1
|
Baldensperger T, Preissler M, Becker CFW. Non-enzymatic posttranslational protein modifications in protein aggregation and neurodegenerative diseases. RSC Chem Biol 2025; 6:129-149. [PMID: 39722676 PMCID: PMC11667106 DOI: 10.1039/d4cb00221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Highly reactive metabolic intermediates and other small molecules frequently react with amino acid side chains, leading to non-enzymatic posttranslational modifications (nPTMs) of proteins. The abundance of these modifications increases under high metabolic activity or stress conditions and can dramatically impact protein structure and function. Although protein quality control mechanisms typically mitigate the effects of these impaired proteins, in long-lived and degradation-resistant proteins, nPTMs accumulate. In some cases, such as cataract development and diabetes, clear links between nPTMs, aging, and disease progression have been established. In neurodegenerative diseases such as Alzheimer's and Parkinson's disease, a key question is whether accumulation of nPTMs is a cause or consequence of protein aggregation. This review focuses on major nPTMs found on proteins with central roles in neurodegenerative diseases such as α-synuclein, β-amyloid, and tau. We summarize current knowledge on the formation of these modifications and discuss their potential impact on disease onset and progression. Additionally, we examine what is known to date about how nPTMs impair cellular detoxification, repair, and degradation systems. Finally, we critically discuss the available methodologies to systematically investigate nPTMs at the molecular level and outline suitable approaches to study their effects on protein aggregation. We aim to foster more research into the role of nPTMs in neurodegeneration by adapting methodologies that have proven successful in studying enzymatic posttranslational modifications. Specifically, we advocate for site-specific incorporation of these modifications into target proteins using advanced chemical and molecular biology techniques.
Collapse
Affiliation(s)
- Tim Baldensperger
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
| | - Miriam Preissler
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem) Währinger Str. 42 1090 Vienna Austria
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
| |
Collapse
|
2
|
Mariño L, Belén Uceda A, Leal F, Adrover M. Insight into the Effect of Methylglyoxal on the Conformation, Function, and Aggregation Propensity of α-Synuclein. Chemistry 2024; 30:e202400890. [PMID: 38687053 DOI: 10.1002/chem.202400890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
It is well-known that people suffering from hyperglycemia have a higher propensity to develop Parkinson's disease (PD). One of the most plausible mechanisms linking these two pathologies is the glycation of neuronal proteins and the pathological consequences of it. α-Synuclein, a key component in PD, can be glycated at its fifteen lysine. In fact, the end products of this process have been detected on aggregated α-synuclein isolated from in vivo. However, the consequences of glycation are not entirely clear, which are of crucial importance to understand the mechanism underlying the connection between diabetes and PD. To better clarify this, we have here examined how methylglyoxal (the most important carbonyl compound found in the cytoplasm) affects the conformation and aggregation propensity of α-synuclein, as well as its ability to cluster and fuse synaptic-like vesicles. The obtained data prove that methylglyoxal induces the Lys-Lys crosslinking through the formation of MOLD. However, this does not have a remarkable effect on the averaged conformational ensemble of α-synuclein, although it completely depletes its native propensity to form soluble oligomers and insoluble amyloid fibrils. Moreover, methylglyoxal has a disrupting effect on the ability of α-synuclein to bind, cluster and fusion synaptic-like vesicles.
Collapse
Affiliation(s)
- Laura Mariño
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra, Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain
| | - Ana Belén Uceda
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra, Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain
| | - Francisco Leal
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra, Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain
| | - Miquel Adrover
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra, Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain
| |
Collapse
|
3
|
Patil RS, Tupe RS. Communal interaction of glycation and gut microbes in diabetes mellitus, Alzheimer's disease, and Parkinson's disease pathogenesis. Med Res Rev 2024; 44:365-405. [PMID: 37589449 DOI: 10.1002/med.21987] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Diabetes and its complications, Alzheimer's disease (AD), and Parkinson's disease (PD) are increasing gradually, reflecting a global threat vis-à-vis expressing the essentiality of a substantial paradigm shift in research and remedial actions. Protein glycation is influenced by several factors, like time, temperature, pH, metal ions, and the half-life of the protein. Surprisingly, most proteins associated with metabolic and neurodegenerative disorders are generally long-lived and hence susceptible to glycation. Remarkably, proteins linked with diabetes, AD, and PD share this characteristic. This modulates protein's structure, aggregation tendency, and toxicity, highlighting renovated attention. Gut microbes and microbial metabolites marked their importance in human health and diseases. Though many scientific shreds of evidence are proposed for possible change and dysbiosis in gut flora in these diseases, very little is known about the mechanisms. Screening and unfolding their functionality in metabolic and neurodegenerative disorders is essential in hunting the gut treasure. Therefore, it is imperative to evaluate the role of glycation as a common link in diabetes and neurodegenerative diseases, which helps to clarify if modulation of nonenzymatic glycation may act as a beneficial therapeutic strategy and gut microbes/metabolites may answer some of the crucial questions. This review briefly emphasizes the common functional attributes of glycation and gut microbes, the possible linkages, and discusses current treatment options and therapeutic challenges.
Collapse
Affiliation(s)
- Rahul Shivaji Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rashmi Santosh Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, Maharashtra, India
| |
Collapse
|
4
|
Battis K, Xiang W, Winkler J. The Bidirectional Interplay of α-Synuclein with Lipids in the Central Nervous System and Its Implications for the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2023; 24:13270. [PMID: 37686080 PMCID: PMC10487772 DOI: 10.3390/ijms241713270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The alteration and aggregation of alpha-synuclein (α-syn) play a crucial role in neurodegenerative diseases collectively termed as synucleinopathies, including Parkinson's disease (PD). The bidirectional interaction of α-syn with lipids and biomembranes impacts not only α-syn aggregation but also lipid homeostasis. Indeed, lipid composition and metabolism are severely perturbed in PD. One explanation for lipid-associated alterations may involve structural changes in α-syn, caused, for example, by missense mutations in the lipid-binding region of α-syn as well as post-translational modifications such as phosphorylation, acetylation, nitration, ubiquitination, truncation, glycosylation, and glycation. Notably, different strategies targeting the α-syn-lipid interaction have been identified and are able to reduce α-syn pathology. These approaches include the modulation of post-translational modifications aiming to reduce the aggregation of α-syn and modify its binding properties to lipid membranes. Furthermore, targeting enzymes involved in various steps of lipid metabolism and exploring the neuroprotective potential of lipids themselves have emerged as novel therapeutic approaches. Taken together, this review focuses on the bidirectional crosstalk of α-syn and lipids and how alterations of this interaction affect PD and thereby open a window for therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.B.); (W.X.)
