1
|
Tsui Y, Wu X, Zhang X, Peng Y, Mok CKP, Chan FKL, Ng SC, Tun HM. Short-chain fatty acids in viral infection: the underlying mechanisms, opportunities, and challenges. Trends Microbiol 2025; 33:302-320. [PMID: 39505671 DOI: 10.1016/j.tim.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Viral infections can cause cellular pathway derangements, cell death, and immunopathological responses, leading to host inflammation. Short-chain fatty acids (SCFAs), produced by the microbiota, have emerged as a potential therapeutic for viral infections due to their ability to modulate these processes. However, SCFAs have been reported to have both beneficial and detrimental effects, necessitating a comprehensive understanding of the underlying mechanisms. This review highlights the complex mechanisms underlying SCFAs' effects on viral infection outcomes. We also emphasize the importance of considering how SCFAs' activities may differ under diverse contexts, including but not limited to target cells with different metabolic wiring, different viral causes of infection, the target organism/cell's nutrient availability and/or energy balance, and hosts with varying microbiome compositions.
Collapse
Affiliation(s)
- Yee Tsui
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xueqi Wu
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi Zhang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Peng
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC), Hong Kong, China
| | - Chris Ka Pun Mok
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; S.H. Ho Research Centre for Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew C Ng
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC), Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Hein Min Tun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC), Hong Kong, China.
| |
Collapse
|
2
|
Clayton N, Pellei D, Lin Z. Histone acetylation, BET proteins, and periodontal inflammation. Mol Oral Microbiol 2024; 39:180-189. [PMID: 37801007 DOI: 10.1111/omi.12438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Periodontitis is one of the most common inflammatory diseases in humans. The susceptibility to periodontitis is largely determined by the host response, and the severity of inflammation predicts disease progression. Upon microbial insults, host cells undergo massive changes in their transcription program to trigger an appropriate response (inflammation). It is not surprising that successful keystone pathogens have developed specific mechanisms to manipulate the gene expression network in host cells. Emerging data has indicated that epigenetic regulation plays a significant role in inflammation. Acetylation of lysine residues on histones is a major epigenetic modification of chromatin, highly associated with the accessibility of chromatin and activation of transcription. Specific histone acetylation patterns are observed in inflammatory diseases including periodontitis. Bromo- and extraterminal domain (BET) proteins recognize acetylated histones and then recruit transcription factors and transcription elongation complexes to chromatin. BET proteins are regulated in inflammatory diseases and small molecules blocking the function of BET proteins are promising "epi-drugs" for treating inflammatory diseases.
Collapse
Affiliation(s)
- Nicholas Clayton
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - David Pellei
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zhao Lin
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
3
|
Bae SE, Choi JW, Hong JW, Ku H, Sim KY, Ko GH, Jang DS, Shim SH, Park SG. A new compound, phomaherbarine A, induces cytolytic reactivation in epstein-barr virus-positive B cell lines. Antiviral Res 2024; 227:105906. [PMID: 38735576 DOI: 10.1016/j.antiviral.2024.105906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Epstein-Barr virus (EBV), the first virus found to induce cancer in humans, has been frequently detected in various types of B cell lymphomas. During its latent phase, EBV expresses a limited set of proteins crucial for its persistence. Induction of the lytic phase of EBV has shown promise in the treatment of EBV-associated malignancies. The present study assessed the ability of phomaherbarine A, a novel compound derived from the endophytic fungus Phoma herbarum DBE-M1, to stimulate lytic replication of EBV in B95-8 cells. Phomaherbarine A was found to efficiently initiate the expression of both early and late EBV lytic genes in B95-8 cells, with this initiation being further heightened by the addition of phorbol myristate acetate and sodium butyrate. Moreover, phomaherbarine A demonstrated notable cytotoxicity against the EBV-associated B cell lymphoma cell lines B95-8 and Raji. Mechanistically, phomaherbarine A induces apoptosis in these cells through the activation of caspase-3/7. When combined with ganciclovir, phomaherbarine A does not interfere with the reduction of viral replication by ganciclovir and sustains its apoptosis induction. In conclusion, these findings indicate that phomaherbarine A may be a promising candidate for therapeutic intervention in patients with EBV-associated B cell lymphomas.
Collapse
Affiliation(s)
- So-Eun Bae
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Won Choi
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji-Woon Hong
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeri Ku
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyu-Young Sim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gwang-Hoon Ko
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sung-Gyoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Pokhrel V, Kuntal BK, Mande SS. Role and significance of virus-bacteria interactions in disease progression. J Appl Microbiol 2024; 135:lxae130. [PMID: 38830797 DOI: 10.1093/jambio/lxae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Understanding disease pathogenesis caused by bacteria/virus, from the perspective of individual pathogen has provided meaningful insights. However, as viral and bacterial counterparts might inhabit the same infection site, it becomes crucial to consider their interactions and contributions in disease onset and progression. The objective of the review is to highlight the importance of considering both viral and bacterial agents during the course of coinfection. The review provides a unique perspective on the general theme of virus-bacteria interactions, which either lead to colocalized infections that are restricted to one anatomical niche, or systemic infections that have a systemic effect on the human host. The sequence, nature, and underlying mechanisms of certain virus-bacteria interactions have been elaborated with relevant examples from literature. It also attempts to address the various applied aspects, including diagnostic and therapeutic strategies for individual infections as well as virus-bacteria coinfections. The review aims to aid researchers in comprehending the intricate interplay between virus and bacteria in disease progression, thereby enhancing understanding of current methodologies and empowering the development of novel health care strategies to tackle coinfections.
Collapse
Affiliation(s)
- Vatsala Pokhrel
- TCS Research, Tata Consultancy Services Ltd., TCS SP2 SEZ, Hinjewadi Phase 3, Pune 411057, India
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhusan K Kuntal
- TCS Research, Tata Consultancy Services Ltd., TCS SP2 SEZ, Hinjewadi Phase 3, Pune 411057, India
| | - Sharmila S Mande
- TCS Research, Tata Consultancy Services Ltd., TCS SP2 SEZ, Hinjewadi Phase 3, Pune 411057, India
| |
Collapse
|
5
|
Wahl A, Yao W, Liao B, Chateau M, Richardson C, Ling L, Franks A, Senthil K, Doyon G, Li F, Frost J, Whitehurst CB, Pagano JS, Fletcher CA, Azcarate-Peril MA, Hudgens MG, Rogala AR, Tucker JD, McGowan I, Sartor RB, Garcia JV. A germ-free humanized mouse model shows the contribution of resident microbiota to human-specific pathogen infection. Nat Biotechnol 2024; 42:905-915. [PMID: 37563299 PMCID: PMC11073568 DOI: 10.1038/s41587-023-01906-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Germ-free (GF) mice, which are depleted of their resident microbiota, are the gold standard for exploring the role of the microbiome in health and disease; however, they are of limited value in the study of human-specific pathogens because they do not support their replication. Here, we develop GF mice systemically reconstituted with human immune cells and use them to evaluate the role of the resident microbiome in the acquisition, replication and pathogenesis of two human-specific pathogens, Epstein-Barr virus (EBV) and human immunodeficiency virus (HIV). Comparison with conventional (CV) humanized mice showed that resident microbiota enhance the establishment of EBV infection and EBV-induced tumorigenesis and increase mucosal HIV acquisition and replication. HIV RNA levels were higher in plasma and tissues of CV humanized mice compared with GF humanized mice. The frequency of CCR5+ CD4+ T cells throughout the intestine was also higher in CV humanized mice, indicating that resident microbiota govern levels of HIV target cells. Thus, resident microbiota promote the acquisition and pathogenesis of two clinically relevant human-specific pathogens.
Collapse
Affiliation(s)
- Angela Wahl
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Wenbo Yao
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Baolin Liao
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Morgan Chateau
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cara Richardson
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lijun Ling
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adrienne Franks
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Krithika Senthil
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Genevieve Doyon
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fengling Li
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Josh Frost
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher B Whitehurst
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, USA
| | - Joseph S Pagano
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig A Fletcher
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Andrea Azcarate-Peril
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| | - Michael G Hudgens
- Department of Biostatistics, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison R Rogala
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph D Tucker
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ian McGowan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
- Orion Biotechnology, Ottawa, Ontario, Canada
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Victor Garcia
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Wu Z, Ding Q, Yue M, Zhang X, Han D, Zhang L. Caspase-3/GSDME-mediated pyroptosis leads to osteogenic dysfunction of osteoblast-like cells. Oral Dis 2024; 30:1392-1402. [PMID: 37004144 DOI: 10.1111/odi.14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
OBJECTIVE Cell pyroptosis is implicated in progressive bone loss in dental inflammatory diseases. We induced caspase-3/Gasdermin E (GSDME)-mediated pyroptosis in osteoblast-like cells and evaluated the effects on osteogenesis. MATERIALS AND METHODS Osteoblast-like cells were treated with various concentrations of sodium butyrate (NaB) to identify the most appropriate for inducing caspase-3/GSDME-mediated pyroptosis. Cells were divided into control, NaB and NaB+Ac-DEVD-CHO (specific caspase-3 inhibitor) groups. Pyroptosis level was evaluated by immunofluorescence, morphological observation, flow cytometry, lactate dehydrogenase (LDH) release assays, mRNA and protein levels of pyroptosis-related markers. Then, inflammation level, osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) expression and osteogenic function were detected. RESULTS Treatment with 10 mM NaB increased caspase-3 expression, GSDME cleavage, LDH release and the number of pyroptotic cells, with morphologic changes, indicating GSDME-mediated pyroptosis induction. The pyroptosis-related changes were abolished by caspase-3 inhibition. Caspase-3/GSDME-mediated pyroptosis triggered the expression of inflammatory cytokines and RANKL, downregulated alkaline phosphatase (ALP) activity, mineralisation level, mRNA and protein levels of multiple osteogenic markers. These effects were partly reversed by Ac-DEVD-CHO. CONCLUSION Caspase-3/GSDME-mediated pyroptosis induced by NaB activated the inflammatory response, reduced osteogenic differentiation and disturbed OPG/RANKL axis, leading to osteogenic dysfunction in osteoblast-like cells.
Collapse
Affiliation(s)
- Zhixiao Wu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Qian Ding
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Muxin Yue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Lei Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
7
|
Indari O, Ghosh S, Bal AS, James A, Garg M, Mishra A, Karmodiya K, Jha HC. Awakening the sleeping giant: Epstein-Barr virus reactivation by biological agents. Pathog Dis 2024; 82:ftae002. [PMID: 38281067 PMCID: PMC10901609 DOI: 10.1093/femspd/ftae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 01/29/2024] Open
Abstract
Epstein-Barr virus (EBV) may cause harm in immunocompromised conditions or on stress stimuli. Various chemical agents have been utilized to induce the lytic cycle in EBV-infected cells. However, apart from chemical agents and external stress stimuli, certain infectious agents may reactivate the EBV. In addition, the acute infection of other pathogens may provide suitable conditions for EBV to thrive more and planting the roots for EBV-associated pathologies. Various bacteria such as periodontal pathogens like Aggregatibacter, Helicobacter pylori, etc. have shown to induce EBV reactivation either by triggering host cells directly or indirectly. Viruses such as Human simplex virus-1 (HSV) induce EBV reactivation by HSV US3 kinase while other viruses such as HIV, hepatitis virus, and even novel SARS-CoV-2 have also been reported to cause EBV reactivation. The eukaryotic pathogens such as Plasmodium falciparum and Aspergillus flavus can also reactivate EBV either by surface protein interaction or as an impact of aflatoxin, respectively. To highlight the underexplored niche of EBV reactivation by biological agents, we have comprehensively presented the related information in this review. This may help to shedding the light on the research gaps as well as to unveil yet unexplored mechanisms of EBV reactivation.
