, and has a better binding stability for TGFBRI. In TGF-β1-treated PMVECs, wogonin (0.3, 1, and 3 μM) exhibited significant inhibitory effects on this transformation process via down-regulating the expression of p-Smad2 and Snail, while up-regulating the expression of p-Smad1/5. Additionally, results of Western blot and fluorescence shown that the expression of α-SMA were decrease with increasing level of CD31 in PMVECs. In conclusion, our research showed that wogonin suppressed EndMT via the TGF-β1/Smad pathway which may lead to its alleviated effect on PH. Wogonin may be a promising drug against PH.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lidan Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yichen Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zuomei Zeng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hongjuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Leiyu Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yucai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
9
|
Liu D, Zeng F, Chen Z, Qin Z, Liu Z. Regulation of cardiac fibrosis in mice with TAC/DOCA-induced HFpEF by resistin-like molecule gamma and adenylate cyclase 1. FEBS Open Bio 2024; 14:1101-1115. [PMID: 38710658 PMCID: PMC11216931 DOI: 10.1002/2211-5463.13813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is one of the major subtypes of heart failure (HF) and no effective treatments for this common disease exist to date. Cardiac fibrosis is central to the pathology of HF and a potential avenue for the treatment of HFpEF. To explore key fibrosis-related genes and pathways in the pathophysiological process of HFpEF, a mouse model of HFpEF was constructed. The relevant gene expression profiles were downloaded from the Gene Expression Omnibus database, and single-sample Gene Set Enrichment Analysis (ssGSEA) was performed targeting fibrosis-related pathways to explore differentially expressed genes (DEGs) in healthy control and HFpEF heart tissues with cross-tabulation analysis of fibrosis-related genes. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the identified fibrosis-related genes. The two most significant DEGs were selected, and further validation was conducted in HFpEF mice. The results indicated that myocardial fibrosis was significantly upregulated in HFpEF mice compared to healthy controls, while the ssGSEA results revealed significant differences in the enrichment of nine fibrosis-related pathways in HFpEF myocardial tissue, with 112 out of 798 DEGs being related to fibrosis. The in vivo results demonstrated that expression levels of resistin-like molecule gamma (Relmg) and adenylate cyclase 1 (Adcy1) in the heart tissues of HFpEF mice were significantly higher and lower, respectively, compared to healthy controls. Taken together, these results suggest that Relmg and Acdy1 as well as the fibrosis process may be potential targets for HFpEF treatment.
Collapse
Affiliation(s)
- Dawei Liu
- The First Affiliated Hospital of Chongqing Medical UniversityChina
- Department of Cardiology, Bishan Hospital of ChongqingBishan Hospital of Chongqing Medical UniversityChina
| | - Fanling Zeng
- Health Management CenterThe First Affiliated Hospital of Chongqing Medical UniversityChina
| | - Zhiyu Chen
- Orthopedic Laboratory of Chongqing Medical UniversityChina
| | - Zheng Qin
- Department of Vascular SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChina
| | - Zhiqiang Liu
- The First Affiliated Hospital of Chongqing Medical UniversityChina
| |
Collapse
|
10
|
Singh B, Cui K, Eisa-Beygi S, Zhu B, Cowan DB, Shi J, Wang DZ, Liu Z, Bischoff J, Chen H. Elucidating the crosstalk between endothelial-to-mesenchymal transition (EndoMT) and endothelial autophagy in the pathogenesis of atherosclerosis. Vascul Pharmacol 2024; 155:107368. [PMID: 38548093 PMCID: PMC11303600 DOI: 10.1016/j.vph.2024.107368] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Atherosclerosis, a chronic systemic inflammatory condition, is implicated in most cardiovascular ischemic events. The pathophysiology of atherosclerosis involves various cell types and associated processes, including endothelial cell activation, monocyte recruitment, smooth muscle cell migration, involvement of macrophages and foam cells, and instability of the extracellular matrix. The process of endothelial-to-mesenchymal transition (EndoMT) has recently emerged as a pivotal process in mediating vascular inflammation associated with atherosclerosis. This transition occurs gradually, with a significant portion of endothelial cells adopting an intermediate state, characterized by a partial loss of endothelial-specific gene expression and the acquisition of "mesenchymal" traits. Consequently, this shift disrupts endothelial cell junctions, increases vascular permeability, and exacerbates inflammation, creating a self-perpetuating cycle that drives atherosclerotic progression. While endothelial cell dysfunction initiates the development of atherosclerosis, autophagy, a cellular catabolic process designed to safeguard cells by recycling intracellular molecules, is believed to exert a significant role in plaque development. Identifying the pathological mechanisms and molecular mediators of EndoMT underpinning endothelial autophagy, may be of clinical relevance. Here, we offer new insights into the underlying biology of atherosclerosis and present potential molecular mechanisms of atherosclerotic resistance and highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Bandana Singh
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Kui Cui
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Bo Zhu
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Douglas B Cowan
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Jinjun Shi
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Da-Zhi Wang
- Center for Regenerative Medicine, University of South Florida Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Zhenguo Liu
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Joyce Bischoff
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
11
|
Gaikwad AV, Eapen MS, Dey S, Bhattarai P, Shahzad AM, Chia C, Jaffar J, Westall G, Sutherland D, Singhera GK, Hackett TL, Lu W, Sohal SS. TGF-β1, pSmad-2/3, Smad-7, and β-Catenin Are Augmented in the Pulmonary Arteries from Patients with Idiopathic Pulmonary Fibrosis (IPF): Role in Driving Endothelial-to-Mesenchymal Transition (EndMT). J Clin Med 2024; 13:1160. [PMID: 38398472 PMCID: PMC10888973 DOI: 10.3390/jcm13041160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Background: We have previously reported that endothelial-to-mesenchymal transition (EndMT) is an active process in patients with idiopathic pulmonary fibrosis (IPF) contributing to arterial remodelling. Here, we aim to quantify drivers of EndMT in IPF patients compared to normal controls (NCs). Methods: Lung resections from thirteen IPF patients and eleven NCs were immunohistochemically stained for EndMT drivers, including TGF-β1, pSmad-2/3, Smad-7, and β-catenin. Intima, media, and adventitia were analysed for expression of each EndMT driver in pulmonary arteries. Computer- and microscope-assisted Image ProPlus7.0 image analysis software was used for quantifications. Results: Significant TGF-β1, pSmad-2/3, Smad-7, and β-catenin expression was apparent across all arterial sizes in IPF (p < 0.05). Intimal TGF-β1, pSmad-2/3, Smad-7, and β-catenin were augmented in the arterial range of 100-1000 μm (p < 0.001) compared to NC. Intimal TGF-β1 and β-catenin percentage expression showed a strong correlation with the percentage expression of intimal vimentin (r' = 0.54, p = 0.05 and r' = 0.61, p = 0.02, respectively) and intimal N-cadherin (r' = 0.62, p = 0.03 and r' = 0.70, p = 0.001, respectively). Intimal TGF-β1 and β-catenin expression were significantly correlated with increased intimal thickness as well (r' = 0.52, p = 0.04; r' = 0.052, p = 0.04, respectively). Moreover, intimal TGF-β1 expression was also significantly associated with increased intimal elastin deposition (r' = 0.79, p = 0.002). Furthermore, total TGF-β1 expression significantly impacted the percentage of DLCO (r' = -0.61, p = 0.03). Conclusions: This is the first study to illustrate the involvement of active TGF-β/Smad-2/3-dependent and β-catenin-dependent Wnt signalling pathways in driving EndMT and resultant pulmonary arterial remodelling in patients with IPF. EndMT is a potential therapeutic target for vascular remodelling and fibrosis in general in patients with IPF.
