1
|
Frydrychová RČ, Konopová B, Peska V, Brejcha M, Sábová M. Telomeres and telomerase: active but complex players in life-history decisions. Biogerontology 2024; 25:205-226. [PMID: 37610666 DOI: 10.1007/s10522-023-10060-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
Studies on human telomeres have established that telomeres exert a significant influence on lifespan and health of organisms. However, recent research has indicated that the original idea that telomeres affect lifespan in a universal and central manner across all eukaryotic species is an oversimplification. Indeed, findings from a variety of animal species revealed that the role of telomere biology in aging is more subtle and intricate than previously recognized. Here, we show how telomere biology varies depending on the taxon. We also show how telomere biology corresponds to basic life history traits and affects the life table of a species and investments in growth, body size, reproduction, and lifespan; telomeres are hypothesized to shape evolutionary perspectives for species in an active but complex manner. Our evaluation is based on telomere biology data from many examples from throughout the animal kingdom that vary according to the degree of organismal complexity and life history strategies.
Collapse
Affiliation(s)
- Radmila Čapková Frydrychová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, Ceske Budejovice, Czech Republic.
| | - Barbora Konopová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| | - Vratislav Peska
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Miloslav Brejcha
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, Ceske Budejovice, Czech Republic
| | - Michala Sábová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| |
Collapse
|
2
|
Zhang N, Baker EC, Welsh TH, Riley DG. Telomere Dynamics in Livestock. BIOLOGY 2023; 12:1389. [PMID: 37997988 PMCID: PMC10669808 DOI: 10.3390/biology12111389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Telomeres are repeated sequences of nucleotides at the end of chromosomes. They deteriorate across mitotic divisions of a cell. In Homo sapiens this process of lifetime reduction has been shown to correspond with aspects of organismal aging and exposure to stress or other insults. The early impetus to characterize telomere dynamics in livestock related to the concern that aged donor DNA would result in earlier cell senescence and overall aging in cloned animals. Telomere length investigations in dairy cows included breed effects, estimates of additive genetic control (heritability 0.12 to 0.46), and effects of external stressors on telomere degradation across animal life. Evaluation of telomeres with respect to aging has also been conducted in pigs and horses, and there are fewer reports of telomere biology in beef cattle, sheep, and goats. There were minimal associations of telomere length with animal productivity measures. Most, but not all, work in livestock has documented an inverse relationship between peripheral blood cell telomere length and age; that is, a longer telomere length was associated with younger age. Because livestock longevity affects productivity and profitability, the role of tissue-specific telomere attrition in aging may present alternative improvement strategies for genetic improvement while also providing translational biomedical knowledge.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (N.Z.); (T.H.W.J.)
| | - Emilie C. Baker
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX 79016, USA;
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (N.Z.); (T.H.W.J.)
- Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (N.Z.); (T.H.W.J.)
- Texas A&M AgriLife Research, College Station, TX 77843, USA
| |
Collapse
|
3
|
Peka M, Balatsky V, Saienko A, Tsereniuk O. Bioinformatic analysis of the effect of SNPs in the pig TERT gene on the structural and functional characteristics of the enzyme to develop new genetic markers of productivity traits. BMC Genomics 2023; 24:487. [PMID: 37626279 PMCID: PMC10463782 DOI: 10.1186/s12864-023-09592-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Telomerase reverse transcriptase (TERT) plays a crucial role in synthesizing telomeric repeats that safeguard chromosomes from damage and fusion, thereby maintaining genome stability. Mutations in the TERT gene can lead to a deviation in gene expression, impaired enzyme activity, and, as a result, abnormal telomere shortening. Genetic markers of productivity traits in livestock can be developed based on the TERT gene polymorphism for use in marker-associated selection (MAS). In this study, a bioinformatic-based approach is proposed to evaluate the effect of missense single-nucleotide polymorphisms (SNPs) in the pig TERT gene on enzyme function and structure, with the prospect of developing genetic markers. RESULTS A comparative analysis of the coding and amino acid sequences of the pig TERT was performed with corresponding sequences of other species. The distribution of polymorphisms in the pig TERT gene, with respect to the enzyme's structural-functional domains, was established. A three-dimensional model of the pig TERT structure was obtained through homological modeling. The potential impact of each of the 23 missense SNPs in the pig TERT gene on telomerase function and stability was assessed using predictive bioinformatic tools utilizing data on the amino acid sequence and structure of pig TERT. CONCLUSIONS According to bioinformatic analysis of 23 missense SNPs of the pig TERT gene, a predictive effect of rs789641834 (TEN domain), rs706045634 (TEN domain), rs325294961 (TRBD domain) and rs705602819 (RTD domain) on the structural and functional parameters of the enzyme was established. These SNPs hold the potential to serve as genetic markers of productivity traits. Therefore, the possibility of their application in MAS should be further evaluated in associative analysis studies.
Collapse
Affiliation(s)
- Mykyta Peka
- Institute of Pig Breeding and Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, 1 Shvedska Mohyla St, Poltava, 36013 Ukraine
- V. N. Karazin Kharkiv National University, 4 Svobody Sq, Kharkiv, 61022 Ukraine
| | - Viktor Balatsky
- Institute of Pig Breeding and Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, 1 Shvedska Mohyla St, Poltava, 36013 Ukraine
- V. N. Karazin Kharkiv National University, 4 Svobody Sq, Kharkiv, 61022 Ukraine
| | - Artem Saienko
- Institute of Pig Breeding and Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, 1 Shvedska Mohyla St, Poltava, 36013 Ukraine
| | - Oleksandr Tsereniuk
- Institute of Pig Breeding and Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, 1 Shvedska Mohyla St, Poltava, 36013 Ukraine
| |
Collapse
|
4
|
Ribas-Maynou J, Llavanera M, Mateo-Otero Y, Ruiz N, Muiño R, Bonet S, Yeste M. Telomere length in bovine sperm is related to the production of reactive oxygen species, but not to reproductive performance. Theriogenology 2022; 189:290-300. [DOI: 10.1016/j.theriogenology.2022.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/20/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
|
5
|
Telomere Length in Pig Sperm Is Related to In Vitro Embryo Development Outcomes. Animals (Basel) 2022; 12:ani12020204. [PMID: 35049825 PMCID: PMC8773156 DOI: 10.3390/ani12020204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Understanding how gamete chromatin influences fertilization is highly important not only to improve animal production, but also to develop new biomarkers helping in the selection of those animals with higher fertility potential. In this regard, sperm telomere length has been pointed out as a putative biomarker in human infertility, but no studies have been conducted into its influence in pig fertility. Here, we determined that sperm telomere length is independent from the conventional sperm quality parameters and, through the production of in vitro embryos, we showed that it is indicative of the percentage of morulae and blastocysts, thus becoming useful to be used as biomarker in this species. Abstract Telomere length has attracted much interest as a topic of study in human reproduction; furthermore, the link between sperm telomere length and fertility outcomes has been investigated in other species. This biomarker, however, has not been much explored in other animals, such as pigs, and whether it is related to sperm quality and fertility outcomes remains unknown. The present work aimed to determine the absolute value of telomere length in pig sperm, as well as its relationship to sperm quality parameters and embryo development. Telomere length was determined through quantitative fluorescence in situ hybridization (qFISH) in 23 pig sperm samples and data were correlated to quality parameters (motility, morphology, and viability) and in vitro fertilization outcomes. We found that the mean telomere length in pig sperm was 22.1 ± 3.6 kb, which is longer than that previously described in humans. Whilst telomere length was not observed to be correlated to sperm quality variables (p > 0.05), a significant correlation between telomere length and the percentage of morulae 6 days after in vitro fertilization was observed (rs = 0.559; 95% C.I. = (−0.007 to 0.854); p = 0.047). Interestingly, this correlation was not found when percentages of early blastocysts/blastocysts (rs = 0.410; 95% C.I. = (−0.200 to 0.791); p = 0.164) and of hatching/hatched blastocysts (rs = 0.356; 95% C.I. = (− 0.260 to 0.766); p = 0.233) were considered. Through the separation of the samples into two groups by the median value, statistically significant differences between samples with shorter telomeres than the median and samples with longer telomeres than the median were found regarding development to morula (11.5 ± 3.6 vs. 21.8 ± 6.9, respectively) and to early blastocyst/blastocysts (7.6 ± 1.4 vs. 17.9 ± 12.2, respectively) (p < 0.05). In the light of these results, sperm telomere length may be a useful biomarker for embryo development in pigs, as sperm with longer telomeres lead to higher rates of morulae and blastocysts.
