1
|
Fukuoka R, Yano Y, Hara N, Sadamoto C, Maturana AD, Kita M. Hyperpolarization Modulation of the T-Type hCa v3.2 Channel by Human Synenkephalin [1-53], a Shrew Neurotoxin Analogue without Paralytic Effects. Angew Chem Int Ed Engl 2025:e202503891. [PMID: 40274533 DOI: 10.1002/anie.202503891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 04/26/2025]
Abstract
Mammalian secreted venoms mainly consist of peptides and proteases used for defense or predation. Blarina paralytic peptides (BPPs), mealworm-targeting neurotoxins from shrew, are very similar to human synenkephalin. This peptide is released from proenkephalin in the brain along with opioid peptides that mediate analgesic and antidepressant effects, though its physiological function is unclear. Here, we synthesized and characterized human synenkephalin [1-53] (hSYN) and reveal its disulfide bond connectivity. Similar to BPP2, hSYN caused a hyperpolarizing shift in the human T-type voltage-gated calcium channel (hCav3.2) at 0.74 µM, but did not paralyze mealworms. Molecular docking and molecular dynamics simulations showed that hSYN and BPP2 interact with hCav3.2 channel differently, due to differences in polar residues. Since Cav3.2 channel regulates neuronal excitability and is implicated in conditions like autism and epilepsy, our findings on hSYN could provide insight into the channel gating and agonistic mechanisms, along with potential pathways for developing treatments for neurological disorders.
Collapse
Affiliation(s)
- Ryo Fukuoka
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Yusuke Yano
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Nozomi Hara
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Chihiro Sadamoto
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Andres D Maturana
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Masaki Kita
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
- Promotion Office for Open Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
2
|
Tomida S, Ishima T, Nagai R, Aizawa K. T-Type Voltage-Gated Calcium Channels: Potential Regulators of Smooth Muscle Contractility. Int J Mol Sci 2024; 25:12420. [PMID: 39596484 PMCID: PMC11594734 DOI: 10.3390/ijms252212420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Emerging evidence has indicated a possible link between attenuation of contractility in aortic smooth muscle cells and pathogenesis of aortic dissection, as revealed through comprehensive, multi-omic analyses of familial thoracic aortic aneurysm and dissection models. While L-type voltage-gated calcium channels have been extensively investigated for their roles in smooth muscle contraction, more recent investigations have suggested that downregulation of T-type voltage-gated calcium channels, rather than their L-type counterparts, may be more closely associated with impaired contractility observed in vascular smooth muscle cells. This review provides a detailed examination of T-type voltage-gated calcium channels, highlighting their structure, electrophysiology, biophysics, expression patterns, functional roles, and potential mechanisms through which their downregulation may contribute to reduced contractile function. Furthermore, the application of multi-omic approaches in investigating calcium channels is discussed.
Collapse
Affiliation(s)
- Shota Tomida
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan
- School of Medicine, Faculty of Medicine, Gunma University, Maebashi 371-8511, Japan
| | - Tamaki Ishima
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Ryozo Nagai
- Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Kenichi Aizawa
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan
- Clinical Pharmacology Center, Jichi Medical University Hospital, Shimotsuke 329-0498, Japan
- Division of Translational Research, Clinical Research Center, Jichi Medical University Hospital, Shimotsuke 329-0498, Japan
| |
Collapse
|
3
|
McCarthy CI, Kavalali ET. Nano-organization of synaptic calcium signaling. Biochem Soc Trans 2024; 52:1459-1471. [PMID: 38752834 PMCID: PMC11346461 DOI: 10.1042/bst20231385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 06/27/2024]
Abstract
Recent studies suggest an exquisite structural nano-organization within single synapses, where sites of evoked fusion - marked by clustering of synaptic vesicles, active zone proteins and voltage-gated calcium channels - are directly juxtaposed to postsynaptic receptor clusters within nanocolumns. This direct nanometer scale alignment between presynaptic fusion apparatus and postsynaptic receptors is thought to ensure the fidelity of synaptic signaling and possibly allow multiple distinct signals to occur without interference from each other within a single active zone. The functional specificity of this organization is made possible by the inherent nano-organization of calcium signals, where all the different calcium sources such as voltage-gated calcium channels, intracellular stores and store-operated calcium entry have dedicated local targets within their nanodomain to ensure precision of action. Here, we discuss synaptic nano-organization from the perspective of calcium signals, where some of the principal findings from early work in the 1980s continue to inspire current studies that exploit new genetic tools and super-resolution imaging technologies.
Collapse
Affiliation(s)
- Clara I. McCarthy
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, U.S.A
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, U.S.A
| | - Ege T. Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, U.S.A
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, U.S.A
| |
Collapse
|
4
|
Cai H, Chen S, Sun Y, Zheng T, Liu Y, Tao J, Zhang Y. Interleukin-22 receptor 1-mediated stimulation of T-type Ca 2+ channels enhances sensory neuronal excitability through the tyrosine-protein kinase Lyn-dependent PKA pathway. Cell Commun Signal 2024; 22:307. [PMID: 38831315 PMCID: PMC11145867 DOI: 10.1186/s12964-024-01688-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Interleukin 24 (IL-24) has been implicated in the nociceptive signaling. However, direct evidence and the precise molecular mechanism underlying IL-24's role in peripheral nociception remain unclear. METHODS Using patch clamp recording, molecular biological analysis, immunofluorescence labeling, siRNA-mediated knockdown approach and behavior tests, we elucidated the effects of IL-24 on sensory neuronal excitability and peripheral pain sensitivity mediated by T-type Ca2+ channels (T-type channels). RESULTS IL-24 enhances T-type channel currents (T-currents) in trigeminal ganglion (TG) neurons in a reversible and dose-dependent manner, primarily by activating the interleukin-22 receptor 1 (IL-22R1). Furthermore, we found that the IL-24-induced T-type channel response is mediated through tyrosine-protein kinase Lyn, but not its common downstream target JAK1. IL-24 application significantly activated protein kinase A; this effect was independent of cAMP and prevented by Lyn antagonism. Inhibition of PKA prevented the IL-24-induced T-current response, whereas inhibition of protein kinase C or MAPK kinases had no effect. Functionally, IL-24 increased TG neuronal excitability and enhanced pain sensitivity to mechanical stimuli in mice, both of which were suppressed by blocking T-type channels. In a trigeminal neuropathic pain model induced by chronic constriction injury of the infraorbital nerve, inhibiting IL-22R1 signaling alleviated mechanical allodynia, which was reversed by blocking T-type channels or knocking down Cav3.2. CONCLUSION Our findings reveal that IL-24 enhances T-currents by stimulating IL-22R1 coupled to Lyn-dependent PKA signaling, leading to TG neuronal hyperexcitability and pain hypersensitivity. Understanding the mechanism of IL-24/IL-22R1 signaling in sensory neurons may pave the way for innovative therapeutic strategies in pain management.
Collapse
Affiliation(s)
- Hua Cai
- Clinical Research Center of Neurological Disease, Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, P.R. China
| | - Siyu Chen
- Clinical Research Center of Neurological Disease, Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, P.R. China
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou, 215123, P.R. China
| | - Yufang Sun
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou, 215123, P.R. China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, P.R. China
| | - Tingting Zheng
- Clinical Research Center of Neurological Disease, Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, P.R. China
| | - Yulu Liu
- Clinical Research Center of Neurological Disease, Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, P.R. China
| | - Jin Tao
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou, 215123, P.R. China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, P.R. China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, P.R. China.
| | - Yuan Zhang
- Clinical Research Center of Neurological Disease, Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, P.R. China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, P.R. China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, P.R. China.
| |
Collapse
|
5
|
Antunes FTT, Huang S, Chen L, Zamponi GW. Effect of ABT-639 on Cav3.2 channel activity and its analgesic actions in mouse models of inflammatory and neuropathic pain. Eur J Pharmacol 2024; 967:176416. [PMID: 38342359 DOI: 10.1016/j.ejphar.2024.176416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
Cav3.2 T-type calcium channels are important targets for pain relief in rodent models of inflammatory and neuropathic pain. Even though many T-type channel blockers have been tested in mice, only one molecule, ABT-639, has been tested in phase II clinical studies and did not produce analgesic effects over placebo. Here we examined the effects of ABT-639 on Cav3.2 channel activity in tsA-201 cells and dorsal root ganglion (DRG) neurons, in comparison with another established Cav3.2 inhibitor Z944. These experiments revealed that Z944 mediated ∼100-fold more potent inhibition of Cav3.2 currents than ABT-639, with the latter blocking channel activity by less than 15 percent when applied at a concentration of 30 μM. A slight increase in ABT-639 potency was observed at more depolarized holding potentials, suggesting that this compound may act preferentially on inactivated channels. We tested the effects of both compounds in the Complete Freund's Adjuvant (CFA) model of chronic inflammatory pain, and in partial sciatic nerve injury model of neuropathic pain in mice. In the neuropathic pain model, both Z944 and ABT-639 reversed mechanical hypersensitivity to similar degrees when delivered systemically, but remarkably, when delivered intrathecally, only Z944 was effective. In the CFA model, both compounds reversed thermal hyperalgesia upon systemic delivery, but only Z944 mediated pain relief upon intrathecal delivery, indicating that ABT-639 acts primarily at peripheral sites. ABT-639 lost its analgesic effects in CFA treated Cav3.2 null mice, indicating that these channels are essential for ABT-639-mediated pain relief despite its poor inhibition of Cav3.2 currents.
