1
|
Verger EO, Fortin S, Tamene A, Ashagrie H, Mouquet-Rivier C, Humblot C. Ignoring the Impact of Fermentation Could Result in Substantial Misestimation of Folate and Cobalamin Adequacy: A Simulation Study on Injera Consumption in the Ethiopian Context. Curr Dev Nutr 2025; 9:104581. [PMID: 40182738 PMCID: PMC11964597 DOI: 10.1016/j.cdnut.2025.104581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 04/05/2025] Open
Abstract
B-vitamin content of plant-based foods can be deeply modified by fermentation, particularly the active cobalamin form, which is often considered to be zero in food composition databases. We simulated the consequences of including or excluding the impact of fermentation in estimating folate and cobalamin adequacy using secondary data obtained from a survey of 323 women in Ethiopia plus the vitamin content of injera (fermented flat bread) reported in the literature. As folate content can change during fermentation, the prevalence of inadequacy in scenarios that include the effect of fermentation was higher (90%) or lower (67%) than in the original data. Our simulation based on data obtained using cobalamin-producing microorganisms lowered the prevalence of inadequacy to 54%. Ignoring the impact of fermentation may result in substantial misestimation of folate and cobalamin adequacy in Ethiopia, and it should be evaluated in other contexts in which fermented foods are consumed as staple foods.
Collapse
Affiliation(s)
- Eric O Verger
- MoISA, Univ Montpellier, CIRAD, CIHEAM-IAMM, INRAE, IRD, L’Institut Agro, Montpellier, France
| | - Sonia Fortin
- Qualisud, Univ Montpellier, IRD, Institut Agro, CIRAD, Avignon Université, Univ de La Réunion, Montpellier, France
| | - Aynadis Tamene
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Henok Ashagrie
- Qualisud, Univ Montpellier, IRD, Institut Agro, CIRAD, Avignon Université, Univ de La Réunion, Montpellier, France
| | - Claire Mouquet-Rivier
- Qualisud, Univ Montpellier, IRD, Institut Agro, CIRAD, Avignon Université, Univ de La Réunion, Montpellier, France
| | - Christèle Humblot
- Qualisud, Univ Montpellier, IRD, Institut Agro, CIRAD, Avignon Université, Univ de La Réunion, Montpellier, France
| |
Collapse
|
2
|
Guo X, Zhang F, Hao G. Causal relationship between folic acid and prostate cancer risk: Insights from Mendelian randomization analysis. Int J Urol 2024; 31:1356-1364. [PMID: 39306731 DOI: 10.1111/iju.15565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 08/14/2024] [Indexed: 12/06/2024]
Abstract
OBJECTIVE Folic acid is a commonly used dietary supplement of trace element, but it may increase the risk of prostate cancer (PCa). The aim of this study was to investigate the causal relationship between PCa and folic acid supplementation, as well as dietary folate equivalents, using Mendelian randomization (MR) analysis. METHODS The Genome-Wide Association Study (GWAS) data of folic acid supplementation and dietary folate equivalents were selected from UK Biobank. Meta-analysis of GWASs of PCa was obtained from PCa Association Group to Investigate Cancer-Associated Alterations in the Genome consortium. MR analysis was performed with inverse variance weighted (IVW) method, MR-Egger regression, simple mode, weighted median, and weighted mode analysis. Heterogeneity and horizontal pleiotropy tests and reverse MR analysis were conducted to assess the robustness and reliability of the causal inference. RESULTS Six single nucleotide polymorphisms (SNPs) associated with folic acid supplementation and five SNPs associated with dietary folate equivalents were identified as instrumental variables. Genetically predicted folic acid supplementation was associated with an increased risk of PCa (OR 1.200, p < 0.001, by IVW method), and there was no evidence of heterogeneity, horizontal pleiotropy, or significant reverse causality (all p > 0.05). In contrast, dietary folate equivalents showed no significant correlation with PCa (p > 0.05 for all five MR methods). CONCLUSION This study demonstrated an association between increased risk of PCa and folic acid supplementation, but not with dietary folate equivalents. These findings have implications for public health interventions and personalized preventive strategies for PCa.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Beijing Municipal Health Commission, Beijing, China
| | - Fengbo Zhang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Beijing Municipal Health Commission, Beijing, China
| | - Gangyue Hao
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Beijing Municipal Health Commission, Beijing, China
| |
Collapse
|
3
|