Collapse
Affiliation(s)
- Omkar Indari
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, United States
| | - Subhrojyoti Ghosh
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
| | - Adhiraj Singh Bal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
| | - Ajay James
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
| | - Mehek Garg
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Krishanpal Karmodiya
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune 411008, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
| |
Collapse
|
8
|
Yoshizaki T, Kondo S, Dochi H, Kobayashi E, Mizokami H, Komura S, Endo K. Recent Advances in Assessing the Clinical Implications of Epstein-Barr Virus Infection and Their Application to the Diagnosis and Treatment of Nasopharyngeal Carcinoma. Microorganisms 2023; 12:14. [PMID: 38276183 PMCID: PMC10820804 DOI: 10.3390/microorganisms12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Reports about the oncogenic mechanisms underlying nasopharyngeal carcinoma (NPC) have been accumulating since the discovery of Epstein-Barr virus (EBV) in NPC cells. EBV is the primary causative agent of NPC. EBV-host and tumor-immune system interactions underlie the unique representative pathology of NPC, which is an undifferentiated cancer cell with extensive lymphocyte infiltration. Recent advances in the understanding of immune evasion and checkpoints have changed the treatment of NPC in clinical settings. The main EBV genes involved in NPC are LMP1, which is the primary EBV oncogene, and BZLF1, which induces the lytic phase of EBV. These two multifunctional genes affect host cell behavior, including the tumor-immune microenvironment and EBV behavior. Latent infections, elevated concentrations of the anti-EBV antibody and plasma EBV DNA have been used as biomarkers of EBV-associated NPC. The massive infiltration of lymphocytes in the stroma suggests the immunogenic characteristics of NPC as a virus-infected tumor and, at the same time, also indicates the presence of a sophisticated immunosuppressive system within NPC tumors. In fact, immune checkpoint inhibitors have shown promise in improving the prognosis of NPC patients with recurrent and metastatic disease. However, patients with advanced NPC still require invasive treatments. Therefore, there is a pressing need to develop an effective screening system for early-stage detection of NPC in patients. Various modalities, such as nasopharyngeal cytology, cell-free DNA methylation, and deep learning-assisted nasopharyngeal endoscopy for screening and diagnosis, have been introduced. Each modality has its advantages and disadvantages. A reciprocal combination of these modalities will improve screening and early diagnosis of NPC.
Collapse
|
9
|
Sun M, Clayton N, Alam S, Asmussen N, Wong A, Kim JH, Luong G, Mokhtari S, Pellei D, Carrico CK, Schwartz Z, Boyan BD, Giannobile WV, Sahingur SE, Lin Z. Selective BET inhibitor RVX-208 ameliorates periodontal inflammation and bone loss. J Clin Periodontol 2023; 50:1658-1669. [PMID: 37855275 DOI: 10.1111/jcpe.13887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
AIM To determine the effects of RVX-208, a selective bromodomain and extra-terminal domain (BET) inhibitor targeting bromodomain 2 (BD2), on periodontal inflammation and bone loss. MATERIALS AND METHODS Macrophage-like cells (RAW264.7) and human gingival epithelial cells were challenged by Porphyromonas gingivalis (Pg) with or without RVX-208. Inflammatory gene expression and cytokine production were measured by reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. RAW264.7 cells were induced to osteoclast differentiation. After RVX-208 treatment, osteoclast differentiation was evaluated by histology, tartrate-resistant-acid-phosphatase (TRAP) activity and the expression of osteoclast-specific genes. The effect of RVX-208 on osteoclast transcriptome was studied by RNA sequencing. Periodontitis was induced in rats by ligature and local RVX-208 treatment was administered every other day. Alveolar bone loss was measured by micro-computed tomography. RESULTS RVX-208 inhibited inflammatory gene expression and cytokine production in Pg-infected cells. Osteoclast differentiation was inhibited by RVX-208, as evidenced by reduced osteoclast number, TRAP activity and osteoclast-specific gene expression. RVX-208 displayed a more selective and less profound suppressive impact on transcriptome compared with pan-BET inhibitor, JQ1. RVX-208 administration prevented the alveolar bone loss in vivo. CONCLUSIONS RVX-208 regulated both upstream (inflammatory cytokine production) and downstream (osteoclast differentiation) events that lead to periodontal tissue destruction, suggesting that it may be a promising 'epi-drug' for the prevention of periodontitis.
Collapse
Affiliation(s)
- Mingxu Sun
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
- Jianbo Dental Clinic, Qingdao, People's Republic of China
| | - Nicholas Clayton
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sheikh Alam
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Niels Asmussen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Andrew Wong
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jin Ha Kim
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Gary Luong
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sasan Mokhtari
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - David Pellei
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Caroline K Carrico
- Department of Dental Public Health and Policy, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - William V Giannobile
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Sinem Esra Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhao Lin
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
10
|
Leonov GE, Varaeva YR, Livantsova EN, Starodubova AV. The Complicated Relationship of Short-Chain Fatty Acids and Oral Microbiome: A Narrative Review. Biomedicines 2023; 11:2749. [PMID: 37893122 PMCID: PMC10604844 DOI: 10.3390/biomedicines11102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The human oral microbiome has emerged as a focal point of research due to its profound implications for human health. The involvement of short-chain fatty acids in oral microbiome composition, oral health, and chronic inflammation is gaining increasing attention. In this narrative review, the results of early in vitro, in vivo, and pilot clinical studies and research projects are presented in order to define the boundaries of this new complicated issue. According to the results, the current research data are disputable and ambiguous. When investigating the role of SCFAs in human health and disease, it is crucial to distinguish between their local GI effects and the systemic influences. Locally, SCFAs are a part of normal oral microbiota metabolism, but the increased formation of SCFAs usually attribute to dysbiosis; excess SCFAs participate in the development of local oral diseases and in oral biota gut colonization and dysbiosis. On the other hand, a number of studies have established the positive impact of SCFAs on human health as a whole, including the reduction of chronic systemic inflammation, improvement of metabolic processes, and decrease of some types of cancer incidence. Thus, a complex and sophisticated approach with consideration of origin and localization for SCFA function assessment is demanded. Therefore, more research, especially clinical research, is needed to investigate the complicated relationship of SCFAs with health and disease and their potential role in prevention and treatment.
Collapse
Affiliation(s)
- Georgy E Leonov
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Yurgita R Varaeva
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Elena N Livantsova
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Antonina V Starodubova
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
- Therapy Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
11
|
Picolo M, de Araújo Nobre MA, Salvado F, Barroso H. Association of Herpesvirus and Periodontitis: A Clinical and Laboratorial Case-Control Study. Eur J Dent 2023; 17:1300-1308. [PMID: 37295456 PMCID: PMC10756839 DOI: 10.1055/s-0043-1761423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVES A significant influence of the Herpesviridae family in the progression of periodontal disease has been suggested. The aim of this study was to investigate the potential association of four Herpesviruses (HSV-1, HSV-2, cytomegalovirus [CMV], and Epstein-Barr virus [EBV]) with periodontal disease using a qualitative test for evaluating the presence or absence of viral DNA in crevicular fluid samples of both healthy periodontal patients and periodontal compromised patients. MATERIALS AND METHODS A case-control study was conducted in 100 participants at a university clinic. A qualitative test was used for evaluating the presence/absence of viral DNA in crevicular fluid samples of both healthy periodontal patients and periodontal compromised patients, and considering the periodontitis staging (stage II, stage III, and stage IV) and grading (grade A, grade B, and grade C). STATISTICAL ANALYSIS The distribution of the same exposure variables to the periodontitis staging and grading was compared using Chi-square, Fisher's exact, and Gamma tests depending on the variable characteristics. The significance level was set at 5%. The association of the variables: age, sex, diabetes, smoking, alcohol, and oral hygiene was also considered. RESULTS The prevalence of Herpesviridae family virus DNA was 6% for the periodontal healthy group and 60% for the periodontitis group (roughly 60% on periodontitis stages II, III, and IV, p <0.001; and twofold increase in moderate and rapid progression grades compared with the slow progression grade, p <0.001). HSV1 DNA was prevalent in all periodontitis stages and grades. HSV 2, EBV, and CMV DNA had increasing prevalence rates in more severe stages (stages III and IV, p <0.001); while considering periodontitis grade, HSV2 (p = 0.001), CMV (p = 0.019) and EBV (p <0.001) DNA were prevalent only in grades B and C, with EBV DNA registering a marked prevalence in grade C. CONCLUSION A significant different distribution of Herpesviridae virus DNA per each stage of disease was registered.
Collapse
Affiliation(s)
- Marta Picolo
- Mestrado Integrado de Medicina Dentária, Instituto Universitário Egas Moniz (IUEM), Caparica, Portugal
| | - Miguel A. de Araújo Nobre
- Clínica Universitária de Estomatologia, Faculdade de Medicina, Universidade de Lisboa, Portugal
- Research and Development Department, Maló Clinic, Lisboa, Portugal
| | - Francisco Salvado
- Clínica Universitária de Estomatologia, Faculdade de Medicina, Universidade de Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM) – Instituto Universitário Egas Moniz (IUEM), Caparica Portugal
| | - Helena Barroso
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM) – Instituto Universitário Egas Moniz (IUEM), Caparica Portugal
| |
Collapse
|
12
|
Kohda C, Ino S, Ishikawa H, Kuno Y, Nagashima R, Iyoda M. The essential role of intestinal microbiota in cytomegalovirus reactivation. Microbiol Spectr 2023; 11:e0234123. [PMID: 37754566 PMCID: PMC10581228 DOI: 10.1128/spectrum.02341-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a member of Herpesviridae. It has been reported that HCMV is reactivated in the breast milk of HCMV-seropositive lactating women. As we have reported various aspects of the roles of indigenous microbiota, its role in the murine CMV (MCMV) reactivation was examined in this study. MCMV was latently infected in the salivary gland, mammary tissues, and colon in the pregnant mice. When the salivary gland, mammary tissues, and colon were removed 5 days after delivery, MCMV reactivation of latent infection in each organ was confirmed by the detection of MCMV IE1 mRNA using reverse transcription-quantitative PCR. MCMV reactivation was observed in 100% of the mice during pregnancy. Next, for the elimination of intestinal microbiota, the pregnant mice were treated with low-dose or high-dose non-absorbable antibiotics. Although the numbers of aerobe/anaerobe in cecal content in low-dose antibiotic-treated mice were comparable to those in untreated controls, high-dose antibiotic treatment decreased the number of aerobe/anaerobe microbes from ca.9.0 Log10 to ca.3.0 Log10 (cfu/g). However, it could not be confirmed in 16S rRNA analysis that specific bacterial phylum or genus was eliminated by this high-dose treatment. Interestingly, MCMV reactivation was also observed in 100% of low-dose antibiotic-treated mice, whereas, in high-dose antibiotic-treated mice, MCMV reactivation was not observed in the salivary gland or colon. MCMV IE1 mRNA was detected only in 33% of the mammary tissues of those high-dose-treated mice. These results suggest that the indigenous microbiota played a crucial role in the reactivation of latent infection. IMPORTANCE Human cytomegalovirus (HCMV) infection via breast milk is a serious problem for very preterm infants such as developing a sepsis-like syndrome, cholestasis, or bronchopulmonary dysplasia, among others. It has been reported that HCMV is reactivated in the breast milk of HCMV-seropositive lactating women. In this study, the roles of indigenous microbiota in the murine CMV (MCMV) reactivation were examined using a mouse model. In MCMV latently infected mice, MCMV reactivation was observed in 100% of the mice during pregnancy. For the elimination of intestinal microbiota, MCMV-latent mice were treated with non-absorbable antibiotics. After delivery, MCMV reactivation was not observed in antibiotic-treated mice. This result suggested that the indigenous microbiota played a crucial role in the reactivation of latent infection.