Collapse
Affiliation(s)
- Archana Vijay Gaikwad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Surajit Dey
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Prem Bhattarai
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Affan Mahmood Shahzad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Collin Chia
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
- Launceston Respiratory and Sleep Centre, Launceston, TAS 7250, Australia
- Department of Respiratory Medicine, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Jade Jaffar
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Glen Westall
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Darren Sutherland
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Gurpreet Kaur Singhera
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Tillie-Louise Hackett
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Launceston Respiratory and Sleep Centre, Launceston, TAS 7250, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Launceston Respiratory and Sleep Centre, Launceston, TAS 7250, Australia
| |
Collapse
|
12
|
Yamada T, Nakashima T, Masuda T, Sakamoto S, Yamaguchi K, Horimasu Y, Miyamoto S, Iwamoto H, Fujitaka K, Hamada H, Kamada N, Hattori N. Intestinal overgrowth of Candida albicans exacerbates bleomycin-induced pulmonary fibrosis in mice with dysbiosis. J Pathol 2023; 261:227-237. [PMID: 37565293 DOI: 10.1002/path.6169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 08/12/2023]
Abstract
Increasing evidence indicates an interaction between the intestinal microbiota and diseases in distal organs. However, the relationship between pulmonary fibrosis and the intestinal microbiota, especially intestinal fungal microbiota, is poorly understood. Thus, this study aimed to determine the effects of changes in the intestinal fungal microbiota on the pathogenesis of pulmonary fibrosis. Mice with intestinal overgrowth of Candida albicans, which was established by oral administration of antibiotics plus C. albicans, showed accelerated bleomycin-induced pulmonary fibrosis relative to the control mice (i.e. without C. albicans treatment). In addition, the mice with intestinal overgrowth of C. albicans showed enhanced Th17-type immunity, and treatment with IL-17A-neutralizing antibody alleviated pulmonary fibrosis in these mice but not in the control mice. This result indicates that IL-17A is involved in the pathogenesis of C. albicans-exacerbated pulmonary fibrosis. Even before bleomycin treatment, the expression of Rorc, the master regulator of Th17, was already upregulated in the pulmonary lymphocytes of the mice with intestinal overgrowth of C. albicans. Subsequent administration of bleomycin triggered these Th17-skewed lymphocytes to produce IL-17A, which enhanced endothelial-mesenchymal transition. These results suggest that intestinal overgrowth of C. albicans exacerbates pulmonary fibrosis via IL-17A-mediated endothelial-mesenchymal transition. Thus, it might be a potential therapeutic target in pulmonary fibrosis. This study may serve as a basis for using intestinal fungal microbiota as novel therapeutic targets in pulmonary fibrosis. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Takahiro Yamada
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Laboratory of Microbiology and Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
13
|
Wang J, Song Y, Xie W, Zhao J, Wang Y, Yu W. Therapeutic angiogenesis based on injectable hydrogel for protein delivery in ischemic heart disease. iScience 2023; 26:106577. [PMID: 37192972 PMCID: PMC10182303 DOI: 10.1016/j.isci.2023.106577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Ischemic heart disease (IHD) remains the leading cause of death and disability worldwide and leads to myocardial necrosis and negative myocardial remodeling, ultimately leading to heart failure. Current treatments include drug therapy, interventional therapy, and surgery. However, some patients with severe diffuse coronary artery disease, complex coronary artery anatomy, and other reasons are unsuitable for these treatments. Therapeutic angiogenesis stimulates the growth of the original blood vessels by using exogenous growth factors to generate more new blood vessels, which provides a new treatment for IHD. However, direct injection of these growth factors can cause a short half-life and serious side effects owing to systemic spread. Therefore, to overcome this problem, hydrogels have been developed for temporally and spatially controlled delivery of single or multiple growth factors to mimic the process of angiogenesis in vivo. This paper reviews the mechanism of angiogenesis, some important bioactive molecules, and natural and synthetic hydrogels currently being applied for bioactive molecule delivery to treat IHD. Furthermore, the current challenges of therapeutic angiogenesis in IHD and its potential solutions are discussed to facilitate real translation into clinical applications in the future.
Collapse
Affiliation(s)
- Junke Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 26000, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Yancheng Song
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 26000, China
| | - Wenjie Xie
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Shandong, Qingdao, Shandong 26000, China
| | - Jiang Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Ying Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong 26000, China
- Corresponding author
| | - Wenzhou Yu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 26003, China
- Corresponding author
| |
Collapse
|
14
|
Zhao W, Wang L, Yang J, Chen X, Guo X, Xu K, Wang N, Zhao W, Xia C, Lian H, Rosas I, Yu G. Endothelial cell-derived MMP19 promotes pulmonary fibrosis by inducing E(nd)MT and monocyte infiltration. Cell Commun Signal 2023; 21:56. [PMID: 36915092 PMCID: PMC10009991 DOI: 10.1186/s12964-023-01040-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/03/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) play important roles in remodeling the extracellular matrix and in the pathogenesis of idiopathic pulmonary fibrosis (IPF). MMP19, which is an MMP, was significantly upregulated in hyperplastic alveolar epithelial cells in IPF lung tissues and promoted epithelial-mesenchymal transition (EMT). Recent studies have demonstrated that endothelial-to-mesenchymal transition (E(nd)MT) contributes to pulmonary fibrosis. However, the role of MMP19 in pulmonary vascular injury and repair and E(nd)MT remains unclear. METHODS To determine the role of MMP19 in E(nd)MT and pulmonary fibrosis. MMP19 expressions were determined in the lung endothelial cells of IPF patients and bleomycin (BLM)-induced mice. The roles of MMP19 in E(nd)MT and endothelial barrier permeability were studied in the MMP19 cDNA-transfected primary human pulmonary microvascular endothelial cells (HPMECs) and MMP19 adenoassociated virus (MMP19-AAV)-infected mice. The regulatory mechanism of MMP19 in pulmonary fibrosis was elucidated by blocking its interacting proteins SDF1 and ET1 with AMD3100 and Bosentan, respectively. RESULTS In this study, we found that MMP19 expression was significantly increased in the lung endothelial cells of IPF patients and BLM-induced mice compared to the control groups. MMP19 promoted E(nd)MT and the migration and permeability of HPMECs in vitro, stimulated monocyte infiltration into the alveolus, and aggravated BLM-induced pulmonary fibrosis in vivo. SDF1 and Endothelin-1 (ET1) were physically associated with MMP19 in HPMECs and colocalized with MMP19 in endothelial cells in IPF patient lung tissues. AMD3100 and bosentan alleviated the fibrosis induced by MMP19 in the BLM mouse model. CONCLUSION MMP19 promoted E(nd)MT by interacting with ET1 and stimulated monocyte infiltration into lung tissues via the SDF1/CXCR4 axis, thus aggravating BLM-induced pulmonary fibrosis. Vascular integrity regulated by MMP19 could be a promising therapeutic target for suppressing pulmonary fibrosis. Video abstract.