Collapse
Affiliation(s)
- Flavia Tasmin Techera Antunes
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, AB, T2N 4N1, Calgary, Canada
| | - Sun Huang
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, AB, T2N 4N1, Calgary, Canada
| | - Lina Chen
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, AB, T2N 4N1, Calgary, Canada
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, AB, T2N 4N1, Calgary, Canada.
| |
Collapse
|
6
|
Leandrou E, Chalatsa I, Anagnostou D, Machalia C, Semitekolou M, Filippa V, Makridakis M, Vlahou A, Anastasiadou E, Vekrellis K, Emmanouilidou E. α-Synuclein oligomers potentiate neuroinflammatory NF-κB activity and induce Ca v3.2 calcium signaling in astrocytes. Transl Neurodegener 2024; 13:11. [PMID: 38378800 PMCID: PMC10880263 DOI: 10.1186/s40035-024-00401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND It is now realized that Parkinson's disease (PD) pathology extends beyond the substantia nigra, affecting both central and peripheral nervous systems, and exhibits a variety of non-motor symptoms often preceding motor features. Neuroinflammation induced by activated microglia and astrocytes is thought to underlie these manifestations. α-Synuclein aggregation has been linked with sustained neuroinflammation in PD, aggravating neuronal degeneration; however, there is still a lack of critical information about the structural identity of the α-synuclein conformers that activate microglia and/or astrocytes and the molecular pathways involved. METHODS To investigate the role of α-synuclein conformers in the development and maintenance of neuroinflammation, we used primary quiescent microglia and astrocytes, post-mortem brain tissues from PD patients and A53T α-synuclein transgenic mice that recapitulate key features of PD-related inflammatory responses in the absence of cell death, i.e., increased levels of pro-inflammatory cytokines and complement proteins. Biochemical and -omics techniques including RNAseq and secretomic analyses, combined with 3D reconstruction of individual astrocytes and live calcium imaging, were used to uncover the molecular mechanisms underlying glial responses in the presence of α-synuclein oligomers in vivo and in vitro. RESULTS We found that the presence of SDS-resistant hyper-phosphorylated α-synuclein oligomers, but not monomers, was correlated with sustained inflammatory responses, such as elevated levels of endogenous antibodies and cytokines and microglial activation. Similar oligomeric α-synuclein species were found in post-mortem human brain samples of PD patients but not control individuals. Detailed analysis revealed a decrease in Iba1Low/CD68Low microglia and robust alterations in astrocyte number and morphology including process retraction. Our data indicated an activation of the p38/ATF2 signaling pathway mostly in microglia and a sustained induction of the NF-κB pathway in astrocytes of A53T mice. The sustained NF-κB activity triggered the upregulation of astrocytic T-type Cav3.2 Ca2+ channels, altering the astrocytic secretome and promoting the secretion of IGFBPL1, an IGF-1 binding protein with anti-inflammatory and neuroprotective potential. CONCLUSIONS Our work supports a causative link between the neuron-produced α-synuclein oligomers and sustained neuroinflammation in vivo and maps the signaling pathways that are stimulated in microglia and astrocytes. It also highlights the recruitment of astrocytic Cav3.2 channels as a potential neuroprotective mediator against the α-synuclein-induced neuroinflammation.
Collapse
Affiliation(s)
- Emmanouela Leandrou
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15772, Athens, Greece
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Ioanna Chalatsa
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15772, Athens, Greece
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Dimitrios Anagnostou
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15772, Athens, Greece
| | - Christina Machalia
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15772, Athens, Greece
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Maria Semitekolou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
- School of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Vicky Filippa
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Manousos Makridakis
- Center for Systems Biology, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Antonia Vlahou
- Center for Systems Biology, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Ema Anastasiadou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Evangelia Emmanouilidou
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15772, Athens, Greece.
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece.
| |
Collapse
|
7
|
Mustafá ER, Weiß K, Weiss N. Secretory carrier-associated membrane protein 5 regulates cell-surface targeting of T-type calcium channels. Channels (Austin) 2023; 17:2230776. [PMID: 37389974 PMCID: PMC10316736 DOI: 10.1080/19336950.2023.2230776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023] Open
Abstract
Missense mutations in the human secretary carrier-associated membrane protein 5 (SCAMP5) cause a variety of neurological disorders including neurodevelopmental delay, epilepsy, and Parkinson's disease. We recently documented the importance of SCAMP2 in the regulation of T-type calcium channel expression in the plasma membrane. Here, we show that similar to SCAMP2, the co-expression of SCAMP5 in tsA-201 cells expressing recombinant Cav3.1, Cav3.2, and Cav3.3 channels nearly abolished whole-cell T-type currents. Recording of intramembrane charge movements revealed that SCAMP5-induced inhibition of T-type currents is primarily caused by the reduced expression of functional channels in the plasma membrane. Moreover, we show that SCAMP5-mediated downregulation of Cav3.2 channels is essentially preserved with disease-causing SCAMP5 R91W and G180W mutations. Hence, this study extends our previous findings with SCAMP2 and indicates that SCAMP5 also contributes to repressing the expression of T-type channels in the plasma membrane.
Collapse
Affiliation(s)
- Emilio R. Mustafá
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata, La Plata, Buenos Aires, Argentina
| | - Konstantin Weiß
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Norbert Weiss
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
Topczewska A, Giacalone E, Pratt WS, Migliore M, Dolphin AC, Shah MM. T-type Ca 2+ and persistent Na + currents synergistically elevate ventral, not dorsal, entorhinal cortical stellate cell excitability. Cell Rep 2023; 42:112699. [PMID: 37368752 PMCID: PMC10687207 DOI: 10.1016/j.celrep.2023.112699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 03/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Dorsal and ventral medial entorhinal cortex (mEC) regions have distinct neural network firing patterns to differentially support functions such as spatial memory. Accordingly, mEC layer II dorsal stellate neurons are less excitable than ventral neurons. This is partly because the densities of inhibitory conductances are higher in dorsal than ventral neurons. Here, we report that T-type Ca2+ currents increase 3-fold along the dorsal-ventral axis in mEC layer II stellate neurons, with twice as much CaV3.2 mRNA in ventral mEC compared with dorsal mEC. Long depolarizing stimuli trigger T-type Ca2+ currents, which interact with persistent Na+ currents to elevate the membrane voltage and spike firing in ventral, not dorsal, neurons. T-type Ca2+ currents themselves prolong excitatory postsynaptic potentials (EPSPs) to enhance their summation and spike coupling in ventral neurons only. These findings indicate that T-type Ca2+ currents critically influence the dorsal-ventral mEC stellate neuron excitability gradient and, thereby, mEC dorsal-ventral circuit activity.
Collapse
Affiliation(s)
| | | | - Wendy S Pratt
- Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Michele Migliore
- Institute of Biophysics, National Research Council, 90146 Palermo, Italy
| | - Annette C Dolphin
- Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Mala M Shah
- Pharmacology, School of Pharmacy, University College London, London WC1N 4AX, UK.
| |
Collapse
|
9
|
Rangel-Galván M, Rangel-Galván V, Rangel-Huerta A. T-type calcium channel modulation by hydrogen sulfide in neuropathic pain conditions. Front Pharmacol 2023; 14:1212800. [PMID: 37529702 PMCID: PMC10387653 DOI: 10.3389/fphar.2023.1212800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023] Open
Abstract
Neuropathic pain can appear as a direct or indirect nerve damage lesion or disease that affects the somatosensory nervous system. If the neurons are damaged or indirectly stimulated, immune cells contribute significantly to inflammatory and neuropathic pain. After nerve injury, peripheral macrophages/spinal microglia accumulate around damaged neurons, producing endogenous hydrogen sulfide (H2S) through the cystathionine-γ-lyase (CSE) enzyme. H2S has a pronociceptive modulation on the Cav3.2 subtype, the predominant Cav3 isoform involved in pain processes. The present review provides relevant information about H2S modulation on the Cav3.2 T-type channels in neuropathic pain conditions. We have discussed that the dual effect of H2S on T-type channels is concentration-dependent, that is, an inhibitory effect is seen at low concentrations of 10 µM and an augmentation effect on T-current at 100 µM. The modulation mechanism of the Cav3.2 channel by H2S involves the direct participation of the redox/Zn2+ affinity site located in the His191 in the extracellular loop of domain I of the channel, involving a group of extracellular cysteines, comprising C114, C123, C128, and C1333, that can modify the local redox environment. The indirect interaction pathways involve the regulation of the Cav3.2 channel through cytokines, kinases, and post-translational regulators of channel expression. The findings conclude that the CSE/H2S/Cav3.2 pathway could be a promising therapeutic target for neuropathic pain disorders.
Collapse
Affiliation(s)
- Maricruz Rangel-Galván
- Biothecnology Department, Metropolitan Polytechnic University of Puebla, Puebla, Puebla, Mexico
| | - Violeta Rangel-Galván
- Nursing and Physiotherapy Department, University of Professional Development, Tijuana, Baja California, Mexico
| | - Alejandro Rangel-Huerta
- Faculty of Computer Science, Meritorious Autonomous University of Puebla, Puebla, Puebla, Mexico
| |
Collapse
|
10
|
Kim Y, Clemens EG, Farner JM, Londono-Barbaran A, Grab DJ, Dumler JS. Spotted fever rickettsia-induced microvascular endothelial barrier dysfunction is delayed by the calcium channel blocker benidipine. Biochem Biophys Res Commun 2023; 663:96-103. [PMID: 37121130 PMCID: PMC10362780 DOI: 10.1016/j.bbrc.2023.04.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
The tick-borne bacterium Rickettsia parkeri is an obligate intracellular pathogen that belongs to spotted fever group rickettsia (SFGR). The SFG pathogens are characterized by their ability to infect and rapidly proliferate inside host vascular endothelial cells that eventually result in impairment of vascular endothelium barrier functions. Benidipine, a wide range dihydropyridine calcium channel blocker, is used to prevent and treat cardiovascular diseases. In this study, we tested whether benidipine has protective effects against rickettsia-induced microvascular endothelial cell barrier dysfunction in vitro. We utilized an in vitro vascular model consisting of transformed human brain microvascular endothelial cells (tHBMECs) and continuously monitored transendothelial electric resistance (TEER) across the cell monolayer. We found that during the late stages of infection when we observed TEER decrease and when there was a gradual increase of the cytoplasmic [Ca2+], benidipine prevented these rickettsia-induced effects. In contrast, nifedipine, another cardiovascular dihydropyridine channel blocker specific for L-type Ca2+ channels, did not prevent R. parkeri-induced drop of TEER. Additionally, neither drug was bactericidal. These data suggest that growth of R. parkeri inside endothelial cells is associated with impairment of endothelial cell monolayer integrity due to Ca2+ flooding through specific, benidipine-sensitive T- or N/Q-type Ca2+ channels but not through nifedipine-sensitive L-type Ca2+ channels. Further study will be required to discern the exact nature of the Ca2+ channels and Ca2+ transporting system(s) involved, any contributions of the pathogen toward this process, as well as the suitability of benidipine and new dihydropyridine derivatives as complimentary therapeutic drugs against Rickettsia-induced vascular failure.