| |
Collapse
|
5
|
Uceda AB, Frau J, Vilanova B, Adrover M. Tyrosine Nitroxidation Does Not Affect the Ability of α-Synuclein to Bind Anionic Micelles, but It Diminishes Its Ability to Bind and Assemble Synaptic-like Vesicles. Antioxidants (Basel) 2023; 12:1310. [PMID: 37372040 DOI: 10.3390/antiox12061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Parkinson's disease (PD) is characterized by dopaminergic neuron degeneration and the accumulation of neuronal inclusions known as Lewy bodies, which are formed by aggregated and post-translationally modified α-synuclein (αS). Oxidative modifications such as the formation of 3-nitrotyrosine (3-NT) or di-tyrosine are found in αS deposits, and they could be promoted by the oxidative stress typical of PD brains. Many studies have tried to elucidate the molecular mechanism correlating nitroxidation, αS aggregation, and PD. However, it is unclear how nitroxidation affects the physiological function of αS. To clarify this matter, we synthetized an αS with its Tyr residues replaced by 3-NT. Its study revealed that Tyr nitroxidation had no effect on either the affinity of αS towards anionic micelles nor the overall structure of the micelle-bound αS, which retained its α-helical folding. Nevertheless, we observed that nitroxidation of Y39 lengthened the disordered stretch bridging the two consecutive α-helices. Conversely, the affinity of αS towards synaptic-like vesicles diminished as a result of Tyr nitroxidation. Additionally, we also proved that nitroxidation precluded αS from performing its physiological function as a catalyst of the clustering and the fusion of synaptic vesicles. Our findings represent a step forward towards the completion of the puzzle that must explain the molecular mechanism behind the link between αS-nitroxidation and PD.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Health Research Institute of the Balearic Islands (IdISBa), E-07120 Palma de Mallorca, Spain
- Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Juan Frau
- Health Research Institute of the Balearic Islands (IdISBa), E-07120 Palma de Mallorca, Spain
- Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Bartolomé Vilanova
- Health Research Institute of the Balearic Islands (IdISBa), E-07120 Palma de Mallorca, Spain
- Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Miquel Adrover
- Health Research Institute of the Balearic Islands (IdISBa), E-07120 Palma de Mallorca, Spain
- Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
6
|
Naz S, Mahmood T, Gupta R, Siddiqui MH, Ahsan F, Ansari VA, Shamim A, Rizvi AA. Clinical Manifestation of AGE-RAGE Axis in Neurodegenerative and Cognitive Impairment Disorders. Drug Res (Stuttg) 2023. [PMID: 37040870 DOI: 10.1055/a-2004-3591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The receptor of Advanced Glycation Endproducts (RAGE) and Advanced Glycation Endproducts (AGE) have multiple functions in our body and their restraint are being observed in neurodegenerative and memory impairment disorders. The review of different pathways allows an understanding of the probable mechanism of neurodegeneration and memory impairment involving RAGE and AGE. Commonly we observe AGE accumulation in neural cells and tissues but the extent of accumulation increases with the presence of memory impairment disorder. The presence of AGEs can also be seen in morbid accumulation, pathological structures in the form of amyloid clots, and nervous fibrillary tangles in Alzheimer's Disease (AD) and memory impairment disease.Many neuropathological and biochemical aspects of AD are explained by AGEs, including widespread protein crosslinking, glial activation of oxidative stress, and neuronal cell death. Oxidative stress is due to different reasons and glycation end products set in motion and form or define various actions which are normally due to AGE changes in a pathogenic cascade. By regulating the transit of ß-amyloid in and out of the brain or altering inflammatory pathways, AGE and it's ensnare receptor such as soluble RAGE may function as blockage or shield AD development. RAGE activates the transcription-controlling factor Necrosis Factor (NF-κB) and increases the protraction of cytokines, like a higher number of Tumor Necrosis Factor (TNF-α) and Interleukin (IL-I) by inducing several signal transduction cascades. Furthermore, binding to RAGE can pro-activate reactive oxygen species (ROS), which is popularly known to cause neuronal death.
Collapse
Affiliation(s)
- Sabreena Naz
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Tarique Mahmood
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Ramesh Gupta
- Department of Pharmacy, Hygia Institute of Pharmaceutical Education and Research, Lucknow, India
| | | | - Farogh Ahsan
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Vaseem Ahamad Ansari
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Arshiya Shamim
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Ali Abbas Rizvi
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
- Department of Pharmacy, Hygia Institute of Pharmaceutical Education and Research, Lucknow, India
| |
Collapse
|
7
|
Chegão A, Vicente Miranda H. Unveiling new secrets in Parkinson's disease: The glycatome. Behav Brain Res 2023; 442:114309. [PMID: 36706808 DOI: 10.1016/j.bbr.2023.114309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
We are witnessing a considerable increase in the incidence of Parkinson's disease (PD), which may be due to the general ageing of the population. While there is a plethora of therapeutic strategies for this disease, they still fail to arrest disease progression as they do not target and prevent the neurodegenerative process. The identification of disease-causing mutations allowed researchers to better dissect the underlying causes of this disease, highlighting, for example, the pathogenic role of alpha-synuclein. However, most PD cases are sporadic, which is making it hard to unveil the major causative mechanisms of this disease. In the recent years, epidemiological evidence suggest that type-2 diabetes mellitus (T2DM) individuals have higher risk and worst outcomes of PD, allowing to raise the hypothesis that some dysregulated processes in T2DM may contribute or even trigger the neurodegenerative process in PD. One major consequence of T2DM is the unprogrammed reaction between sugars, increased in T2DM, and proteins, a reaction named glycation. Pre-clinical reports show that alpha-synuclein is a target of glycation, and glycation potentiates its pathogenicity which contributes for the neurodegenerative process. Moreover, it triggers, anticipates, or aggravates several PD-like motor and non-motor complications. A given profile of proteins are differently glycated in diseased conditions, altering the brain proteome and leading to brain dysfunction and neurodegeneration. Herein we coin the term Glycatome as the profile of glycated proteins. In this review we report on the mechanisms underlying the association between T2DM and PD, with particular focus on the impact of protein glycation.
Collapse
Affiliation(s)
- Ana Chegão
- iNOVA4Health, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Hugo Vicente Miranda
- iNOVA4Health, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa, Portugal.
| |
Collapse
|
8
|
Seo MH, Yeo S. Association Between Decreased Srpk3 Expression and Increased Substantia Nigra Alpha-Synuclein Level in an MPTP-Induced Parkinson's Disease Mouse Model. Mol Neurobiol 2023; 60:780-788. [PMID: 36369636 DOI: 10.1007/s12035-022-03104-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 10/25/2022] [Indexed: 11/13/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and is caused by the loss of dopaminergic neurons in the substantia nigra (SN). However, the reason for the death of dopaminergic neurons remains unclear. An increase in α-synuclein (α-syn) expression is an important factor in the pathogenesis of PD. In the current study, we investigated the association between serine/arginine-rich protein-specific kinase 3 (Srpk3) and PD in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model and in SH-SY5Y cells treated with 1-methyl-4-phenylpyridinium (MPP+). Srpk3 expression was significantly downregulated, while tyrosine hydroxylase (TH) expression decreased and α-syn expression increased after 4 weeks of MPTP treatment. Dopaminergic cell reduction and α-syn expression increase were demonstrated by Srpk3 expression inhibition by siRNA in SH-SY5Y cells. Moreover, a decrease in Srpk3 expression upon siRNA treatment promoted dopaminergic cell reduction and α-syn expression increase in SH-SY5Y cells treated with MPP+ . These results suggested that Srpk3 expression decrease due to Srpk3 siRNA caused both TH level decrease and α-syn expression increase. This raises new possibilities for studying how Srpk3 controls dopaminergic cells and α-syn expression, which may be related to PD pathogenesis. Our results provide an avenue for understanding the role of Srpk3 in dopaminergic cell loss and α-syn upregulation in SN. Furthermore, this study supports a therapeutic possibility for PD in that the maintenance of Srpk3 expression inhibits dopaminergic cell reduction.
Collapse
Affiliation(s)
- Min Hyung Seo
- Department of Meridian and Acupoint, College of Korean Medicine, Sangji University, #83 Sangjidae-Gil, Wonju, 26339, Gangwon-Do, Republic of Korea
| | - Sujung Yeo
- Department of Meridian and Acupoint, College of Korean Medicine, Sangji University, #83 Sangjidae-Gil, Wonju, 26339, Gangwon-Do, Republic of Korea. .,Research Institute of Korean Medicine, Sangji University, Wonju, 26339, Republic of Korea.
| |
Collapse
|
9
|
Peng W, Kobeissy F, Mondello S, Barsa C, Mechref Y. MS-based glycomics: An analytical tool to assess nervous system diseases. Front Neurosci 2022; 16:1000179. [PMID: 36408389 PMCID: PMC9671362 DOI: 10.3389/fnins.2022.1000179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 08/27/2023] Open
Abstract
Neurological diseases affect millions of peopleochemistryorldwide and are continuously increasing due to the globe's aging population. Such diseases affect the nervous system and are characterized by a progressive decline in brain function and progressive cognitive impairment, decreasing the quality of life for those with the disease as well as for their families and loved ones. The increased burden of nervous system diseases demands a deeper insight into the biomolecular mechanisms at work during disease development in order to improve clinical diagnosis and drug design. Recently, evidence has related glycosylation to nervous system diseases. Glycosylation is a vital post-translational modification that mediates many biological functions, and aberrant glycosylation has been associated with a variety of diseases. Thus, the investigation of glycosylation in neurological diseases could provide novel biomarkers and information for disease pathology. During the last decades, many techniques have been developed for facilitation of reliable and efficient glycomic analysis. Among these, mass spectrometry (MS) is considered the most powerful tool for glycan analysis due to its high resolution, high sensitivity, and the ability to acquire adequate structural information for glycan identification. Along with MS, a variety of approaches and strategies are employed to enhance the MS-based identification and quantitation of glycans in neurological samples. Here, we review the advanced glycomic tools used in nervous system disease studies, including separation techniques prior to MS, fragmentation techniques in MS, and corresponding strategies. The glycan markers in common clinical nervous system diseases discovered by utilizing such MS-based glycomic tools are also summarized and discussed.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Chloe Barsa
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
10
|
Metabolism and memory: α-synuclein level in children with obesity and children with type 1 diabetes; relation to glucotoxicity, lipotoxicity and executive functions. Int J Obes (Lond) 2022; 46:2040-2049. [PMID: 36153375 PMCID: PMC9584809 DOI: 10.1038/s41366-022-01222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022]
Abstract
Abstract
Background/Objectives
Children with obesity and those with type 1diabetes (T1D) exhibit subtle neurocognitive deficits, the mechanism of which remains unknown. α-synuclein plays a fundamental role in neurodegeneration. Moreover, its role in glucose and lipids metabolism is emerging. This study aims to assess whether α-synuclein is correlated with the degree of neurodegeneration in children with obesity and those with T1D in comparison to healthy controls and correlate it to various neurocognitive and metabolic parameters.