Collapse
Affiliation(s)
- Chikara Kohda
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
| | - Satoshi Ino
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
| | - Hiroki Ishikawa
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
| | - Yoshihiro Kuno
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
- Department of Medicine, Division of Nephrology, Showa University School of Medicine, Tokyo, Japan
| | - Ryuichi Nagashima
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
- Department of Medicine, Division of Nephrology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Uddin MK, Watanabe T, Arata M, Sato Y, Kimura H, Murata T. Epstein-Barr Virus BBLF1 Mediates Secretory Vesicle Transport to Facilitate Mature Virion Release. J Virol 2023; 97:e0043723. [PMID: 37195206 PMCID: PMC10308924 DOI: 10.1128/jvi.00437-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/20/2023] [Indexed: 05/18/2023] Open
Abstract
Enveloped viruses undergo a complex multistep process of assembly, maturation, and release into the extracellular space utilizing host secretory machinery. Several studies of the herpesvirus subfamily have shown that secretory vesicles derived from the trans-Golgi network (TGN) or endosomes transport virions into the extracellular space. However, the regulatory mechanism underlying the release of Epstein-Barr virus, a human oncovirus, remains unclear. We demonstrate that disruption of BBLF1, a tegument component, suppressed viral release and resulted in the accumulation of viral particles on the inner side of the vesicular membrane. Organelle separation revealed the accumulation of infectious viruses in fractions containing vesicles derived from the TGN and late endosomes. Deficiency of an acidic amino acid cluster in BBLF1 reduced viral secretion. Moreover, truncational deletion of the C-terminal region of BBLF1 increased infectious virus production. These findings suggest that BBLF1 regulates the viral release pathway and reveal a new aspect of tegument protein function. IMPORTANCE Several viruses have been linked to the development of cancer in humans. Epstein-Barr virus (EBV), the first identified human oncovirus, causes a wide range of cancers. Accumulating literature has demonstrated the role of viral reactivation in tumorigenesis. Elucidating the functions of viral lytic genes induced by reactivation, and the mechanisms of lytic infection, is essential to understanding pathogenesis. Progeny viral particles synthesized during lytic infection are released outside the cell after the assembly, maturation, and release steps, leading to further infection. Through functional analysis using BBLF1-knockout viruses, we demonstrated that BBLF1 promotes viral release. The acidic amino acid cluster in BBLF1 was also important for viral release. Conversely, mutants lacking the C terminus exhibited more efficient virus production, suggesting that BBLF1 is involved in the fine-tuning of progeny release during the EBV life cycle.
Collapse
Affiliation(s)
- Md Kamal Uddin
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masataka Arata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
14
|
Feng C, Jin C, Liu K, Yang Z. Microbiota-derived short chain fatty acids: Their role and mechanisms in viral infections. Biomed Pharmacother 2023. [DOI: 10.1016/j.biopha.2023.114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
|
15
|
Gu B, Wang Y, Huang J, Guo J, Ma L, Qi Y, Gao S. Retrospective analysis of Porphyromonas gingivalis in patients with nasopharyngeal carcinoma in central China. Mol Clin Oncol 2023; 18:32. [PMID: 36908973 PMCID: PMC9995702 DOI: 10.3892/mco.2023.2628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Little is known about the presence and possible role of Porphyromonas gingivalis (P. gingivalis) in nasopharyngeal carcinoma (NPC), its co-infection with Epstein-Barr virus (EBV), or their association with clinical characteristics of patients with NPC in Central China, where NPC is non-endemic. A total of 45 NPC formalin-fixed paraffin-embedded (FFPE) tissues were retrospectively analyzed using immunohistochemistry (IHC) and a nested PCR combined with DNA sequencing to detect the presence of P. gingivalis, and using reverse transcription-quantitative PCR to detect the presence of EBV. Clinical data including EBV and P. gingivalis status were associated with overall survival (OS). All tumors were undifferentiated, non-keratinizing carcinomas, of which 40/45 (88.9%) were positive for EBV (EBV+), 26/45 (57.8%) were positive for P. gingivalis (by IHC), and 7/45 (15.6%) were positive for P. gingivalis DNA (P. gingivalis +). All seven P. gingivalis DNA-positive NPCs were co-infected with EBV. The 5-year survival rates of the patients with EBV-/P. gingivalis -, EBV+/P. gingivalis -, and EBV+/P. gingivalis + tumors were 60.0% (3/5), 39.4% (13/33) and 42.9% (3/7), respectively. No significant difference was found between the OS of NPC patients among the different infection groups (P=0.793). In conclusion, to the best of our knowledge, this is the first study to describe and confirm the presence of P. gingivalis in FFPE tissues from patients with NPC. P. gingivalis was found to co-exist with EBV in NPC tumor tissues, but is not etiologically relevant to NPC in non-endemic areas, such as Central China.
Collapse
Affiliation(s)
- Bianli Gu
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, P.R. China
| | - Yuehui Wang
- Department of Otolaryngology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Jianwei Huang
- Department of Pathology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471003, P.R. China
| | - Jingyi Guo
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, P.R. China
| | - Lixia Ma
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, P.R. China
| | - Yijun Qi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, P.R. China
| | - Shegan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
16
|
Liu QY, Liao Y, Wu YX, Diao H, Du Y, Chen YW, Xie JR, Xue WQ, He YQ, Wang TM, Zheng XH, Jia WH. The Oral Microbiome as Mediator between Oral Hygiene and Its Impact on Nasopharyngeal Carcinoma. Microorganisms 2023; 11:microorganisms11030719. [PMID: 36985292 PMCID: PMC10058307 DOI: 10.3390/microorganisms11030719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Oral hygiene and the alteration of the oral microbiome have been linked to nasopharyngeal carcinoma (NPC). This study aimed to investigate whether the oral microbiome plays a mediating role in the relationship between oral hygiene and NPC, and identify differential microbial taxonomies that potentially mediated this association. We conducted a case–control study that involved 218 NPC patients and 192 healthy controls. The 16S rRNA gene sequencing of the V4 region was performed to evaluate the composition of the oral microbiome. Mediation analysis was applied to explore the relationship among oral hygiene, the oral microbiome and NPC. We found that dental fillings and poor oral hygiene score were associated with increased risks of NPC (OR = 2.51 (1.52–4.25) and OR = 1.54 (1.02–2.33)). Mediation analysis indicated that dental fillings increased the risk of NPC by altering the abundance of Erysipelotrichales, Erysipelotrichaceae, Solobacterium and Leptotrichia wadei. In addition, Leptotrichia wadei also mediated the association between oral hygiene score and the risk of NPC. Our study confirmed that poor oral hygiene increased the risk of NPC, which was partly mediated by the oral microbiome. These findings might help us to understand the potential mechanism of oral hygiene influencing the risk of NPC via the microbiome.
Collapse
Affiliation(s)
- Qiao-Yun Liu
- School of Public Health, Sun Yat-sen University, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yan-Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hua Diao
- School of Public Health, Sun Yat-sen University, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yan Du
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yi-Wei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jin-Ru Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Wei-Hua Jia
- School of Public Health, Sun Yat-sen University, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Correspondence: ; Tel.: +86-020-87342327
| |
Collapse
|
17
|
Ward BJH, Schaal DL, Nkadi EH, Scott RS. EBV Association with Lymphomas and Carcinomas in the Oral Compartment. Viruses 2022; 14:2700. [PMID: 36560704 PMCID: PMC9783324 DOI: 10.3390/v14122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic human herpesvirus infecting approximately 90% of the world's population. The oral cavity serves a central role in the life cycle, transmission, and pathogenesis of EBV. Transmitted to a new host via saliva, EBV circulates between cellular compartments within oral lymphoid tissues. Epithelial cells primarily support productive viral replication, while B lymphocytes support viral latency and reactivation. EBV infections are typically asymptomatic and benign; however, the latent virus is associated with multiple lymphomas and carcinomas arising in the oral cavity. EBV association with cancer is complex as histologically similar cancers often test negative for the virus. However, the presence of EBV is associated with distinct features in certain cancers. The intrinsic ability of EBV to immortalize B-lymphocytes, via manipulation of survival and growth signaling, further implicates the virus as an oncogenic cofactor. A distinct mutational profile and burden have been observed in EBV-positive compared to EBV-negative tumors, suggesting that viral infection can drive alternative pathways that converge on oncogenesis. Taken together, EBV is also an important prognostic biomarker that can direct alternative therapeutic approaches. Here, we discuss the prevalence of EBV in oral malignancies and the EBV-dependent mechanisms associated with tumorigenesis.
Collapse
Affiliation(s)
| | | | | | - Rona S. Scott
- Department of Microbiology and Immunology, Center for Applied Immunology and Pathological Processes, Feist-Weiller Cancer Center, Louisiana State University Health-Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
18
|
Watanabe T, Teratani Y. Unusual manifestation of methotrexate-associated lymphoproliferative disorder as a palatal mass. BMJ Case Rep 2022; 15:e250616. [PMID: 36175042 PMCID: PMC9528599 DOI: 10.1136/bcr-2022-250616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2022] [Indexed: 11/03/2022] Open
Abstract
Methotrexate-associated lymphoproliferative disorder (MTX-LPD) can occur in the oral cavity, and only a few cases with palatal involvement have been reported. Chemotherapy may be needed if there is no remission after the withdrawal of MTX. We report a case of MTX-LPD presenting with a swelling of the palate that required chemotherapy. A woman in her 70s with rheumatoid arthritis reported a swelling on the left side of the palate. Her condition was diagnosed as Epstein-Barr virus-negative diffuse large B-cell lymphoma (MTX-LPD). Since the mass did not remit after MTX withdrawal, she underwent five courses of chemotherapy. Currently, the patient is in complete remission. In patients on MTX who develop a swelling on the palate, MTX-LPD should be included among the differential diagnostic possibilities. Diagnosis and treatment of MTX-LPD call for consultation with a haematologist. If the mass fails to regress following withdrawal of MTX, appropriate chemotherapy is indicated.
Collapse
Affiliation(s)
- Takuma Watanabe
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukina Teratani
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Are Viral Infections Key Inducers of Autoimmune Diseases? Focus on Epstein–Barr Virus. Viruses 2022; 14:v14091900. [PMID: 36146707 PMCID: PMC9506567 DOI: 10.3390/v14091900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 12/26/2022] Open
Abstract
It is generally accepted that certain viral infections can trigger the development of autoimmune diseases. However, the exact mechanisms by which these viruses induce autoimmunity are still not understood. In this review, we first describe hypothetical mechanisms by which viruses induce some representative autoimmune diseases. Then, we focus on Epstein–Barr virus (EBV) and discuss its role in the pathogenesis of rheumatoid arthritis (RA). The discussion is mainly based on our own previous findings that (A) EBV DNA and its products EBV-encoded small RNA (EBER) and latent membrane protein 1 (LMP1) are present in the synovial lesions of RA, (B) mRNA expression of the signaling lymphocytic activation molecule-associated protein (SAP)/SH2D1A gene that plays a critical role in cellular immune responses to EBV is reduced in the peripheral T cells of patients with RA, and (C) EBV infection of mice reconstituted with human immune system components (humanized mice) induced erosive arthritis that is pathologically similar to RA. Additionally, environmental factors may contribute to EBV reactivation as follows: Porphyromonas gingivalis peptidylarginine deiminase (PAD), an enzyme required for citrullination, engenders antigens leading to the production of citrullinated peptides both in the gingiva and synovium. Anti-citrullinated peptides autoantibody is an important marker for diagnosis and disease activity of RA. These findings, as well as various results obtained by other researchers, strongly suggest that EBV is directly involved in the pathogenesis of RA, a typical autoimmune disease.