Collapse
Affiliation(s)
- Weiming Zhao
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Lan Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Juntang Yang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Xinyu Chen
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Xiaoshu Guo
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Kai Xu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Ningdan Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Wenyu Zhao
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Cong Xia
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Hui Lian
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Ivan Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
15
|
Shi Y, Zhu N, Qiu Y, Tan J, Wang F, Qin L, Dai A. Resistin-like molecules: a marker, mediator and therapeutic target for multiple diseases. Cell Commun Signal 2023; 21:18. [PMID: 36691020 PMCID: PMC9869618 DOI: 10.1186/s12964-022-01032-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/27/2022] [Indexed: 01/25/2023] Open
Abstract
Resistin-like molecules (RELMs) are highly cysteine-rich proteins, including RELMα, RELMβ, Resistin, and RELMγ. However, RELMs exhibit significant differences in structure, distribution, and function. The expression of RELMs is regulated by various signaling molecules, such as IL-4, IL-13, and their receptors. In addition, RELMs can mediate numerous signaling pathways, including HMGB1/RAGE, IL-4/IL-4Rα, PI3K/Akt/mTOR signaling pathways, and so on. RELMs proteins are involved in wide range of physiological and pathological processes, including inflammatory response, cell proliferation, glucose metabolism, barrier defense, etc., and participate in the progression of numerous diseases such as lung diseases, intestinal diseases, cardiovascular diseases, and cancers. Meanwhile, RELMs can serve as biomarkers, risk predictors, and therapeutic targets for these diseases. An in-depth understanding of the role of RELMs may provide novel targets or strategies for the treatment and prevention of related diseases. Video abstract.
Collapse
Affiliation(s)
- Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and its Application, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410021, Hunan, China
| | - Yun Qiu
- Laboratory of Stem Cell Regulation with Chinese Medicine and its Application, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Junlan Tan
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, 410208, Hunan, China
| | - Feiying Wang
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, 410208, Hunan, China
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and its Application, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, 410208, Hunan, China.
| | - Aiguo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, 410208, Hunan, China.
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
- Department of Respiratory Medicine, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410021, Hunan, China.
| |
Collapse
|
16
|
Li ZX, Chen JX, Zheng ZJ, Cai WJ, Yang XB, Huang YY, Gong Y, Xu F, Chen YS, Lin L. TGF-β1 promotes human breast cancer angiogenesis and malignant behavior by regulating endothelial-mesenchymal transition. Front Oncol 2022; 12:1051148. [PMID: 36465358 PMCID: PMC9709251 DOI: 10.3389/fonc.2022.1051148] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Endothelial-mesenchymal transition (EndMT) is an important process of angiogenesis, which plays a significant role in in tumor invasion and metastasis, while its regulatory mechanisms in breast cancer remain to be fully elucidated. We previously demonstrated that tumor-associated macrophages (TAMs) can induce EndMT in endothelial cells by secreting CCL18 through the activation of the TGF-β and Notch signaling pathways in breast cancer. This study was designed to study the role of EndMT in breast cancer angiogenesis and progression in order to explore the underlying mechanism. METHODS Immunohistochemistry (IHC) was used to evaluate the expression of microvascular density (MVD) and EndMT markers in breast cancer. TGF-β1 was used to induce EndMT models of differentiated-endothelial breast cancer stem-like cells (BCSLCs). In vitro cell migration, proliferation and matrigel tube-formation assays, as well as in vivo nude mouse tumor-bearing model and nude mouse dorsal skinfold window chamber (DSWC) model, were utilized to investigate the effects in order to explore the mechanism of EndMT induced by TGF-β1 on breast cancer progression. RESULTS In this study, we demonstrated that the EndMT markers were positively associated with MVD indicating unfavorable prognosis of invasive ductal carcinoma (IDC) patients. Functionally, TGF-β1 promoted migration, proliferation and angiogenesis of differentiated-endothelial BCSLCs by inducing EndMT in vitro and promoted tumor growth and angiogenesis in vivo. Mechanically, we revealed TGF-β1 induced EndMT by activation of TGF-β and Notch signaling pathways with increase of p-Smad2/3 and Notch1 expression. Moreover, we found Snail and Slug were key factors of TGF-β and Notch signaling pathways. CONCLUSION Our findings elucidated the mechanism of TGF-β1 in the promotion of angiogenesis and progression by EndMT in breast cancer.
Collapse
Affiliation(s)
- Zi-Xiong Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jie-Xin Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ze-Jun Zheng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Wang-Jing Cai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiong-Bin Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yuan-Yuan Huang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yao Gong
- Department of Rheumatology, Shantou University Medical College, Shantou, China
| | - Feng Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yong-Song Chen
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ling Lin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Rheumatology, Shantou University Medical College, Shantou, China
| |
Collapse
|
17
|
Trelford CB, Dagnino L, Di Guglielmo GM. Transforming growth factor-β in tumour development. Front Mol Biosci 2022; 9:991612. [PMID: 36267157 PMCID: PMC9577372 DOI: 10.3389/fmolb.2022.991612] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/15/2022] [Indexed: 11/14/2022] Open
Abstract
Transforming growth factor-β (TGFβ) is a ubiquitous cytokine essential for embryonic development and postnatal tissue homeostasis. TGFβ signalling regulates several biological processes including cell growth, proliferation, apoptosis, immune function, and tissue repair following injury. Aberrant TGFβ signalling has been implicated in tumour progression and metastasis. Tumour cells, in conjunction with their microenvironment, may augment tumourigenesis using TGFβ to induce epithelial-mesenchymal transition, angiogenesis, lymphangiogenesis, immune suppression, and autophagy. Therapies that target TGFβ synthesis, TGFβ-TGFβ receptor complexes or TGFβ receptor kinase activity have proven successful in tissue culture and in animal models, yet, due to limited understanding of TGFβ biology, the outcomes of clinical trials are poor. Here, we review TGFβ signalling pathways, the biology of TGFβ during tumourigenesis, and how protein quality control pathways contribute to the tumour-promoting outcomes of TGFβ signalling.