Collapse
|
6
|
Telomere length in dromedary camels (Camelus dromedarius) produced by somatic cell nuclear transfer (SCNT) and their age-matched naturally produced counterparts. Theriogenology 2022; 177:151-156. [PMID: 34700072 DOI: 10.1016/j.theriogenology.2021.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/10/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022]
Abstract
There are controversial reports on the restoration of eroded telomere length in offspring produced by somatic cell nuclear transfer (SCNT) in different animal species. To the best of our knowledge, no earlier studies report the telomere length in naturally produced or cloned animals in any of the camelid species. Therefore, the present study was conducted to estimate the telomere length in dromedary camels produced by SCNT, the donor cells, and their age-matched naturally produced counterparts by Terminal Restriction Fragment (TRF) length analysis and real-time Q PCR T/S ratio methods. Genomic DNA was extracted from venous blood collected from 6 cloned animals and their age-matched counterparts. Using the southern blot technique, digested DNA was blotted onto a positively charged nylon membrane, and its hybridization was carried out using telomere (TTAGGG)n specific, DIG-labeled hybridization probe (Roche Diagnostics, Germany) at 42 °C for 4 h. Stringent washes were carried out at the same temperature, followed by a chemiluminescence reaction. The signals were captured using the Azure Biosystems C600 gel documentation system. A TeloTool program from MATLAB software with a built-in probe intensity correction algorithm was used for TRF analysis. The experiment was replicated three times, and the data, presented as mean ± SEM, were analyzed using a two-sample t-test (MINITAB statistical software, Minitab ltd, CV3 2 TE, UK). No difference was found in the mean telomere length of cloned camels when compared to their naturally produced age-matched counterparts. However, the telomere length was more (P < 0.05) than that of the somatic cells used for producing the SCNT embryos. A moderate positive Pearson correlation coefficient (r = 0.6446) was observed between the telomere lengths estimated by TRF and Q PCR T/S ratio method. In conclusion, this is the first study wherein we are reporting telomere length in naturally produced and cloned dromedary camels produced by somatic cell nuclear transfer. We found that telomere lengths in cloned camels were similar to their age-matched naturally produced counterparts, suggesting that the camel cytoplast reprograms the somatic cell nucleus and restores the telomere length to its totipotency stage.
Collapse
|
7
|
Cunningham K, Hinton TG, Luxton JJ, Bordman A, Okuda K, Taylor LE, Hayes J, Gerke HC, Chinn SM, Anderson D, Laudenslager ML, Takase T, Nemoto Y, Ishiniwa H, Beasley JC, Bailey SM. Evaluation of DNA damage and stress in wildlife chronically exposed to low-dose, low-dose rate radiation from the Fukushima Dai-ichi Nuclear Power Plant accident. ENVIRONMENT INTERNATIONAL 2021; 155:106675. [PMID: 34120002 DOI: 10.1016/j.envint.2021.106675] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
The health effects associated with chronic low-dose, low-dose rate (LD-LDR) exposures to environmental radiation are uncertain. All dose-effect studies conducted outside controlled laboratory conditions are challenged by inherent complexities of ecological systems and difficulties quantifying dose to free-ranging organisms in natural environments. Consequently, the effects of chronic LD-LDR radiation exposures on wildlife health remain poorly understood and much debated. Here, samples from wild boar (Sus scrofa leucomystax) and rat snakes (Elaphe spp.) were collected between 2016 and 2018 across a gradient of radiation exposures in Fukushima, Japan. In vivo biomarkers of DNA damage and stress were evaluated as a function of multiple measurements of radiation dose. Specifically, we assessed frequencies of dicentric chromosomes (Telomere-Centromere Fluorescence in situ Hybridization: TC-FISH), telomere length (Telo-FISH, qPCR), and cortisol hormone levels (Enzyme Immunoassay: EIA) in wild boar, and telomere length (qPCR) in snakes. These biological parameters were then correlated to robust calculations of radiation dose rate at the time of capture and plausible upper bound lifetime dose, both of which incorporated internal and external dose. No significant relationships were observed between dicentric chromosome frequencies or telomere length and dose rate at capture or lifetime dose (p value range: 0.20-0.97). Radiation exposure significantly associated only with cortisol, where lower concentrations were associated with higher dose rates (r2 = 0.58; p < 0.0001), a relationship that was likely due to other (unmeasured) factors. Our results suggest that wild boar and snakes chronically exposed to LD-LDR radiation sufficient to prohibit human occupancy were not experiencing significant adverse health effects as assessed by biomarkers of DNA damage and stress.
Collapse
Affiliation(s)
- Kelly Cunningham
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| | - Thomas G Hinton
- Centre for Environmental Radioactivity, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1433 Ås, Norway; Institute of Environmental Radioactivity, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan.
| | - Jared J Luxton
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| | - Aryn Bordman
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| | - Kei Okuda
- Faculty of Human Environmental Studies, Hiroshima Shudo University, Hiroshima 731-3195, Japan
| | - Lynn E Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| | - Josh Hayes
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| | - Hannah C Gerke
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC 29808, USA
| | - Sarah M Chinn
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC 29808, USA
| | - Donovan Anderson
- Symbiotic Systems Science and Technology, Fukushima University, Fukushima, Fukushima City, Kanayagawa 960-1248, Japan
| | - Mark L Laudenslager
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tsugiko Takase
- Institute of Environmental Radioactivity, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan
| | - Yui Nemoto
- Fukushima Prefectural Centre for Environmental Creation, 2-10 Fukasaku, Miharu, Fukushima 963-7799, Japan
| | - Hiroko Ishiniwa
- Institute of Environmental Radioactivity, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan
| | - James C Beasley
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC 29808, USA
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| |
Collapse
|
8
|
Sun J, Liu W, Guo Y, Zhang H, Jiang D, Luo Y, Liu R, Chen C. Characterization of tree shrew telomeres and telomerase. J Genet Genomics 2021; 48:631-639. [PMID: 34362683 DOI: 10.1016/j.jgg.2021.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022]
Abstract
The use of tree shrews as experimental animals for biomedical research is a new practice. Several recent studies suggest that tree shrews are suitable for studying cancers, including breast cancer, glioblastoma, lung cancer, and hepatocellular carcinoma. However, the telomeres and the telomerase of tree shrews have not been studied to date. Here, we characterize telomeres and telomerase in tree shrews. The telomere length of tree shrews is approximately 23 kb, which is longer than that of primates and shorter than that of mice, and it is extended in breast tumor tissues according to Southern blot and flow-fluorescence in situ hybridization (FISH) analyses. Tree shrew spleen, bone marrow, testis, ovary, and uterus show high telomerase activities, which are increased in breast tumor tissues by telomeric repeat amplification protocol assays. The telomere length becomes shorter, and telomerase activity decreases with age. The tree shrew TERT and TERC are more highly similar to primates than to rodents. These findings lay a solid foundation for using tree shrews to study aging and cancers.