Zhang J, Liao Q, Chen H, Liu F, Sun D, Luo S, Xiao Y, Xu W, Tian F, Song M. Association of Vitamin B12 and Polymorphism of TCN2 with Early-Onset Post-Stroke Depression. Neuropsychiatr Dis Treat 2024; 20:2289-2298. [PMID: 39619496 PMCID: PMC11608003 DOI: 10.2147/ndt.s480417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/16/2024] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Post-stroke depression (PSD) is a common neuropsychiatric complication after a stroke with complex mechanisms. However, few studies have identified the role of vitamin B12 and folate in the occurrence and pathophysiology of PSD. The aim of our study is to investigate the relationship among vitamin B12, folate, their transporter genes, and early-onset PSD. METHOD AND MATERIAL A total of 173 ischemic stroke patients were recruited in Xiangya Hospital of Central South University. We collected peripheral blood samples, clinical data, and demographics at admission. The 17-item Hamilton Depression Scale was used for screening for the existence of depression at 2 weeks after stroke onset. Serum vitamin B12 and folate level were measured based on double-antibody sandwich enzyme-linked immune-sorbent assay. Four single nucleotide polymorphisms (SNP) of transcobalamin 2 (TCN2) and solute carrier family 19 member 1 were genotyped using SNPscanTM multiplex SNP typing Kit. RESULTS Eighty-four patients were diagnosed with PSD at 2 weeks after stroke onset, and the incidence rate was 48.6%. Serum vitamin B12 level in PSD group was significantly lower than those in the non-PSD group (p=0.018). Binary logistic regression revealed that TCN2 rs1801198 GG genotype and G allele were associated with an increased risk of PSD after adjustment for confounding factors (for GG genotype, OR = 4.253, 95% CI = 1.711~10.572, p = 0.002; for G allele, OR = 2.134, 95% CI = 1.362~3.343, p = 0.001). Moreover, individuals with the rs1801198 G allele in the PSD group exhibited lower vitamin B12 level than those with the rs1801198 G allele in the non-PSD group (p=0.045). CONCLUSION TCN2 rs1801198 and vitamin B12 are associated with the risk of early-onset PSD, and they may be involved in the development of PSD. Our study presents a novel standpoint for the treatment of PSD and gains insights into the mechanistic underpinnings of PSD.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410005, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410005, People’s Republic of China
| | - Qiao Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410005, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410005, People’s Republic of China
| | - Hengshu Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410005, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410005, People’s Republic of China
| | - Fan Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410005, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410005, People’s Republic of China
| | - Dongren Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410005, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410005, People’s Republic of China
| | - Shihang Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410005, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410005, People’s Republic of China
| | - Yeqing Xiao
- Department of Neurology, Hengyang Central Hospital, Hengyang, Hunan, 421001, People’s Republic of China
| | - Weiye Xu
- Department of Human Anatomy and Neurobiology, School of Basic Medicine, Central South University, Changsha, Hunan, 410005, People’s Republic of China
| | - Fafa Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410005, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410005, People’s Republic of China
| | - Mingyu Song
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410005, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410005, People’s Republic of China
| |
Collapse
|
4
|
Maes J, Gesquière S, De Spiegeleer A, Maes A, Van de Wiele C. Prostate-Specific Membrane Antigen Biology and Pathophysiology in Prostate Carcinoma, an Update: Potential Implications for Targeted Imaging and Therapy. Int J Mol Sci 2024; 25:9755. [PMID: 39273701 PMCID: PMC11396261 DOI: 10.3390/ijms25179755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate-specific membrane antigen (PSMA), a transmembrane glycoprotein, was shown to be expressed 100-1000 fold higher in prostate adenocarcinoma as compared to normal prostate epithelium. Given the enzymatic function of PSMA with the presence of an internalization triggering motif, various Glu-urea-Lys-based inhibitors have been developed and, amongst others, radiolabeled with positron emitters for targeted positron emission tomography imaging such as 68Ga-PSMA-HBED-CC Glu-urea-Lys(Ahx) as well as with beta and alpha-emitting radioisotopes for targeted therapy, e.g., 177Lu-PSMA-617. In this paper, we review and discuss the potential implications for targeted imaging and therapy of altered PSMA-glycosylation, of PSMA-driven activation of the P13K/Akt/mTOR, of the evolution over time and the relationship with androgen signaling and changes in DNA methylation of PSMA, and of androgen deprivation therapy (ADT) in prostate carcinoma.