Collapse
Affiliation(s)
- Charles B. Trelford
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Children’s Health Research Institute and Lawson Health Research Institute, London, ON, Canada
| | - Gianni M. Di Guglielmo
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
18
|
Atis M, Akcan U, Altunsu D, Ayvaz E, Uğur Yılmaz C, Sarıkaya D, Temizyürek A, Ahıshalı B, Girouard H, Kaya M. Targeting the blood-brain barrier disruption in hypertension by ALK5/TGF-Β type I receptor inhibitor SB-431542 and dynamin inhibitor dynasore. Brain Res 2022; 1794:148071. [PMID: 36058283 DOI: 10.1016/j.brainres.2022.148071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION In this study, we aimed to target two molecules, transforming growth factor-beta (TGF-β) and dynamin to explore their roles in blood-brain barrier (BBB) disruption in hypertension. METHODS For this purpose, angiotensin (ANG) II-induced hypertensive mice were treated with SB-431542, an inhibitor of the ALK5/TGF-β type I receptor, and dynasore, an inhibitor of dynamin. Albumin-Alexa fluor 594 was used to assess BBB permeability. The alterations in the expression of claudin-5, caveolin (Cav)-1, glucose transporter (Glut)-1, and SMAD4 in the cerebral cortex and the hippocampus were evaluated by quantification of immunofluorescence staining intensity. RESULTS ANG II infusion increased BBB permeability to albumin-Alexa fluor 594 which was reduced by SB-431542 (P < 0.01), but not by dynasore. In hypertensive animals treated with dynasore, claudin-5 immunofluorescence intensity increased in the cerebral cortex and hippocampus while it decreased in the cerebral cortex of SB-431542 treated hypertensive mice (P < 0.01). Both dynasore and SB-431542 prevented the increased Cav-1 immunofluorescence intensity in the cerebral cortex and hippocampus of hypertensive animals (P < 0.01). SB-431542 and dynasore decreased Glut-1 immunofluorescence intensity in the cerebral cortex and hippocampus of mice receiving ANG II (P < 0.01). SB-431542 increased SMAD4 immunofluorescence intensity in the cerebral cortex of hypertensive animals, while in the hippocampus a significant decrease was noted by both SB-431542 and dynasore (P < 0.01). CONCLUSION Our data suggest that inhibition of the TGFβ type I receptor prevents BBB disruption under hypertensive conditions. These results emphasize the therapeutic potential of targeting TGFβ signaling as a novel treatment modality to protect the brain of hypertensive patients.
Collapse
Affiliation(s)
- Muge Atis
- Graduate School of Health Sciences, Koç University, 34450 Istanbul, Turkey
| | - Uğur Akcan
- Graduate School of Health Sciences, Koç University, 34450 Istanbul, Turkey
| | - Deniz Altunsu
- Graduate School of Health Sciences, Koç University, 34450 Istanbul, Turkey
| | - Ecem Ayvaz
- Graduate School of Health Sciences, Koç University, 34450 Istanbul, Turkey
| | - Canan Uğur Yılmaz
- Department of Pharmaceutical Bioscience, Biomedical Centrum, Uppsala University, Sweden
| | - Deniz Sarıkaya
- Department of Physiology, Koç University School of Medicine, 34450 Istanbul, Turkey
| | - Arzu Temizyürek
- Koç University Research Center for Translational Medicine, 34450 Istanbul, Turkey
| | - Bülent Ahıshalı
- Department of Histology and Embryology, Koç University School of Medicine, 34450, Istanbul, Turkey
| | - Hélène Girouard
- Department of Pharmacology and Physiology, Faculty of Medicine, Montreal University, Montreal, QC, Canada
| | - Mehmet Kaya
- Department of Physiology, Koç University School of Medicine, 34450 Istanbul, Turkey; Koç University Research Center for Translational Medicine, 34450 Istanbul, Turkey.
| |
Collapse
|
19
|
Zhao J, Zhao Q, Mao S. N-myc downstream regulated gene 2 ameliorates myocardial remodeling and cardiac function in heart failure rats. Hum Exp Toxicol 2021; 40:1296-1307. [PMID: 33583230 DOI: 10.1177/0960327121993208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aims to explore the effect of NDRG2 (N-myc downstream regulated gene 2)-mediated Transforming growth factor-beta 1 (TGF-β1)/ Sma- and Mad-related protein (Smad) pathway in heart failure (HF) rats. HF rat models were established and treated with AdEGFP (adenovirus encoding enhanced green fluorescent protein) or AdNDRG2 (adenovirus encoding NDRG2). The echocardiography and hemodynamic parameters were detected, and the infarct size was calculated via 2,3,5-triphenyltetrazolium chloride (TTC) staining. Masson staining was performed to observe the collagen volume fraction (CVF), quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) to detect the expression of Collagen I (Col-I) and Collagen III (Col-III), and Transferase (TdT)-mediated D-UTP-biotin nick end labeling (TUNEL) staining to evaluate the apoptosis. Rats in the Model group presented with the decreases in left ventricular ejection fraction (LVEF), left ventricular shortening fraction (LVFS), left ventricular systolic pressure (LVSP) and maximal/minimum rate of left ventricular pressure (±dp/dt max), and significant increases in left ventricular end-diastolic pressure (LVEDP) and CVF. At the meantime, the expression of Col-I and Col-III as well as the apoptotic rate of myocardial cells was also elevated with increased infarct size in the Model group. The Model rats also had the significant reduction in the expression of NDRG2 and up-regulations of TGF-β1, p-Smad2/Smad2, p-Smad3/Smad3 and tissue inhibitor of metalloproteinases-2 (TIMP-2). However, model rats treated with AdNDRG2 had evident amelioration in aforementioned indicators. In conclusion, NDRG2 reduces the apoptosis of myocardial cells and improves the heart function and myocardial remodeling in HF rats via inhibiting the activity of TGF-β1/Smad.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Critical Care Medicine, Yantai City Yantai Mountain Hospital, Yantai, Shandong, China
| | - Qin Zhao
- Medical Center, Weifang People's Hospital, Brain Hospital, Weifang, Shandong, China
| | - Shuai Mao
- Department of Cardiovascular Medicine, Affiliated Hospital of 372527Weifang Medical College, Weifang, Shandong, China
| |
Collapse
|
20
|
Zhou K, Tian KJ, Yan BJ, Gui DD, Luo W, Ren Z, Wei DH, Liu LS, Jiang ZS. A promising field: regulating imbalance of EndMT in cardiovascular diseases. Cell Cycle 2021; 20:1477-1486. [PMID: 34266366 PMCID: PMC8354671 DOI: 10.1080/15384101.2021.1951939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/30/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022] Open
Abstract
Endothelial-mesenchymal transition (EndMT) is widely involved in the occurrence and development of cardiovascular diseases. Although there is no direct evidence, it is very promising as an effective target for the treatment of these diseases. Endothelial cells need to respond to the complex cardiovascular environment through EndMT, but sustained stimuli will cause the imbalance of EndMT. Blocking the signal transduction promoting EndMT is an effective method to control the imbalance of EndMT. In particular, we also discussed the potential role of endothelial cell apoptosis and autophagy in regulating the imbalance of EndMT. In addition, promoting mesenchymal-endothelial transformation (MEndT) is also a method to control the imbalance of EndMT. However, targeting EndMT to treat cardiovascular disease still faces many challenges. By reviewing the research progress of EndMT, we have put forward some insights and translated them into challenges and opportunities for new treatment strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Kun Zhou
- Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan Province, China
| | - Kai-Jiang Tian
- Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan Province, China
| | - Bin-Jie Yan
- Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan Province, China
| | - Dan-Dan Gui
- Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan Province, China
| | - Wen Luo
- Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan Province, China
| | - Zhong Ren
- Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan Province, China
| | - Dang-Heng Wei
- Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan Province, China
| | - Lu-Shan Liu
- Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan Province, China
| | - Zhi-Sheng Jiang
- Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan Province, China
| |
Collapse
|
21
|
Wu Y, Cai C, Xiang Y, Zhao H, Lv L, Zeng C. Naringin Ameliorates Monocrotaline-Induced Pulmonary Arterial Hypertension Through Endothelial-To-Mesenchymal Transition Inhibition. Front Pharmacol 2021; 12:696135. [PMID: 34335261 PMCID: PMC8320371 DOI: 10.3389/fphar.2021.696135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) caused by enhanced arterial pressure increases vessel resistance in the lung. Endothelial-to-mesenchymal transition (EndMT) plays key roles in the vascular remodeling in PAH. Naringin, a protective gaseous mediator is commonly extracted from tomatoes and citrus fruits (such as grapefruits), and demonstrates anti-inflammation, anti-oxidant, anti-proliferation, and anti-tumor effects. Meanwhile, the association of Naringin and the process of EndMT is still unclear. In this study, monocrotaline (MCT) administration (60 mg/kg) was delivered for the induction of PAH in rats. Following this, Naringin (concentrations: 25, 50, and 100 mg/kg/day) was used for treatments. Human Umbilical Vein Endothelial Cells (HUVECs) were stimulated with Naringin and transforming growth factor β1 (TGFβ1, 10 ng/ml). As the result, Naringin was demonstrated to inhibit EndMT and alleviate PAH progression. In particular, in HUVECs, Naringin significantly suppressed the mesenchymal marker expression induced by TGFβ1 treatment, enhanced the endothelial marker expression, and inhibited the activation of ERK and NF-κB signaling pathways. To conclude, this study provided novel evidence suggesting the beneficial effects of Naringin in PAH through the inhibition of the ERK and NF-κB signaling pathways and the EndMT progression in pulmonary arteries.