Collapse
|
20
|
Qiao H, Tan XR, Li H, Li JY, Chen XZ, Li YQ, Li WF, Tang LL, Zhou GQ, Zhang Y, Liang YL, He QM, Zhao Y, Huang SY, Gong S, Li Q, Ye ML, Chen KL, Sun Y, Ma J, Liu N. Association of Intratumoral Microbiota With Prognosis in Patients With Nasopharyngeal Carcinoma From 2 Hospitals in China. JAMA Oncol 2022; 8:1301-1309. [PMID: 35834269 PMCID: PMC9284409 DOI: 10.1001/jamaoncol.2022.2810] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Importance Microbiota-tumor interactions have qualified microbiota as a promising prognostic biomarker in various types of cancers. Although the nasopharynx acts as a crucial niche of the upper respiratory tract microbiome, whether the intratumoral microbiota exists and its clinical significance in nasopharyngeal carcinoma (NPC) remain uncertain. Objective To evaluate the clinical significance of intratumoral microbiota for individual prognostication in patients with NPC. Design, Setting, and Participants This retrospective cohort study included NPC biopsy samples from 2 hospitals: Sun Yat-sen University Cancer Center (Guangzhou, China) and Zhejiang Cancer Hospital (Hangzhou, China) between January 2004 and November 2016, with follow-up through November 2020. A total of 802 patients were included according to the following criteria: with histologically proven NPC, without distant metastasis at initial diagnosis, had not received antitumor treatment before biopsy sampling, aged between 18 and 70 years, with complete medical records and regular follow-up, without a history of cancer, and successfully extracted enough DNA for experiments. Main Outcomes and Measures The primary end point was disease-free survival, and the secondary end points included distant metastasis-free survival and overall survival. To assess the existence and load of intratumoral microbiota in 96 patients with NPC with or without tumor relapse, 16S rRNA sequencing and quantitative polymerase chain reaction were used. The associations between intratumoral bacterial load and clinical outcome were evaluated in 241 fresh-frozen NPC samples (training cohort) and validated in paraffin-embedded NPC samples of internal (n = 233) and external (n = 232) validation cohorts. Metagenomic and transcriptome analyses were performed to ascertain the origin and underlying mechanism of intratumoral bacteria. Results A total of 802 patients with NPC (mean [SD] age, 46.2 [10.6] years; 594 [74.1%] male) were enrolled. Microbiota presented within NPC tumor tissues, among which Corynebacterium and Staphylococcus predominated. Patients with a high bacterial load in the training cohort had inferior rates of disease-free survival (hazard ratio [HR], 2.90; 95% CI, 1.72-4.90; P < .001), distant metastasis-free survival (HR, 3.18; 95% CI, 1.58-6.39; P < .001), and overall survival (HR, 3.41; 95% CI, 1.90-6.11, P < .001) than those with a low bacterial load, a finding that was validated by the internal and external validation cohorts. Single-nucleotide variant analysis revealed that the nasopharyngeal microbiota was the main origin of NPC intratumoral bacteria. Transcriptome and digital pathology analyses demonstrated that a higher intratumoral bacterial load was negatively associated with T-lymphocyte infiltration. Conclusions and Relevance Intratumoral bacterial load was a robust prognostic tool for patients with NPC in this cohort study, indicating potential guidance for treatment decisions in patients at different levels of risk of malignant progression.
Collapse
Affiliation(s)
- Han Qiao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xi-Rong Tan
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Hui Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jun-Yan Li
- Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xiao-Zhong Chen
- Cancer Hospital of the University of Chinese Academy of Science (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC) Chinese Academy of Sciences, Hanzhou, People's Republic of China
| | - Ying-Qin Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Wen-Fei Li
- Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ling-Long Tang
- Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Guan-Qun Zhou
- Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yuan Zhang
- Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ye-Lin Liang
- Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Qing-Mei He
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yin Zhao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Sheng-Yan Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Sha Gong
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Qian Li
- Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ming-Liang Ye
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Kai-Lin Chen
- Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ying Sun
- Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jun Ma
- Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Na Liu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| |
Collapse
|
21
|
Oka I, Shigeishi H, Ohta K. Co-Infection of Oral Candida albicans and Porphyromonas gingivalis Is Associated with Active Periodontitis in Middle-Aged and Older Japanese People. Medicina (B Aires) 2022; 58:medicina58060723. [PMID: 35743986 PMCID: PMC9227322 DOI: 10.3390/medicina58060723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background and Objectives: Candida albicans can be detected in subgingival sites of patients with periodontitis. However, the association between oral Candida albicans and periodontitis has not been fully elucidated in Japanese adults. The aim of this study is to clarify the relationship between oral Candida albicans infection/co-infection of oral C. albicans and Porphyromonas gingivalis and periodontitis among middle-aged and older Japanese people. Materials and Methods: Eighty-six patients (mean age 70.4 years) who visited the Hiroshima University Hospital from April to September 2021 were investigated in this study. Oral swab samples were collected from the tongue surface. C. albicans and P. gingivalis DNA was detected by real-time PCR using specific DNA primer sets. C. albicans-positive participants were classified into two groups according to the presence or absence of intron insertion of C. albicans DNA by PCR analysis. Results: C. albicans was detected in 22 (25.6%) of the 86 patients. Patients in their 80s recorded a higher C. albicans-positive rate (35.3%) compared with other participants. However, there was no significant association between the C. albicans positivity rate and clinical parameters such as sex, age, systemic disease, denture use, or oral health status. Of the 22 C. albicans-positive participants, 10 participants (45.5%) had C. albicans with intron insertion; 70% of participants who had C. albicans with intron insertion exhibited ≥6 mm probing depth. C. albicans/P. gingivalis co-infection was found in 12 patients (14%). Importantly, binomial logistic regression analysis revealed that C. albicans/P. gingivalis co-infection was significantly associated with ≥6 mm periodontal pockets with bleeding on probing (p = 0.02). Conclusions: Co-infection of C. albicans and P. gingivalis is involved in active periodontitis in middle-aged and older people.
Collapse
|
22
|
Metabolic Remodeling Impacts the Epigenetic Landscape of Dental Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:3490433. [PMID: 35422867 PMCID: PMC9005295 DOI: 10.1155/2022/3490433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/12/2022] [Indexed: 02/05/2023] Open
Abstract
Epigenetic regulation can dynamically adjust the gene expression program of cell fate decision according to the cellular microenvironment. Emerging studies have shown that metabolic activities provide fundamental components for epigenetic modifications and these metabolic-sensitive epigenetic events dramatically impact the cellular function of stem cells. Dental mesenchymal stem cells are promising adult stem cell resource for in situ injury repair and tissue engineering. In this review, we discuss the impact of metabolic fluctuations on epigenetic modifications in the oral and maxillofacial regions. The principles of the metabolic link to epigenetic modifications and the interaction between metabolite substrates and canonical epigenetic events in dental mesenchymal stem cells are summarized. The coordination between metabolic pathways and epigenetic events plays an important role in cellular progresses including differentiation, inflammatory responses, and aging. The metabolic-epigenetic network is critical for expanding our current understanding of tissue homeostasis and cell fate decision and for guiding potential therapeutic approaches in dental regeneration and infectious diseases.
Collapse
|
23
|
Lamont RJ, Fitzsimonds ZR, Wang H, Gao S. Role of Porphyromonas gingivalis in oral and orodigestive squamous cell carcinoma. Periodontol 2000 2022; 89:154-165. [PMID: 35244980 DOI: 10.1111/prd.12425] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oral and esophageal squamous cell carcinomas harbor a diverse microbiome that differs compositionally from precancerous and healthy tissues. Though causality is yet to be definitively established, emerging trends implicate periodontal pathogens such as Porphyromonas gingivalis as associated with the cancerous state. Moreover, infection with P. gingivalis correlates with a poor prognosis, and P. gingivalis is oncopathogenic in animal models. Mechanistically, properties of P. gingivalis that have been established in vitro and could promote tumor development include induction of a dysbiotic inflammatory microenvironment, inhibition of apoptosis, increased cell proliferation, enhanced angiogenesis, activation of epithelial-to-mesenchymal transition, and production of carcinogenic metabolites. The microbial community context is also relevant to oncopathogenicity, and consortia of P. gingivalis and Fusobacterium nucleatum are synergistically pathogenic in oral cancer models in vivo. In contrast, oral streptococci, such as Streptococcus gordonii, can antagonize protumorigenic epithelial cell phenotypes induced by P. gingivalis, indicating functionally specialized roles for bacteria in oncogenic communities. Consistent with the notion of the bacterial community constituting the etiologic unit, metatranscriptomic data indicate that functional, rather than compositional, properties of the tumor-associated communities have more relevance to cancer development. A consistent association of P. gingivalis with oral and orodigestive carcinoma could have diagnostic potential for early detection of these conditions that have a high incidence and low survival rates.
Collapse
Affiliation(s)
- Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Zackary R Fitzsimonds
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Huizhi Wang
- Department of Oral and Craniofacial Molecular Biology, VCU School of Dentistry, Richmond, Virginia, USA
| | - Shegan Gao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
24
|
Wen Y, Xu H, Han J, Jin R, Chen H. How Does Epstein–Barr Virus Interact With Other Microbiomes in EBV-Driven Cancers? Front Cell Infect Microbiol 2022; 12:852066. [PMID: 35281433 PMCID: PMC8904896 DOI: 10.3389/fcimb.2022.852066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
The commensal microbiome refers to a large spectrum of microorganisms which mainly consists of viruses and bacteria, as well as some other components such as protozoa and fungi. Epstein–Barr virus (EBV) is considered as a common component of the human commensal microbiome due to its spread worldwide in about 95% of the adult population. As the first oncogenic virus recognized in human, numerous studies have reported the involvement of other components of the commensal microbiome in the increasing incidence of EBV-driven cancers. Additionally, recent advances have also defined the involvement of host–microbiota interactions in the regulation of the host immune system in EBV-driven cancers as well as other circumstances. The regulation of the host immune system by the commensal microbiome coinfects with EBV could be the implications for how we understand the persistence and reactivation of EBV, as well as the progression of EBV-associated cancers, since majority of the EBV persist as asymptomatic carrier. In this review, we attempt to summarize the possible mechanisms for EBV latency, reactivation, and EBV-driven tumorigenesis, as well as casting light on the role of other components of the microbiome in EBV infection and reactivation. Besides, whether novel microbiome targeting strategies could be applied for curing of EBV-driven cancer is discussed as well.