Subjects/Methods
Forty children with obesity, 40 children with T1D and 40 matched-healthy controls were assessed for anthropometric measurements and blood-pressure. Cognitive evaluation was performed using Stanford–Binet scale and Barkley Deficits in Executive Functioning (EF) Scale-Children and Adolescents. α-synuclein, fasting lipids and glucose were measured with calculation of the homeostatic model of insulin-resistance and estimated-glucose disposal rate.
Results
Children with obesity and those with T1D had significantly higher α-synuclein (p < 0.001) and total EF percentile (p = 0.001) than controls. α-synuclein was negatively correlated to total IQ (p < 0.001 and p = 0.001), and positively correlated with total EF percentile (p = 0.009 and p = 0.001) and EF symptom count percentile (p = 0.005 and p < 0.001) in children with T1D and obesity, respectively. Multivariate-regression revealed that α-synuclein was independently related to age (p = 0.028), diabetes-duration (p = 0.006), HbA1C% (p = 0.034), total IQ (p = 0.013) and EF symptom count percentile (p = 0.003) among children with T1D, and to diastolic blood-pressure percentile (p = 0.013), waist/hip ratio SDS (p = 0.007), total EF percentile (P = 0.033) and EF symptom count percentile (p < 0.001) in children with obesity.
Conclusion
α-synuclein could have a mechanistic role in neurocognitive deficit among children with obesity and T1D.
Collapse
|
11
|
Wang Q, Lu M, Zhu X, Gu X, Zhang T, Xia C, Yang L, Xu Y, Zhou M. The role of microglia immunometabolism in neurodegeneration: Focus on molecular determinants and metabolic intermediates of metabolic reprogramming. Biomed Pharmacother 2022; 153:113412. [DOI: 10.1016/j.biopha.2022.113412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
|
12
|
Dong H, Zhang Y, Huang Y, Deng H. Pathophysiology of RAGE in inflammatory diseases. Front Immunol 2022; 13:931473. [PMID: 35967420 PMCID: PMC9373849 DOI: 10.3389/fimmu.2022.931473] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a non-specific multi-ligand pattern recognition receptor capable of binding to a range of structurally diverse ligands, expressed on a variety of cell types, and performing different functions. The ligand-RAGE axis can trigger a range of signaling events that are associated with diabetes and its complications, neurological disorders, cancer, inflammation and other diseases. Since RAGE is involved in the pathophysiological processes of many diseases, targeting RAGE may be an effective strategy to block RAGE signaling.
Collapse
|
13
|
Uceda AB, Frau J, Vilanova B, Adrover M. Glycation of α-synuclein hampers its binding to synaptic-like vesicles and its driving effect on their fusion. Cell Mol Life Sci 2022; 79:342. [PMID: 35662377 PMCID: PMC9167179 DOI: 10.1007/s00018-022-04373-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders affecting the worldwide population. One of its hallmarks is the intraneuronal accumulation of insoluble Lewy bodies (LBs), which cause the death of dopaminergic neurons. α-Synuclein (αS) is the main component of these LBs and in them, it commonly contains non-enzymatic post-translational modifications, such as those resulting from its reaction with reactive carbonyl species arising as side products of the intraneuronal glycolysis (mainly methylglyoxal). Consequently, lysines of the αS found in LBs of diabetic individuals are usually carboxyethylated. A precise comprehension of the effect of Nε-(carboxyethyl)lysine (CEL) on the aggregation of αS and on its physiological function becomes crucial to fully understand the molecular mechanisms underlying the development of diabetes-induced PD. Consequently, we have here used a synthetic αS where all its Lys have been replaced by CEL moieties (αS-CEL), and we have studied how these modifications could impact on the neurotransmission mechanism. This study allows us to describe how the non-enzymatic glycosylation (glycation) affects the function of a protein like αS, involved in the pathogenesis of PD. CEL decreases the ability of αS to bind micelles, although the micelle-bound fraction of αS-CEL still displays an α-helical fold resembling that of the lipid-bound αS. However, CEL completely abolishes the affinity of αS towards synaptic-like vesicles and, consequently, it hampers its physiological function as a catalyst of the clustering and the fusion of the synaptic vesicles.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Universitat de les Illes Balears, Ed. Mateu Orfila i Rotger, Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| | - Juan Frau
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Universitat de les Illes Balears, Ed. Mateu Orfila i Rotger, Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| | - Bartolomé Vilanova
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Universitat de les Illes Balears, Ed. Mateu Orfila i Rotger, Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| | - Miquel Adrover
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Universitat de les Illes Balears, Ed. Mateu Orfila i Rotger, Ctra. Valldemossa km 7.5, 07122, Palma, Spain.
| |
Collapse
|
14
|
Seo MH, Yeo S. Triadin Decrease Impairs the Expression of E-C Coupling Related Proteins in Muscles of MPTP-Induced Parkinson's Disease Mice. Front Neurosci 2021; 15:649688. [PMID: 33967680 PMCID: PMC8100520 DOI: 10.3389/fnins.2021.649688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD), caused by destruction of dopaminergic neurons in the brain, leads to motor symptoms like bradykinesia, tremor, and walking impairments. While most research effort focuses on changes in neuronal pathology we examined how muscle proteins were altered in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. A Ca2+ release channel complex, consisting of ryanodine receptors (RYR), triadin (TRDN), and calsequestrin (CSQ1), is important for excitation-contraction coupling in the sarcoplasmic reticulum membrane in muscles. Thus, we investigated changes in the RYR Ca2+ release channel components in PD mice model. Based on a report that TRDN deletion impairs skeletal muscle function, we also investigated how the knock-down of TRDN affects other components of the RYR channel in the PD model. In this study, the expression levels of the components of RYR channels decreased in the quadriceps femoris muscle of MPTP-induced PD mice and in C2C12 cells treated with 1-methyl-4-phenylpyridinium. We show that decreased TRDN levels decrease RYR and CSQ1 levels. These results suggest that the levels of proteins related to Ca2+ channel function decreased in this model, which could impair muscle function. We conclude that muscle function alterations could add to the bradykinesia and tremor in this model of PD.
Collapse
Affiliation(s)
- Min Hyung Seo
- Department of Korean Medicine, Sangji University, Wonju, South Korea
| | - Sujung Yeo
- Department of Korean Medicine, Sangji University, Wonju, South Korea.,Research Institute of Korean Medicine, Sangji University, Wonju, South Korea
| |
Collapse
|
15
|
Yeasts as Complementary Model Systems for the Study of the Pathological Repercussions of Enhanced Synphilin-1 Glycation and Oxidation. Int J Mol Sci 2021; 22:ijms22041677. [PMID: 33562355 PMCID: PMC7915245 DOI: 10.3390/ijms22041677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/22/2023] Open
Abstract
Synphilin-1 has previously been identified as an interaction partner of α-Synuclein (αSyn), a primary constituent of neurodegenerative disease-linked Lewy bodies. In this study, the repercussions of a disrupted glyoxalase system and aldose reductase function on Synphilin-1 inclusion formation characteristics and cell growth were investigated. To this end, either fluorescent dsRed-tagged or non-tagged human SNCAIP, which encodes the Synphilin-1 protein, was expressed in Saccharomyces cerevisiae and Schizosaccharomyces pombe yeast strains devoid of enzymes Glo1, Glo2, and Gre3. Presented data shows that lack of Glo2 and Gre3 activity in S. cerevisiae increases the formation of large Synphilin-1 inclusions. This correlates with enhanced oxidative stress levels and an inhibitory effect on exponential growth, which is most likely caused by deregulation of autophagic degradation capacity, due to excessive Synphilin-1 aggresome build-up. These findings illustrate the detrimental impact of increased oxidation and glycation on Synphilin-1 inclusion formation. Similarly, polar-localised inclusions were observed in wild-type S. pombe cells and strains deleted for either glo1+ or glo2+. Contrary to S. cerevisiae, however, no growth defects were observed upon expression of SNCAIP. Altogether, our findings show the relevance of yeasts, especially S. cerevisiae, as complementary models to unravel mechanisms contributing to Synphilin-1 pathology in the context of neurodegenerative diseases.