Collapse
Affiliation(s)
- Jian Sun
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, Yunnan 650201, China; Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan 650204, China
| | - Wenjing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, Yunnan 650201, China; Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan 650204, China
| | - Yongbo Guo
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan 650204, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Hailin Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, Yunnan 650201, China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, Yunnan 650201, China
| | - Ying Luo
- Laboratory of Molecular Genetics of Aging & Tumor, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, Yunnan 650201, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, Yunnan 650201, China.
| |
Collapse
|
9
|
Vedelek B, Maddali AK, Davenova N, Vedelek V, Boros IM. TERT promoter alterations could provide a solution for Peto's paradox in rodents. Sci Rep 2020; 10:20815. [PMID: 33257697 PMCID: PMC7704627 DOI: 10.1038/s41598-020-77648-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
Cancer is a genetic disease caused by changes in gene expression resulting from somatic mutations and epigenetic changes. Although the probability of mutations is proportional with cell number and replication cycles, large bodied species do not develop cancer more frequently than smaller ones. This notion is known as Peto's paradox, and assumes stronger tumor suppression in larger animals. One of the possible tumor suppressor mechanisms involved could be replicative senescence caused by telomere shortening in the absence of telomerase activity. We analysed telomerase promoter activity and transcription factor binding in mammals to identify the key element of telomerase gene inactivation. We found that the GABPA transcription factor plays a key role in TERT regulation in somatic cells of small rodents, but its binding site is absent in larger beavers. Protein binding and reporter gene assays verify different use of this site in different species. The presence or absence of the GABPA TF site in TERT promoters of rodents correlates with TERT promoter activity; thus it could determine whether replicative senescence plays a tumor suppressor role in these species, which could be in direct relation with body mass. The GABPA TF binding sites that contribute to TERT activity in somatic cells of rodents are analogous to those mutated in human tumors, which activate telomerase by a non-ALT mechanism.
Collapse
Affiliation(s)
- Balázs Vedelek
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Asha Kiran Maddali
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Nurgul Davenova
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Viktor Vedelek
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Imre M Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary.
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
10
|
Ramos-Ibeas P, Pericuesta E, Peral-Sanchez I, Heras S, Laguna-Barraza R, Pérez-Cerezales S, Gutiérrez-Adán A. Longitudinal analysis of somatic and germ-cell telomere dynamics in outbred mice. Mol Reprod Dev 2019; 86:1033-1043. [PMID: 31209959 DOI: 10.1002/mrd.23218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 11/10/2022]
Abstract
Although telomere length (TL) shortens with age in most tissues, an age-related increase in length has been described in sperm through a mechanism that is not yet fully understood. Changes in TL with age in the same individual have not been explored. This longitudinal study examines TL dynamics in somatic tissue and gametes during an entire lifespan in an outbred mouse population (from 8 to up to 114 weeks of age). Our findings indicate a reduced life expectancy in males compared to females (84.75 ± 9.23 vs. 113.16 ± 0.20 weeks) and significant variability in TL dynamics between individuals. While with aging, a clear reduction in TL was produced in somatic cells and oocytes, telomeres in sperm cells significantly lengthened. Finally, we found evidence indicating that telomere elongation in sperm during aging may be dependent on different mechanisms, such as the survival of spermatogonia with longer telomeres and the alternative lengthening of telomeres mechanism in meiotic and postmeiotic spermatogenic cells.
Collapse
Affiliation(s)
| | - Eva Pericuesta
- Departamento de Reproducción Animal, INIA, Madrid, Spain
| | | | - Sonia Heras
- Departamento de Reproducción Animal, INIA, Madrid, Spain
| | | | | | | |
Collapse
|
11
|
Rollings N, Friesen CR, Whittington CM, Johansson R, Shine R, Olsson M. Sex- And tissue-specific differences in telomere length in a reptile. Ecol Evol 2019; 9:6211-6219. [PMID: 31236215 PMCID: PMC6580261 DOI: 10.1002/ece3.5164] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022] Open
Abstract
The usage of telomere length (TL) in blood as a proxy for the TL of other tissues relies on the assumption that telomere dynamics across all tissues are similar. However, telomere attrition can be caused by reactive oxygen species (ROS) which may vary with metabolic rate, which itself varies across organs depending upon the life history strategy of an organism. Thus, we chose to measure the telomeres of various cell types in juvenile painted dragon lizards, Ctenophorus pictus, given their unusual life history strategy. Individuals typically only experience a single mating season. We measured the TL of male and female dragons using qPCR and observed that TL varied with tissue type and sex. Telomeres of blood cells were longer than those of liver, heart, brain, and spleen, and females had longer telomeres than males. Brain telomeres in males were approximately half the length of those in females. Telomeric attrition in the male brain may be due to the need for rapid learning of reproductive tactics (territory patrol and defense, mate-finding). Significant correlations between the TL of tissue types suggest that blood TL may be a useful proxy for the TL of other tissues. Our comparison of organ-specific telomere dynamics, the first in a reptile, suggests that the usage of blood TL as a proxy requires careful consideration of the life history strategy of the organism.
Collapse
Affiliation(s)
- Nicky Rollings
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | | | - Camilla M. Whittington
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- Sydney School of Veterinary ScienceUniversity of SydneySydneyNew South WalesAustralia
| | - Rasmus Johansson
- Department of Biological & Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Richard Shine
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Mats Olsson
- Department of Biological & Environmental SciencesUniversity of GothenburgGothenburgSweden
| |
Collapse
|
12
|
Exposure to environmental radionuclides associates with tissue-specific impacts on telomerase expression and telomere length. Sci Rep 2019; 9:850. [PMID: 30696885 PMCID: PMC6351625 DOI: 10.1038/s41598-018-37164-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/04/2018] [Indexed: 11/08/2022] Open
Abstract
Telomeres, the protective structures at the ends of chromosomes, can be shortened when individuals are exposed to stress. In some species, the enzyme telomerase is expressed in adult somatic tissues, and potentially protects or lengthens telomeres. Telomeres can be damaged by ionizing radiation and oxidative stress, although the effect of chronic exposure to elevated levels of radiation on telomere maintenance is unknown for natural populations. We quantified telomerase expression and telomere length (TL) in different tissues of the bank vole Myodes glareolus, collected from the Chernobyl Exclusion Zone, an environment heterogeneously contaminated with radionuclides, and from uncontaminated control sites elsewhere in Ukraine. Inhabiting the Chernobyl Exclusion Zone was associated with reduced TL in the liver and testis, and upregulation of telomerase in brain and liver. Thus upregulation of telomerase does not appear to associate with longer telomeres but may reflect protective functions other than telomere maintenance or an attempt to maintain shorter telomeres in a stressful environment. Tissue specific differences in the rate of telomere attrition and apparent radiosensitivity weaken the intra-individual correlation in telomere length among tissues in voles exposed to radionuclides. Our data show that ionizing radiation alters telomere homeostasis in wild animal populations in tissue specific ways.