Collapse
Affiliation(s)
- Yonghui Wu
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Changhong Cai
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Yijia Xiang
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Huan Zhao
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Lingchun Lv
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Chunlai Zeng
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| |
Collapse
|
22
|
Ye Z, Hu Y. TGF‑β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review). Int J Mol Med 2021; 48:132. [PMID: 34013369 PMCID: PMC8136122 DOI: 10.3892/ijmm.2021.4965] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/29/2021] [Indexed: 01/09/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a worldwide disease characterized by the chronic and irreversible decline of lung function. Currently, there is no drug to successfully treat the disease except for lung transplantation. Numerous studies have been devoted to the study of the fibrotic process of IPF and findings showed that transforming growth factor‑β1 (TGF‑β1) plays a central role in the development of IPF. TGF‑β1 promotes the fibrotic process of IPF through various signaling pathways, including the Smad, MAPK, and ERK signaling pathways. There are intersections between these signaling pathways, which provide new targets for researchers to study new drugs. In addition, TGF‑β1 can affect the fibrosis process of IPF by affecting oxidative stress, epigenetics and other aspects. Most of the processes involved in TGF‑β1 promote IPF, but TGF‑β1 can also inhibit it. This review discusses the role of TGF‑β1 in IPF.
Collapse
Affiliation(s)
- Zhimin Ye
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan 410006, P.R. China
| | - Yongbin Hu
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan 410006, P.R. China
| |
Collapse
|
23
|
Guo L, Wen X, Hou Y, Sun R, Zhang L, Liu F, Liu J. Dihydroartemisinin inhibits endothelial cell migration via the TGF-β1/ALK5/SMAD2 signaling pathway. Exp Ther Med 2021; 22:709. [PMID: 34007318 PMCID: PMC8120513 DOI: 10.3892/etm.2021.10141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/12/2021] [Indexed: 01/01/2023] Open
Abstract
Anti-angiogenesis therapy is a novel treatment method for malignant tumors. Endothelial cell (EC) migration is an important part of angiogenesis. Dihydroartemisinin (DHA) exhibits strong anti-angiogenic and anti-EC migration effects; however, the underlying molecular mechanisms are yet to be elucidated. The TGF-β1/activin receptor-like kinase 5 (ALK5)/SMAD2 signaling pathway serves an important role in the regulation of migration. The present study aimed to explore the effects of DHA treatment on EC migration and the TGF-β1/ALK5/SMAD2 signaling pathway. The effects of DHA on human umbilical vein EC migration were assessed using wound healing and Transwell assays. The effects of DHA on the TGF-β1/ALK5/SMAD2 signaling pathway were detected using western blotting. DHA exhibited an inhibitory effect on EC migration in the wound healing and Transwell assays. DHA treatment upregulated the expression levels of ALK5 and increased the phosphorylation of SMAD2 in ECs. SB431542 rescued the inhibitory effect of DHA during EC migration. DHA inhibited EC migration via the TGF-β1/ALK5/SMAD2-dependent signaling pathway, and DHA may be a novel drug for the treatment of patients with malignant tumors.
Collapse
Affiliation(s)
- Ling Guo
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Shandong University, Jinan, Shandong 250014, P.R. China.,Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xiaoqing Wen
- Department of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Yinglong Hou
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Rong Sun
- Advanced Medical Research Institute, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Liang Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Fuhong Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
24
|
Feng W, Ying Z, Ke F, Mei-Lin X. Apigenin suppresses TGF-β1-induced cardiac fibroblast differentiation and collagen synthesis through the downregulation of HIF-1α expression by miR-122-5p. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 83:153481. [PMID: 33607460 DOI: 10.1016/j.phymed.2021.153481] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 01/11/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Apigenin can reduce cardiomyocyte hypertrophy by downregulating hypoxia inducible factor-1 alpha (HIF-1α) expression. However, its effects on cardiac fibroblasts (CFs) and its exact inhibitory molecular mechanisms on HIF-1α remain unclear. PURPOSE This study aims to examine the effects of apigenin on cell proliferation and differentiation, microRNA-122-5p (miR-122-5p) expression, and HIF-1α-mediated Smad signaling pathway in transforming growth factor beta 1 (TGF-β1)-stimulated CFs and cardiac fibrosis and to investigate the relationship between miR-122-5p and HIF-1α. METHODS The TGF-β1-stimulated CFs, the combination of TGF-β1-stimulated and miR-122-5p mimic-transfected CFs, the combination of TGF-β1-stimulated and miR-122-5p inhibitor-transfected CFs, and the isoproterenol-induced cardiac fibrotic mice were used and treated with or without apigenin. The recombinant lentiviruses overexpressing HIF-1α vector and miR-122-5p mimic were co-transfected to observe their interaction. Related mRNA and protein expressions and myocardial collagen were determined. The luciferase reporter gene that contains HIF-1α wild type or mutant type 3'-UTR was used, and the luciferase activity was determined to verify the direct link between miR-122-5p and HIF-1α. RESULTS In the TGF-β1-stimulated CFs, apigenin treatment increased the miR-122-5p and Smad7 expressions and decreased the HIF-1α, α-smooth muscle actin, collagen Ⅰ/Ⅲ, Smad2/3, and p-Smad2/3 expressions. Similar and inverse results were observed in the miR-122-5p mimic- and inhibitor-transfected CFs, respectively. Moreover, the miR-122-5p mimic could antagonize the effects of TGF-β1 in the TGF-β1 and miR-122-5p mimic-combined CFs, and the miR-122-5p inhibitor could enhance the effects of TGF-β1 in the TGF-β1 and miR-122-5p inhibitor-combined CFs. In the two aforementioned cell models, the addition of apigenin could further enhance the effects of miR-122-5p mimic and partially reverse the effects of miR-122-5p inhibitor. After treatment of HIF-1α-transfected CFs with miR-122-5p mimic, the HIF-1α expression decreased. Further study confirmed that HIF-1α was a direct target of miR-122-5p. Apigenin also decreased the myocardial collagen accumulation in cardiac fibrotic mice. CONCLUSION Apigenin could suppress the differentiation and collagen synthesis of TGF-β1-stimulated CFs and mouse cardiac fibrosis, and its mechanisms were related to the increment of miR-122-5p expression and subsequent downregulation of HIF-1α expression via direct interaction, which might finally result in the decrements of Smad2/3 and p-Smad2/3 expressions and increment of Smad7 expression.