Collapse
|
16
|
Fueyo-González F, González-Vera JA, Alkorta I, Infantes L, Jimeno ML, Aranda P, Acuña-Castroviejo D, Ruiz-Arias A, Orte A, Herranz R. Environment-Sensitive Probes for Illuminating Amyloid Aggregation In Vitro and in Zebrafish. ACS Sens 2020; 5:2792-2799. [PMID: 32551591 DOI: 10.1021/acssensors.0c00587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aberrant aggregation of certain peptides and proteins, forming extracellular plaques of fibrillar material, is one of the hallmarks of amyloid diseases, such as Alzheimer's and Parkinson's. Herein, we have designed a new family of solvatochromic dyes based on the 9-amino-quinolimide moiety capable of reporting during the early stages of amyloid fibrillization. We have rationally improved the photophysical properties of quinolimides by placing diverse amino groups at the 9-position of the quinolimide core, leading to higher solvatochromic and fluorogenic character and higher lifetime dependence on the hydrophobicity of the environment, which represent excellent properties for the sensitive detection of prefibrillar aggregates. Among the different probes prepared, the 9-azetidinyl-quinolimide derivative showed striking performance in the following β-amyloid peptide (Aβ) aggregation in solution in real time and identifying the formation of different types of early oligomers of Aβ, the most important species linked to cytotoxicity, using novel, multidimensional fluorescence microscopy, with one- or two-photon excitation. Interestingly, the new dye allowed the visualization of proteinaceous inclusion bodies in a zebrafish model with neuronal damage induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Our results support the potential of the novel fluorophores as powerful tools to follow amyloid aggregation using fluorescence microscopy in vivo, revealing heterogeneous populations of different types of aggregates and, more broadly, to study protein interactions.
Collapse
Affiliation(s)
| | - Juan A. González-Vera
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Lourdes Infantes
- Instituto de Química Física Rocasolano, IQFR-CSIC, Serrano 119, 28006 Madrid, Spain
| | - Maria Luisa Jimeno
- Centro de Química Orgánica Lora Tamayo (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Paula Aranda
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain
| | - Dario Acuña-Castroviejo
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain
- CIBER de Fragilidad y Envejecimiento, Ibs. Granada, Unidad de Gestión Clínica de Laboratorios Clínicos, Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Alvaro Ruiz-Arias
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Angel Orte
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Rosario Herranz
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
17
|
Sharma A, Weber D, Raupbach J, Dakal TC, Fließbach K, Ramirez A, Grune T, Wüllner U. Advanced glycation end products and protein carbonyl levels in plasma reveal sex-specific differences in Parkinson's and Alzheimer's disease. Redox Biol 2020; 34:101546. [PMID: 32460130 PMCID: PMC7251371 DOI: 10.1016/j.redox.2020.101546] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022] Open
Abstract
Neurodegenerative diseases (NDD) such as Alzheimer's (AD) and Parkinson's disease (PD) are distinct clinical entities, however, the aggregation of key neuronal proteins, presumably leading to neuronal demise appears to represent a common mechanism. It has become evident, that advanced glycation end products (AGEs) trigger the accumulation of such modified proteins, which eventually contributes to pathological aspect of NDDs. Increased levels of AGEs are found in amyloid plaques in AD brains and in both advanced and early PD (incidental Lewy body disease). The molecular mechanisms by which AGE dependent modifications may modulate the susceptibility towards NDDs, however, remain enigmatic and it is unclear, whether AGEs may serve as biomarker of NDD. In the present study, we examined AGEs (CML: Carboxymethyllysine and CEL: Carboxyethyllysine), markers of oxidative stress and micronutrients in the plasma of PD and AD patients and controls. As compared to healthy controls, AD females displayed lower levels of CEL while higher levels of CML were found in AD and PD patients. A somewhat similar pattern was observed for protein carbonyls (PC), revealing lower values exclusively in AD females, whereas AD males displayed significantly higher values compared to healthy controls and PD. Sex-specific differences were also observed for other relevant markers such as malondialdehyde, 3-nitrotyrosine, γ -tocopherols, retinol, plasma proteins and α-carotene, while α-tocopherols, β-carotene, lutein/zeaxanthin, β-cryptoxanthin and lycopene showed no relevant association. Taken together, our study suggests yet unappreciated differences of the distribution of AGEs among the sexes in NDD. We therefore suggest to make a clear distinction between sexes when analyzing oxidative (AGEs)-related stress and carbonyl-related stress and vitamins.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Neurology, University Clinic Bonn, Bonn, Germany; Department of Ophthalmology, University Clinic Bonn, Bonn, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam, Rehbruecke (DIfE), 14558, Nuthetal, Germany
| | - Jana Raupbach
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam, Rehbruecke (DIfE), 14558, Nuthetal, Germany
| | - Tikam Chand Dakal
- Department of Biotechnology, Mohanlal Sukhadia University, Rajasthan, India
| | - Klaus Fließbach
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Alfredo Ramirez
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam, Rehbruecke (DIfE), 14558, Nuthetal, Germany
| | - Ullrich Wüllner
- Department of Neurology, University Clinic Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
18
|
Mariño L, Ramis R, Casasnovas R, Ortega-Castro J, Vilanova B, Frau J, Adrover M. Unravelling the effect of N(ε)-(carboxyethyl)lysine on the conformation, dynamics and aggregation propensity of α-synuclein. Chem Sci 2020; 11:3332-3344. [PMID: 34122841 PMCID: PMC8157327 DOI: 10.1039/d0sc00906g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
α-Synuclein (αS) aggregation is a hallmark in several neurodegenerative diseases. Among them, Parkinson's disease is highlighted, characterized by the intraneuronal deposition of Lewy bodies (LBs) which causes the loss of dopaminergic neurons. αS is the main component of LBs and in them, it usually contains post-translational modifications. One of them is the formation of advanced glycation end-products (mainly CEL and MOLD) arising from its reaction with methylglyoxal. Despite its biological relevance, there are no data available proving the effect of glycation on the conformation of αS, nor on its aggregation mechanism. This has been hampered by the formation of a heterogeneous set of compounds that precluded conformational studies. To overcome this issue, we have here produced αS homogeneously glycated with CEL. Its use, together with different biophysical techniques and molecular dynamics simulations, allowed us to study for the first time the effect of glycation on the conformation of a protein. CEL extended the conformation of the N-terminal domain as a result of the loss of transient N-/C-terminal long-range contacts while increasing the heterogeneity of the conformational population. CEL also inhibited the αS aggregation, but it was not able to disassemble preexisting amyloid fibrils, thus proving that CEL found on LBs must be formed in a later event after aggregation. We study the effect of an advanced glycation end product (N(ε)-(carboxyethyl)lysine), found on the Lewy bodies of people suffering from Parkinson’s disease, on the conformational and aggregation features of alpha-synuclein.![]()
Collapse
Affiliation(s)
- Laura Mariño
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut d'Investigació Sanitària Illes Balears (IdISBa), Departament de Química, Universitat de les Illes Balears Ctra. Valldemossa km 7.5 E-07122 Palma de Mallorca Spain +34 971 173426 +34 971 173491
| | - Rafael Ramis
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut d'Investigació Sanitària Illes Balears (IdISBa), Departament de Química, Universitat de les Illes Balears Ctra. Valldemossa km 7.5 E-07122 Palma de Mallorca Spain +34 971 173426 +34 971 173491
| | - Rodrigo Casasnovas
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut d'Investigació Sanitària Illes Balears (IdISBa), Departament de Química, Universitat de les Illes Balears Ctra. Valldemossa km 7.5 E-07122 Palma de Mallorca Spain +34 971 173426 +34 971 173491
| | - Joaquín Ortega-Castro
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut d'Investigació Sanitària Illes Balears (IdISBa), Departament de Química, Universitat de les Illes Balears Ctra. Valldemossa km 7.5 E-07122 Palma de Mallorca Spain +34 971 173426 +34 971 173491
| | - Bartolomé Vilanova