Collapse
|
13
|
Eisenberg DTA, Kuzawa CW. The paternal age at conception effect on offspring telomere length: mechanistic, comparative and adaptive perspectives. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0442. [PMID: 29335366 DOI: 10.1098/rstb.2016.0442] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2017] [Indexed: 01/14/2023] Open
Abstract
Telomeres are repeating DNA found at the ends of chromosomes that, in the absence of restorative processes, shorten with cell replications and are implicated as a cause of senescence. It appears that sperm telomere length (TL) increases with age in humans, and as a result offspring of older fathers inherit longer telomeres. We review possible mechanisms underlying this paternal age at conception (PAC) effect on TL, including sperm telomere extension due to telomerase activity, age-dependent changes in the spermatogonial stem cell population (possibly driven by 'selfish' spermatogonia) and non-causal confounding. In contrast to the lengthening of TL with PAC, higher maternal age at conception appears to predict shorter offspring TL in humans. We review evidence for heterogeneity across species in the PAC effect on TL, which could relate to differences in statistical power, sperm production rates or testicular telomerase activity. Finally, we review the hypothesis that the PAC effect on TL may allow a gradual multi-generational adaptive calibration of maintenance effort, and reproductive lifespan, to local demographic conditions: descendants of males who reproduced at a later age are likely to find themselves in an environment where increased maintenance effort, allowing later reproduction, represents a fitness improving resource allocation.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Dan T A Eisenberg
- Department of Anthropology, Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, USA
| | - Christopher W Kuzawa
- Department of Anthropology, Institute for Policy Research, Northwestern University, Evanston, IL, USA
| |
Collapse
|
14
|
Xu N, Chen Y, Dean KC, Lu X, Liu X, Wang W, Dean DC, Kaplan HJ, Gao L, Dong F, Liu Y. Sphere-Induced Rejuvenation of Swine and Human Müller Glia Is Primarily Caused by Telomere Elongation. Stem Cells 2017; 35:1579-1591. [PMID: 28152565 DOI: 10.1002/stem.2585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 02/01/2023]
Abstract
Müller cells are the major supportive and protective glial cells in the retina with important functions in histogenesis and synaptogenesis during development, and in maintenance of mature neurons as they show to secrete various cytokines and manifest potentials of self-renewal and transdifferentiation into retinal neurons following injury in the vertebrate retinas. The swine retina has a visual streak structure similar to the human macular where cone photoreceptors are highly concentrated, thereby can serve as a better model for studying retinal diseases and for formulating cell-based therapeutics than the rodent retinas. Like most differentiated somatic mammalian cells, the isolated swine and human Müller glia become senescent over passages in culture, which restricts their potential application in basic and clinic researches. Here, we demonstrate that the senescence of swine and human Müller cells is caused by telomere attrition upon multiplications in vitro; and the senescent cells can be rejuvenated by sphere suspension culture. We also provide evidence that sphere-induced extension of telomeres in swine and human Müller glia is achieved by alternative lengthening of telomeres or/and by telomerase activation. Stem Cells 2017;35:1579-1591.
Collapse
Affiliation(s)
- Ni Xu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA.,Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China
| | - Yao Chen
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA.,Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Kevin C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Xiaoqin Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Xiao Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA.,Department of Ophthalmology, the Second Affiliated Hospital, Central South University Xiangya School of Medicine, Changsha, China
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Douglas C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Ling Gao
- Department of Ophthalmology, the Second Affiliated Hospital, Central South University Xiangya School of Medicine, Changsha, China
| | - Fangtian Dong
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China
| | - Yongqing Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
15
|
Eisenberg DT, Tackney J, Cawthon RM, Cloutier CT, Hawkes K. Paternal and grandpaternal ages at conception and descendant telomere lengths in chimpanzees and humans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 162:201-207. [PMID: 27731903 PMCID: PMC5250553 DOI: 10.1002/ajpa.23109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/17/2016] [Accepted: 09/16/2016] [Indexed: 12/27/2022]
Abstract
Telomeres are repeating DNA at chromosome ends. Telomere length (TL) declines with age in most human tissues, and shorter TL is thought to accelerate senescence. In contrast, older men have sperm with longer TL; correspondingly, older paternal age at conception (PAC) predicts longer TL in offspring. This PAC-effect could be a unique form of transgenerational genetic plasticity that modifies somatic maintenance in response to cues of recent ancestral experience. The PAC-effect has not been examined in any non-human mammals. OBJECTIVES Here, we examine the PAC-effect in chimpanzees (Pan troglodytes). The PAC-effect on TL is thought to be driven by continual production of sperm-the same process that drives increased de novo mutations with PAC. As chimpanzees have both greater sperm production and greater sperm mutation rates with PAC than humans, we predict that the PAC-effect on TL will be more pronounced in chimpanzees. Additionally we examine whether PAC predicts TL of grandchildren. MATERIALS AND METHODS TL were measured using qPCR from DNA from blood samples from 40 captive chimpanzees and 144 humans. RESULTS Analyses showed increasing TL with PAC in chimpanzees (p = .009) with a slope six times that in humans (p = .026). No associations between TL and grandpaternal ages were found in humans or chimpanzees-although statistical power was low. DISCUSSION These results suggest that sperm production rates across species may be a determinant of the PAC-effect on offspring TL. This raises the possibility that sperm production rates within species may influence the TL passed on to offspring.
Collapse
Affiliation(s)
- Dan T.A. Eisenberg
- Department of Anthropology, University of Washington
- Center for Studies in Demography and Ecology, University of Washington
| | | | | | | | | |
Collapse
|
16
|
Abstract
Progress in improving animal welfare is currently limited by the lack of objective methods for assessing lifetime experience. I propose that telomere attrition, a cellular biomarker of biological age, provides a molecular measure of cumulative experience that could be used to assess the welfare impact of husbandry regimes and/or experimental procedures on non-human animals. I review evidence from humans that telomere attrition is accelerated by negative experiences in a cumulative and dose-dependent manner, but that this attrition can be mitigated or even reversed by positive life-style interventions. Evidence from non-human animals suggests that despite some specific differences in telomere biology, stress-induced telomere attrition is a robust phenomenon, occurring in a range of species including mice and chickens. I conclude that telomere attrition apparently integrates positive and negative experience in an accessible common currency that translates readily to novel species--the Holy Grail of a cumulative welfare indicator.
Collapse
Affiliation(s)
- Melissa Bateson
- Centre for Behaviour and Evolution/Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
17
|
|
18
|
Mitteldorf JJ. Telomere biology: Cancer firewall or aging clock? BIOCHEMISTRY (MOSCOW) 2013; 78:1054-60. [DOI: 10.1134/s0006297913090125] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Age-dependence of relative telomere length profiles during spermatogenesis in man. Maturitas 2013; 75:380-5. [DOI: 10.1016/j.maturitas.2013.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 04/28/2013] [Accepted: 05/03/2013] [Indexed: 11/21/2022]
|
20
|
Oostindjer M, Amdam GV. Systems integrity in health and aging - an animal model approach. LONGEVITY & HEALTHSPAN 2013; 2:2. [PMID: 24472488 PMCID: PMC3922947 DOI: 10.1186/2046-2395-2-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/09/2012] [Indexed: 11/21/2022]
Abstract
Human lifespan is positively correlated with childhood intelligence, as measured by psychometric (IQ) tests. The strength of this correlation is similar to the negative effect that smoking has on the life course. This result suggests that people who perform well on psychometric tests in childhood may remain healthier and live longer. The correlation, however, is debated: is it caused exclusively by social-environmental factors or could it also have a biological component? Biological traits of systems integrity that might result in correlations between brain function and lifespan have been suggested but are not well-established, and it is questioned what useful knowledge can come from understanding such mechanisms. In a recent study, we found a positive correlation between brain function and longevity in honey bees. Honey bees are highly social, but relevant social-environmental factors that contribute to cognition-survival correlations in humans are largely absent from insect colonies. Our results, therefore, suggest a biological explanation for the correlation in the bee. Here, we argue that individual differences in stress handling (coping) mechanisms, which both affect the bees' performance in tests of brain function and their survival could be a trait of systems integrity. Individual differences in coping are much studied in vertebrates, and several species provide attractive models. Here, we discuss how pigs are an interesting model for studying behavioural, physiological and molecular mechanisms that are recruited during stress and that can drive correlations between health, cognition and longevity traits. By revealing biological factors that make individuals susceptible to stress, it might be possible to alleviate health and longevity disparities in people.