Collapse
Affiliation(s)
- Wang Feng
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China; Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Zhao Ying
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Fan Ke
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Xie Mei-Lin
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
25
|
Wang F, Fan K, Zhao Y, Xie ML. Apigenin attenuates TGF-β1-stimulated cardiac fibroblast differentiation and extracellular matrix production by targeting miR-155-5p/c-Ski/Smad pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113195. [PMID: 32800930 DOI: 10.1016/j.jep.2020.113195] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/06/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Apigenin is a natural flavonoid compound present in chamomile (Matricaia chamomilla L.) from the Asteraceae family, which is used in the treatment of cardiovascular diseases by traditional healers, but its effects on differentiation and extracellular matrix (ECM) production of cardiac fibroblasts (CFs) induced by transforming growth factor beta 1 (TGF-β1) are poorly understood. AIM OF THE STUDY This study aimed to examine these effects and potential molecular mechanisms and to provide a new application of apigenin in the prevention and treatment of cardiac fibrosis. MATERIALS AND METHODS The TGF-β1-stimulated CFs or the combination of TGF-β1-stimulated and microRNA-155-5p (miR-155-5p) inhibitor- or mimic-transfected CFs were treated with or without apigenin. The expression levels of intracellular related mRNA and proteins were detected by real-time polymerase chain reaction and Western blot methods, respectively. The luciferase reporter gene containing cellular Sloan-Kettering Institute (c-Ski) wild or mutant type 3'-UTR was used and the luciferase activity was examined to verify the direct link of miR-155-5p and c-Ski. RESULTS After treatment of TGF-β1-stimulated CFs with 6-24 μM apigenin, the expression of c-Ski was increased, while levels of miR-155-5p, α-smooth muscle actin, collagen Ⅰ/Ⅲ, Smad2/3, and p-Smad2/3 were decreased. After transfection of CFs with the miR-155-5p inhibitor or mimic, the similar or inverse results were respectively observed as well. The combination of TGF-β1 and miR-155-5p inhibitor or mimic might cause an antagonistical or synergistic effect, respectively, and apigenin addition could enhance the effects of the inhibitor and antagonize the effects of the mimic. Luciferase reporter gene assay demonstrated that c-Ski was a direct target of miR-155-5p. CONCLUSION These findings suggested that apigenin could inhibit the differentiation and ECM production in TGF-β1-stimulated CFs, and its mechanisms might partly be attributable to the reduction of miR-155-5p expression and subsequent increment of c-Ski expression, which might result in the inhibition of Smad2/3 and p-Smad2/3 expressions.
Collapse
Affiliation(s)
- Feng Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Ke Fan
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Ying Zhao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Mei-Lin Xie
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu Province, China.
| |
Collapse
|
26
|
Clinical Implications of Uric Acid in Heart Failure: A Comprehensive Review. Life (Basel) 2021; 11:life11010053. [PMID: 33466609 PMCID: PMC7828696 DOI: 10.3390/life11010053] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Affecting more than 26 million people worldwide and with rising prevalence, heart failure (HF) represents a major global health problem. Hence, further research is needed in order to abate poor HF outcomes and mitigate significant expenses that burden health care systems. Based on available data, experts agree that there is an urgent need for a cost-effective prognostic biomarker in HF. Although a significant number of biomarkers have already been investigated in this setting, the clinical utility of adding biomarker evaluation to routine HF care still remains ambiguous. Specifically, in this review we focused on uric acid (UA), a purine metabolism detriment whose role as cardiovascular risk factor has been exhaustingly debated for decades. Multiple large population studies indicate that UA is an independent predictor of mortality in acute and chronic HF, making it a significant prognostic factor in both settings. High serum levels have been also associated with an increased incidence of HF, thus expanding the clinical utility of UA. Importantly, emerging data suggests that UA is also implicated in the pathogenesis of HF, which sheds light on UA as a feasible therapeutic target. Although to date clinical studies have not been able to prove the benefits of xanthine oxidase in HF patients, we discuss the putative role of UA and xanthine oxidase in the pathophysiology of HF as a therapeutic target.
Collapse
|
27
|
Tian H, Liu L, Wu Y, Wang R, Jiang Y, Hu R, Zhu L, Li L, Fang Y, Yang C, Ji L, Liu G, Dai A. Resistin-like molecule β acts as a mitogenic factor in hypoxic pulmonary hypertension via the Ca 2+-dependent PI3K/Akt/mTOR and PKC/MAPK signaling pathways. Respir Res 2021; 22:8. [PMID: 33407472 PMCID: PMC7789700 DOI: 10.1186/s12931-020-01598-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022] Open
Abstract
Background Pulmonary arterial smooth muscle cell (PASMC) proliferation plays a crucial role in hypoxia-induced pulmonary hypertension (HPH). Previous studies have found that resistin-like molecule β (RELM-β) is upregulated de novo in response to hypoxia in cultured human PASMCs (hPASMCs). RELM-β has been reported to promote hPASMC proliferation and is involved in pulmonary vascular remodeling in patients with PAH. However, the expression pattern, effects, and mechanisms of action of RELM-β in HPH remain unclear. Methods We assessed the expression pattern, mitogenetic effect, and mechanism of action of RELM-β in a rat HPH model and in hPASMCs. Results Overexpression of RELM-β caused hemodynamic changes in a rat model of HPH similar to those induced by chronic hypoxia, including increased mean right ventricular systolic pressure (mRVSP), right ventricular hypertrophy index (RVHI) and thickening of small pulmonary arterioles. Knockdown of RELM-β partially blocked the increases in mRVSP, RVHI, and vascular remodeling induced by hypoxia. The phosphorylation levels of the PI3K, Akt, mTOR, PKC, and MAPK proteins were significantly up- or downregulated by RELM-β gene overexpression or silencing, respectively. Recombinant RELM-β protein increased the intracellular Ca2+ concentration in primary cultured hPASMCs and promoted hPASMC proliferation. The mitogenic effects of RELM-β on hPASMCs and the phosphorylation of PI3K, Akt, mTOR, PKC, and MAPK were suppressed by a Ca2+ inhibitor. Conclusions Our findings suggest that RELM-β acts as a cytokine-like growth factor in the development of HPH and that the effects of RELM-β are likely to be mediated by the Ca2+-dependent PI3K/Akt/mTOR and PKC/MAPK pathways.