Collapse
Affiliation(s)
| | | | | | - Runming Jin
- *Correspondence: Hongbo Chen, ; Runming Jin,
| | - Hongbo Chen
- *Correspondence: Hongbo Chen, ; Runming Jin,
| |
Collapse
|
25
|
Wu CY, Yu ZY, Hsu YC, Hung SL. Enhancing production of herpes simplex virus type 1 in oral epithelial cells by co-infection with Aggregatibacter actinomycetemcomitans. J Formos Med Assoc 2022; 121:1841-1849. [PMID: 35144835 DOI: 10.1016/j.jfma.2022.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND/PURPOSE The association between herpetic/bacterial co-infection and periodontal diseases has been reported. However, how interactions between herpesviruses and periodontal bacteria dampen periodontal inflammation is still unclear. This study determined effects of co-infection with oral bacteria, including Streptococcus sanguinis, Fusobacterium nucleatum or Aggregatibacter actinomycetemcomitans, in herpes simplex virus type 1 (HSV-1)-infected oral epithelial cells. METHODS Cell viability was determined by detection the activity of mitochondrial dehydrogenase. Viral production was measured using the plaque assay. Levels of bacterial and viral DNA were determined by real-time polymerase chain reaction. Secretion of interleukin (IL)-6 and IL-8 was measured using the enzyme-linked immunosorbent assay. RESULTS Viability was not further reduced by bacterial co-infection in HSV-1-infected cells. Co-infection with HSV-1 and S. sanguinis or F. nucleatum reduced the viral yield whereas co-infection with HSV-1 and A. actinomycetemcomitans significantly enhanced the viral yield in oral epithelial cells. The enhancing effect of A. actinomycetemcomitans was not affected by bacterial heat-inactivation. Co-infection with HSV-1/A. actinomycetemcomitans increased intracellular levels of both viral and bacterial DNA. Secretion of IL-6 and IL-8 stimulated by A. actinomycetemcomitans infection was partly reduced by co-infection with HSV-1 in oral epithelial cells. CONCLUSION In contrast to S. sanguinis and F. nucleatum, A. actinomycetemcomitans enhanced the yield of HSV-1. Either HSV-1 or A. actinomycetemcomitans may be benefited from co-infection, in aspects of increases in production of viral and bacterial DNA as well as reductions in cytokine secretion. These findings echoed with previous clinical studies showing co-infection of HSV and A. actinomycetemcomitans in patients with aggressive periodontitis.
Collapse
Affiliation(s)
- Ching-Yi Wu
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Zhu-Yun Yu
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chun Hsu
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shan-Ling Hung
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Community Dentistry, Zhong-Xiao Branch, Taipei City Hospital, Taipei, Taiwan.
| |
Collapse
|
26
|
Kato I, Zhang J, Sun J. Bacterial-Viral Interactions in Human Orodigestive and Female Genital Tract Cancers: A Summary of Epidemiologic and Laboratory Evidence. Cancers (Basel) 2022; 14:425. [PMID: 35053587 PMCID: PMC8773491 DOI: 10.3390/cancers14020425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Infectious agents, including viruses, bacteria, fungi, and parasites, have been linked to pathogenesis of human cancers, whereas viruses and bacteria account for more than 99% of infection associated cancers. The human microbiome consists of not only bacteria, but also viruses and fungi. The microbiome co-residing in specific anatomic niches may modulate oncologic potentials of infectious agents in carcinogenesis. In this review, we focused on interactions between viruses and bacteria for cancers arising from the orodigestive tract and the female genital tract. We examined the interactions of these two different biological entities in the context of human carcinogenesis in the following three fashions: (1) direct interactions, (2) indirect interactions, and (3) no interaction between the two groups, but both acting on the same host carcinogenic pathways, yielding synergistic or additive effects in human cancers, e.g., head and neck cancer, liver cancer, colon cancer, gastric cancer, and cervical cancer. We discuss the progress in the current literature and summarize the mechanisms of host-viral-bacterial interactions in various human cancers. Our goal was to evaluate existing evidence and identify gaps in the knowledge for future directions in infection and cancer.
Collapse
Affiliation(s)
- Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jilei Zhang
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Sun
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- UIC Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
27
|
Yokoe S, Hasuike A, Watanabe N, Tanaka H, Karahashi H, Wakuda S, Takeichi O, Kawato T, Takai H, Ogata Y, Sato S, Imai K. Epstein-Barr Virus Promotes the Production of Inflammatory Cytokines in Gingival Fibroblasts and RANKL-Induced Osteoclast Differentiation in RAW264.7 Cells. Int J Mol Sci 2022; 23:ijms23020809. [PMID: 35054995 PMCID: PMC8775710 DOI: 10.3390/ijms23020809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 01/27/2023] Open
Abstract
Periodontitis is an inflammatory condition that causes the destruction of the supporting tissues of teeth and is a major public health problem affecting more than half of the adult population worldwide. Recently, members of the herpes virus family, such as the Epstein–Barr virus (EBV), have been suggested to be involved in the etiology of periodontitis because bacterial activity alone does not adequately explain the clinical characteristics of periodontitis. However, the role of EBV in the etiology of periodontitis is unknown. This study aimed to examine the effect of inactivated EBV on the expression of inflammatory cytokines in human gingival fibroblasts (HGFs) and the induction of osteoclast differentiation. We found that extremely high levels of interleukin (IL)-6 and IL-8 were induced by inactivated EBV in a copy-dependent manner in HGFs. The levels of IL-6 and IL-8 in HGFs were higher when the cells were treated with EBV than when treated with lipopolysaccharide and lipoteichoic acid. EBV induced IκBα degradation, NF-κB transcription, and RAW264.7 cell differentiation into osteoclast-like cells. These findings suggest that even without infecting the cells, EBV contributes to inflammatory cytokine production and osteoclast differentiation by contact with oral cells or macrophage lineage, resulting in periodontitis onset and progression.
Collapse
Affiliation(s)
- Sho Yokoe
- Department of Periodontology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (S.Y.); (A.H.); (N.W.); (H.K.); (S.W.); (S.S.)
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Akira Hasuike
- Department of Periodontology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (S.Y.); (A.H.); (N.W.); (H.K.); (S.W.); (S.S.)
| | - Norihisa Watanabe
- Department of Periodontology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (S.Y.); (A.H.); (N.W.); (H.K.); (S.W.); (S.S.)
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Hideki Tanaka
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (H.T.); (T.K.)
| | - Hiroyuki Karahashi
- Department of Periodontology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (S.Y.); (A.H.); (N.W.); (H.K.); (S.W.); (S.S.)
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Shin Wakuda
- Department of Periodontology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (S.Y.); (A.H.); (N.W.); (H.K.); (S.W.); (S.S.)
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Osamu Takeichi
- Department of Endodontics, Nihon University School of Dentistry, Tokyo 101-8310, Japan;
| | - Takayuki Kawato
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (H.T.); (T.K.)
| | - Hideki Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan; (H.T.); (Y.O.)
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan; (H.T.); (Y.O.)
| | - Shuichi Sato
- Department of Periodontology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (S.Y.); (A.H.); (N.W.); (H.K.); (S.W.); (S.S.)
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
- Correspondence: ; Tel.: +81-3-33219-8115
| |
Collapse
|
28
|
Maulani C, Auerkari EI, C. Masulili SL, Soeroso Y, Djoko Santoso W, S. Kusdhany L. Association between Epstein-Barr virus and periodontitis: A meta-analysis. PLoS One 2021; 16:e0258109. [PMID: 34618843 PMCID: PMC8496828 DOI: 10.1371/journal.pone.0258109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/18/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose Previous studies have found that Epstein-Barr virus (EBV) is associated with periodontitis, though some controversy remains. This meta-analysis aimed to clarify and update the relationship between EBV and periodontitis as well as clinical parameters. Methods A comprehensive search was conducted in the PubMed and Scopus databases in December 2020. Original data were extracted according to defined inclusion and exclusion criteria. Outcomes were analyzed, including overall odds ratios (ORs) and 95% confidence intervals (CIs). A random-effects model was used, and publication bias was assessed by Egger’s and Begg’s tests. Sensitivity analysis was used to evaluate the stability of the outcome. Results Twenty-six studies were included in the present meta-analysis, involving 1354 periodontitis patients and 819 healthy controls. The included studies mostly showed high quality. The overall quantitative synthesis for the association between EBV and periodontitis was an increased odds ratio when subgingival EBV was detected OR = 7.069, 95% CI = 4.197–11.905, P<0.001). The results of subgroup analysis suggested that the association of EBV with periodontitis was significant in Asian, European, and American populations (P<0.001; P = 0.04; P = 0.003, respectively) but not in African populations (P = 0.29). Subgroup analysis by sample type showed that subgingival plaque (SgP), tissue and gingival crevicular fluid GCF were useful for EBV detection (P<0.001). EBV detection amplification methods included nested PCR, multiplex PCR and PCR (P<0.001; P = 0.05, P<0.001, respectively), but EBV detection by real-time PCR and loop-mediated isothermal amplification presented no significant result (P = 0.06; P = 0.3, respectively). For the clinical parameters of periodontitis, pocket depth (PD) and bleeding of probing (BOP) percentages were higher in the EBV-positive sites than in the EBV-negative sites (MD 0.47 [0.08, 0.85], P = 0.02; MD 19.45 [4.47, 34.43], P = 0.01). Conclusions A high frequency of EBV detection is associated with an increased risk of periodontitis. The EBV association was particularly significant in all populations except in African populations. Subgigival plaque (SgP), tissue and GCF were not significantly different useful material for detecting EBV in periodontitis. Nested PCR and multiplex PCR are reliable methods for this purpose. In the presence of EBV, PD and BOP are reliable clinical parameters for gingival inflammation. However, some caution in such interpretation is justified due to heterogeneity among studies. A suggested extension could assess the parallel influence of other human herpesviruses.
Collapse
Affiliation(s)
- Chaerita Maulani
- Faculty of Dentistry, Doctoral Program, Universitas Indonesia, Jakarta, Indonesia
| | - Elza Ibrahim Auerkari
- Faculty of Dentistry, Department of Oral Biology, Universitas Indonesia, Jakarta, Indonesia
- * E-mail:
| | - Sri Lelyati C. Masulili
- Faculty of Dentistry, Department of Periodontology, Universitas Indonesia, Jakarta, Indonesia
| | - Yuniarti Soeroso
- Faculty of Dentistry, Department of Periodontology, Universitas Indonesia, Jakarta, Indonesia
| | - Widayat Djoko Santoso
- Faculty of Medicine, Department of Internal Medicine in Tropical Infection, Universitas Indonesia, Jakarta, Indonesia
| | - Lindawati S. Kusdhany
- Faculty of Dentistry, Department of Prosthodontics, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
29
|
|
30
|
The Role of Coinfections in the EBV-Host Broken Equilibrium. Viruses 2021; 13:v13071399. [PMID: 34372605 PMCID: PMC8310153 DOI: 10.3390/v13071399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
The Epstein–Barr virus (EBV) is a well-adapted human virus, and its infection is exclusive to our species, generally beginning in the childhood and then persisting throughout the life of most of the affected adults. Although this infection generally remains asymptomatic, EBV can trigger life-threatening conditions under unclear circumstances. The EBV lifecycle is characterized by interactions with other viruses or bacteria, which increases the probability of awakening its pathobiont capacity. For instance, EBV infects B cells with the potential to alter the germinal center reaction (GCR)—an adaptive immune structure wherein mutagenic-driven processes take place. HIV- and Plasmodium falciparum-induced B cell hyperactivation also feeds the GCR. These agents, along with the B cell tropic KSHV, converge in the ontogeny of germinal center (GC) or post-GC lymphomas. EBV oral transmission facilitates interactions with local bacteria and HPV, thereby increasing the risk of periodontal diseases and head and neck carcinomas. It is less clear as to how EBV is localized in the stomach, but together with Helicobacter pylori, they are known to be responsible for gastric cancer. Perhaps this mechanism is reminiscent of the local inflammation that attracts different herpesviruses and enhances graft damage and chances of rejection in transplanted patients. In this review, we discussed the existing evidence suggestive of EBV possessing the potential to synergize or cooperate with these agents to trigger or worsen the disease.