Collapse
Affiliation(s)
- Yuri Kim
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Emily G Clemens
- Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Jennifer M Farner
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Andres Londono-Barbaran
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Dennis J Grab
- Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - J Stephen Dumler
- Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
11
|
Patton AP, Morris EL, McManus D, Wang H, Li Y, Chin JW, Hastings MH. Astrocytic control of extracellular GABA drives circadian timekeeping in the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 2023; 120:e2301330120. [PMID: 37186824 PMCID: PMC10214171 DOI: 10.1073/pnas.2301330120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The hypothalamic suprachiasmatic nucleus (SCN) is the master mammalian circadian clock. Its cell-autonomous timing mechanism, a transcriptional/translational feedback loop (TTFL), drives daily peaks of neuronal electrical activity, which in turn control circadian behavior. Intercellular signals, mediated by neuropeptides, synchronize and amplify TTFL and electrical rhythms across the circuit. SCN neurons are GABAergic, but the role of GABA in circuit-level timekeeping is unclear. How can a GABAergic circuit sustain circadian cycles of electrical activity, when such increased neuronal firing should become inhibitory to the network? To explore this paradox, we show that SCN slices expressing the GABA sensor iGABASnFR demonstrate a circadian oscillation of extracellular GABA ([GABA]e) that, counterintuitively, runs in antiphase to neuronal activity, with a prolonged peak in circadian night and a pronounced trough in circadian day. Resolving this unexpected relationship, we found that [GABA]e is regulated by GABA transporters (GATs), with uptake peaking during circadian day, hence the daytime trough and nighttime peak. This uptake is mediated by the astrocytically expressed transporter GAT3 (Slc6a11), expression of which is circadian-regulated, being elevated in daytime. Clearance of [GABA]e in circadian day facilitates neuronal firing and is necessary for circadian release of the neuropeptide vasoactive intestinal peptide, a critical regulator of TTFL and circuit-level rhythmicity. Finally, we show that genetic complementation of the astrocytic TTFL alone, in otherwise clockless SCN, is sufficient to drive [GABA]e rhythms and control network timekeeping. Thus, astrocytic clocks maintain the SCN circadian clockwork by temporally controlling GABAergic inhibition of SCN neurons.
Collapse
Affiliation(s)
- Andrew P. Patton
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Emma L. Morris
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - David McManus
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University, School of Life Sciences, 100871Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University, School of Life Sciences, 100871Beijing, China
| | - Jason W. Chin
- PNAC Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Michael H. Hastings
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| |
Collapse
|
12
|
Sharma A, Rahman G, Gorelik J, Bhargava A. Voltage-Gated T-Type Calcium Channel Modulation by Kinases and Phosphatases: The Old Ones, the New Ones, and the Missing Ones. Cells 2023; 12:461. [PMID: 36766802 PMCID: PMC9913649 DOI: 10.3390/cells12030461] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Calcium (Ca2+) can regulate a wide variety of cellular fates, such as proliferation, apoptosis, and autophagy. More importantly, changes in the intracellular Ca2+ level can modulate signaling pathways that control a broad range of physiological as well as pathological cellular events, including those important to cellular excitability, cell cycle, gene-transcription, contraction, cancer progression, etc. Not only intracellular Ca2+ level but the distribution of Ca2+ in the intracellular compartments is also a highly regulated process. For this Ca2+ homeostasis, numerous Ca2+ chelating, storage, and transport mechanisms are required. There are also specialized proteins that are responsible for buffering and transport of Ca2+. T-type Ca2+ channels (TTCCs) are one of those specialized proteins which play a key role in the signal transduction of many excitable and non-excitable cell types. TTCCs are low-voltage activated channels that belong to the family of voltage-gated Ca2+ channels. Over decades, multiple kinases and phosphatases have been shown to modulate the activity of TTCCs, thus playing an indirect role in maintaining cellular physiology. In this review, we provide information on the kinase and phosphatase modulation of TTCC isoforms Cav3.1, Cav3.2, and Cav3.3, which are mostly described for roles unrelated to cellular excitability. We also describe possible potential modulations that are yet to be explored. For example, both mitogen-activated protein kinase and citron kinase show affinity for different TTCC isoforms; however, the effect of such interaction on TTCC current/kinetics has not been studied yet.
Collapse
Affiliation(s)
- Ankush Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| | - Ghazala Rahman
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| | - Julia Gorelik
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| |
Collapse
|
13
|
Synthesis of Dihydropyrimidines: Isosteres of Nifedipine and Evaluation of Their Calcium Channel Blocking Efficiency. Molecules 2023; 28:molecules28020784. [PMID: 36677842 PMCID: PMC9867414 DOI: 10.3390/molecules28020784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Hypertension and cardiovascular diseases related to it remain the leading medical challenges globally. Several drugs have been synthesized and commercialized to manage hypertension. Some of these drugs have a dihydropyrimidine skeleton structure, act as efficient calcium channel blockers, and affect the calcium ions' intake in vascular smooth muscle, hence managing hypertension. The synthesis of such moieties is crucial, and documenting their structure-activity relationship, their evolved and advanced synthetic procedures, and future opportunities in this area is currently a priority. Tremendous efforts have been made after the discovery of the Biginelli condensation reaction in the synthesis of dihydropyrimidines. From the specific selection of Biginelli adducts to the variation in the formed intermediates to achieve target compounds containing heterocylic rings, aldehydes, a variety of ketones, halogens, and many other desired functionalities, extensive studies have been carried out. Several substitutions at the C3, C4, and C5 positions of dihydropyrimidines have been explored, aiming to produce feasible derivatives with acceptable yields as well as antihypertensive activity. The current review aims to cover this requirement in detail.
Collapse
|
14
|
ÇELİK ZB, TİRYAKİ ES, TÜRKDÖNMEZ E, ÇİÇEKLİ MN, ALTUN A, GÜNAYDIN C. Parallel changes in the promoter methylation of voltage-gated T-type calcium channel alpha 1 subunit G and histone deacetylase activity in the WAG/Rij model of absence epilepsy. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2023. [DOI: 10.32322/jhsm.1207399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Objective: In the last two decades, research on epigenetic mechanisms has expanded dramatically. Recent studies demonstrated that epigenetic mechanisms regulate epilepsy and epileptogenic pathologies. In this study, we aimed to investigate changes in the promoter methylation status of the voltage-gated T-type calcium channel alpha 1 subunit G (CACNA1G) gene and total histone deacetylase activity in Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats which is one of the commonly used genetic absence rat models of epilepsy in the three different age groups (3, 6, and 9 months old) on both sexes.
Material and Method: Evaluation of changes in the spike-wave discharges (SWDs) was performed with electrocorticography (ECoG). The promoter methylation status of the CACNA1G gene was determined by methylation-specific PCR (MSP), and histone deacetylase (HDAC) activity was determined spectrophotometrically.
Results: Our results demonstrated that the number of SWDs increased time-dependent in WAG/Rij. Additionally, it was observed that CACNA1G promoter methylation decreased, and total HDAC activity increased with age in both sexes.
Conclusion: Our results provide further support for epigenetic regulation in the absence epilepsy phenotype and suggest that the underlying mechanism behind the increase in the number of SWDs with age in the WAG/Rij animals might be regulated by CACNA1G promoter methylation or HDAC activity.
Collapse
|
15
|
Calderon-Rivera A, Gomez K, Loya-López S, Wijeratne EK, Stratton H, Tang C, Duran P, Masterson K, Alsbiei O, Gunatilaka AL, Khanna R. Betulinic acid analogs inhibit N- and T-type voltage-gated calcium channels to attenuate nerve-injury associated neuropathic and formalin models of pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100116. [PMID: 36687466 PMCID: PMC9853350 DOI: 10.1016/j.ynpai.2023.100116] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Over the past three decades, there has been a significant growth in the use of natural products, with approximately 80% of individuals using them for some aspect of primary healthcare. Our laboratories have identified and studied natural compounds with analgesic effects from dry land plants or their associated fungus during the past ten years. Here, we isolated and characterized thirteen betulin analogs and fifteen betulinic acid analogs for their capacity to prevent calcium influx brought on by depolarization in sensory neurons. The in vitro inhibition of voltage-gated calcium channels by the top drugs was then assessed using whole cell patch clamp electrophysiology. In vivo experiments, conducted at two sites, evaluated the best compound in acute and tonic, neuropathic, inflammatory, post-operative and visceral models of pain. We found that the betulinic acid analog 8 inhibited calcium influx in rat dorsal root ganglion neurons by inhibiting N- (CaV2.2) and T- (CaV3) type voltage-gated calcium channels. Moreover, intrathecal delivery of analog 8 had analgesic activity in both spared nerve injury model of neuropathic pain and acute and tonic pain induced by formalin. The results presented herein highlight the potential antinociceptive properties of betulinic acid analog 8 and set the stage for the development of novel non-opioid pain therapeutics based on the triterpenoid scaffold of betulinic acid.
Collapse
Affiliation(s)
- Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| | - Santiago Loya-López
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| | - E.M. Kithsiri Wijeratne
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, United States
| | - Harrison Stratton
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Cheng Tang
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| | - Kyleigh Masterson
- NYU Pain Research Center, New York University, New York, NY, United States
| | - Omar Alsbiei
- NYU Pain Research Center, New York University, New York, NY, United States
| | - A.A. Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| |
Collapse
|
16
|
Mustafá ER, McCarthy CI, Portales AE, Cordisco Gonzalez S, Rodríguez SS, Raingo J. Constitutive activity of the dopamine (D 5 ) receptor, highly expressed in CA1 hippocampal neurons, selectively reduces Ca V 3.2 and Ca V 3.3 currents. Br J Pharmacol 2022; 180:1210-1231. [PMID: 36480023 DOI: 10.1111/bph.16006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE CaV 3.1-3 currents differentially contribute to neuronal firing patterns. CaV 3 are regulated by G protein-coupled receptors (GPCRs) activity, but information about CaV 3 as targets of the constitutive activity of GPCRs is scarce. We investigate the impact of D5 recpetor constitutive activity, a GPCR with high levels of basal activity, on CaV 3 functionality. D5 recpetor and CaV 3 are expressed in the hippocampus and have been independently linked to pathophysiological states associated with epilepsy. EXPERIMENTAL APPROACH Our study models were HEK293T cells heterologously expressing D1 or D5 receptor and CaV 3.1-3, and mouse brain slices containing the hippocampus. We used chlorpromazine (D1 /D5 inverse agonist) and a D5 receptor mutant lacking constitutive activity as experimental tools. We measured CaV 3 currents and excitability parameters using the patch-clamp technique. We completed our study with computational modelling and imaging technique. KEY RESULTS We found a higher sensitivity to TTA-P2 (CaV 3 blocker) in CA1 pyramidal neurons obtained from chlorpromazine-treated animals compared with vehicle-treated animals. We found that CaV 3.2 and CaV 3.3-but not CaV 3.1-are targets of D5 receptor constitutive activity in HEK293T cells. Finally, we found an increased firing rate in CA1 pyramidal neurons from chlorpromazine-treated animals in comparison with vehicle-treated animals. Similar changes in firing rate were observed on a neuronal model with controlled CaV 3 currents levels. CONCLUSIONS AND IMPLICATIONS Native hippocampal CaV 3 and recombinant CaV 3.2-3 are sensitive to D5 receptor constitutive activity. Manipulation of D5 receptor constitutive activity could be a valuable strategy to control neuronal excitability, especially in exacerbated conditions such as epilepsy.