Collapse
Affiliation(s)
- Heshen Tian
- Department of Respiratory Medicine & Department of Geriatric, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410016, Hunan, People's Republic of China.,State Key Lab of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Lei Liu
- Department of Respiratory Medicine & Department of Geriatric, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410016, Hunan, People's Republic of China
| | - Ying Wu
- Department of Respiratory Medicine & Department of Geriatric, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410016, Hunan, People's Republic of China
| | - Ruiwen Wang
- Department of Respiratory Medicine & Department of Geriatric, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410016, Hunan, People's Republic of China
| | - Yongliang Jiang
- Department of Respiratory Medicine & Department of Geriatric, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410016, Hunan, People's Republic of China
| | - Ruicheng Hu
- Department of Respiratory Medicine & Department of Geriatric, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410016, Hunan, People's Republic of China
| | - Liming Zhu
- Department of Respiratory Medicine & Department of Geriatric, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410016, Hunan, People's Republic of China
| | - Linwei Li
- Department of Respiratory Medicine & Department of Geriatric, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410016, Hunan, People's Republic of China
| | - Yanyan Fang
- Department of Respiratory Medicine & Department of Geriatric, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410016, Hunan, People's Republic of China
| | - Chulan Yang
- Department of Respiratory Medicine & Department of Geriatric, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410016, Hunan, People's Republic of China
| | - Lianzhi Ji
- Department of Respiratory Medicine & Department of Geriatric, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410016, Hunan, People's Republic of China
| | - Guoyu Liu
- Department of Respiratory Medicine & Department of Geriatric, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410016, Hunan, People's Republic of China
| | - Aiguo Dai
- Department of Respiratory Medicine & Department of Geriatric, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410016, Hunan, People's Republic of China. .,Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China.
| |
Collapse
|
28
|
Xian S, Chen A, Wu X, Lu C, Wu Y, Huang F, Zeng Z. Activation of activin/Smad2 and 3 signaling pathway and the potential involvement of endothelial‑mesenchymal transition in the valvular damage due to rheumatic heart disease. Mol Med Rep 2020; 23:10. [PMID: 33179113 PMCID: PMC7673319 DOI: 10.3892/mmr.2020.11648] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Rheumatic heart disease (RHD) is an autoimmune disease caused by rheumatic fever following group A hemolytic streptococcal infection and primarily affects the mitral valve. RHD is currently a major global health problem. However, the exact pathological mechanisms associated with RHD-induced cardiac valve damage remain to be elucidated. The endothelial-mesenchymal transition (EndMT) serves a key role in a number of diseases with an important role in cardiac fibrosis and the activin/Smad2 and 3 signaling pathway is involved in regulating the EndMT. Nevertheless, there are no studies to date, to the best of the authors' knowledge, investigating the association between RHD and EndMT. Thus, the aim of the current study was to investigate the potential role of EndMT in cardiac valve damage and assess whether activin/Smad2 and 3 signaling was activated during RHD-induced valvular injury in a rat model of RHD induced by inactivated Group A streptococci and complete Freund's adjuvant. Inflammation and fibrosis were assessed by hematoxylin and eosin and Sirius red staining. Serum cytokine and rheumatoid factor levels were measured using ELISA kits. Expression levels of activin/Smad2 and 3 signaling pathway-related factors [activin A, Smad2, Smad3, phosphorylated (p-)Smad2 and p-Smad3], EndMT-related factors [lymphoid enhancer factor-1 (LEF-1), Snail1, TWIST, zinc finger E-box-binding homeobox (ZEB)1, ZEB2, α smooth muscle actin (α-SMA) and type I collagen α 1 (COL1A1)], apoptosis-related markers (BAX and cleaved caspase-3) and valvular inflammation markers (NF-κB and p-NF-κB) were detected using reverse transcription-quantitative PCR and western blot analyses. Compared with the control group, the degree of valvular inflammation and fibrosis, serum levels of IL-6, IL-17, TNF-α and expression of apoptosis-related markers (BAX and cleaved caspase-3) and valvular inflammation marker (p-NF-κB), activin/Smad2 and 3 signaling pathway-related factors (activin A, p-Smad2 and p-Smad3), EndMT-related factors (LEF-1, Snail1, TWIST, ZEB 1, ZEB2, α-SMA and COL1A1) were significantly increased in the RHD group. These results suggested that the activin/Smad2 and 3 signaling pathway was activated during the development of valvular damage caused by RHD and that the EndMT is involved in RHD-induced cardiac valve damage.
Collapse
Affiliation(s)
- Shenglin Xian
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ang Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaodan Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chuanghong Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yunjiao Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhiyu Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
29
|
Borovac JA, D'Amario D, Bozic J, Glavas D. Sympathetic nervous system activation and heart failure: Current state of evidence and the pathophysiology in the light of novel biomarkers. World J Cardiol 2020; 12:373-408. [PMID: 32879702 PMCID: PMC7439452 DOI: 10.4330/wjc.v12.i8.373] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/19/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a complex clinical syndrome characterized by the activation of at least several neurohumoral pathways that have a common role in maintaining cardiac output and adequate perfusion pressure of target organs and tissues. The sympathetic nervous system (SNS) is upregulated in HF as evident in dysfunctional baroreceptor and chemoreceptor reflexes, circulating and neuronal catecholamine spillover, attenuated parasympathetic response, and augmented sympathetic outflow to the heart, kidneys and skeletal muscles. When these sympathoexcitatory effects on the cardiovascular system are sustained chronically they initiate the vicious circle of HF progression and become associated with cardiomyocyte apoptosis, maladaptive ventricular and vascular remodeling, arrhythmogenesis, and poor prognosis in patients with HF. These detrimental effects of SNS activity on outcomes in HF warrant adequate diagnostic and treatment modalities. Therefore, this review summarizes basic physiological concepts about the interaction of SNS with the cardiovascular system and highlights key pathophysiological mechanisms of SNS derangement in HF. Finally, special emphasis in this review is placed on the integrative and up-to-date overview of diagnostic modalities such as SNS imaging methods and novel laboratory biomarkers that could aid in the assessment of the degree of SNS activation and provide reliable prognostic information among patients with HF.
Collapse
Affiliation(s)
- Josip Anđelo Borovac
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
- Working Group on Heart Failure of Croatian Cardiac Society, Zagreb 10000, Croatia
| | - Domenico D'Amario
- Department of Cardiovascular and Thoracic Sciences, IRCCS Fondazione Policlinico A. Gemelli, Universita Cattolica Sacro Cuore, Rome 00168, Italy
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Duska Glavas
- Working Group on Heart Failure of Croatian Cardiac Society, Zagreb 10000, Croatia
- Clinic for Cardiovascular Diseases, University Hospital of Split, Split 21000, Croatia
| |
Collapse
|
30
|
Lin Q, Johns RA. Resistin family proteins in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2020; 319:L422-L434. [PMID: 32692581 DOI: 10.1152/ajplung.00040.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The family of resistin-like molecules (RELMs) consists of four members in rodents (RELMα/FIZZ1/HIMF, RELMβ/FIZZ2, Resistin/FIZZ3, and RELMγ/FIZZ4) and two members in humans (Resistin and RELMβ), all of which exhibit inflammation-regulating, chemokine, and growth factor properties. The importance of these cytokines in many aspects of physiology and pathophysiology, especially in cardiothoracic diseases, is rapidly evolving in the literature. In this review article, we attempt to summarize the contribution of RELM signaling to the initiation and progression of lung diseases, such as pulmonary hypertension, asthma/allergic airway inflammation, chronic obstructive pulmonary disease, fibrosis, cancers, infection, and other acute lung injuries. The potential of RELMs to be used as biomarkers or risk predictors of these diseases also will be discussed. Better understanding of RELM signaling in the pathogenesis of pulmonary diseases may offer novel targets or approaches for the development of therapeutics to treat or prevent a variety of inflammation, tissue remodeling, and fibrosis-related disorders in respiratory, cardiovascular, and other systems.