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut d'Investigació Sanitària Illes Balears (IdISBa), Departament de Química, Universitat de les Illes Balears Ctra. Valldemossa km 7.5 E-07122 Palma de Mallorca Spain +34 971 173426 +34 971 173491
| | - Juan Frau
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut d'Investigació Sanitària Illes Balears (IdISBa), Departament de Química, Universitat de les Illes Balears Ctra. Valldemossa km 7.5 E-07122 Palma de Mallorca Spain +34 971 173426 +34 971 173491
| | - Miquel Adrover
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut d'Investigació Sanitària Illes Balears (IdISBa), Departament de Química, Universitat de les Illes Balears Ctra. Valldemossa km 7.5 E-07122 Palma de Mallorca Spain +34 971 173426 +34 971 173491
| |
Collapse
|
19
|
Transcriptional activation of antioxidant gene expression by Nrf2 protects against mitochondrial dysfunction and neuronal death associated with acute and chronic neurodegeneration. Exp Neurol 2020; 328:113247. [PMID: 32061629 DOI: 10.1016/j.expneurol.2020.113247] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are both a primary source of reactive oxygen species (ROS) and a sensitive target of oxidative stress; damage to mitochondria can result in bioenergetic dysfunction and both necrotic and apoptotic cell death. These relationships between mitochondria and cell death are particularly strong in both acute and chronic neurodegenerative disorders. ROS levels are affected by both the production of superoxide and its toxic metabolites and by antioxidant defense mechanisms. Mitochondrial antioxidant activities include superoxide dismutase 2, glutathione peroxidase and reductase, and intramitochondrial glutathione. When intracellular conditions disrupt the homeostatic balance between ROS production and detoxification, a net increase in ROS and an oxidized shift in cellular redox state ensues. Cells respond to this imbalance by increasing the expression of genes that code for proteins that protect against oxidative stress and inhibit cytotoxic oxidation of proteins, DNA, and lipids. If, however, the genomic response to mitochondrial oxidative stress is insufficient to maintain homeostasis, mitochondrial bioenergetic dysfunction and release of pro-apoptotic mitochondrial proteins into the cytosol initiate a variety of cell death pathways, ultimately resulting in potentially lethal damage to vital organs, including the brain. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a translational activating protein that enters the nucleus in response to oxidative stress, resulting in increased expression of numerous cytoprotective genes, including genes coding for mitochondrial and non-mitochondrial antioxidant proteins. Many experimental and some FDA-approved drugs promote this process. Since mitochondria are targets of ROS, it follows that protection against mitochondrial oxidative stress by the Nrf2 pathway of gene expression contributes to neuroprotection by these drugs. This document reviews the evidence that Nrf2 activation increases mitochondrial antioxidants, thereby protecting mitochondria from dysfunction and protecting neural cells from damage and death. New experimental results are provided demonstrating that post-ischemic administration of the Nrf2 activator sulforaphane protects against hippocampal neuronal death and neurologic injury in a clinically-relevant animal model of cardiac arrest and resuscitation.
Collapse
|
20
|
Acupuncture Inhibits the Increase in Alpha-Synuclein in Substantia Nigra in an MPTP- Induced Parkinsonism Mouse Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1232:401-408. [PMID: 31893437 DOI: 10.1007/978-3-030-34461-0_51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease, a progressive neurodegenerative disease, is caused by the loss of dopaminergic neurons in the substantia nigra (SN). It is characterized by the formation of intracytoplasmic Lewy bodies that are primarily composed of the protein alpha-synuclein (α-syn), along with dystrophic neurites. Acupuncture stimulation results in an enhanced survival of dopaminergic neurons in the SN in Parkinsonism animal models. We investigated the role of acupuncture in inhibiting the increase in α-syn expression that is related to dopaminergic cell loss in the SN in a chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Parkinsonism mouse model. In this model, acupuncture stimulation at GB34 and LR3 attenuated the decrease in tyrosine hydroxylase in the SN. Moreover, acupuncture stimulation attenuated the increase in α-syn in SN. Acupuncture stimulation also maintained the phosphorylated α-syn on serine 129 at levels similar to the control group. Our findings indicate that the MPTP-mediated increase in α-syn, and the acupuncture-mediated inhibition of the increase in α-syn, may be responsible for the neuroprotective effects of acupuncture in the SN following damage induced by MPTP.
Collapse
|
21
|
Martínez-Orozco H, Mariño L, Uceda AB, Ortega-Castro J, Vilanova B, Frau J, Adrover M. Nitration and Glycation Diminish the α-Synuclein Role in the Formation and Scavenging of Cu 2+-Catalyzed Reactive Oxygen Species. ACS Chem Neurosci 2019; 10:2919-2930. [PMID: 30973706 DOI: 10.1021/acschemneuro.9b00142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Human α-synuclein is a small monomeric protein (140 residues) essential to maintain the function of the dopaminergic neurons and the neuronal redox balance. However, it holds a dark side since it is able to clump inside the neurons forming insoluble aggregates known as Lewy bodies, which are considered the hallmark of Parkinson's disease. Sporadic mutations and nonenzymatic post-translational modifications are well-known to stimulate the formation of Lewy bodies. Yet, the effect of nonenzymatic post-translational modifications on the function of α-synuclein has been studied less intense. Therefore, here we study how nitration and glycation mediated by methylglyoxal affect the redox features of α-synuclein. Both diminish the ability of α-synuclein to chelate Cu2+, except when Nε-(carboxyethyl)lysine or Nε-(carboxymethyl)lysine (two advanced glycation end products highly prevalent in vivo) are formed. This results in a lower capacity to prevent the Cu-catalyzed ascorbic acid degradation and to delay the formation of H2O2. However, only methylglyoxal was able to abolish the ability of α-synuclein to inhibit the free radical release. Both nitration and glycation enhanced the α-synuclein availability to be damaged by O2•-, although glycation made α-synuclein less reactive toward HO•. Our data represent the first report describing how nonenzymatic post-translational modifications might affect the redox function of α-synuclein, thus contributing to a better understanding of its pathological implications.
Collapse
Affiliation(s)
- Humberto Martínez-Orozco
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Laura Mariño
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Ana Belén Uceda
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Joaquín Ortega-Castro
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Bartolomé Vilanova
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Juan Frau
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Miquel Adrover
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
22
|
Yeo S, Lim S. Acupuncture Inhibits the Increase in Alpha-Synuclein by Modulating SGK1 in an MPTP Induced Parkinsonism Mouse Model. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:527-539. [DOI: 10.1142/s0192415x19500277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Parkinson’s disease (PD), a progressive neurodegenerative disease, is caused by the loss of dopaminergic neurons in the substantia nigra (SN). It is characterized by the formation of intracytoplasmic Lewy bodies that are primarily composed of the protein alpha-synuclein ([Formula: see text]-syn) along with dystrophic neurites. Acupuncture stimulation results in an enhanced survival of dopaminergic neurons in the SN in parkinsonism animal models. We investigated the role of acupuncture in inhibiting the increase in [Formula: see text]-syn expression that is related with dopaminergic cell loss in the SN in a chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) parkinsonism mouse model. In this model, acupuncture stimulation at GB34 and LR3 attenuated the decrease in tyrosine hydroxylase. Moreover, acupuncture stimulation attenuated the increase in [Formula: see text]-syn. We identified that serum- and glucocorticoid-dependent kinase 1 (SGK1) is evidently downregulated in chronic MPTP-intoxication and acupuncture stimulation maintained SGK1 expression at levels similar to the control group. For an examination of the expression correlation between SGK1 and [Formula: see text]-syn, SH-SY5Y cells were knocked down with SGK1 siRNA then, the downregulation of dopaminergic cells and the increase in the expression of [Formula: see text]-syn were observed. Our findings indicate that the acupuncture-mediated inhibition in the [Formula: see text]-syn increase induced by MPTP may be responsible for modulating SGK1 expression.