Collapse
Affiliation(s)
- Emilio Román Mustafá
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Clara Inés McCarthy
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Andrea Estefanía Portales
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Santiago Cordisco Gonzalez
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Silvia Susana Rodríguez
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Jesica Raingo
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| |
Collapse
|
17
|
Mustafá ER, Gambeta E, Stringer RN, Souza IA, Zamponi GW, Weiss N. Electrophysiological and computational analysis of Ca v3.2 channel variants associated with familial trigeminal neuralgia. Mol Brain 2022; 15:91. [PMID: 36397158 PMCID: PMC9670400 DOI: 10.1186/s13041-022-00978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Trigeminal neuralgia (TN) is a rare form of chronic neuropathic pain characterized by spontaneous or elicited paroxysms of electric shock-like or stabbing pain in a region of the face. While most cases occur in a sporadic manner and are accompanied by intracranial vascular compression of the trigeminal nerve root, alteration of ion channels has emerged as a potential exacerbating factor. Recently, whole exome sequencing analysis of familial TN patients identified 19 rare variants in the gene CACNA1H encoding for Cav3.2T-type calcium channels. An initial analysis of 4 of these variants pointed to a pathogenic role. In this study, we assessed the electrophysiological properties of 13 additional TN-associated Cav3.2 variants expressed in tsA-201 cells. Our data indicate that 6 out of the 13 variants analyzed display alteration of their gating properties as evidenced by a hyperpolarizing shift of their voltage dependence of activation and/or inactivation resulting in an enhanced window current supported by Cav3.2 channels. An additional variant enhanced the recovery from inactivation. Simulation of neuronal electrical membrane potential using a computational model of reticular thalamic neuron suggests that TN-associated Cav3.2 variants could enhance neuronal excitability. Altogether, the present study adds to the notion that ion channel polymorphisms could contribute to the etiology of some cases of TN and further support a role for Cav3.2 channels.
Collapse
Affiliation(s)
- Emilio R. Mustafá
- grid.4491.80000 0004 1937 116XDepartment of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eder Gambeta
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Robin N. Stringer
- grid.4491.80000 0004 1937 116XDepartment of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic ,grid.418095.10000 0001 1015 3316Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ivana A. Souza
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Gerald W. Zamponi
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Norbert Weiss
- grid.4491.80000 0004 1937 116XDepartment of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
18
|
Wołyniak M, Małecka-Wojciesko E, Zielińska M, Fabisiak A. A Crosstalk between the Cannabinoid Receptors and Nociceptin Receptors in Colitis-Clinical Implications. J Clin Med 2022; 11:jcm11226675. [PMID: 36431153 PMCID: PMC9696262 DOI: 10.3390/jcm11226675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD) refer to a group of gastrointestinal (GI) disorders with complex pathogenesis characterized by chronic intestinal inflammation with a variety of symptoms. Cannabinoid and nociceptin opioid receptors (NOPs) and their ligands are widely distributed in the GI tract. The nociceptin opioid receptor is a newly discovered member of the opioid receptor family with unique characteristics. Both cannabinoid and NOP systems exhibit antinociceptive and anti-inflammatory activity and contribute to maintaining proper motility, secretion and absorption in the GI tract. Furthermore, they influence high and low voltage calcium channels, which play a crucial role in the processing of pain, and share at least two kinases mediating their action. Among them there is NF-κB, a key factor in the regulation of inflammatory processes. Therefore, based on functional similarities between cannabinoid and nociceptin receptors and the anti-inflammatory effects exerted by their ligands, there is a high likelihood that there is an interaction between cannabinoid receptors 1 and 2 and the nociceptin receptor in colitis. In this review, we discuss potential overlaps between these two systems on a molecular and functional level in intestinal inflammation to create the basis for novel treatments of IBD.
Collapse
Affiliation(s)
- Maria Wołyniak
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, 90-153 Lodz, Poland
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, 90-153 Lodz, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Adam Fabisiak
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, 90-153 Lodz, Poland
- Correspondence: ; Tel.: +48-42-677-66-64
| |
Collapse
|
19
|
Akman D, Denzinger K, Huang S, Lee J, Nafie JW, Wolber G, Zamponi GW, Armstrong DW, Gündüz MG. Focusing on C-4 position of Hantzsch 1,4-dihydropyridines: Molecular modifications, enantioseparation, and binding mechanism to L- and T-type calcium channels. Eur J Med Chem 2022; 244:114787. [DOI: 10.1016/j.ejmech.2022.114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 11/04/2022]
|
20
|
T-Type Calcium Channels: A Mixed Blessing. Int J Mol Sci 2022; 23:ijms23179894. [PMID: 36077291 PMCID: PMC9456242 DOI: 10.3390/ijms23179894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The role of T-type calcium channels is well established in excitable cells, where they preside over action potential generation, automaticity, and firing. They also contribute to intracellular calcium signaling, cell cycle progression, and cell fate; and, in this sense, they emerge as key regulators also in non-excitable cells. In particular, their expression may be considered a prognostic factor in cancer. Almost all cancer cells express T-type calcium channels to the point that it has been considered a pharmacological target; but, as the drugs used to reduce their expression are not completely selective, several complications develop, especially within the heart. T-type calcium channels are also involved in a specific side effect of several anticancer agents, that act on microtubule transport, increase the expression of the channel, and, thus, the excitability of sensory neurons, and make the patient more sensitive to pain. This review puts into context the relevance of T-type calcium channels in cancer and in chemotherapy side effects, considering also the cardiotoxicity induced by new classes of antineoplastic molecules.
Collapse
|
21
|
Discovery of pimozide derivatives as novel T-type calcium channel inhibitors with little binding affinity to dopamine D2 receptors for treatment of somatic and visceral pain. Eur J Med Chem 2022; 243:114716. [DOI: 10.1016/j.ejmech.2022.114716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
|
22
|
Weiss N. T-type channels: A new route for calcium entry into platelets. J Thromb Haemost 2022; 20:1778-1780. [PMID: 35859284 DOI: 10.1111/jth.15764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Norbert Weiss
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
23
|
Baez-Nieto D, Allen A, Akers-Campbell S, Yang L, Budnik N, Pupo A, Shin YC, Genovese G, Liao M, Pérez-Palma E, Heyne H, Lal D, Lipscombe D, Pan JQ. Analysing an allelic series of rare missense variants of CACNA1I in a Swedish schizophrenia cohort. Brain 2022; 145:1839-1853. [PMID: 34919654 PMCID: PMC9166571 DOI: 10.1093/brain/awab443] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/23/2021] [Accepted: 11/11/2021] [Indexed: 11/14/2022] Open
Abstract
CACNA1I is implicated in the susceptibility to schizophrenia by large-scale genetic association studies of single nucleotide polymorphisms. However, the channelopathy of CACNA1I in schizophrenia is unknown. CACNA1I encodes CaV3.3, a neuronal voltage-gated calcium channel that underlies a subtype of T-type current that is important for neuronal excitability in the thalamic reticular nucleus and other regions of the brain. Here, we present an extensive functional characterization of 57 naturally occurring rare and common missense variants of CACNA1I derived from a Swedish schizophrenia cohort of more than 10 000 individuals. Our analysis of this allelic series of coding CACNA1I variants revealed that reduced CaV3.3 channel current density was the dominant phenotype associated with rare CACNA1I coding alleles derived from control subjects, whereas rare CACNA1I alleles from schizophrenia patients encoded CaV3.3 channels with altered responses to voltages. CACNA1I variants associated with altered current density primarily impact the ionic channel pore and those associated with altered responses to voltage impact the voltage-sensing domain. CaV3.3 variants associated with altered voltage dependence of the CaV3.3 channel and those associated with peak current density deficits were significantly segregated across affected and unaffected groups (Fisher's exact test, P = 0.034). Our results, together with recent data from the SCHEMA (Schizophrenia Exome Sequencing Meta-Analysis) cohort, suggest that reduced CaV3.3 function may protect against schizophrenia risk in rare cases. We subsequently modelled the effect of the biophysical properties of CaV3.3 channel variants on thalamic reticular nucleus excitability and found that compared with common variants, ultrarare CaV3.3-coding variants derived from control subjects significantly decreased thalamic reticular nucleus excitability (P = 0.011). When all rare variants were analysed, there was a non-significant trend between variants that reduced thalamic reticular nucleus excitability and variants that either had no effect or increased thalamic reticular nucleus excitability across disease status. Taken together, the results of our functional analysis of an allelic series of >50 CACNA1I variants in a schizophrenia cohort reveal that loss of function of CaV3.3 is a molecular phenotype associated with reduced disease risk burden, and our approach may serve as a template strategy for channelopathies in polygenic disorders.
Collapse
Affiliation(s)
- David Baez-Nieto
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Andrew Allen
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Seth Akers-Campbell
- Carney Institute for Brain Science & Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Lingling Yang
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Nikita Budnik
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Amaury Pupo
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Young-Cheul Shin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Eduardo Pérez-Palma
- Genomic Medicine Institute, Lerner Research institute, Cleveland Clinic, OH 44195, USA
- Centro de Genética y Genómica, Universidad del Desarrollo, Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Chile
| | - Henrike Heyne
- Genomic Medicine, Hasso Plattner Institute, Potsdam, 14482, Germany
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research institute, Cleveland Clinic, OH 44195, USA
- Cologne Center for Genomics, University of Cologne, Cologne 50931, Germany
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Diane Lipscombe
- Carney Institute for Brain Science & Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Jen Q. Pan
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
24
|
Martini M, Rispoli G. Cation Permeability of Voltage-Gated Hair Cell Ca 2+ Channels of the Vertebrate Labyrinth. Int J Mol Sci 2022; 23:ijms23073786. [PMID: 35409146 PMCID: PMC8998708 DOI: 10.3390/ijms23073786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Some hearing, vestibular, and vision disorders are imputable to voltage-gated Ca2+ channels of the sensory cells. These channels convey a large Ca2+ influx despite extracellular Na+ being 70-fold more concentrated than Ca2+; such high selectivity is lost in low Ca2+, and Na+ can permeate. Since the permeation properties and molecular identity of sensory Ca2+ channels are debated, in this paper, we examine the Na+ current flowing through the L- and R-type Ca2+ channels of labyrinth hair cells. Ion currents and cytosolic free Ca2+ concentrations were simultaneously monitored in whole-cell recording synchronous to fast fluorescence imaging. L-type and R-type channels were present with different densities at selected sites. In 10 nM Ca2+, the activation and deactivation time constants of the L-type Na+ current were accelerated and its maximal amplitude increased by 6-fold compared to physiological Ca2+. The deactivation of the R-type Na+ current was not accelerated, and its current amplitude increased by 2.3-fold in low Ca2+; moreover, it was partially blocked by nifedipine in a voltage- and time-dependent manner. In conclusion, L channel gating is affected by the ion species permeating the channel, and its selectivity filter binds Ca2+ more strongly than that of R channel; furthermore, external Ca2+ prevents nifedipine from perturbing the R selectivity filter.