Collapse
|
31
|
Blostein F, Foote S, Salzman E, McNeil DW, Marazita ML, Martin ET, Foxman B. Associations Between Salivary Bacteriome Diversity and Salivary Human Herpesvirus Detection in Early Childhood: A Prospective Cohort Study. J Pediatric Infect Dis Soc 2021; 10:856-863. [PMID: 34173666 PMCID: PMC8459089 DOI: 10.1093/jpids/piab044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/26/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND The bacteriome is associated with susceptibility to some eukaryotic viruses, but no study has examined associations between the salivary bacteriome and human herpesviruses (HHVs). We provide new prevalence and incidence estimates for salivary herpesviruses detection and estimate associations with bacteriome diversity in young children. METHODS Salivary samples collected at ages ~2, 8, 12, and 24 months from 153 children participating in the Center for Oral Health Research in Appalachia cohort 2 (COHRA2) were screened for HHVs using the Fast-Track Neuro9 multiplex PCR assay, and for the bacteriome using 16S rRNA amplicon sequencing. We used Cox proportional hazard models to test for associations between the salivary bacteriome and hazards of cytomegalovirus (CMV) and human herpesvirus-6 (HHV6). RESULTS CMV, HHV6, and Epstein-Barr virus (EBV) were detected at all visits. Human herpesvirus-7 (HHV7) was first detected at the 8-month visit and herpes simplex virus 1 (HSV1) was only detected at the 12-month visit. Varicella-zoster virus, herpes simplex virus 2, and human herpesvirus-8 were never detected. HHV6 (24-month cumulative incidence: 73.8%) and CMV (24-month cumulative incidence: 32.3%) were detected most frequently. Increasing salivary bacteriome diversity was associated with longer survival to first detection of CMV (hazard ratio [95% CI]: 0.24 [0.12, 0.49]) and HHV6 (hazard ratio [95% CI]: 0.24 [0.13, 0.44]). CONCLUSION CMV, HHV6, EBV, HHV7, and HSV1 were detected in the saliva during the first 2 years of life. Time to first detection of CMV and HHV6 was associated with salivary bacteriome diversity, suggesting a possible interaction between HHVs and the salivary bacteriome.
Collapse
Affiliation(s)
- Freida Blostein
- Department of Epidemiology, Center for Molecular and Clinical Epidemiology of Infectious Diseases, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Sydney Foote
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Elizabeth Salzman
- Department of Epidemiology, Center for Molecular and Clinical Epidemiology of Infectious Diseases, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Daniel W McNeil
- Department of Clinical Psychology, West Virginia University, Morgantown, West Virginia, USA
| | - Mary L Marazita
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,Clinical and Translational Sciences Institute, and Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emily T Martin
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Betsy Foxman
- Department of Epidemiology, Center for Molecular and Clinical Epidemiology of Infectious Diseases, University of Michigan School of Public Health, Ann Arbor, Michigan, USA,Corresponding Author: Betsy Foxman, PhD, Department of Epidemiology, University of Michigan School of Public Health, M5108 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029. E-mail:
| |
Collapse
|
32
|
Alwin A, Karst SM. The influence of microbiota-derived metabolites on viral infections. Curr Opin Virol 2021; 49:151-156. [PMID: 34144380 DOI: 10.1016/j.coviro.2021.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 12/27/2022]
Abstract
Intestinal microbiota have profound effects on viral infections locally and systemically. While they can directly influence enteric virus infections, there is also an increasing appreciation for the role of microbiota-derived metabolites in regulating virus infections. Because metabolites diffuse across the intestinal epithelium and enter circulation, they can influence host response to pathogens at extraintestinal sites. In this review, we summarize the effects of three types of microbiota-derived metabolites on virus infections. While short-chain fatty acids serve to regulate the extent of inflammation associated with viral infections, the flavonoid desaminotyrosine and bile acids generally regulate interferon responses. A common theme that emerges is that microbiota-derived metabolites can have proviral and antiviral effects depending on the virus in question. Understanding the molecular mechanisms by which microbiota-derived metabolites impact viral infections and the highly conditional nature of these responses should pave the way to developing novel rational antivirals.
Collapse
Affiliation(s)
- Ajisha Alwin
- College of Medicine, Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Stephanie M Karst
- College of Medicine, Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
33
|
Kamio N, Hayata M, Tamura M, Tanaka H, Imai K. Porphyromonas gingivalis enhances pneumococcal adhesion to human alveolar epithelial cells by increasing expression of host platelet-activating factor receptor. FEBS Lett 2021; 595:1604-1612. [PMID: 33792027 DOI: 10.1002/1873-3468.14084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/30/2022]
Abstract
Streptococcus pneumoniae causes pneumonia by infecting the alveolar epithelium via binding to host receptors, such as the platelet-activating factor receptor (PAFR). Although chronic periodontitis has been identified as a pneumonia risk factor, how periodontopathic bacteria cause pneumonia is not known. We found that S. pneumoniae adhered to PAFR expressed on A549 human alveolar epithelial cells stimulated by Porphyromonas gingivalis culture supernatant, and this was abrogated by a PAFR-specific inhibitor. Among the major virulence factors of P. gingivalis [lipopolysaccharide (LPS), fimbriae and gingipains (Rgps and Kgp)], PAFR expression and pneumococcal adhesion were executed in an Rgp-dependent manner. LPS and fimbriae did not induce PAFR expression. Hence, our findings suggest that P. gingivalis enhances pneumococcal adhesion to human alveoli by inducing PAFR expression and that gingipains are responsible for this.
Collapse
Affiliation(s)
- Noriaki Kamio
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Mayumi Hayata
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Muneaki Tamura
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Hajime Tanaka
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
34
|
Kheur S, Kulkarni M, Mahajan PG, Kheur M, Raj AT, Patil S, Awan KH. Comparing the sub-gingival levels of Cytomegalovirus, Epstein-Barr virus, Porphyromonas gingivalis in human immunodeficiency virus-1 seropositive patients with and without antiretroviral therapy. Dis Mon 2021; 67:101166. [PMID: 33663798 DOI: 10.1016/j.disamonth.2021.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The effect of antiretroviral therapy (ART) on the oral pathogenic microbes in human immunodeficiency virus-1 seropositive patients remains relatively unexplored. Thus, the present study assessed the effect of ART on the sub-gingival levels of 3 pathogenic microbes. MATERIALS AND METHODS The study groups consisted of 60 human immunodeficiency virus-1 seropositive patients divided into 3 groups of 20 each. Group 1 had periodontitis and did not start with the ART. Group 2 had periodontitis and started with ART (Tenofovir Disoproxil Fumarate 300 mg + Lamivudine 300 mg + Efavirenz 600 mg) at least 6 months before the study. Group 3 with normal periodontium, and have not started ART. The sub-gingival loads of Cytomegalovirus, Epstein-Barr virus, and the Porphyromonas gingivalis levels were assessed, along with the CD4 counts. RESULTS The cytomegalovirus load was highest in group 1, followed by groups 2, and 3 (p-value of 0.271). The Epstein-Barr load was highest for group 2, followed by group 3, and 1 (p-value of 0.022). The P.gingivalis load was highest in group 2, followed by groups 1 and 3, (p-value of 0.028). The Epstein-Barr and Cytomegalovirus counts were significantly higher (p-value < 0.02) when the CD4 counts were less than 500 cells/cu3. CONCLUSION ART did not cause any significant reduction in the sub-gingival levels of any of the 3 examined microbes. Given the lack of any significant effect on the sub-gingival microbial loads by the ART, human immunodeficiency virus patients may require additional anti-microbial agents and regular mechanical plaque removal to maintain their periodontal status.
Collapse
Affiliation(s)
- Supriya Kheur
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India.
| | - Meena Kulkarni
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Pratiksha G Mahajan
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Mohit Kheur
- Department of Prosthodontics, M.A. Rangoonwala College of Dental Sciences & Research Centre, Pune, India
| | - A Thirumal Raj
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Kamran Habib Awan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, USA.
| |
Collapse
|
35
|
Radaic A, Kapila YL. The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput Struct Biotechnol J 2021; 19:1335-1360. [PMID: 33777334 PMCID: PMC7960681 DOI: 10.1016/j.csbj.2021.02.010] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
The oralome is the summary of the dynamic interactions orchestrated between the ecological community of oral microorganisms (comprised of up to approximately 1000 species of bacteria, fungi, viruses, archaea and protozoa - the oral microbiome) that live in the oral cavity and the host. These microorganisms form a complex ecosystem that thrive in the dynamic oral environment in a symbiotic relationship with the human host. However, the microbial composition is significantly affected by interspecies and host-microbial interactions, which in turn, can impact the health and disease status of the host. In this review, we discuss the composition of the oralome and inter-species and host-microbial interactions that take place in the oral cavity and examine how these interactions change from healthy (eubiotic) to disease (dysbiotic) states. We further discuss the dysbiotic signatures associated with periodontitis and caries and their sequalae, (e.g., tooth/bone loss and pulpitis), and the systemic diseases associated with these oral diseases, such as infective endocarditis, atherosclerosis, diabetes, Alzheimer's disease and head and neck/oral cancer. We then discuss current computational techniques to assess dysbiotic oral microbiome changes. Lastly, we discuss current and novel techniques for modulation of the dysbiotic oral microbiome that may help in disease prevention and treatment, including standard hygiene methods, prebiotics, probiotics, use of nano-sized drug delivery systems (nano-DDS), extracellular polymeric matrix (EPM) disruption, and host response modulators.
Collapse
Affiliation(s)
- Allan Radaic
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Yvonne L. Kapila
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
36
|
Khor B, Snow M, Herrman E, Ray N, Mansukhani K, Patel KA, Said-Al-Naief N, Maier T, Machida CA. Interconnections Between the Oral and Gut Microbiomes: Reversal of Microbial Dysbiosis and the Balance Between Systemic Health and Disease. Microorganisms 2021; 9:496. [PMID: 33652903 PMCID: PMC7996936 DOI: 10.3390/microorganisms9030496] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The human microbiota represents a complex array of microbial species that influence the balance between the health and pathology of their surrounding environment. These microorganisms impart important biological benefits to their host, such as immune regulation and resistance to pathogen colonization. Dysbiosis of microbial communities in the gut and mouth precede many oral and systemic diseases such as cancer, autoimmune-related conditions, and inflammatory states, and can involve the breakdown of innate barriers, immune dysregulation, pro-inflammatory signaling, and molecular mimicry. Emerging evidence suggests that periodontitis-associated pathogens can translocate to distant sites to elicit severe local and systemic pathologies, which necessitates research into future therapies. Fecal microbiota transplantation, probiotics, prebiotics, and synbiotics represent current modes of treatment to reverse microbial dysbiosis through the introduction of health-related bacterial species and substrates. Furthermore, the emerging field of precision medicine has been shown to be an effective method in modulating host immune response through targeting molecular biomarkers and inflammatory mediators. Although connections between the human microbiome, immune system, and systemic disease are becoming more apparent, the complex interplay and future innovations in treatment modalities will become elucidated through continued research and cross-disciplinary collaboration.
Collapse
Affiliation(s)
- Brandon Khor
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Michael Snow
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Elisa Herrman
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Nicholas Ray
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Kunal Mansukhani
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Karan A. Patel
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Nasser Said-Al-Naief
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| | - Tom Maier
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| | - Curtis A. Machida
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| |
Collapse
|
37
|
Epstein-Barr Virus and Peri-Implantitis: A Systematic Review and Meta-Analysis. Viruses 2021; 13:v13020250. [PMID: 33562820 PMCID: PMC7915238 DOI: 10.3390/v13020250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
The exponential growth in the use of dental implants in the last decades has been accompanied by an increase in the prevalence of peri-implant disease. It appears that viruses may have pathogenic potential for the development of this pathology. The objective of this systematic review is to study the possible association between the presence of Epstein–Barr virus and the development of peri-implantitis. An electronic search was conducted in PubMed/MEDLINE, Scielo and Embase databases for cross-sectional and case–control studies in humans published up to and including 4 January 2021. Five studies were included in the qualitative analysis. The meta-analysis did not show a statistically significant difference regarding the prevalence of Epstein–Barr virus in the peri-implant sulcus between implants with peri-implantitis and healthy implants. In conclusion, no association between the human herpesvirus 4 and peri-implantitis was found. Further research on this topic is essential to develop more effective treatments.