Collapse
Affiliation(s)
- Sujung Yeo
- College of Korean Medicine, Sang Ji University, Wonju 26339, Republic of Korea
| | - Sabina Lim
- Department of Meridian and Acupoint, College of Korean Medicine, and WHO Collaborating Center for Traditional Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul 130-701, Republic of Korea
| |
Collapse
|
23
|
Sharma N, Rao SP, Kalivendi SV. The deglycase activity of DJ-1 mitigates α-synuclein glycation and aggregation in dopaminergic cells: Role of oxidative stress mediated downregulation of DJ-1 in Parkinson's disease. Free Radic Biol Med 2019; 135:28-37. [PMID: 30796974 DOI: 10.1016/j.freeradbiomed.2019.02.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with the degeneration of dopamine neurons of the substantia nigra pars compacta (SNpc) and the presence of intra-neuronal aggregates of α-synuclein and its post-translational products. Based on emerging reports on the association between glycated α-synuclein and PD; and the newly identified deglycase activity of DJ-1, we sought to find the relevance of deglycase activity of DJ-1 on glycation of α-synuclein and its plausible role in PD. Our results demonstrate that DJ-1 has a higher affinity towards the substrate methylglyoxal (MGO) (Km = 900 mM) as compared to its familial mutant, L166P (Km = 1900 mM). Also, CML α-synuclein (CML-syn) served as a substrate for the deglycase activity of DJ-1. Treatment of cells with Parkinsonian mimetic, 1-methyl-4-phenylpyridinium ion (MPP+); oxidants, such as H2O2 and methylglyoxal (MGO) lead to a dose-dependent decrease in the levels of DJ-1 with a concomitant increase in CML-syn. Also, MGO induced cytosolic α-synuclein aggregates in cells which stained positive with the anti-CML antibody. Further, unilateral stereotaxic administration of MGO into the SNpc of mice induced α-synuclein aggregates and CML-syn with a concomitant reduction in the number of TH positive neurons, protein levels of TH and DJ-1 at the site of injection. Interestingly, overexpression of DJ-1 enhanced the clearance of preformed CML-syn in cells, mitigated MGO induced CML-syn and intracellular α-synuclein aggregates. Overall, the findings of our present study demonstrate that DJ-1 plays a pivotal role in the glycation and aggregation of α-synuclein. Reduced DJ-1 activity due to mutations or oxidative stress may lead to the accumulation of glycated α-synuclein and its aggregates.
Collapse
Affiliation(s)
- Neelam Sharma
- Biochemistry Laboratory, Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Hyderabad, 500007, T.S., India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Swetha Pavani Rao
- Biochemistry Laboratory, Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Hyderabad, 500007, T.S., India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Shasi V Kalivendi
- Biochemistry Laboratory, Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Hyderabad, 500007, T.S., India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
24
|
Boteva E, Mironova R. Maillard reaction and aging: can bacteria shed light on the link? BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1590160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Elitsa Boteva
- Department of Gene Regulation, Institute of Molecular Biology ‘Roumen Tsanev’, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Roumyana Mironova
- Department of Gene Regulation, Institute of Molecular Biology ‘Roumen Tsanev’, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
25
|
Skin α-synuclein deposits differ in clinical variants of synucleinopathy: an in vivo study. Sci Rep 2018; 8:14246. [PMID: 30250046 PMCID: PMC6155202 DOI: 10.1038/s41598-018-32588-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/29/2018] [Indexed: 01/04/2023] Open
Abstract
We aimed to characterize in vivo α-synuclein (α-syn) aggregates in skin nerves to ascertain: 1) the optimal marker to identify them; 2) possible differences between synucleinopathies that may justify the clinical variability. We studied multiple skin nerve α-syn deposits in 44 patients with synucleinopathy: 15 idiopathic Parkinson’s disease (IPD), 12 dementia with Lewy Bodies (DLB), 5 pure autonomic failure (PAF) and 12 multiple system atrophy (MSA). Ten healthy subjects were used as controls. Antibodies against native α-syn, C-terminal α-syn epitopes such as phosphorylation at serine 129 (p-syn) and to conformation-specific for α-syn mature amyloid fibrils (syn-F1) were used. We found that p-syn showed the highest sensitivity and specificity in disclosing skin α-syn deposits. In MSA abnormal deposits were only found in somatic fibers mainly at distal sites differently from PAF, IPD and DLB displaying α-syn deposits in autonomic fibers mainly at proximal sites. PAF and DLB showed the highest p-syn load with a widespread involvement of autonomic skin nerve fibers. In conclusion: 1) p-syn in skin nerves was the optimal marker for the in vivo diagnosis of synucleinopathies; 2) the localization and load differences of aggregates may help to identify specific diagnostic traits and support a different pathogenesis among synucleinopathies.
Collapse
|
26
|
Jiang X, Wang X, Tuo M, Ma J, Xie A. RAGE and its emerging role in the pathogenesis of Parkinson’s disease. Neurosci Lett 2018; 672:65-69. [DOI: 10.1016/j.neulet.2018.02.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 01/10/2023]
|
27
|
Decreased expression of serum- and glucocorticoid-inducible kinase 1 (SGK1) promotes alpha-synuclein increase related with down-regulation of dopaminergic cell in the Substantia Nigra of chronic MPTP-induced Parkinsonism mice and in SH-SY5Y cells. Gene 2018; 661:189-195. [PMID: 29604467 DOI: 10.1016/j.gene.2018.03.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/28/2022]
Abstract
Parkinson's disease (PD) is a chronically progressive neurodegenerative disease, with its main pathological hallmarks being a dramatic loss of dopaminergic neurons predominantly in the Substantia Nigra (SN), and the formations of intracytoplasmic Lewy bodies and dystrophic neurites. Alpha-synuclein (α-syn), widely recognized as the most prominent element of the Lewy body, is one of the representative hallmarks in PD. However, the mechanisms behind the increased α-syn expression and aggregation have not yet been clarified. To examine what causes α-syn expression to increase, we analyzed the pattern of gene expression in the SN of mice intoxicated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), where down-regulation of dopaminergic cells occurred. We identified serum- and glucocorticoid-dependent kinase 1 (SGK1) as one of the genes that is evidently downregulated in chronic MPTP-intoxication. The results of Western blot analyses showed that, together with the down-regulation of dopaminergic cells, the decrease in SGK1 expression increased α-syn expression in the SN in a chronic MPTP-induced Parkinsonism mouse. For an examination of the expression correlation between SGK1 and α-syn, SH-5YSY cells were knocked down with SGK1 siRNA then, the downregulation of dopaminergic cells and the increase in the expression of α-syn were observed. These results suggest that decreased expression of SGK1 may play a critical role in increasing the expression of α-syn, which is related with dopaminergic cell death in the SN of chronic MPTP-induced Parkinsonism mice and in SH-SY5Y cells.
Collapse
|
28
|
König A, Vicente Miranda H, Outeiro TF. Alpha-Synuclein Glycation and the Action of Anti-Diabetic Agents in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2018; 8:33-43. [PMID: 29480231 PMCID: PMC5842785 DOI: 10.3233/jpd-171285] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/17/2018] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with complex etiology and variable pathology. While a subset of cases is associated with single-gene mutations, the majority originates from a combination of factors we do not fully understand. Thus, understanding the underlying causes of PD is indispensable for the development of novel therapeutics. Glycation, the non-enzymatic reaction between reactive dicarbonyls and amino groups, gives rise to a variety of different reaction products known as advanced glycation end products (AGEs). AGEs accumulate over a proteins life-time, and increased levels of glycation reaction products play a role in diabetic complications. It is now also becoming evident that PD patients also display perturbed sugar metabolism and protein glycation, including that of alpha-synuclein, a key player in PD. Here, we hypothesize that anti-diabetic drugs targeting the levels of glycation precursors, or promoting the clearance of glycated proteins may also prove beneficial for PD patients.