Collapse
|
25
|
Papazoglou A, Arshaad MI, Henseler C, Daubner J, Broich K, Hescheler J, Ehninger D, Haenisch B, Weiergräber M. Ca v3 T-Type Voltage-Gated Ca 2+ Channels and the Amyloidogenic Environment: Pathophysiology and Implications on Pharmacotherapy and Pharmacovigilance. Int J Mol Sci 2022; 23:3457. [PMID: 35408817 PMCID: PMC8998330 DOI: 10.3390/ijms23073457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/07/2022] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) were reported to play a crucial role in neurotransmitter release, dendritic resonance phenomena and integration, and the regulation of gene expression. In the septohippocampal system, high- and low-voltage-activated (HVA, LVA) Ca2+ channels were shown to be involved in theta genesis, learning, and memory processes. In particular, HVA Cav2.3 R-type and LVA Cav3 T-type Ca2+ channels are expressed in the medial septum-diagonal band of Broca (MS-DBB), hippocampal interneurons, and pyramidal cells, and ablation of both channels was proven to severely modulate theta activity. Importantly, Cav3 Ca2+ channels contribute to rebound burst firing in septal interneurons. Consequently, functional impairment of T-type Ca2+ channels, e.g., in null mutant mouse models, caused tonic disinhibition of the septohippocampal pathway and subsequent enhancement of hippocampal theta activity. In addition, impairment of GABA A/B receptor transcription, trafficking, and membrane translocation was observed within the septohippocampal system. Given the recent findings that amyloid precursor protein (APP) forms complexes with GABA B receptors (GBRs), it is hypothesized that T-type Ca2+ current reduction, decrease in GABA receptors, and APP destabilization generate complex functional interdependence that can constitute a sophisticated proamyloidogenic environment, which could be of potential relevance in the etiopathogenesis of Alzheimer's disease (AD). The age-related downregulation of T-type Ca2+ channels in humans goes together with increased Aβ levels that could further inhibit T-type channels and aggravate the proamyloidogenic environment. The mechanistic model presented here sheds new light on recent reports about the potential risks of T-type Ca2+ channel blockers (CCBs) in dementia, as observed upon antiepileptic drug application in the elderly.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Muhammad Imran Arshaad
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
| | - Jürgen Hescheler
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany;
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Dan Ehninger
- Translational Biogerontology, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
- Center for Translational Medicine, Medical Faculty, University of Bonn, 53113 Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany;
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| |
Collapse
|
26
|
Calcium Channels in the Heart: Disease States and Drugs. Cells 2022; 11:cells11060943. [PMID: 35326393 PMCID: PMC8945986 DOI: 10.3390/cells11060943] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/30/2022] Open
Abstract
Calcium ions are the major signaling ions in the cells. They regulate muscle contraction, neurotransmitter secretion, cell growth and migration, and the activity of several proteins including enzymes and ion channels and transporters. They participate in various signal transduction pathways, thereby regulating major physiological functions. Calcium ion entry into the cells is regulated by specific calcium channels and transporters. There are mainly six types of calcium channels, of which only two are prominent in the heart. In cardiac tissues, the two types of calcium channels are the L type and the T type. L-type channels are found in all cardiac cells and T-type are expressed in Purkinje cells, pacemaker and atrial cells. Both these types of channels contribute to atrioventricular conduction as well as pacemaker activity. Given the crucial role of calcium channels in the cardiac conduction system, mutations and dysfunctions of these channels are known to cause several diseases and disorders. Drugs targeting calcium channels hence are used in a wide variety of cardiac disorders including but not limited to hypertension, angina, and arrhythmias. This review summarizes the type of cardiac calcium channels, their function, and disorders caused by their mutations and dysfunctions. Finally, this review also focuses on the types of calcium channel blockers and their use in a variety of cardiac disorders.
Collapse
|
27
|
Lanzetti S, Di Biase V. Small Molecules as Modulators of Voltage-Gated Calcium Channels in Neurological Disorders: State of the Art and Perspectives. Molecules 2022; 27:1312. [PMID: 35209100 PMCID: PMC8879281 DOI: 10.3390/molecules27041312] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) are widely expressed in the brain, heart and vessels, smooth and skeletal muscle, as well as in endocrine cells. VGCCs mediate gene transcription, synaptic and neuronal structural plasticity, muscle contraction, the release of hormones and neurotransmitters, and membrane excitability. Therefore, it is not surprising that VGCC dysfunction results in severe pathologies, such as cardiovascular conditions, neurological and psychiatric disorders, altered glycemic levels, and abnormal smooth muscle tone. The latest research findings and clinical evidence increasingly show the critical role played by VGCCs in autism spectrum disorders, Parkinson's disease, drug addiction, pain, and epilepsy. These findings outline the importance of developing selective calcium channel inhibitors and modulators to treat such prevailing conditions of the central nervous system. Several small molecules inhibiting calcium channels are currently used in clinical practice to successfully treat pain and cardiovascular conditions. However, the limited palette of molecules available and the emerging extent of VGCC pathophysiology require the development of additional drugs targeting these channels. Here, we provide an overview of the role of calcium channels in neurological disorders and discuss possible strategies to generate novel therapeutics.
Collapse
Affiliation(s)
| | - Valentina Di Biase
- Institute of Pharmacology, Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Peter-Mayr Strasse 1, A-6020 Innsbruck, Austria;
| |
Collapse
|
28
|
Klemz A, Wildner F, Tütüncü E, Gerevich Z. Regulation of Hippocampal Gamma Oscillations by Modulation of Intrinsic Neuronal Excitability. Front Neural Circuits 2022; 15:778022. [PMID: 35177966 PMCID: PMC8845518 DOI: 10.3389/fncir.2021.778022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Ion channels activated around the subthreshold membrane potential determine the likelihood of neuronal firing in response to synaptic inputs, a process described as intrinsic neuronal excitability. Long-term plasticity of chemical synaptic transmission is traditionally considered the main cellular mechanism of information storage in the brain; however, voltage- and calcium-activated channels modulating the inputs or outputs of neurons are also subjects of plastic changes and play a major role in learning and memory formation. Gamma oscillations are associated with numerous higher cognitive functions such as learning and memory, but our knowledge of their dependence on intrinsic plasticity is by far limited. Here we investigated the roles of potassium and calcium channels activated at near subthreshold membrane potentials in cholinergically induced persistent gamma oscillations measured in the CA3 area of rat hippocampal slices. Among potassium channels, which are responsible for the afterhyperpolarization in CA3 pyramidal cells, we found that blockers of SK (KCa2) and KV7.2/7.3 (KCNQ2/3), but not the BK (KCa1.1) and IK (KCa3.1) channels, increased the power of gamma oscillations. On the contrary, activators of these channels had an attenuating effect without affecting the frequency. Pharmacological blockade of the low voltage-activated T-type calcium channels (CaV3.1–3.3) reduced gamma power and increased the oscillation peak frequency. Enhancement of these channels also inhibited the peak power without altering the frequency of the oscillations. The presented data suggest that voltage- and calcium-activated ion channels involved in intrinsic excitability strongly regulate the power of hippocampal gamma oscillations. Targeting these channels could represent a valuable pharmacological strategy against cognitive impairment.
Collapse
|
29
|
Cmarko L, Stringer RN, Jurkovicova-Tarabova B, Vacik T, Lacinova L, Weiss N. Secretory carrier-associated membrane protein 2 (SCAMP2) regulates cell surface expression of T-type calcium channels. Mol Brain 2022; 15:1. [PMID: 34980194 PMCID: PMC8721997 DOI: 10.1186/s13041-021-00891-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
Low-voltage-activated T-type Ca2+ channels are key regulators of neuronal excitability both in the central and peripheral nervous systems. Therefore, their recruitment at the plasma membrane is critical in determining firing activity patterns of nerve cells. In this study, we report the importance of secretory carrier-associated membrane proteins (SCAMPs) in the trafficking regulation of T-type channels. We identified SCAMP2 as a novel Cav3.2-interacting protein. In addition, we show that co-expression of SCAMP2 in mammalian cells expressing recombinant Cav3.2 channels caused an almost complete drop of the whole cell T-type current, an effect partly reversed by single amino acid mutations within the conserved cytoplasmic E peptide of SCAMP2. SCAMP2-induced downregulation of T-type currents was also observed in cells expressing Cav3.1 and Cav3.3 channel isoforms. Finally, we show that SCAMP2-mediated knockdown of the T-type conductance is caused by the lack of Cav3.2 expression at the cell surface as evidenced by the concomitant loss of intramembrane charge movement without decrease of total Cav3.2 protein level. Taken together, our results indicate that SCAMP2 plays an important role in the trafficking of Cav3.2 channels at the plasma membrane.
Collapse
Affiliation(s)
- Leos Cmarko
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Robin N Stringer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Bohumila Jurkovicova-Tarabova
- Center of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Vacik
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lubica Lacinova
- Center of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Norbert Weiss
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic. .,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic. .,Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic. .,Center of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
30
|
Wu XD, Ding LF, Li WY, Cheng B, Lei T, Zhou HF, Zhao QS. Hypoestins A−D: highly modified fusicoccane diterpenoids with promising Cav3.1 calcium channel inhibitory activity from Hypoestes purpurea. Org Chem Front 2022. [DOI: 10.1039/d2qo00265e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypoestins A–D (1–4), four highly modified fusicoccane diterpenoids with two unreported carbon skeletons, and hypoestins E (5) and F (6), two prviously undescribed fusicoccane diterpenoids, were isolated from aerial parts...