Collapse
|
38
|
Expression of the SARS-CoV-2 Receptor ACE2 and Proinflammatory Cytokines Induced by the Periodontopathic Bacterium Fusobacterium nucleatum in Human Respiratory Epithelial Cells. Int J Mol Sci 2021; 22:ijms22031352. [PMID: 33572938 PMCID: PMC7866373 DOI: 10.3390/ijms22031352] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global public health emergency. Periodontitis, the most prevalent disease that leads to tooth loss, is caused by infection by periodontopathic bacteria. Periodontitis is also a risk factor for pneumonia and the exacerbation of chronic obstructive pulmonary disease, presumably because of the aspiration of saliva contaminated with periodontopathic bacteria into the lower respiratory tract. Patients with these diseases have increased rates of COVID-19 aggravation and mortality. Because periodontopathic bacteria have been isolated from the bronchoalveolar lavage fluid of patients with COVID-19, periodontitis may be a risk factor for COVID-19 aggravation. However, the molecular links between periodontitis and COVID-19 have not been clarified. In this study, we found that the culture supernatant of the periodontopathic bacterium Fusobacterium nucleatum (CSF) upregulated the SARS-CoV-2 receptor angiotensin-converting enzyme 2 in A549 alveolar epithelial cells. In addition, CSF induced interleukin (IL)-6 and IL-8 production by both A549 and primary alveolar epithelial cells. CSF also strongly induced IL-6 and IL-8 expression by BEAS-2B bronchial epithelial cells and Detroit 562 pharyngeal epithelial cells. These results suggest that when patients with mild COVID-19 frequently aspirate periodontopathic bacteria, SARS-CoV-2 infection is promoted, and inflammation in the lower respiratory tract may become severe in the presence of viral pneumonia.
Collapse
|
39
|
Miya C, Cueno ME, Suzuki R, Maruoka S, Gon Y, Kaneko T, Yonehara Y, Imai K. Porphyromonas gingivalis gingipains potentially affect MUC5AC gene expression and protein levels in respiratory epithelial cells. FEBS Open Bio 2020; 11:446-455. [PMID: 33332733 PMCID: PMC7876492 DOI: 10.1002/2211-5463.13066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/02/2020] [Accepted: 12/15/2020] [Indexed: 01/08/2023] Open
Abstract
Porphyromonas gingivalis (Pg) is a periodontopathic pathogen that may affect MUC5AC‐related mucus hypersecretion along airway epithelial cells. Here, we attempted to establish whether Pg virulence factors (lipopolysaccharide, FimA fimbriae, gingipains) affect MUC5AC in immortalized and primary bronchial cells. We report that MUC5AC gene expression and protein levels are affected by Pg culture supernatant, but not by lipopolysaccharide or FimA fimbriae. Cells treated with either Pg single (Kgp or Rgp) or double (Kgp/Rgp) mutants had altered levels of MUC5AC gene expression and protein levels, and MUC5AC staining of double mutant‐treated mouse lung cells showed that MUC5AC protein levels were unaffected. Taken together, we propose that Pg gingipains may be the primary virulence factor that influences both MUC5AC gene expression and protein levels.
Collapse
Affiliation(s)
- Chihiro Miya
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan.,Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Marni E Cueno
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Ryuta Suzuki
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan.,Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Shuichiro Maruoka
- Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuhiro Gon
- Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tadayoshi Kaneko
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshiyuki Yonehara
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
40
|
Nakamura M, Shigeishi H, Cheng-Yih SU, Sugiyama M, Ohta K. Oral human cytomegalovirus prevalence and its relationships with periodontitis and Porphyromonas gingivalis in Japanese adults: a cross-sectional study. J Appl Oral Sci 2020; 28:e20200501. [PMID: 33331391 PMCID: PMC7793530 DOI: 10.1590/1678-7757-2020-00501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE This study aimed to clarify the association between oral human cytomegalovirus (HCMV) and periodontitis in Japanese adults. METHODOLOGY In total, 190 patients (75 men and 115 women; mean age, 70.2 years) who visited Hiroshima University Hospital between March 2018 and May 2020 were included. Oral rinse samples were taken to examine the presence of HCMV DNA using real-time polymerase chain reaction (PCR). P. gingivalis was detected by semi-quantitative PCR analysis. RESULTS HCMV DNA was present in nine of 190 patients (4.7%). There were significant associations between HCMV presence and the presence of ≥4-mm-deep periodontal pockets with bleeding on probing (BOP) (P<0.01) and ≥6-mm-deep periodontal pockets with BOP (P=0.01). However, no significant relationship was observed between HCMV presence and periodontal epithelial surface area scores. Logistic regression analysis revealed that the presence of ≥4-mm-deep periodontal pockets with BOP was significantly associated with HCMV (odds ratio, 14.4; P=0.01). Propensity score matching was performed between patients presenting ≥4-mm-deep periodontal pockets with BOP (i.e., active periodontitis) and patients without ≥4-mm-deep periodontal pockets with BOP; 62 matched pairs were generated. Patients who had ≥4-mm-deep periodontal pockets with BOP showed a higher rate of HCMV presence (9.7%) than those who lacked ≥4-mm-deep periodontal pockets with BOP (0.0%). There was a significant relationship between HCMV presence and ≥4-mm-deep periodontal pockets with BOP (P=0.03). A significant relationship was found between HCMV/P. gingivalis DNA presence and ≥4-mm-deep periodontal pockets with BOP (P=0.03). CONCLUSIONS Coinfection of oral HCMV and P. gingivalis was significantly associated with active periodontitis. Moreover, interactions between oral HCMV and P. gingivalis may be related to the severity of periodontal disease.
Collapse
Affiliation(s)
- Mariko Nakamura
- Hiroshima University, Graduate School of Biomedical and Health Sciences, Program of Oral Health Sciences, Department of Public Oral Health, Hiroshima, Japan
| | - Hideo Shigeishi
- Hiroshima University, Graduate School of Biomedical and Health Sciences, Program of Oral Health Sciences, Department of Public Oral Health, Hiroshima, Japan
| | - S U Cheng-Yih
- Hiroshima University, Graduate School of Biomedical and Health Sciences, Program of Oral Health Sciences, Department of Oral Health Management, Hiroshima, Japan
| | - Masaru Sugiyama
- Hiroshima University, Graduate School of Biomedical and Health Sciences, Program of Oral Health Sciences, Department of Public Oral Health, Hiroshima, Japan
| | - Kouji Ohta
- Hiroshima University, Graduate School of Biomedical and Health Sciences, Program of Oral Health Sciences, Department of Public Oral Health, Hiroshima, Japan
| |
Collapse
|
41
|
Núñez-Acurio D, Bravo D, Aguayo F. Epstein-Barr Virus-Oral Bacterial Link in the Development of Oral Squamous Cell Carcinoma. Pathogens 2020; 9:E1059. [PMID: 33352891 PMCID: PMC7765927 DOI: 10.3390/pathogens9121059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. Its development has been associated with diverse factors such as tobacco smoking and alcohol consumption. In addition, it has been suggested that microorganisms are risk factors for oral carcinogenesis. Epstein-Barr virus (EBV), which establishes lifelong persistent infections and is intermittently shed in the saliva, has been associated with several lymphomas and carcinomas that arise in the oral cavity. In particular, it has been detected in a subset of OSCCs. Moreover, its presence in patients with periodontitis has also been described. Porphyromonas gingivalis (P. gingivalis) is an oral bacterium in the development of periodontal diseases. As a keystone pathogen of periodontitis, P. gingivalis is known not only to damage local periodontal tissues but also to evade the host immune system and eventually affect systemic health. Persistent exposure to P. gingivalis promotes tumorigenic properties of oral epithelial cells, suggesting that chronic P. gingivalis infection is a potential risk factor for OSCC. Given that the oral cavity serves as the main site where EBV and P. gingivalis are harbored, and because of their oncogenic potential, we review here the current information about the participation of these microorganisms in oral carcinogenesis, describe the mechanisms by which EBV and P. gingivalis independently or synergistically can collaborate, and propose a model of interaction between both microorganisms.
Collapse
Affiliation(s)
- Daniela Núñez-Acurio
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
- Laboratory of Oncovirology, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380000, Chile
| | - Denisse Bravo
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Francisco Aguayo
- Laboratory of Oncovirology, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380000, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| |
Collapse
|
42
|
Koike R, Nodomi K, Watanabe N, Ogata Y, Takeichi O, Takei M, Kaneko T, Tonogi M, Kotani AI, Imai K. Butyric Acid in Saliva of Chronic Periodontitis Patients Induces Transcription of the EBV Lytic Switch Activator BZLF1: A Pilot Study. In Vivo 2020; 34:587-594. [PMID: 32111757 DOI: 10.21873/invivo.11811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND/AIM Epstein-Barr virus (EBV) associates with human chronic periodontitis (CP) progression. We previously demonstrated that butyric acid (BA), produced by periodontopathic bacteria, induced EBV lytic switch activator BZLF1 expression. We investigated whether short chain fatty acids (SCFAs) in CP patients' saliva enabled EBV reactivation. MATERIALS AND METHODS Saliva was collected from seven CP patients and five periodontally healthy individuals. SCFAs were quantified using HPLC. BZLF1 mRNA and its pertinent protein ZEBRA were determined with Real-time PCR and western blotting. Histone H3 acetylation (AcH3) was further examined. RESULTS BZLF1 mRNA expression and transcriptional activity in EBV-infected Daudi cells were induced only when treated with the CP saliva. Among SCFAs, BA alone correlated significantly with the BZLF1 transcription (r=0.88; p<0.02). As expected, CP patients' saliva induced AcH3. CONCLUSION BA in saliva may play a role in EBV reactivation and hence contribute to EBV-related disease progression in CP patients.
Collapse
Affiliation(s)
- Ryo Koike
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan.,Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Keiko Nodomi
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Norihisa Watanabe
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Osamu Takeichi
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tadayoshi Kaneko
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - Morio Tonogi
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - A I Kotani
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Kanagawa, Japan
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
43
|
Jurdziński KT, Potempa J, Grabiec AM. Epigenetic regulation of inflammation in periodontitis: cellular mechanisms and therapeutic potential. Clin Epigenetics 2020; 12:186. [PMID: 33256844 PMCID: PMC7706209 DOI: 10.1186/s13148-020-00982-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epigenetic mechanisms, namely DNA and histone modifications, are critical regulators of immunity and inflammation which have emerged as potential targets for immunomodulating therapies. The prevalence and significant morbidity of periodontitis, in combination with accumulating evidence that genetic, environmental and lifestyle factors cannot fully explain the susceptibility of individuals to disease development, have driven interest in epigenetic regulation as an important factor in periodontitis pathogenesis. Aberrant promoter methylation profiles of genes involved in inflammatory activation, including TLR2, PTGS2, IFNG, IL6, IL8, and TNF, have been observed in the gingival tissue, peripheral blood or buccal mucosa from patients with periodontitis, correlating with changes in expression and disease severity. The expression of enzymes that regulate histone acetylation, in particular histone deacetylases (HDACs), is also dysregulated in periodontitis-affected gingival tissue. Infection of gingival epithelial cells, gingival fibroblasts and periodontal ligament cells with the oral pathogens Porphyromonas gingivalis or Treponema denticola induces alterations in expression and activity of chromatin-modifying enzymes, as well as site-specific and global changes in DNA methylation profiles and in histone acetylation and methylation marks. These epigenetic changes are associated with excessive production of inflammatory cytokines, chemokines, and matrix-degrading enzymes that can be suppressed by small molecule inhibitors of HDACs (HDACi) or DNA methyltransferases. HDACi and inhibitors of bromodomain-containing BET proteins ameliorate inflammation, osteoclastogenesis, and alveolar bone resorption in animal models of periodontitis, suggesting their clinical potential as host modulation therapeutic agents. However, broader application of epigenomic methods will be required to create a comprehensive map of epigenetic changes in periodontitis. The integration of functional studies with global analyses of the epigenetic landscape will provide critical information on the therapeutic and diagnostic potential of epigenetics in periodontal disease.