Collapse
Affiliation(s)
- Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Hugo Vicente Miranda
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| |
Collapse
|
29
|
Hong J, Wang L, Zhang T, Zhang B, Chen L. Sigma-1 receptor knockout increases α-synuclein aggregation and phosphorylation with loss of dopaminergic neurons in substantia nigra. Neurobiol Aging 2017; 59:171-183. [PMID: 28870519 DOI: 10.1016/j.neurobiolaging.2017.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/20/2017] [Accepted: 08/02/2017] [Indexed: 01/17/2023]
Abstract
Sigma-1 receptor (σ1R) is expressed in dopaminergic neurons of substantia nigra. Here, we show that σ1R knockout (σ1R-/-) mice, at age 6-12 months, appeared with age-related loss of dopaminergic neurons and decline of motor coordination. Levels of α-synuclein (αSyn) oligomers and fibrillar αSyn in substantia nigra of σ1R-/- mice were age-dependently increased without the changes in αSyn monomers. The phosphorylation of αSyn monomers or oligomers in dopaminergic neurons was enhanced in σ1R-/- mice. Levels of phosphorylated eIF2a and C/EBP homologous protein expression were elevated in σ1R-/- mice with decline of proteasome activity. Inhibition of endoplasmic reticulum stress by salubrinal recovered the αSyn phosphorylation and proteasome activity and prevented early oligomerization of αSyn in σ1R-/- mice. Rifampicin reduced the late increase of αSyn oligomers in σ1R-/- mice. Rifampicin or salubrinal could reduce the loss of dopaminergic neurons in σ1R-/- mice and improved their motor coordination. The results indicate that the σ1R deficiency through enhanced aggregation and phosphorylation of αSyn causes the loss of dopaminergic neurons leading to the decline of motor coordination.
Collapse
Affiliation(s)
- Juan Hong
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ling Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Tingting Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Baofeng Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ling Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Department of Physiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
30
|
Viana SD, Valero J, Rodrigues-Santos P, Couceiro P, Silva AM, Carvalho F, Ali SF, Fontes-Ribeiro CA, Pereira FC. Regulation of striatal astrocytic receptor for advanced glycation end-products variants in an early stage of experimental Parkinson's disease. J Neurochem 2016; 138:598-609. [PMID: 27221633 DOI: 10.1111/jnc.13682] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 09/01/2023]
Abstract
Convincing evidence indicates that advanced glycation end-products and danger-associated protein S100B play a role in Parkinson's disease (PD). These agents operate through the receptor for advanced glycation end-products (RAGE), which displays distinct isoforms playing protective/deleterious effects. However, the nature of RAGE variants has been overlooked in PD studies. Hence, we attempted to characterize RAGE regulation in early stages of PD striatal pathology. A neurotoxin-based rodent model of PD was used in this study, through administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to C57BL/6 mice. Animals were killed 6 h post-MPTP to assess S100B/RAGE contents (RT-qPCR, ELISA) and RAGE isoform density (WB) and cellular distribution (immunohistochemistry). Dopaminergic and gliotic status were also mapped (HPLC-ED, WB, immunohistochemistry). At this preliminary stage of MPTP-induced PD in mice, RAGE inhibitory isoforms were increased whereas full-length RAGE was not affected. This putative cytoprotective RAGE phenotype paired an inflammatory and pro-oxidant setting fueling DAergic denervation. Increased RAGE inhibitory variants occur in astrocytes showing higher S100B density but no overt signs of hypertrophy or NF-κB activation, a canonical effector of RAGE. These findings expand our understanding of the toxic effect of MPTP on striatum and offer first in vivo evidence of RAGE being a responder in early stages of astrogliosis dynamics, supporting a protective rather tissue-destructive phenotype of RAGE in the initial phase of PD degeneration. These data lay the groundwork for future studies on the relevance of astrocytic RAGE in DAergic neuroprotection strategies. We report increased antagonistic RAGE variants paralleling S100B up-regulation in early stages of MPTP-induced astrogliosis dynamics . We propose that selective RAGE regulation reflects a self-protective mechanism to maintain low levels of RAGE ligands , preventing long-term inflammation and oxidative stress arising from sustained ligands/flRAGE activation . Understanding loss of RAGE protective response to stress may provide new therapeutic options to halt or slow down dopaminergic axonopathy and, ultimately, neuronal death .
Collapse
Affiliation(s)
- Sofia D Viana
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI - University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Jorge Valero
- CNC.IBILI - University of Coimbra, Coimbra, Portugal
- Achucarro Basque Center for Neuroscience, Zamudio, Bizkaia, Spain
- Ikerbasque Foundation, Bilbao, Bizkaia, Spain
| | - Paulo Rodrigues-Santos
- Institute of Immunology - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Patrícia Couceiro
- Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Andréa M Silva
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI - University of Coimbra, Coimbra, Portugal
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Syed F Ali
- Neurochemistry Laboratory, Division of Neurotoxicology, National Center of Toxicological Research/Food and Drug Administration, Jefferson, Arkansas, USA
| | - Carlos A Fontes-Ribeiro
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI - University of Coimbra, Coimbra, Portugal
| | - Frederico C Pereira
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI - University of Coimbra, Coimbra, Portugal
| |
Collapse
|
31
|
Vicente Miranda H, El-Agnaf OMA, Outeiro TF. Glycation in Parkinson's disease and Alzheimer's disease. Mov Disord 2016; 31:782-90. [PMID: 26946341 DOI: 10.1002/mds.26566] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/21/2015] [Accepted: 01/07/2016] [Indexed: 12/14/2022] Open
Abstract
Glycation is a spontaneous age-dependent posttranslational modification that can impact the structure and function of several proteins. Interestingly, glycation can be detected at the periphery of Lewy bodies in the brain in Parkinson's disease. Moreover, α-synuclein can be glycated, at least under experimental conditions. In Alzheimer's disease, glycation of amyloid β peptide exacerbates its toxicity and contributes to neurodegeneration. Recent studies establish diabetes mellitus as a risk factor for several neurodegenerative disorders, including Parkinson's and Alzheimer's diseases. However, the mechanisms underlying this connection remain unclear. We hypothesize that hyperglycemia might play an important role in the development of these disorders, possibly by also inducing protein glycation and thereby dysfunction, aggregation, and deposition. Here, we explore protein glycation as a common player in Parkinson's and Alzheimer's diseases and propose it may constitute a novel target for the development of strategies for neuroprotective therapeutic interventions. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Omar M A El-Agnaf
- Neurological Disorders Center, Qatar Biomedical Research Institute, and College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, P.O. Box 5825 Doha, Qatar
| | - Tiago Fleming Outeiro
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, Lisboa, Portugal.,Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Goettingen, Goettingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany
| |
Collapse
|
32
|
Lysines, Achilles' heel in alpha-synuclein conversion to a deadly neuronal endotoxin. Ageing Res Rev 2016; 26:62-71. [PMID: 26690800 DOI: 10.1016/j.arr.2015.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 12/11/2022]
Abstract
Alpha-synuclein aggregation is associated with Parkinson's disease and other neurodegenerative disorders termed synucleinopathies. The sequence of alpha-synuclein has a remarkable amount of lysines, which may be a target for modifications by several aldehydes found at increased concentration in parkinsonian brains. The involved aldehydes are the dopamine metabolite 3,4-dihydroxyphenylacetaldehyde, the lipid peroxidation products 4-hydroxynonenal, acrolein and malondialdehyde, and advanced glycation end-products. Moreover, both relative expression levels and enzymatic activity of aldehyde dehydrogenases, which are responsible for aldehydes detoxification in cells, are altered in Parkinson's disease brains. The effects of aldehyde modifications can include: (i) a perturbation in the equilibrium of cytosolic and membrane-bound alpha-synuclein, that may alter protein function and lead to aggregation; (ii) the reduction of alpha-synuclein ubiquitination and SUMOylation, affecting its cellular localization and clearance; (iii) a decreased susceptibility to cleavage at specific sites by extracellular proteases; (iv) a reduced availability of identified lysine acetylation sites; (v) the production of toxic oligomeric alpha-synuclein-aldehyde species, able to damage lipid membranes and transmissible from unhealthy to healthy neurons. All of these observations point to a complex interaction between alpha-synuclein and aldehydes in brain, which may lead to the accumulation of dysfunctional alpha-synuclein and its oligomerization.
Collapse
|
33
|
Kamalov M, Harris PWR, Wood JM, Brimble MA. On resin synthesis and cross-linking of collagen peptides containing the advanced glycation end-product pyrraline via Maillard condensation. Chem Commun (Camb) 2015; 51:9475-8. [DOI: 10.1039/c5cc03052h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pyrraline and a novel pyrraline-derived cross-link have been incorporated into collagenous peptides via Maillard condensations performed on resin-bound peptide sequences.