Collapse
Affiliation(s)
| | - Simon Gesquière
- Department of Diagnostic Sciences, University Ghent, De Pintelaan 185, 9000 Ghent, Belgium
| | | | - Alex Maes
- AZ Groeninge, 8500 Kortrijk, Belgium
- Department of Morphology and Functional Imaging, University Leuven, 3000 Leuven, Belgium
| | - Christophe Van de Wiele
- AZ Groeninge, 8500 Kortrijk, Belgium
- Department of Diagnostic Sciences, University Ghent, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Gholami H, Chmiel JA, Burton JP, Maleki Vareki S. The Role of Microbiota-Derived Vitamins in Immune Homeostasis and Enhancing Cancer Immunotherapy. Cancers (Basel) 2023; 15:1300. [PMID: 36831641 PMCID: PMC9954268 DOI: 10.3390/cancers15041300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Not all cancer patients who receive immunotherapy respond positively and emerging evidence suggests that the gut microbiota may be linked to treatment efficacy. Though mechanisms of microbial contributions to the immune response have been postulated, one likely function is the supply of basic co-factors to the host including selected vitamins. Bacteria, fungi, and plants can produce their own vitamins, whereas humans primarily obtain vitamins from exogenous sources, yet despite the significance of microbial-derived vitamins as crucial immune system modulators, the microbiota is an overlooked source of these nutrients in humans. Microbial-derived vitamins are often shared by gut bacteria, stabilizing bioenergetic pathways amongst microbial communities. Compositional changes in gut microbiota can affect metabolic pathways that alter immune function. Similarly, the immune system plays a pivotal role in maintaining the gut microbiota, which parenthetically affects vitamin biosynthesis. Here we elucidate the immune-interactive mechanisms underlying the effects of these microbially derived vitamins and how they can potentially enhance the activity of immunotherapies in cancer.
Collapse
Affiliation(s)
- Hasti Gholami
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - John A. Chmiel
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Canadian Research and Development Centre for Probiotics, Lawson Research Health Research Institute, London, ON N6A 5W9, Canada
| | - Jeremy P. Burton
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Canadian Research and Development Centre for Probiotics, Lawson Research Health Research Institute, London, ON N6A 5W9, Canada
- Division of Urology, Department of Surgery, Western University, London, ON N6A 3K7, Canada
| | - Saman Maleki Vareki
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
6
|
Wang X, Yu J, Wang J. Neural Tube Defects and Folate Deficiency: Is DNA Repair Defective? Int J Mol Sci 2023; 24:ijms24032220. [PMID: 36768542 PMCID: PMC9916799 DOI: 10.3390/ijms24032220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Neural tube defects (NTDs) are complex congenital malformations resulting from failure of neural tube closure during embryogenesis, which is affected by the interaction of genetic and environmental factors. It is well known that folate deficiency increases the incidence of NTDs; however, the underlying mechanism remains unclear. Folate deficiency not only causes DNA hypomethylation, but also blocks the synthesis of 2'-deoxythymidine-5'-monophosphate (dTMP) and increases uracil misincorporation, resulting in genomic instabilities such as base mismatch, DNA breakage, and even chromosome aberration. DNA repair pathways are essential for ensuring normal DNA synthesis, genomic stability and integrity during embryonic neural development. Genomic instability or lack of DNA repair has been implicated in risk of development of NTDs. Here, we reviewed the relationship between folate deficiency, DNA repair pathways and NTDs so as to reveal the role and significance of DNA repair system in the pathogenesis of NTDs and better understand the pathogenesis of NTDs.