Collapse
|
31
|
Microglia-like Cells Promote Neuronal Functions in Cerebral Organoids. Cells 2021; 11:cells11010124. [PMID: 35011686 PMCID: PMC8750120 DOI: 10.3390/cells11010124] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
Human cerebral organoids, derived from induced pluripotent stem cells, offer a unique in vitro research window to the development of the cerebral cortex. However, a key player in the developing brain, the microglia, do not natively emerge in cerebral organoids. Here we show that erythromyeloid progenitors (EMPs), differentiated from induced pluripotent stem cells, migrate to cerebral organoids, and mature into microglia-like cells and interact with synaptic material. Patch-clamp electrophysiological recordings show that the microglia-like population supported the emergence of more mature and diversified neuronal phenotypes displaying repetitive firing of action potentials, low-threshold spikes and synaptic activity, while multielectrode array recordings revealed spontaneous bursting activity and increased power of gamma-band oscillations upon pharmacological challenge with NMDA. To conclude, microglia-like cells within the organoids promote neuronal and network maturation and recapitulate some aspects of microglia-neuron co-development in vivo, indicating that cerebral organoids could be a useful biorealistic human in vitro platform for studying microglia-neuron interactions.
Collapse
|
32
|
El-Wakil MH, Teleb M, Abu-Serie MM, Huang S, Zamponi GW, Fahmy H. Structural optimization, synthesis and in vitro synergistic anticancer activities of combinations of new N3-substituted dihydropyrimidine calcium channel blockers with cisplatin and etoposide. Bioorg Chem 2021; 115:105262. [PMID: 34411980 DOI: 10.1016/j.bioorg.2021.105262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/19/2021] [Accepted: 08/07/2021] [Indexed: 01/09/2023]
Abstract
T-type calcium channels are considered potential drug targets to combat cancer. Combining T-type calcium channel blockers with conventional chemotherapy drugs represents a promising strategy towards successful cancer treatment. From this perspective, we report in this study the design and synthesis of a novel series of N3-sustituted dihydropyrimidines (DHPMs) as anticancer adjuvants to cisplatin (Cis) and etoposide (Eto). Full spectral characterization of the new compounds was done using FT-IR, 1H NMR, 13C NMR, and HRMS. Structure elucidation was confirmed by 2D NMR 1H-H COSY, HSQC and NOESY experiments. Novel derivatives were tested for their Ca2+ channel blocking activity by employing the whole cell patch-clamp technique. Results demonstrated that most compounds were potential T-type calcium channel blockers with the triazole-based C12 and C13 being the most selective agents against CaV3.2 channel. Further electrophysiological studies demonstrated that C12 and C13 inhibited CaV3.2 currents with respective affinity of 2.26 and 1.27 µM, and induced 5 mV hyperpolarizing shifts in the half-inactivation potential. Subsequently, C12 and C13 were evaluated for their anticancer activities alone and in combination with Cis and Eto against A549 and MDA-MB 231 cancer cells. Interestingly, both compounds exhibited potential anticancer effects with IC50 values < 5 µM. Combination studies revealed that both compounds had synergistic effects (combination index CI < 1) on Cis and Eto through induction of apoptosis (p53 activation and up-regulation of BAX and p21 gene expression). Importantly, in silico physicochemical and ADMET assessment of both compounds revealed their potential drug-like properties with decreased risk of cardiac toxicity. Hence, C12 and C13 are promising anticancer adjuvants through inhibition of CaV3.2 T-type calcium channels, thereby serving as eminent leads for further modification.
Collapse
Affiliation(s)
- Marwa H El-Wakil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Sun Huang
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary T2N 4N1, Canada
| | - Gerald W Zamponi
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary T2N 4N1, Canada
| | - Hesham Fahmy
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Sciences, South Dakota State University, Brookings, SD 57006, USA.
| |
Collapse
|
33
|
Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function? Front Cell Neurosci 2021; 15:685703. [PMID: 34276310 PMCID: PMC8282214 DOI: 10.3389/fncel.2021.685703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Despite significant advances in our understanding of the pathophysiology of multiple sclerosis (MS), knowledge about contribution of individual ion channels to axonal impairment and remyelination failure in progressive MS remains incomplete. Ion channel families play a fundamental role in maintaining white matter (WM) integrity and in regulating WM activities in axons, interstitial neurons, glia, and vascular cells. Recently, transcriptomic studies have considerably increased insight into the gene expression changes that occur in diverse WM lesions and the gene expression fingerprint of specific WM cells associated with secondary progressive MS. Here, we review the ion channel genes encoding K+, Ca2+, Na+, and Cl- channels; ryanodine receptors; TRP channels; and others that are significantly and uniquely dysregulated in active, chronic active, inactive, remyelinating WM lesions, and normal-appearing WM of secondary progressive MS brain, based on recently published bulk and single-nuclei RNA-sequencing datasets. We discuss the current state of knowledge about the corresponding ion channels and their implication in the MS brain or in experimental models of MS. This comprehensive review suggests that the intense upregulation of voltage-gated Na+ channel genes in WM lesions with ongoing tissue damage may reflect the imbalance of Na+ homeostasis that is observed in progressive MS brain, while the upregulation of a large number of voltage-gated K+ channel genes may be linked to a protective response to limit neuronal excitability. In addition, the altered chloride homeostasis, revealed by the significant downregulation of voltage-gated Cl- channels in MS lesions, may contribute to an altered inhibitory neurotransmission and increased excitability.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Louise Elkjaer
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
34
|
Harding EK, Dedek A, Bonin RP, Salter MW, Snutch TP, Hildebrand ME. The T-type calcium channel antagonist, Z944, reduces spinal excitability and pain hypersensitivity. Br J Pharmacol 2021; 178:3517-3532. [PMID: 33871884 PMCID: PMC8453510 DOI: 10.1111/bph.15498] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/02/2021] [Accepted: 04/05/2021] [Indexed: 11/29/2022] Open
Abstract
Background and Purpose T‐type voltage‐gated calcium channels are an emerging therapeutic target for neurological disorders including epilepsy and pain. Inhibition of T‐type channels reduces the excitability of peripheral nociceptive sensory neurons and reverses pain hypersensitivity in male rodent pain models. However, administration of peripherally restricted T‐type antagonists failed to show efficacy in multiple clinical and preclinical pain trials, suggesting that inhibition of peripheral T‐type channels alone may be insufficient for pain relief. Experimental Approach We utilized the selective and CNS‐penetrant T‐type channel antagonist, Z944, in electrophysiological, calcium imaging and behavioural paradigms to determine its effect on lamina I neuron excitability and inflammatory pain behaviours. Key Results Voltage‐clamp recordings from lamina I spinal neurons of adult rats revealed that approximately 80% of neurons possess a low threshold T‐type current, which was blocked by Z944. Due to this highly prevalent T‐type current, Z944 potently blocked action‐potential evoked somatic and dendritic calcium transients in lamina I neurons. Moreover, application of Z944 to spinal cord slices attenuated action potential firing rates in over half of laminae I/II neurons. Finally, we found that intraperitoneal injection of Z944 (1–10 mg·kg−1) dose‐dependently reversed mechanical allodynia in the complete Freund's adjuvant model of persistent inflammatory pain, with a similar magnitude and time course of analgesic effects between male and female rats. Conclusion and Implications T‐type calcium channels critically shape the excitability of lamina I pain processing neurons and inhibition of these channels by the clinical stage antagonist Z944 potently reverses pain hypersensitivity across sexes.
Collapse
Affiliation(s)
- Erika K Harding
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Annemarie Dedek
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Robert P Bonin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada
| | - Michael W Salter
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael E Hildebrand
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
35
|
Kim J, Shin CY. Deciphering the role of T-type calcium channels in regulating adult hippocampal neurogenesis. Acta Physiol (Oxf) 2021; 232:e13643. [PMID: 33660407 DOI: 10.1111/apha.13643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ji‐Woon Kim
- Department of Pharmacology School of Medicine Vanderbilt University Nashville TN USA
| | - Chan Young Shin
- Department of Pharmacology and Department of Advanced Translational Medicine School of Medicine Konkuk University Seoul South Korea
| |
Collapse
|
36
|
Ferron L, Koshti S, Zamponi GW. The life cycle of voltage-gated Ca 2+ channels in neurons: an update on the trafficking of neuronal calcium channels. Neuronal Signal 2021; 5:NS20200095. [PMID: 33664982 PMCID: PMC7905535 DOI: 10.1042/ns20200095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 01/26/2023] Open
Abstract
Neuronal voltage-gated Ca2+ (CaV) channels play a critical role in cellular excitability, synaptic transmission, excitation-transcription coupling and activation of intracellular signaling pathways. CaV channels are multiprotein complexes and their functional expression in the plasma membrane involves finely tuned mechanisms, including forward trafficking from the endoplasmic reticulum (ER) to the plasma membrane, endocytosis and recycling. Whether genetic or acquired, alterations and defects in the trafficking of neuronal CaV channels can have severe physiological consequences. In this review, we address the current evidence concerning the regulatory mechanisms which underlie precise control of neuronal CaV channel trafficking and we discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Laurent Ferron
- Department of Physiology and Pharmacology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Saloni Koshti
- Department of Physiology and Pharmacology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
37
|
Crystal structure determination and computational studies of 1,4-dihydropyridine derivatives as selective T-type calcium channel blockers. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Ortner NJ. Voltage-Gated Ca 2+ Channels in Dopaminergic Substantia Nigra Neurons: Therapeutic Targets for Neuroprotection in Parkinson's Disease? Front Synaptic Neurosci 2021; 13:636103. [PMID: 33716705 PMCID: PMC7952618 DOI: 10.3389/fnsyn.2021.636103] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
The loss of dopamine (DA)-producing neurons in the substantia nigra pars compacta (SN) underlies the core motor symptoms of the progressive movement disorder Parkinson's disease (PD). To date, no treatment to prevent or slow SN DA neurodegeneration exists; thus, the identification of the underlying factors contributing to the high vulnerability of these neurons represents the basis for the development of novel therapies. Disrupted Ca2+ homeostasis and mitochondrial dysfunction seem to be key players in the pathophysiology of PD. The autonomous pacemaker activity of SN DA neurons, in combination with low cytosolic Ca2+ buffering, leads to large somatodendritic fluctuations of intracellular Ca2+ levels that are linked to elevated mitochondrial oxidant stress. L-type voltage-gated Ca2+ channels (LTCCs) contribute to these Ca2+ oscillations in dendrites, and LTCC inhibition was beneficial in cellular and in vivo animal models of PD. However, in a recently completed phase 3 clinical trial, the dihydropyridine (DHP) LTCC inhibitor isradipine failed to slow disease progression in early PD patients, questioning the feasibility of DHPs for PD therapy. Novel evidence also suggests that R- and T-type Ca2+ channels (RTCCs and TTCCs, respectively) represent potential PD drug targets. This short review aims to (re)evaluate the therapeutic potential of LTCC, RTCC, and TTCC inhibition in light of novel preclinical and clinical data and the feasibility of available Ca2+ channel blockers to modify PD disease progression. I also summarize their cell-specific roles for SN DA neuron function and describe how their gating properties allow activity (and thus their contribution to stressful Ca2+ oscillations) during pacemaking.