Collapse
Affiliation(s)
- Meder Kamalov
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
| | - Paul W. R. Harris
- School of Biological Sciences
- The University of Auckland
- Auckland
- New Zealand
| | - James M. Wood
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
- School of Biological Sciences
| |
Collapse
|
34
|
Roca F, Grossin N, Chassagne P, Puisieux F, Boulanger E. Glycation: the angiogenic paradox in aging and age-related disorders and diseases. Ageing Res Rev 2014; 15:146-60. [PMID: 24742501 DOI: 10.1016/j.arr.2014.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 01/09/2023]
Abstract
Angiogenesis is generally a quiescent process which, however, may be modified by different physiological and pathological conditions. The "angiogenic paradox" has been described in diabetes because this disease impairs the angiogenic response in a manner that differs depending on the organs involved and disease evolution. Aging is also associated with pro- and antiangiogenic processes. Glycation, the post-translational modification of proteins, increases with aging and the progression of diabetes. The effect of glycation on angiogenesis depends on the type of glycated proteins and cells involved. This complex link could be responsible for the "angiogenic paradox" in aging and age-related disorders and diseases. Using diabetes as a model, the present work has attempted to review the age-related angiogenic paradox, in particular the effects of glycation on angiogenesis during aging.
Collapse
Affiliation(s)
- F Roca
- Vascular Aging Biology, Blood-Vessel Interface and Vascular Repair Unit, Lille School of Medicine, Lille2 University, Lille, France; Geriatrics Department, Rouen University Hospital, Rouen, France.
| | - N Grossin
- Vascular Aging Biology, Blood-Vessel Interface and Vascular Repair Unit, Lille School of Medicine, Lille2 University, Lille, France
| | - P Chassagne
- Geriatrics Department, Rouen University Hospital, Rouen, France
| | - F Puisieux
- Vascular Aging Biology, Blood-Vessel Interface and Vascular Repair Unit, Lille School of Medicine, Lille2 University, Lille, France; Gerontology Clinic, Les Bateliers Geriatric Hospital, Lille University Hospital, Lille, France
| | - E Boulanger
- Vascular Aging Biology, Blood-Vessel Interface and Vascular Repair Unit, Lille School of Medicine, Lille2 University, Lille, France; Gerontology Clinic, Les Bateliers Geriatric Hospital, Lille University Hospital, Lille, France
| |
Collapse
|
35
|
Miranda HV, Xiang W, de Oliveira RM, Simões T, Pimentel J, Klucken J, Penque D, Outeiro TF. Heat-mediated enrichment of α-synuclein from cells and tissue for assessing post-translational modifications. J Neurochem 2013; 126:673-84. [DOI: 10.1111/jnc.12251] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/12/2013] [Accepted: 03/25/2013] [Indexed: 01/06/2023]
Affiliation(s)
- Hugo Vicente Miranda
- Cell and Molecular Neuroscience Unit; Instituto de Medicina Molecular; Lisboa Portugal
| | - Wei Xiang
- Institut für Biochemie (Emil-Fischer-Zentrum); Friedrich-Alexander Universität Erlangen-Nürnberg; Erlangen Germany
| | - Rita M. de Oliveira
- Cell and Molecular Neuroscience Unit; Instituto de Medicina Molecular; Lisboa Portugal
| | - Tânia Simões
- Laboratório de Proteómica; Departamento de Genética; Instituto Nacional de Saúde Dr. Ricardo Jorge; Lisboa Portugal
| | - José Pimentel
- Laboratory of Neuropathology; Department of Neurosciences; Serviço de Neurologia; CHLN EPE-Hospital de Santa Maria; Lisboa Portugal
- Neurological Clinical Research Unit; Instituto de Medicina Molecular; Lisboa Portugal
| | - Jochen Klucken
- Department of Molecular Neurology; University Hospital Erlangen; Erlangen Germany
| | - Deborah Penque
- Laboratório de Proteómica; Departamento de Genética; Instituto Nacional de Saúde Dr. Ricardo Jorge; Lisboa Portugal
| | - Tiago F. Outeiro
- Cell and Molecular Neuroscience Unit; Instituto de Medicina Molecular; Lisboa Portugal
- Instituto de Fisiologia; Faculdade de Medicina de Lisboa; Lisboa Portugal
- Department of Neurodegeneration and Restorative Research; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB); University Medical Center Göttingen; Göttingen Germany
| |
Collapse
|
36
|
Recent Advances in α-Synuclein Functions, Advanced Glycation, and Toxicity: Implications for Parkinson’s Disease. Mol Neurobiol 2012; 47:525-36. [DOI: 10.1007/s12035-012-8328-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 08/13/2012] [Indexed: 10/28/2022]
|
37
|
Abstract
Aggregated a-synuclein is the major component of inclusions in Parkinson's disease and other synucleinopathy brains indicating that a-syn aggregation is associated with the pathogenesis of neurodegenerative disorders. Although the mechanisms underlying a-syn aggregation and toxicity are not fully elucidated, it is clear that a-syn undergoes post-translational modifications and interacts with numerous proteins and other macromolecules, metals, hormones, neurotransmitters, drugs and poisons that can all modulate its aggregation propensity. The current and most recent findings regarding the factors modulating a-syn aggregation process are discussed in detail.
Collapse
|
38
|
Choi YG, Yeo S, Hong YM, Lim S. Neuroprotective changes of striatal degeneration-related gene expression by acupuncture in an MPTP mouse model of Parkinsonism: microarray analysis. Cell Mol Neurobiol 2011; 31:377-91. [PMID: 21107677 PMCID: PMC11498463 DOI: 10.1007/s10571-010-9629-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/02/2010] [Indexed: 01/02/2023]
Abstract
Acupuncture at acupoints GB34 and LR3 has been reported to inhibit nigrostriatal degeneration in Parkinsonism models, yet the genes related to this preventive effect of acupuncture on the nigrostriatal dopaminergic system remain elusive. This study investigated gene expression profile changes in the striatal region of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism models after acupuncture at the acupoints GB34 and LR3 using a whole transcript genechip microarray (Affymetrix genechip mouse gene 1.0 ST array). It was confirmed that acupuncture at these acupoints could inhibit the decrease of tyrosine hydroxylase and dopamine transporter in the nigrostriatal region of the MPTP model while acupuncture at the non-acupoints could not counteract this decrease. Genechip gene array analysis (fold change cutoff 1.3 and P < 0.05) showed that 12 of the 69 probes up-regulated in MPTP when compared to the control were down-regulated by acupuncture at the acupoints. Of these 12 probes, 11 probes (nine annotated genes) were exclusively down-regulated by acupuncture only at the acupoints; the Gfral gene was excluded because it was commonly down-regulated by acupuncture at both the acupoints and the non-acupoints. In addition, 28 of the 189 probes down-regulated in MPTP when compared to the control were up-regulated by acupuncture at the acupoints. Of these 28 probes, 19 probes (seven annotated genes) were exclusively up-regulated by acupuncture only at the acupoints while nine probes were commonly up-regulated by acupuncture at both the acupoints and the non-acupoints. The regulation patterns of representative genes in real-time RT-PCR correlated with those of the genes in the microarray. These results suggest that the 30 probes (16 annotated genes), which are affected by MPTP and acupuncture only at the acupoints, are responsible for exerting in the striatal regions the inhibitory effect of acupuncture at the acupoints on MPTP-induced striatal degeneration.
Collapse
Affiliation(s)
- Yeong-Gon Choi
- Research Group of Pain and Neuroscience, WHO Collaborating Center for Traditional Medicine, East–West Medical Research Institute, Kyung Hee University, #1 Hoegi-dong Dongdaemoon-gu, Seoul, 130-701 Republic of Korea
| | - Sujung Yeo
- Research Group of Pain and Neuroscience, WHO Collaborating Center for Traditional Medicine, East–West Medical Research Institute, Kyung Hee University, #1 Hoegi-dong Dongdaemoon-gu, Seoul, 130-701 Republic of Korea
- Department of Basic Eastern Medical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Yeon-Mi Hong
- Research Group of Pain and Neuroscience, WHO Collaborating Center for Traditional Medicine, East–West Medical Research Institute, Kyung Hee University, #1 Hoegi-dong Dongdaemoon-gu, Seoul, 130-701 Republic of Korea
- Department of Basic Eastern Medical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Sabina Lim
- Research Group of Pain and Neuroscience, WHO Collaborating Center for Traditional Medicine, East–West Medical Research Institute, Kyung Hee University, #1 Hoegi-dong Dongdaemoon-gu, Seoul, 130-701 Republic of Korea
- Department of Basic Eastern Medical Science, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|