Collapse
Affiliation(s)
- Marije Oostindjer
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, N-1432, Aas, Norway
| | - Gro V Amdam
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, N-1432, Aas, Norway
- School of Life Sciences, Arizona State University, PO Box 874501, 85287, Tempe, AZ, USA
| |
Collapse
|
21
|
Ji G, Liu K, Okuka M, Liu N, Liu L. Association of telomere instability with senescence of porcine cells. BMC Cell Biol 2012; 13:36. [PMID: 23241441 PMCID: PMC3563453 DOI: 10.1186/1471-2121-13-36] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 12/10/2012] [Indexed: 01/12/2023] Open
Abstract
Background Telomeres are essential for the maintenance of genomic stability, and telomere dysfunction leads to cellular senescence, carcinogenesis, aging, and age-related diseases in humans. Pigs have become increasingly important large animal models for preclinical tests and study of human diseases, and also may provide xeno-transplantation sources. Thus far, Southern blot analysis has been used to estimate average telomere lengths in pigs. Telomere quantitative fluorescence in situ hybridization (Q-FISH), however, can reveal status of individual telomeres in fewer cells, in addition to quantifying relative telomere lengths, and has been commonly used for study of telomere function of mouse and human cells. We attempted to investigate telomere characteristics of porcine cells using telomere Q-FISH method. Results The average telomere lengths in porcine cells measured by Q-FISH correlated with those of quantitative real-time PCR method (qPCR) or telomere restriction fragments (TRFs) by Southern blot analysis. Unexpectedly, we found that porcine cells exhibited high incidence of telomere doublets revealed by Q-FISH method, coincided with increased frequency of cellular senescence. Also, telomeres shortened during subculture of various porcine primary cell types. Interestingly, the high frequency of porcine telomere doublets and telomere loss was associated with telomere dysfunction-induced foci (TIFs). The incidence of TIFs, telomere doublets and telomere loss increased with telomere shortening and cellular senescence during subculture. Conclusion Q-FISH method using telomere PNA probe is particularly useful for characterization of porcine telomeres. Porcine cells exhibit high frequency of telomere instability and are susceptible to telomere damage and replicative senescence.
Collapse
Affiliation(s)
- Guangzhen Ji
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | |
Collapse
|
22
|
Ji G, Liu K, Chen C, Ruan W, Glytsou C, Yang Y, Okuka M, Song W, Gagos S, Li N, Liu L. Conservation and characterization of unique porcine interstitial telomeric sequences. SCIENCE CHINA. LIFE SCIENCES 2012; 55:1029-1037. [PMID: 23233217 DOI: 10.1007/s11427-012-4420-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 11/02/2012] [Indexed: 12/18/2022]
Abstract
Telomeres are composed of TTAGGG repeats and located at the ends of chromosomes. Telomeres protect chromosomes from instability in mammals, including mice and humans. Repetitive TTAGGG sequences are also found at intrachromosomal sites, where they are named as interstitial telomeric sequences (ITSs). Aberrant ITSs are implicated in chromosomal instability and found in cancer cells. Interestingly, in pigs, vertebrate telomere sequences TTAGGG (vITSs) are also localized at the centromeric region of chromosome 6, in addition to the end of all chromosomes. Surprisingly, we found that botanic telomere sequences, TTTAGGG (bITSs), also localize with vITSs at the centromeric regions of pig chromosome 6 using telomere fluorescence in situ hybridization (FISH) and by comparisons between several species. Furthermore, the average lengths of vITSs are highly correlated with those of the terminal telomeres (TTS). Also, pig ITSs show a high incidence of telomere doublets, suggesting that pig ITSs might be unstable and dynamic. Together, our results show that pig cells maintain the conserved telomere sequences that are found at the ITSs from of plants and other vertebrates. Further understanding of the function and regulation of pig ITSs may provide new clues for evolution and chromosomal instability.
Collapse
Affiliation(s)
- Guangzhen Ji
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hrdličková R, Nehyba J, Lim SL, Grützner F, Bose HR. Insights into the evolution of mammalian telomerase: platypus TERT shares similarities with genes of birds and other reptiles and localizes on sex chromosomes. BMC Genomics 2012; 13:216. [PMID: 22655747 PMCID: PMC3546421 DOI: 10.1186/1471-2164-13-216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 05/04/2012] [Indexed: 01/05/2023] Open
Abstract
Background The TERT gene encodes the catalytic subunit of the telomerase complex and is responsible for maintaining telomere length. Vertebrate telomerase has been studied in eutherian mammals, fish, and the chicken, but less attention has been paid to other vertebrates. The platypus occupies an important evolutionary position, providing unique insight into the evolution of mammalian genes. We report the cloning of a platypus TERT (OanTERT) ortholog, and provide a comparison with genes of other vertebrates. Results The OanTERT encodes a protein with a high sequence similarity to marsupial TERT and avian TERT. Like the TERT of sauropsids and marsupials, as well as that of sharks and echinoderms, OanTERT contains extended variable linkers in the N-terminal region suggesting that they were present already in basal vertebrates and lost independently in ray-finned fish and eutherian mammals. Several alternatively spliced OanTERT variants structurally similar to avian TERT variants were identified. Telomerase activity is expressed in all platypus tissues like that of cold-blooded animals and murine rodents. OanTERT was localized on pseudoautosomal regions of sex chromosomes X3/Y2, expanding the homology between human chromosome 5 and platypus sex chromosomes. Synteny analysis suggests that TERT co-localized with sex-linked genes in the last common mammalian ancestor. Interestingly, female platypuses express higher levels of telomerase in heart and liver tissues than do males. Conclusions OanTERT shares many features with TERT of the reptilian outgroup, suggesting that OanTERT represents the ancestral mammalian TERT. Features specific to TERT of eutherian mammals have, therefore, evolved more recently after the divergence of monotremes.
Collapse
Affiliation(s)
- Radmila Hrdličková
- Section of Molecular Genetics and Microbiology, School of Biological Science, University of Texas at Austin, 78712-1095, USA
| | | | | | | | | |
Collapse
|
24
|
Gomes NMV, Ryder OA, Houck ML, Charter SJ, Walker W, Forsyth NR, Austad SN, Venditt C, Pagel M, Shay JW, Wright WE. Comparative biology of mammalian telomeres: hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell 2011; 10:761-8. [PMID: 21518243 PMCID: PMC3387546 DOI: 10.1111/j.1474-9726.2011.00718.x] [Citation(s) in RCA: 319] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Progressive telomere shortening from cell division (replicative aging) provides a barrier for human tumor progression. This program is not conserved in laboratory mice, which have longer telomeres and constitutive telomerase. Wild species that do/do not use replicative aging have been reported, but the evolution of different phenotypes and a conceptual framework for understanding their uses of telomeres is lacking. We examined telomeres/telomerase in cultured cells from > 60 mammalian species to place different uses of telomeres in a broad mammalian context. Phylogeny-based statistical analysis reconstructed ancestral states. Our analysis suggested that the ancestral mammalian phenotype included short telomeres (< 20 kb, as we now see in humans) and repressed telomerase. We argue that the repressed telomerase was a response to a higher mutation load brought on by the evolution of homeothermy. With telomerase repressed, we then see the evolution of replicative aging. Telomere length inversely correlated with lifespan, while telomerase expression co-evolved with body size. Multiple independent times smaller, shorter-lived species changed to having longer telomeres and expressing telomerase. Trade-offs involving reducing the energetic/cellular costs of specific oxidative protection mechanisms (needed to protect < 20 kb telomeres in the absence of telomerase) could explain this abandonment of replicative aging. These observations provide a conceptual framework for understanding different uses of telomeres in mammals, support a role for human-like telomeres in allowing longer lifespans to evolve, demonstrate the need to include telomere length in the analysis of comparative studies of oxidative protection in the biology of aging, and identify which mammals can be used as appropriate model organisms for the study of the role of telomeres in human cancer and aging.