Collapse
Affiliation(s)
- Nadine J. Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
39
|
Rangel-Galván M, Rangel A, Romero-Méndez C, Dávila EM, Castro ME, Caballero NA, Meléndez Bustamante FJ, Sanchez-Gaytan BL, Meza U, Perez-Aguilar JM. Inhibitory Mechanism of the Isoflavone Derivative Genistein in the Human Ca V3.3 Channel. ACS Chem Neurosci 2021; 12:651-659. [PMID: 33507062 DOI: 10.1021/acschemneuro.0c00684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Regulation of cellular excitability and oscillatory behavior of resting membrane potential in nerve cells are largely mediated by the low-voltage activated T-type calcium channels. This calcium channel family is constituted by three isoforms, namely, CaV3.1, CaV3.2, and CaV3.3, that are largely distributed in the nervous system and other parts of the body. Dysfunction of T-type calcium channels is associated with a wide range of pathophysiologies including epilepsy, neuropathic pain, cardiac problems, and major depressive disorders. Due to their pharmacological relevance, finding molecular agents able to modulate the channel's function may provide therapeutic means to ameliorate their related disorders. Here we used electrophysiological experiments to show that genistein, a canonical tyrosine kinase inhibitor, reduces the activity of the human CaV3.3 channel in a concentration-dependent manner. The inhibitory effect of genistein is independent of tyrosine kinase modulation and does not affect the voltage-dependent gating of the channel. Subsequently, we used computational methods to identify plausible molecular poses for the interaction of genistein and the CaV3.3 channel. Starting from different molecular poses, we carried out all-atom molecular dynamics (MD) simulations to identify the interacting determinants for the CaV3.3/genistein complex formation. Our extensive (microsecond-length) simulations suggest specific binding interactions that seem to stabilize the protein/inhibitor complex. Furthermore, our results from the unbiased MD simulations are in good agreement with the recently solved cryoelectron microscopy structure of the CaV3.1/Z944 complex in terms of both the location of the ligand binding site and the role of several equivalent amino acid residues. Proposed interacting complex loci were subsequently tested and corroborated by electrophysiological experiments using another naturally occurring isoflavone derivative, daidzein. Thus, by using a combination of in vitro and in silico techniques, we have identified interacting determinants relevant to the CaV3.3/genistein complex formation and propose that genistein directly blocks the function of the human CaV3.3 channel as a result of such interaction. Specifically, we proposed that a combination of polar interactions involving the three hydroxyl groups of genistein and an aromatic interaction with the fused rings are the main binding interactions in the complex formation. Our results pave the way for the rational development of improved and novel low-voltage activated T-type calcium channel inhibitors.
Collapse
Affiliation(s)
- Maricruz Rangel-Galván
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Azahel Rangel
- Coordinación Académica Región Altiplano, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78700, México
| | - Catalina Romero-Méndez
- Departamento de Fisiología y Biofísica, Facultad de Medicina Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, México
| | - Eliud Morales Dávila
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - María Eugenia Castro
- Chemistry Center, Science Institute, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Norma A. Caballero
- School of Biological Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | | | - Brenda L. Sanchez-Gaytan
- Chemistry Center, Science Institute, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Ulises Meza
- Departamento de Fisiología y Biofísica, Facultad de Medicina Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, México
| | - Jose Manuel Perez-Aguilar
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| |
Collapse
|
40
|
Homeostatic plasticity and burst activity are mediated by hyperpolarization-activated cation currents and T-type calcium channels in neuronal cultures. Sci Rep 2021; 11:3236. [PMID: 33547341 PMCID: PMC7864958 DOI: 10.1038/s41598-021-82775-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/20/2021] [Indexed: 01/27/2023] Open
Abstract
Homeostatic plasticity stabilizes neuronal networks by adjusting the responsiveness of neurons according to their global activity and the intensity of the synaptic inputs. We investigated the homeostatic regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) and T-type calcium (CaV3) channels in dissociated and organotypic slice cultures. After 48 h blocking of neuronal activity by tetrodotoxin (TTX), our patch-clamp experiments revealed an increase in the depolarizing voltage sag and post-inhibitory rebound mediated by HCN and CaV3 channels, respectively. All HCN subunits (HCN1 to 4) and T-type Ca-channel subunits (CaV3.1, 3.2 and 3.3) were expressed in both control and activity-deprived hippocampal cultures. Elevated expression levels of CaV3.1 mRNA and a selective increase in the expression of TRIP8b exon 4 isoforms, known to regulate HCN channel localization, were also detected in TTX-treated cultured hippocampal neurons. Immunohistochemical staining in TTX-treated organotypic slices verified a more proximal translocation of HCN1 channels in CA1 pyramidal neurons. Computational modeling also implied that HCN and T-type calcium channels have important role in the regulation of synchronized bursting evoked by previous activity-deprivation. Thus, our findings indicate that HCN and T-type Ca-channels contribute to the homeostatic regulation of excitability and integrative properties of hippocampal neurons.
Collapse
|
41
|
Ficelova V, Souza IA, Cmarko L, Gandini MA, Stringer RN, Zamponi GW, Weiss N. Functional identification of potential non-canonical N-glycosylation sites within Ca v3.2 T-type calcium channels. Mol Brain 2020; 13:149. [PMID: 33176830 PMCID: PMC7659234 DOI: 10.1186/s13041-020-00697-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/06/2020] [Indexed: 01/14/2023] Open
Abstract
Low-voltage-activated T-type calcium channels are important contributors to nervous system function. Post-translational modification of these channels has emerged as an important mechanism to control channel activity. Previous studies have documented the importance of asparagine (N)-linked glycosylation and identified several asparagine residues within the canonical consensus sequence N-X-S/T that is essential for the expression and function of Cav3.2 channels. Here, we explored the functional role of non-canonical N-glycosylation motifs in the conformation N-X-C based on site directed mutagenesis. Using a combination of electrophysiological recordings and surface biotinylation assays, we show that asparagines N345 and N1780 located in the motifs NVC and NPC, respectively, are essential for the expression of the human Cav3.2 channel in the plasma membrane. Therefore, these newly identified asparagine residues within non-canonical motifs add to those previously reported in canonical sites and suggest that N-glycosylation of Cav3.2 may also occur at non-canonical motifs to control expression of the channel in the plasma membrane. It is also the first study to report the functional importance of non-canonical N-glycosylation motifs in an ion channel.
Collapse
Affiliation(s)
- Vendula Ficelova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ivana A Souza
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Leos Cmarko
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Maria A Gandini
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Robin N Stringer
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Norbert Weiss
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic. .,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
42
|
Yabuki Y. [Role of T-type Calcium Channels in Regulating Neuronal Function]. YAKUGAKU ZASSHI 2020; 140:1207-1212. [PMID: 32999199 DOI: 10.1248/yakushi.20-00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
T-type calcium channels are low-threshold voltage-gated calcium channel and characterized by unique electrophysiological properties such as fast inactivation and slow deactivation kinetics. All subtypes of T-type calcium channel (Cav3.1, 3.2 and 3.3) are widely expressed in the central nerve system, and they have an important role in homeostasis of sleep, pain response, and development of epilepsy. Recently, several reports suggest that T-type calcium channels may mediate neuronal plasticity in the mouse brain. We succeeded to develop T-type calcium channel enhancer ethyl 8'-methyl-2',4-dioxo-2-(piperidin-1-yl)-2'H-spiro[cyclopentane-1,3'-imidazo[1,2-a]pyridine]-2-ene-3-carboxylate (SAK3) which enhances Cav3.1 and 3.3 currents in each-channel expressed neuro2A cells. SAK3 can promote acetylcholine (ACh) release in the mouse hippocampus via enhancing T-type calcium channel. In this review, we have introduced the role of T-type calcium channel, especially Cav3.1 channel in the mouse hippocampus based on our previous data using SAK3 and Cav3.1 knockout mice.
Collapse
Affiliation(s)
- Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
43
|
Marchi S, Giorgi C, Galluzzi L, Pinton P. Ca 2+ Fluxes and Cancer. Mol Cell 2020; 78:1055-1069. [PMID: 32559424 DOI: 10.1016/j.molcel.2020.04.017] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Ca2+ ions are key second messengers in both excitable and non-excitable cells. Owing to the rather pleiotropic nature of Ca2+ transporters and other Ca2+-binding proteins, however, Ca2+ signaling has attracted limited attention as a potential target of anticancer therapy. Here, we discuss cancer-associated alterations of Ca2+ fluxes at specific organelles as we identify novel candidates for the development of drugs that selectively target Ca2+ signaling in malignant cells.
Collapse
Affiliation(s)
- Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Université de Paris, Paris, France.
| | - Paolo Pinton
- Department of Medical Sciences, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
44
|
Zampese E, Surmeier DJ. Calcium, Bioenergetics, and Parkinson's Disease. Cells 2020; 9:cells9092045. [PMID: 32911641 PMCID: PMC7564460 DOI: 10.3390/cells9092045] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Degeneration of substantia nigra (SN) dopaminergic (DAergic) neurons is responsible for the core motor deficits of Parkinson’s disease (PD). These neurons are autonomous pacemakers that have large cytosolic Ca2+ oscillations that have been linked to basal mitochondrial oxidant stress and turnover. This review explores the origin of Ca2+ oscillations and their role in the control of mitochondrial respiration, bioenergetics, and mitochondrial oxidant stress.