Collapse
Affiliation(s)
- Krzysztof T Jurdziński
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Aleksander M Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
44
|
Guan X, Li W, Meng H. A double-edged sword: Role of butyrate in the oral cavity and the gut. Mol Oral Microbiol 2020; 36:121-131. [PMID: 33155411 DOI: 10.1111/omi.12322] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022]
Abstract
Butyrate, a four-carbon short-chain fatty acid (SCFA), is a metabolite of anaerobic bacteria. Butyrate has primarily been described as an energy substance in the studies on the digestive tract. The multiple mechanisms of its protective function in the gut and on underlying diseases (including metabolic diseases, diseases of the nervous system, and osteoporosis) via interaction with intestinal epithelial cells and immune cells have been well documented. There are many butyrogenic bacteria in the oral cavity as well. As essential components of the oral microbiome, periodontal pathogens are also able to generate butyrate when undergoing metabolism. Considerable evidence has indicated that butyrate plays an essential role in the initiation and perpetuation of periodontitis. However, butyrate is considered to participate in the pro-inflammatory activities in periodontal tissue and the reactivation of latent viruses. In this review, we focused on the production and biological impact of butyrate in both intestine and oral cavity and explained the possible pathway of various diseases that were engaged by butyrate. Finally, we suggested two hypotheses, which may give a better understanding of the significantly different functions of butyrate in different organs (i.e., the expanded butyrate paradox).
Collapse
Affiliation(s)
- Xiaoyuan Guan
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Wenjing Li
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Huanxin Meng
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
45
|
Takahashi Y, Watanabe N, Kamio N, Kobayashi R, Iinuma T, Imai K. Aspiration of periodontopathic bacteria due to poor oral hygiene potentially contributes to the aggravation of COVID-19. J Oral Sci 2020; 63:1-3. [PMID: 33177276 DOI: 10.2334/josnusd.20-0388] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coronavirus infectious disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was declared a pandemic in March 2020 by the World Health Organization. Periodontitis, one of the most prevalent diseases worldwide, leads to alveolar bone destruction and subsequent tooth loss, and develops due to pro-inflammatory cytokine production induced by periodontopathic bacteria. Periodontopathic bacteria are involved in respiratory diseases, including aspiration pneumonia and chronic obstructive pulmonary disease (COPD), and other systemic diseases, such as diabetes and cardiovascular disease. Patients with these diseases have an increased COVID-19 aggravation rate and mortality. Because aspiration of periodontopathic bacteria induces the expression of angiotensin-converting enzyme 2, a receptor for SARS-CoV-2, and production of inflammatory cytokines in the lower respiratory tract, poor oral hygiene can lead to COVID-19 aggravation. Conversely, oral care, including periodontal treatment, prevents the onset of pneumonia and influenza and the exacerbation of COPD. The reduced chance of receiving professional oral care owing to long-term hospitalization of patients with COVID-19 may increase the aggravation risk of infection in the lower respiratory tract. It can be hypothesized that periodontopathic bacteria are involved in the COVID-19 aggravation and therefore, the management of good oral hygiene potentially contributes to its prevention.
Collapse
Affiliation(s)
- Yuwa Takahashi
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry.,Department of Microbiology, Nihon University School of Dentistry
| | | | - Noriaki Kamio
- Department of Microbiology, Nihon University School of Dentistry
| | - Ryutaro Kobayashi
- Oral and Maxillofacial Surgery, The Nippon Dental University Hospital
| | - Toshimitsu Iinuma
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry
| |
Collapse
|
46
|
Exposure to Porphyromonas gingivalis Induces Production of Proinflammatory Cytokine via TLR2 from Human Respiratory Epithelial Cells. J Clin Med 2020; 9:jcm9113433. [PMID: 33114582 PMCID: PMC7693763 DOI: 10.3390/jcm9113433] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022] Open
Abstract
Aspiration pneumonia is a major health problem owing to its high mortality rate in elderly people. The secretion of proinflammatory cytokines such as interleukin (IL)-8 and IL-6 by respiratory epithelial cells, which is induced by infection of respiratory bacteria such as Streptococcus pneumoniae, contributes to the onset of pneumonia. These cytokines thus play a key role in orchestrating inflammatory responses in the lower respiratory tract. In contrast, chronic periodontitis, a chronic inflammatory disease caused by the infection of periodontopathic bacteria, typically Porphyromonas gingivalis, is one of the most prevalent microbial diseases affecting humans globally. Although emerging evidence has revealed an association between aspiration pneumonia and chronic periodontitis, a causal relationship between periodontopathic bacteria and the onset of aspiration pneumonia has not been established. Most periodontopathic bacteria are anaerobic and are therefore unlikely to survive in the lower respiratory organs of humans. Therefore, in this study, we examined whether simple contact by heat-inactivated P. gingivalis induced proinflammatory cytokine production by several human respiratory epithelial cell lines. We found that P. gingivalis induced strong IL-8 and IL-6 secretion by BEAS-2B bronchial epithelial cells. P. gingivalis also induced strong IL-8 secretion by Detroit 562 pharyngeal epithelial cells but not by A549 alveolar epithelial cells. Additionally, Toll-like receptor (TLR) 2 but not TLR4 was involved in the P. gingivalis-induced proinflammatory cytokine production. Furthermore, P. gingivalis induced considerably higher IL-8 and IL-6 production than heat-inactivated S. pneumoniae. Our results suggest that P. gingivalis is a powerful inflammatory stimulant for human bronchial and pharyngeal epithelial cells and can stimulate TLR2-mediated cytokine production, thereby potentially contributing to the onset of aspiration pneumonia.
Collapse
|
47
|
Mei HX, Chen YL, Shi PL, Yang SR, Xu X, He JZ. [Advances in oral bacteria influencing host epigenetic regulation]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:583-588. [PMID: 33085246 DOI: 10.7518/hxkq.2020.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epigenetics refers to a steady change in the level of gene expression caused by non-DNA sequence changes. Microbes can modulate host inflammation through epigenetic pathways to evade or expend immune responses. As an important part of human microbes, oral bacteria also have various epigenetic regulation mechanisms to affect host inflammatory responses. This article reviews the common pathways of epigenetic regulation in microbe infection and the regulation of host epigenetics by using oral microbes to provide a reference for the study of epigenetic-related mechanisms in oral diseases.
Collapse
Affiliation(s)
- Hong-Xiang Mei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi-Lin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Pei-Lei Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Si-Rui Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jin-Zhi He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
48
|
Denzer L, Schroten H, Schwerk C. From Gene to Protein-How Bacterial Virulence Factors Manipulate Host Gene Expression During Infection. Int J Mol Sci 2020; 21:ijms21103730. [PMID: 32466312 PMCID: PMC7279228 DOI: 10.3390/ijms21103730] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bacteria evolved many strategies to survive and persist within host cells. Secretion of bacterial effectors enables bacteria not only to enter the host cell but also to manipulate host gene expression to circumvent clearance by the host immune response. Some effectors were also shown to evade the nucleus to manipulate epigenetic processes as well as transcription and mRNA procession and are therefore classified as nucleomodulins. Others were shown to interfere downstream with gene expression at the level of mRNA stability, favoring either mRNA stabilization or mRNA degradation, translation or protein stability, including mechanisms of protein activation and degradation. Finally, manipulation of innate immune signaling and nutrient supply creates a replicative niche that enables bacterial intracellular persistence and survival. In this review, we want to highlight the divergent strategies applied by intracellular bacteria to evade host immune responses through subversion of host gene expression via bacterial effectors. Since these virulence proteins mimic host cell enzymes or own novel enzymatic functions, characterizing their properties could help to understand the complex interactions between host and pathogen during infections. Additionally, these insights could propose potential targets for medical therapy.
Collapse
|
49
|
Methotrexate-Associated Lymphoproliferative Disorder Developed Ectopically in the Maxillary Gingiva and Bilateral Lungs. Case Rep Med 2020; 2020:4814519. [PMID: 32411253 PMCID: PMC7204348 DOI: 10.1155/2020/4814519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/13/2020] [Indexed: 11/25/2022] Open
Abstract
A 58-year-old Japanese woman complained of a painful right maxillary premolar gingiva and ulcer. The patient had RA and had been treated with several immunosuppressive drugs such as methotrexate. Head and neck CT indicated no obvious bone destruction with maxillary. However, chest CT indicated the presence of nodular mass of the bilateral lungs. FDG-PET/CT indicated the presence of increased uptake in both lesions. On immunohistochemistry, atypical large-sized lymphocytes were positive for CD20 and EBER-ISH and negative for CD3, CD5, and CD10; the Ki-67 labeling index was high, the histopathological diagnosis was EBV-positive DLBCL, and the clinical diagnosis was MTX-LPD. The patient's treatment with MTX was then discontinued; we removed the alveolar bone which necrosed after 5 weeks. The lesion and the nodular mass at the bilateral lungs had completely disappeared after 7 weeks.
Collapse
|
50
|
Barros SP, Fahimipour F, Tarran R, Kim S, Scarel-Caminaga RM, Justice A, North K. Epigenetic reprogramming in periodontal disease: Dynamic crosstalk with potential impact in oncogenesis. Periodontol 2000 2020; 82:157-172. [PMID: 31850624 DOI: 10.1111/prd.12322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Periodontitis is a chronic multifactorial inflammatory disease associated with microbial dysbiosis and characterized by progressive destruction of the periodontal tissues. Such chronic infectious inflammatory disease is recognized as a major public health problem worldwide with measurable impact in systemic health. It has become evident that the periodontal disease phenotypes are not only determined by the microbiome effect, but the extent of the tissue response is also driven by the host genome and epigenome patterns responding to various environmental exposures. More recently there is mounting evidence indicating that epigenetic reprogramming in response to combined intrinsic and environmental exposures, might be particularly relevant due its plasticity and potential application towards precision health. The complex epigenetic crosstalk is reflected in the prognosis and progress of periodontal diseases and may also lead to a favorable landscape for cancer development. This review discusses epigenomics modifications focusing on the role of DNA methylation and pathways linking microbial infection and inflammatory pathways, which are also associated with carcinogenesis. There is a more clear vision whereas 'omics' technologies applied to unveil relevant epigenetic factors could play a significant role in the treatment of periodontal disease in a personalized mode, evidencing that public health approach should coexist with precision individualized treatment.
Collapse
Affiliation(s)
- Silvana P Barros
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Farahnaz Fahimipour
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robert Tarran
- Department of Cell Biology & Physiology, Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven Kim
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Anne Justice
- Biomedical and Translational Informatics, Geisinger Health Weis Center for Research, Danville, Pennsylvania, USA
| | - Kari North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|