Collapse
Affiliation(s)
- Nuno M. V. Gomes
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
- Faculdade de Ciências da Universidade de Lisboa, Lisbon, P-1749-016 Portugal
| | - Oliver A. Ryder
- Conservation and Research for Endangered Species, Genetics Division, Arnold and Mabel Beckman Center for Conservation Research, Escondido, CA 92027, USA
| | - Marlys L. Houck
- Conservation and Research for Endangered Species, Genetics Division, Arnold and Mabel Beckman Center for Conservation Research, Escondido, CA 92027, USA
| | - Suellen J. Charter
- Conservation and Research for Endangered Species, Genetics Division, Arnold and Mabel Beckman Center for Conservation Research, Escondido, CA 92027, USA
| | - William Walker
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | | | - Steven N. Austad
- Barshop Center for Longevity and Aging Studies, San Antonio, TX 78245, USA
| | - Chris Venditt
- School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6BX, UK
| | - Mark Pagel
- School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6BX, UK
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Jerry W Shay
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Woodring E. Wright
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| |
Collapse
|
25
|
Eisenberg DTA. An evolutionary review of human telomere biology: the thrifty telomere hypothesis and notes on potential adaptive paternal effects. Am J Hum Biol 2011; 23:149-67. [PMID: 21319244 DOI: 10.1002/ajhb.21127] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 08/03/2010] [Accepted: 09/30/2010] [Indexed: 12/14/2022] Open
Abstract
Telomeres, repetitive DNA sequences found at the ends of linear chromosomes, play a role in regulating cellular proliferation, and shorten with increasing age in proliferating human tissues. The rate of age-related shortening of telomeres is highest early in life and decreases with age. Shortened telomeres are thought to limit the proliferation of cells and are associated with increased morbidity and mortality. Although natural selection is widely assumed to operate against long telomeres because they entail increased cancer risk, the evidence for this is mixed. Instead, here it is proposed that telomere length is primarily limited by energetic constraints. Cell proliferation is energetically expensive, so shorter telomeres should lead to a thrifty phenotype. Shorter telomeres are proposed to restrain adaptive immunity as an energy saving mechanism. Such a limited immune system, however, might also result in chronic infections, inflammatory stress, premature aging, and death--a more "disposable soma." With an increased reproductive lifespan, the fitness costs of premature aging are higher and longer telomeres will be favored by selection. Telomeres exhibit a paternal effect whereby the offspring of older fathers have longer telomeres due to increased telomere lengths of sperm with age. This paternal effect is proposed to be an adaptive signal of the expected age of male reproduction in the environment offspring are born into. The offspring of lineages of older fathers will tend to have longer, and thereby less thrifty, telomeres, better preparing them for an environment with higher expected ages at reproduction.
Collapse
Affiliation(s)
- Dan T A Eisenberg
- Department of Anthropology, Northwestern University, Evanston, IL 60208-1330, USA.
| |
Collapse
|
26
|
|
27
|
Cellular liver regeneration after extended hepatic resection in pigs. HPB SURGERY : A WORLD JOURNAL OF HEPATIC, PANCREATIC AND BILIARY SURGERY 2009; 2009:306740. [PMID: 19343196 PMCID: PMC2663376 DOI: 10.1155/2009/306740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 01/27/2009] [Indexed: 01/10/2023]
Abstract
BACKGROUND The liver has an enormous capacity to regenerate itself. The aim of this study was to evaluate whether the regeneration is due to hypertrophy or hyperplasia of the remnant liver after extended resection and whether a portosystemic shunt is beneficial. MATERIAL AND METHODS An extended left hemihepatectomy was performed in 25 pigs, and in 14 after performing a portosystemic shunt. During follow up, liver regeneration was estimated by macroscopic markers such as liver volume and size of the portal fields [mm(2)] as well as the amount of hepatocytes per portal field and the amount of hepatocytes per mm(2). RESULTS Regardless of the operation procedure, the volume of the remnant liver increased about 2.5 fold at the end of the first week after resection. The size of the portal fields increased significantly as well as the number of hepatocytes in the portal fields. Interestingly, the number of hepatocytes per mm(2) remained the same. CONCLUSION After extended resection, liver regeneration was achieved by an extensive and significant hyperplasia of hepatocytes within the preexisting portal fields and not by de novo synthesis of new portal fields. However, there was no difference in liver regeneration regarding the operation procedure performed with or without portosystemic shunt.
Collapse
|
28
|
Amount of Telomeric DNA on Pig Lymphocytes by Quantitative Fluorescence in situ Hybridization. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2008. [DOI: 10.5187/jast.2008.50.4.465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Kurome M, Hisatomi H, Matsumoto S, Tomii R, Ueno S, Hiruma K, Saito H, Nakamura K, Okumura K, Matsumoto M, Kaji Y, Endo F, Nagashima H. Production efficiency and telomere length of the cloned pigs following serial somatic cell nuclear transfer. J Reprod Dev 2008; 54:254-8. [PMID: 18490858 DOI: 10.1262/jrd.20038] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the present study was to examine the production efficiency of cloned pigs by serial somatic cell nuclear transfer (SCNT) and to ascertain any changes in the telomere lengths of multiple generations of pigs. Using fetal fibroblasts as the starting nuclear donor cells, porcine salivary gland progenitor cells were collected from the resultant first-generation cloned pigs to successively produce second- and third-generation clones, with no significant differences in production efficiency, which ranged from 1.4% (2/140) to 3.3% (13/391) among the 3 generations. The average telomere lengths (terminal restriction fragment values) for the first, second and third generation clones were 16.3, 18.1 and 20.5 kb, respectively, and were comparable to those in age-matched controls. These findings suggest that third-generation cloned pigs can be produced by serial somatic cell cloning without compromising production efficiency and that the telomere lengths of cloned pigs from the first to third generations are normal.
Collapse
Affiliation(s)
- Mayuko Kurome
- Laboratory of Developmental Engineering, Department of Life Science, School of Agriculture, Meiji University
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gorbunova V, Seluanov A. Coevolution of telomerase activity and body mass in mammals: from mice to beavers. Mech Ageing Dev 2008; 130:3-9. [PMID: 18387652 DOI: 10.1016/j.mad.2008.02.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 02/15/2008] [Accepted: 02/19/2008] [Indexed: 12/20/2022]
Abstract
Telomerase is repressed in the majority of human somatic tissues. As a result human somatic cells undergo replicative senescence, which plays an important role in suppressing tumorigenesis, and at the same time contributes to the process of aging. Repression of somatic telomerase activity is not a universal phenomenon among mammals. Mice, for example, express telomerase in somatic tissues, and mouse cells are immortal when cultured at physiological oxygen concentration. What is the status of telomerase in other animals, beyond human and laboratory mouse, and why do some species evolve repression of telomerase activity while others do not? Here we discuss the data on telomere biology in various mammalian species, and a recent study of telomerase activity in a large collection of wild rodent species, which showed that telomerase activity coevolves with body mass, but not lifespan. Large rodents repress telomerase activity, while small rodents maintain high levels of telomerase activity in somatic cells. We discuss a model that large body mass presents an increased cancer risk, which drives the evolution of telomerase suppression and replicative senescence.
Collapse
Affiliation(s)
- Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | | |
Collapse
|
31
|
Wege H, Müller A, Müller L, Petri S, Petersen J, Hillert C. Regeneration in pig livers by compensatory hyperplasia induces high levels of telomerase activity. COMPARATIVE HEPATOLOGY 2007; 6:6. [PMID: 17605788 PMCID: PMC1920532 DOI: 10.1186/1476-5926-6-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Accepted: 07/02/2007] [Indexed: 12/11/2022]
Abstract
Background Several highly proliferative human cells transiently activate telomerase, a ribonucleoprotein with reverse transcriptase activity, to counterbalance replication-associated telomere erosion and to increase stress resistance. Quiescent human hepatocytes exhibit very low or undetectable levels of telomerase activity. However, hepatocytes display a remarkable proliferative capability following liver injury. To investigate whether liver regeneration by compensatory hyperplasia is associated with telomerase activation, we measured telomerase activity in pig livers after 70 to 80% partial hepatectomy using a fully quantitative real-time telomeric repeat amplification protocol. In contrast to commonly studied inbred laboratory mouse strains, telomere length and telomerase activity in porcine tissues are comparable to humans. Results Following partial hepatectomy, histology revealed mitotic hepatocytes as marker for compensatory hyperplasia. As expected, there was no induction of inflammation. Telomerase activity increased significantly showing the highest levels (5-fold upregulation) in pigs treated with partial hepatectomy and hepatic decompression. Moreover, telomerase activity significantly correlated to the number of mitotic hepatocytes. Conclusion Our data demonstrate telomerase activation in liver regeneration by compensatory hyperplasia in a large animal model with telomere biology comparable to humans. Telomerase activation may constitute a mechanism to protect proliferating liver cells against telomere shortening and oxidative stress.