Collapse
|
45
|
Sun H, Zhang H, Ross A, Wang TT, Al-Chami A, Wu SH. Developmentally Regulated Rebound Depolarization Enhances Spike Timing Precision in Auditory Midbrain Neurons. Front Cell Neurosci 2020; 14:236. [PMID: 32848625 PMCID: PMC7424072 DOI: 10.3389/fncel.2020.00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
The inferior colliculus (IC) is an auditory midbrain structure involved in processing biologically important temporal features of sounds. The responses of IC neurons to these temporal features reflect an interaction of synaptic inputs and neuronal biophysical properties. One striking biophysical property of IC neurons is the rebound depolarization produced following membrane hyperpolarization. To understand how the rebound depolarization is involved in spike timing, we made whole-cell patch clamp recordings from IC neurons in brain slices of P9-21 rats. We found that the percentage of rebound neurons was developmentally regulated. The precision of the timing of the first spike on the rebound increased when the neuron was repetitively injected with a depolarizing current following membrane hyperpolarization. The average jitter of the first spikes was only 0.5 ms. The selective T-type Ca2+ channel antagonist, mibefradil, significantly increased the jitter of the first spike of neurons in response to repetitive depolarization following membrane hyperpolarization. Furthermore, the rebound was potentiated by one to two preceding rebounds within a few hundred milliseconds. The first spike generated on the potentiated rebound was more precise than that on the non-potentiated rebound. With the addition of a calcium chelator, BAPTA, into the cell, the rebound potentiation no longer occurred, and the precision of the first spike on the rebound was not improved. These results suggest that the postinhibitory rebound mediated by T-type Ca2+ channel promotes spike timing precision in IC neurons. The rebound potentiation and precise spikes may be induced by increases in intracellular calcium levels.
Collapse
Affiliation(s)
- Hongyu Sun
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Hui Zhang
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Alysia Ross
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Ting Ting Wang
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Aycheh Al-Chami
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Shu Hui Wu
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
46
|
Contribution of T-Type Calcium Channels to Spinal Cord Injury-Induced Hyperexcitability of Nociceptors. J Neurosci 2020; 40:7229-7240. [PMID: 32839232 DOI: 10.1523/jneurosci.0517-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 01/24/2023] Open
Abstract
A hyperexcitable state and spontaneous activity of nociceptors have been suggested to play a critical role in the development of chronic neuropathic pain following spinal cord injury (SCI). In male rats, we employed the action potential-clamp technique to determine the underlying ionic mechanisms responsible for driving SCI-nociceptors to a hyperexcitable state and for triggering their spontaneous activity. We found that the increased activity of low voltage activated T-type calcium channels induced by the injury sustains the bulk (∼60-70%) of the inward current active at subthreshold voltages during the interspike interval in SCI-nociceptors, with a modest contribution (∼10-15%) from tetrodotoxin (TTX)-sensitive and TTX-resistant sodium channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. In current-clamp recordings, inhibition of T-type calcium channels with 1 μm TTA-P2 reduced both the spontaneous and the evoked firing in response to current injections in SCI-nociceptors to a level similar to sham-nociceptors. Electrophysiology in vitro was then combined with the conditioned place preference (CPP) paradigm to determine the relationship between the increased activity of T-type channels in SCI-nociceptors and chronic neuropathic pain following SCI. The size of the interspike T-type calcium current recorded from nociceptors isolated from SCI rats showing TTA-P2-induced CPP (responders) was ∼6 fold greater than the interspike T-type calcium current recorded from nociceptors isolated from SCI rats without TTA-P2-induced CPP (non-responders). Taken together, our data suggest that the increased activity of T-type calcium channels induced by the injury plays a primary role in driving SCI-nociceptors to a hyperexcitable state and contributes to chronic neuropathic pain following SCI.SIGNIFICANCE STATEMENT Chronic neuropathic pain is a major comorbidity of spinal cord injury (SCI), affecting up to 70-80% of patients. Anticonvulsant and tricyclic antidepressant drugs are first line analgesics used to treat SCI-induced neuropathic pain, but their efficacy is very limited. A hyperexcitable state and spontaneous activity of SCI-nociceptors have been proposed as a possible underlying cause for the development of chronic neuropathic pain following SCI. Here, we show that the increased activity of T-type calcium channels induced by the injury plays a major role in driving SCI-nociceptors to a hyperexcitable state and for promoting their spontaneous activity, suggesting that T-type calcium channels may represent a pharmacological target to treat SCI-induced neuropathic pain.
Collapse
|
47
|
Guidelli R, Becucci L. Deterministic model of Ca v3.1 Ca 2+ channel and a proposed sequence of its conformations. Bioelectrochemistry 2020; 136:107618. [PMID: 32795940 DOI: 10.1016/j.bioelechem.2020.107618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
A family of current-time curves of T-type Cav3.1 Ca2+ channels available in the literature is simulated by a kinetic model differing from that used for the interpretation of all salient features of Na+ and Shaker K+ channels by the insertion of a multiplying factor expressing the difference between the working potential ϕ and the reversal potential ϕr. This deterministic model is also used to simulate experimental curves taken from the literature for steady-state 'fast inactivation' and for a gradual passage from fast to 'slow inactivation'. A depolarizing pulse induces fast or slow inactivation depending on whether it lasts 100-500 ms or about 1 min, and is believed to cause a collapse of the central pore near the selectivity filter (SF). A number of features of fast and slow inactivation of Cav3.1 Ca2+ channels are qualitatively interpreted on the basis of a sequence of conformational states. Briefly, the conformation responsible for 'fast inactivation' is assumed to have the activation gate open and the inactivation gate (i.e., the SF) inactive. Immediately after a depolarizing pulse, this conformation is inactive and requires a sufficiently long rest time at a far negative holding potential to recover from inactivation. 'Slow inactivation' is ascribed to a different conformation with the activation gate closed and the SF inactive.
Collapse
Affiliation(s)
- Rolando Guidelli
- Department of Chemistry "Ugo Schiff", Florence University, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Lucia Becucci
- Department of Chemistry "Ugo Schiff", Florence University, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
48
|
Cmarko L, Weiss N. Selective inhibition of neuronal Ca v3.3 T-type calcium channels by TAT-based channel peptide. Mol Brain 2020; 13:95. [PMID: 32560664 PMCID: PMC7304182 DOI: 10.1186/s13041-020-00636-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023] Open
Abstract
Low-voltage-activated Cav3 calcium channels (T-type) play an essential role in the functioning of the nervous system where they support oscillatory activities that relie on several channel molecular determinants that shape their unique gating properties. In a previous study, we documented the important role of the carboxy proximal region in the functioning of Cav3.3 channels. Here, we explore the ability of a TAT-based cell penetrating peptide containing this carboxy proximal region (TAT-C3P) to modulate the activity of Cav3 channels. We show that chronic application of TAT-C3P on tsA-201 cells expressing Cav3 channels selectively inhibits Cav3.3 channels without affecting Cav3.1 and Cav3.2 channels. Therefore, the TAT-C3P peptide described in this study represents a new tool to address the specific physiological role of Cav3.3 channels, and to potentially enhance our understanding of Cav3.3 in disease.
Collapse
Affiliation(s)
- Leos Cmarko
- Institute of Biology and Medical Genetics, First faculty of Medicine, Charles University, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Norbert Weiss
- Institute of Biology and Medical Genetics, First faculty of Medicine, Charles University, Prague, Czech Republic. .,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
49
|
Wang S, Cortes CJ. Interactions with PDZ proteins diversify voltage-gated calcium channel signaling. J Neurosci Res 2020; 99:332-348. [PMID: 32476168 DOI: 10.1002/jnr.24650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 11/12/2022]
Abstract
Voltage-gated Ca2+ (CaV ) channels are crucial for neuronal excitability and synaptic transmission upon depolarization. Their properties in vivo are modulated by their interaction with a variety of scaffolding proteins. Such interactions can influence the function and localization of CaV channels, as well as their coupling to intracellular second messengers and regulatory pathways, thus amplifying their signaling potential. Among these scaffolding proteins, a subset of PDZ (postsynaptic density-95, Drosophila discs-large, and zona occludens)-domain containing proteins play diverse roles in modulating CaV channel properties. At the presynaptic terminal, PDZ proteins enrich CaV channels in the active zone, enabling neurotransmitter release by maintaining a tight and vital link between channels and vesicles. In the postsynaptic density, these interactions are essential in regulating dendritic spine morphology and postsynaptic signaling cascades. In this review, we highlight the studies that demonstrate dynamic regulations of neuronal CaV channels by PDZ proteins. We discuss the role of PDZ proteins in controlling channel activity, regulating channel cell surface density, and influencing channel-mediated downstream signaling events. We highlight the importance of PDZ protein regulations of CaV channels and evaluate the link between this regulatory effect and human disease.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Cell Biology, Duke University, Durham, NC, USA.,Department of Neurology, Duke University, Durham, NC, USA
| | - Constanza J Cortes
- Department of Neurology, Duke University, Durham, NC, USA.,Department of Cell, Developmental and Integrative Biology, University of Alabama Birmingham, Birmingham, AL, USA
| |
Collapse
|
50
|
Nam Y, Ryu KD, Jang C, Moon YH, Kim M, Ko D, Chung KS, Gandini MA, Lee KT, Zamponi GW, Lee JY. Synthesis and cytotoxic effects of 2-thio-3,4-dihydroquinazoline derivatives as novel T-type calcium channel blockers. Bioorg Med Chem 2020; 28:115491. [PMID: 32327350 DOI: 10.1016/j.bmc.2020.115491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
In our previous work, a series of 2-amino-3,4-dihydroquinazoline derivativesusing an electron acceptor group was reported to be potent T-type calcium channel blockers and exhibit strong cytotoxic effects against various cancerous cell lines. To investigate the role of the guanidine moiety in the 2-amino-3,4-dihydroquinazoline scaffold as a pharmacophore for dual biological activity, a new series of 2-thio-3,4-dihydroquniazoline derivatives using an electron donor group at the C2-position was synthesized and evaluated for T-type calcium channel blocking activity and cytotoxic effects against two human cancerous cell lines (lung cancer A549 and colon cancer HCT-116). Among them, compound 6g showed potent inhibition of Cav3.2 currents (83% inhibition) at 10 µM concentrations. The compound also exhibited IC50 values of 5.0 and 6.4 µM against A549 and HCT-116 cell lines, respectively, which are comparable to the parental lead compound KYS05090. These results indicate that the isothiourea moiety similar to the guanidine moiety of 2-amino-3,4-dihydroquinazoline derivatives may be an essential pharmacophore for the desired biological activities. Therefore, our preliminary work can provide the opportunity to expand a chemical repertoire to improve affinity and selectivity for T-type calcium channels.
Collapse
Affiliation(s)
- Yunchan Nam
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki Deok Ryu
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Changyoung Jang
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon Hyoung Moon
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Misong Kim
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dohyeong Ko
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sook Chung
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Maria A Gandini
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary T2N 4N1, Canada
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary T2N 4N1, Canada.
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|