Collapse
Affiliation(s)
- Qing Lin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Roger A Johns
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
31
|
Han L, Song N, Hu X, Zhu A, Wei X, Liu J, Yuan S, Mao W, Chen X. Inhibition of RELM-β prevents hypoxia-induced overproliferation of human pulmonary artery smooth muscle cells by reversing PLC-mediated KCNK3 decline. Life Sci 2020; 246:117419. [PMID: 32045592 DOI: 10.1016/j.lfs.2020.117419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 02/09/2023]
Abstract
AIMS Although resistin-like molecule β (RELM-β) is involved in the pathological processes of various lung diseases, such as pulmonary inflammation, asthma and fibrosis, its potential roles in hypoxic pulmonary arterial hypertension (PAH) remain largely unknown. The study aims to investigate whether RELM-β contributes to hypoxia-induced excessive proliferation of human pulmonary artery smooth muscle cells (PASMCs) and to explore the potential mechanisms of this process. MAIN METHODS Human PASMCs were exposed to normoxia or hypoxia (1% O2) for 24 h. siRNA targeting RELM-β was transfected into cells. Protein levels of KCNK3, RELM-β, pSTAT3 and STAT3 were determined by immunoblotting. The translocation of NFATc2 and expression of KCNK3 were visualized by immunofluorescence. 5-ethynyl-2'-deoxyuridine assays and cell counting kit-8 assays were performed to assess the proliferation of PASMCs. KEY FINDINGS (1) Chronic hypoxia significantly decreased KCNK3 protein levels while upregulating RELM-β protein levels in human PASMCs, which was accompanied by excessive proliferation of cells. (2) RELM-β could promote human PASMCs proliferation and activate the STAT3/NFAT axis by downregulating KCNK3 protein under normoxia. (3) Inhibition of RELM-β expression effectively prevented KCNK3-mediated cell proliferation under hypoxia. (4) Phospholipase C (PLC) inhibitor U-73122 could not only prevent the hypoxia/RELM-β-induced decrease in KCNK3 protein, but also inhibit the enhanced cell viability caused by hypoxia/RELM-β. (5) Both hypoxia and RELM-β could downregulate membrane KCNK3 protein levels by enhancing endocytosis. SIGNIFICANCE RELM-β activation is responsible for hypoxia-induced excessive proliferation of human PASMCs. Interfering with RELM-β may alleviate the progression of hypoxic PAH by upregulating PLC-dependent KCNK3 expression.
Collapse
Affiliation(s)
- Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nannan Song
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaomin Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Afang Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, CAMS&PUMC, Beijing, China
| | - Xin Wei
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinmin Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiying Yuan
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weike Mao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
32
|
Ge W, Mi Y, Xu S, Li T, Lu Y, Jiang J. rhBMP‑7 suppresses TGF‑β1‑induced endothelial to mesenchymal transition in circulating endothelial cells by regulating Smad5. Mol Med Rep 2019; 21:478-484. [PMID: 31939623 DOI: 10.3892/mmr.2019.10842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 10/21/2019] [Indexed: 11/06/2022] Open
Abstract
Endothelial to mesenchymal transition (EndMT) has been confirmed to participate in several cardiovascular diseases. In addition, EndMT of circulating endothelial cells (CECs) contributes to the pathology of musculoskeletal injury. However, little is known about the molecular mechanism of CECs undergoing EndMT. In the present study, human CECs were isolated and identified using anti‑CD146‑coupled magnetic beads. CECs were exposed to transforming growth factor (TGF)‑β1 or TGF‑β1 + recombinant human bone morphogenetic protein 7 (rhBMP‑7) or TGF‑β1 + rhBMP‑7 + Smad5 antagonist Jun activation domain‑binding protein 1. Vascular endothelial (VE)‑cadherin and vimentin expression were detected by immunofluorescence staining in TGF‑β1‑treated CECs. The expression levels of von Willebrand factor (vWF), E‑selectin, VE‑cadherin, vimentin, fibronectin, α smooth muscle actin (α‑SMA) and Smad2/3 were detected by reverse transcription‑quantitative PCR or western blot analysis. It was identified that rhBMP‑7 attenuated TGF‑β1‑induced endothelial cell injury. TGF‑β1 could induce the EndMT process in CECs, as confirmed by the co‑expression of VE‑cadherin and vimentin. TGF‑β1 significantly reduced the expression of VE‑cadherin, and induced the expression of vimentin, fibronectin and α‑SMA. rhBMP‑7 reversed the effects of TGF‑β1 on the expression of these genes. Additionally, Smad5 antagonist reversed the effects of rhBMP‑7 on TGF‑β1‑induced EndMT, and upregulated rhBMP‑7‑inhibited Smad2/3 expression. In conclusion, TGF‑β1 could induce EndMT in CECs and rhBMP‑7 may suppress this process by regulating Smad5.
Collapse
Affiliation(s)
- Weili Ge
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Yafei Mi
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Shasha Xu
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Tao Li
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Yifei Lu
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| |
Collapse
|
33
|
HiPS-Cardiac Trilineage Cell Generation and Transplantation: a Novel Therapy for Myocardial Infarction. J Cardiovasc Transl Res 2019; 13:110-119. [PMID: 31152358 DOI: 10.1007/s12265-019-09891-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022]
Abstract
Despite primary percutaneous coronary intervention (PPCI) and the availability of optimal medications, including dual antiplatelet therapy (DAPT), most patients still experience major adverse cardiovascular events (MACEs) due to frequent recurrence of thrombotic complications and myocardial infarction (MI). MI occurs secondary to a massive loss of endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and cardiomyocytes (CMs). The adult cardiovascular system gradually loses the ability to spontaneously and regularly regenerate ECs, VSMCs, and CMs. However, human cells can be induced by cytokines and growth factors to regenerate human-induced pluripotent stem cells (hiPSCs), which progress to produce cardiac trilineage cells (CTCs) such as ECs, VSMCs, and CMs, replacing lost cells and inducing myocardial repair. Nevertheless, the processes and pathways involved in hiPSC-CTC generation and their potential therapeutic effects remain unknown. Herein, we provide evidence of in vitro CTC generation, the pathways involved, in vivo transplantation, and its therapeutic effect, which may provide novel targets in regenerative medicine for the treatment of cardiovascular diseases (CVDs).
Collapse
|