Collapse
Affiliation(s)
- Henning Wege
- Department of Gastroenterology and Hepatology with Sections Infectious Disease and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Anett Müller
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Lars Müller
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Susan Petri
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jörg Petersen
- Department of Gastroenterology and Hepatology with Sections Infectious Disease and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christian Hillert
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
32
|
Characteristics of primary and immortalized fibroblast cells derived from the miniature and domestic pigs. BMC Cell Biol 2007; 8:20. [PMID: 17543094 PMCID: PMC1894962 DOI: 10.1186/1471-2121-8-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 06/01/2007] [Indexed: 12/20/2022] Open
Abstract
Background The pig, Sus scrofa domestica includes both the miniature and commercial domestic breed. These animals have influenced the human life and economies and have been studied throughout history. Although the miniature breeds are more recent and have increasingly been used in a variety of biomedical studies, their cell lines have rarely been established. Therefore, we sought to establish primary and immortal cell lines derived from both the miniature and domestic pig to better enable insight into possible in vivo growth differences. Results The in vitro lifespan of primary domestic pig fibroblast (PF) and miniature pig fibroblast (MPF) cells using a standard 3T3 protocol was determined. Both of the primary PF and MPF cells were shown to have a two-step replicative senescence barrier. Primary MPF cells exhibited a relatively shorter lifespan and slower proliferation rate compared to those of primary PF cells. Beyond senescence barriers, lifespan-extended PF and MPF cells were eventually established and indicated spontaneous cellular immortalization. In contrast to the immortalized PF cells, immortal MPF cells showed a transformed phenotype and possessed more frequent chromosomal abnormalities and loss of p53 regulatory function. The lifespan of primary MPF and PF cells was extended by inactivation of the p53 function using transduction by SV40LT without any detectable senescent phenotype. Conclusion These results suggest that p53 signaling might be a major determinant for the replicative senescence in the MPF cells that have the shorter lifespan and slower growth rate compared to PF cells in vitro.
Collapse
|
33
|
Iwata T, Yamakoshi Y, Simmer JP, Ishikawa I, Hu JCC. Establishment of porcine pulp-derived cell lines and expression of recombinant dentin sialoprotein and recombinant dentin matrix protein-1. Eur J Oral Sci 2007; 115:48-56. [PMID: 17305716 DOI: 10.1111/j.1600-0722.2007.00426.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The major non-collagenous proteins in dentin have extensive post-translational modifications (PTMs) that appear to be odontoblast-specific, so expression of recombinant dentin proteins in other cell types does not achieve the in vivo pattern of PTMs. We established cell lines from developing porcine dental papillae and used them to express recombinant dentin sialoprotein (DSP) and dentin matrix protein-1 (DMP1). Pulp cells were immortalized with pSV3-neo and clonally selected. Cell lines were characterized by reverse transcruption-polymerase chain reaction (RT-PCR) and assayed for alkaline phosphatase activity and mineralized nodule formation. One of the five cell lines (P4-2) exhibited an odontoblastic phenotype, as determined by expression of tooth-specific markers, response to cytokines, and ability to form mineralized nodules. DSP and DMP1 expression constructs were transiently transfected into various cell lines. DSP, expressed by P4-2 cells, contained chondroitin 6-sulfate, which is a defining modification of the DSP proteoglycan. DMP1 was secreted and cleaved by proteases, even in human kidney 293 cells, which normally do not express DMP1, demonstrating susceptibility to non-specific proteolysis. Both recombinant proteins enhanced P4-2 cell attachment in a dose-dependent manner. We conclude that we have immortalized porcine odontoblast-like cells which express recombinant dentin extracellular matrix components with post-translational modifications that closely resemble those produced in vivo.
Collapse
Affiliation(s)
- Takanori Iwata
- University of Michigan Dental Research Laboratory, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
34
|
Haussmann MF, Winkler DW, Huntington CE, Nisbet ICT, Vleck CM. Telomerase activity is maintained throughout the lifespan of long-lived birds. Exp Gerontol 2007; 42:610-8. [PMID: 17470387 DOI: 10.1016/j.exger.2007.03.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 02/15/2007] [Accepted: 03/20/2007] [Indexed: 12/20/2022]
Abstract
Telomerase is an enzyme capable of elongating telomeres, the caps at the ends of chromosomes associated with aging, lifespan and survival. We investigated tissue-level variation in telomerase across different ages in four bird species that vary widely in their life history. Telomerase activity in bone marrow may be associated with the rate of erythrocyte telomere shortening; birds with lower rates of telomere shortening and longer lifespans have higher bone marrow telomerase activity throughout life. Telomerase activity in all of the species appears to be tightly correlated with the proliferative potential of specific organs, and it is also highest in the hatchling age-class, when the proliferative demands of most organs are the highest. This study offers an alternative view to the commonly held hypothesis that telomerase activity is down-regulated in all post-mitotic somatic tissues in long-lived organisms as a tumor-protective mechanism. This highlights the need for more comparative analyses of telomerase, lifespan and the incidence of tumor formation.
Collapse
|
35
|
Seluanov A, Chen Z, Hine C, Sasahara THC, Ribeiro AACM, Catania KC, Presgraves DC, Gorbunova V. Telomerase activity coevolves with body mass not lifespan. Aging Cell 2007; 6:45-52. [PMID: 17173545 PMCID: PMC2693359 DOI: 10.1111/j.1474-9726.2006.00262.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In multicellular organisms, telomerase is required to maintain telomere length in the germline but is dispensable in the soma. Mice, for example, express telomerase in somatic and germline tissues, while humans express telomerase almost exclusively in the germline. As a result, when telomeres of human somatic cells reach a critical length the cells enter irreversible growth arrest called replicative senescence. Replicative senescence is believed to be an anticancer mechanism that limits cell proliferation. The difference between mice and humans led to the hypothesis that repression of telomerase in somatic cells has evolved as a tumor-suppressor adaptation in large, long-lived organisms. We tested whether regulation of telomerase activity coevolves with lifespan and body mass using comparative analysis of 15 rodent species with highly diverse lifespans and body masses. Here we show that telomerase activity does not coevolve with lifespan but instead coevolves with body mass: larger rodents repress telomerase activity in somatic cells. These results suggest that large body mass presents a greater risk of cancer than long lifespan, and large animals evolve repression of telomerase activity to mitigate that risk.
Collapse
Affiliation(s)
- Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Zhuoxun Chen
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Christopher Hine
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Tais H. C. Sasahara
- Department of Surgery, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Antonio A. C. M. Ribeiro
- Department of Surgery, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Kenneth C. Catania
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
36
|
Davis T, Kipling D. Telomeres and telomerase biology in vertebrates: progress towards a non-human model for replicative senescence and ageing. Biogerontology 2006; 6:371-85. [PMID: 16518699 DOI: 10.1007/s10522-005-4901-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 10/05/2005] [Indexed: 01/02/2023]
Abstract
Studies on telomere and telomerase biology are fundamental to the understanding of human ageing and age-related diseases such as cancer. However, human studies of whole body ageing are hampered by the lack of suitable fully reflective animal model systems, the wild-type mouse model being unsuitable due to differences in telomere biology. Here we summarise recent data on the biology of telomeres, telomerase, and the tumour suppressor protein p53 in various animals, and examine their possible roles in replicative senescence, ageing, and tumourigenesis. The advantages and disadvantages of various animals as model systems for whole body ageing in humans are discussed.
Collapse
Affiliation(s)
- Terence Davis
- Department of Pathology, School of Medicine, Cardiff University, CF14 4XN, Heath Park, Cardiff, UK.
| | | |
Collapse
|
37
|
Mandell KE, Vallone PM, Owczarzy R, Riccelli PV, Benight AS. Studies of DNA dumbbells VIII. Melting analysis of DNA dumbbells with dinucleotide repeat stem sequences. Biopolymers 2006; 82:199-221. [PMID: 16345003 DOI: 10.1002/bip.20425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Melting curves and circular dichroism spectra were measured for a number of DNA dumbbell and linear molecules containing dinucleotide repeat sequences of different lengths. To study effects of different sequences on the melting and spectroscopic properties, six DNA dumbbells whose stems contain the central sequences (AA)(10), (AC)(10), (AG)(10), (AT)(10), (GC)(10), and (GG)(10) were prepared. These represent the minimal set of 10 possible dinucleotide repeats. To study effects of dinucleotide repeat length, dumbbells with the central sequences (AG)(n), n = 5 and 20, were prepared. Control molecules, dumbbells with a random central sequence, (RN)(n), n = 5, 10, and 20, were also prepared. The central sequence of each dumbbell was flanked on both sides by the same 12 base pairs and T(4) end-loops. Melting curves were measured by optical absorbance and differential scanning calorimetry in solvents containing 25, 55, 85, and 115 mM Na(+). CD spectra were collected from 20 to 45 degrees C and [Na(+)] from 25 to 115 mM. The spectral database did not reveal any apparent temperature dependence in the pretransition region. Analysis of the melting thermodynamics evaluated as a function of Na(+) provided a means for quantitatively estimating the counterion release with melting for the different sequences. Results show a very definite sequence dependence, indicating the salt-dependent properties of duplex DNA are also sequence dependent. Linear DNA molecules containing the (AG)(n) and (RN)(n), sequences, n = 5, 10, 20, and 30, were also prepared and studied. The linear DNA molecules had the exact sequences of the dumbbell stems. That is, the central repeat sequence in each linear duplex was flanked on both sides by the same 12-bp sequence. Melting and CD studies were also performed on the linear DNA molecules. Comparison of results obtained for the same sequences in dumbbell and linear molecular environments reveals several interesting features of the interplay between sequence-dependent structural variability, sequence length, and the unconstrained (linear) or constrained (dumbbell) molecular environments.
Collapse
Affiliation(s)
- Kathleen E Mandell
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Room 4500, 60607, USA
| | | | | | | | | |
Collapse
|
38
|
Kwak S, Jung JE, Jin X, Kim SM, Kim TK, Lee JS, Lee SY, Pian X, You S, Kim H, Choi YJ. Establishment of immortal swine kidney epithelial cells. Anim Biotechnol 2006; 17:51-8. [PMID: 16621759 DOI: 10.1080/10495390500461070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Using normal swine kidney epithelial (SKE) cells that were shown to be senescent at passages 12 to 14, we have established one lifespan-extended cell line and two lifespan-extended cell lines by exogenous introduction of the human catalytic subunit of telomerase (hTERT) and simian virus 40 large T-antigen (SV40LT), all of which maintain epithelial morphology and express cytokeratin, a marker of epithelial cells. SV40LT- and hTERT-transduced immortal cell lines appeared to be smaller and exhibited more uniform morphology relative to primary and spontaneously immortalized SKE cells. We determined the in vitro lifespan of primary SKE cells using a standard 3T6 protocol. There were two steps of the proliferation barrier at 12 and 20, in which a majority of primary SKE cells appeared enlarged, flattened, vacuolated, and ss-galactosidase-positive, all phenotypical characteristics of senescent cells. Lifespan-extended SKE cells were eventually established from most of the cellular foci, which is indicative of spontaneous cellular conversion at passage 23. Beyond passage 25, the rate of population doubling of the established cells gradually increased. At passage 30, immortal cell lines grew faster than primary counterpart cells in 10% FBS-DMEM culture conditions, and only SV40LT-transduced immortal cells grew faster than primary and other SKE immortal cells in 0.5% FBS-DMEM. These lifespan-extended SKE cell lines failed to grow in an anchorage-independent manner in soft-agar dishes. Hence, three immortalized swine kidney epithelial cells that are not transformed would be valuable biological tools for virus propagation and basic kidney epithelial cell research.
Collapse
Affiliation(s)
- Sungwook Kwak
- Laboratory of Cell Growth and Function Regulation, Division of Bioscience and Technology, College of Life and Environmental Sciences, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Russo V, Berardinelli P, Martelli A, Di Giacinto O, Nardinocchi D, Fantasia D, Barboni B. Expression of Telomerase Reverse Transcriptase Subunit (TERT) and Telomere Sizing in Pig Ovarian Follicles. J Histochem Cytochem 2006; 54:443-55. [PMID: 16400001 DOI: 10.1369/jhc.4a6603.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Telomerase is crucial for chromosome stability because it maintains telomere length. Little is known about telomerase in ovarian follicles, where an intense cell division is crucial to sustain estrous cycle and to drive oocyte development. The present research was performed to detect, by immunohistochemistry, the distribution of telomerase catalytic subunit (TERT) during folliculogenesis and to study the effect of TERT expression on telomeres. To this aim, telomere length has been measured on fluorescence in situ hybridization (FISH)-processed sections either in follicular or in germ cells. In primary and preantral follicles, TERT was observed in granulosa and in germ cells, with a typical nuclear location. During antral differentiation, only somatic cells close to the antrum (antral layer) and cumulus cells maintained TERT expression. The relative oocytes located TERT in the ooplasm independent from the process of meiotic maturation. FISH results indicate that a correlation exists between TERT expression and telomere size. In fact, progressively bigger telomeres were observed from preantral to antral follicles where longer structures were recorded in cells of the cumulus oophorus and of the antral layer than those of the basal one. Stable and elongated telomeres were detected in fully grown oocytes that lost the functional TERT distribution within the nucleus.
Collapse
Affiliation(s)
- Valentina Russo
- Dipartimento di Scienze Biomediche Comparate, Università degli Studi di Teramo, 64100 Teramo, Italy.
| | | | | | | | | | | | | |
Collapse
|
40
|
Long S, Argyle DJ, Gault EA, Campbell S, Nasir L. The canine telomerase catalytic subunit (dogTERT): Characterisation of the gene promoter and identification of proximal core sequences necessary for specific transcriptional activity in canine telomerase positive cell lines. Gene 2005; 358:111-20. [PMID: 16051448 DOI: 10.1016/j.gene.2005.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 04/08/2005] [Accepted: 04/14/2005] [Indexed: 11/20/2022]
Abstract
Telomerase biology is complicated by studies that show that telomere expression and telomere biology differs between species, and that existing animal models do not closely resemble the human situation. We have previously reported a description of telomere/telomerase biology in the dog and have suggested this as an alternative model system. To further elucidate telomerase biology in this species we have cloned and characterised the canine reverse transcriptase (dogTERT) promoter. We demonstrate that core promoter activity is contained within a region extending approximately 300 bp upstream of the ATG codon. Transient transfections in telomerase-positive canine cell lines and telomerase negative fibroblasts showed that the promoter is only active in telomerase positive cell lines. Sequence analysis demonstrated that the 5' regulatory region is GC-rich and contains no TATA or CAAT box, similar to the human TERT promoter. Motif searches revealed the presence of multiple transcription factor binding sites common to both the human and canine TERT promoters, including a single E-box, Sp1, AP1, MZF-2 and ER/Sp1 binding sites. These findings suggest that the dogTERT gene shares similar transcriptional control to hTERT. Identification of the core promoter necessary for activity may allow the use of naturally occurring cancers in dogs as a preclinical testing ground for telomerase targeted therapies in human cancer patients.
Collapse
Affiliation(s)
- S Long
- Division of Pathological Sciences, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, Scotland, UK.
| | | | | | | | | |
Collapse
|