Collapse
|
7
|
Masuda H, Kobayashi S, Miyashita C, Itoh S, Bamai YA, Saijo Y, Ito Y, Kishi R, Ikeda-Araki A. Maternal dietary folate intake with folic acid supplements and wheeze and eczema in children aged 2 years in the Japan Environment and Children’s Study. PLoS One 2022; 17:e0272968. [PMID: 35994490 PMCID: PMC9394831 DOI: 10.1371/journal.pone.0272968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
Maternal intake of folic acid supplements is reportedly associated with the risk of early-onset allergies in offspring. However, only a few studies have considered the intake of both folic acid supplements and dietary folate. Here, the relationship between maternal intake of folic acid supplements and allergic symptoms such as wheeze and eczema in offspring was analyzed while considering dietary folate intake. We examined 84,361 mothers and 85,114 children in the Japan Environment and Children’s Study. The participants were divided into three groups depending on maternal folic acid supplementation (“no use,” “occasional use,” and “daily use”). Each group was then subdivided into three groups based on total folic acid and dietary folate intake. Outcomes were determined considering the wheeze and eczema status of each child at the age of 2 years. The status was based on the International Study of Asthma and Allergies in Childhood. It was found that 22.1% of the mothers took folic acid supplements daily. In contrast, 56.3% of the mothers did not take these supplements. Maternal intake of folic acid supplements was not associated with wheeze and eczema in the offspring. In contrast, only dietary folate intake was positively associated with wheeze at the age of 2 (adjusted odds ratio, 1.103; 95% confidence interval, 1.003–1.212). However, there is no scientific evidence of a biological mechanism that clarifies this result. Potential confounders such as other nutrition, outdoor/indoor air pollution, and genetic factors may have affected the results. Therefore, further studies on the association between maternal intake of folic acid and allergic symptoms at the age of 3 or above are needed to confirm the results of this study. Trial registration UMIN Clinical Trials Registry (number: UMIN000030786)
Collapse
Affiliation(s)
- Hideyuki Masuda
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yasuaki Saijo
- Department of Social Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yoshiya Ito
- Faculty of Nursing, Japanese Red Cross Hokkaido College of Nursing, Kitami, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- * E-mail:
| | | |
Collapse
|
8
|
Eberle RJ, Olivier DS, Amaral MS, Pacca CC, Nogueira ML, Arni RK, Willbold D, Coronado MA. Riboflavin, a Potent Neuroprotective Vitamin: Focus on Flavivirus and Alphavirus Proteases. Microorganisms 2022; 10:1331. [PMID: 35889050 PMCID: PMC9315535 DOI: 10.3390/microorganisms10071331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
Several neurotropic viruses are members of the flavivirus and alphavirus families. Infections caused by these viruses may cause long-term neurological sequelae in humans. The continuous emergence of infections caused by viruses around the world, such as the chikungunya virus (CHIKV) (Alphavirus genus), the zika virus (ZIKV) and the yellow fever virus (YFV) (both of the Flavivirus genus), warrants the development of new strategies to combat them. Our study demonstrates the inhibitory potential of the water-soluble vitamin riboflavin against NS2B/NS3pro of ZIKV and YFV and nsP2pro of CHIKV. Riboflavin presents a competitive inhibition mode with IC50 values in the medium µM range of 79.4 ± 5.0 µM for ZIKV NS2B/NS3pro and 45.7 ± 2.9 μM for YFV NS2B/NS3pro. Against CHIKV nsP2pro, the vitamin showed a very strong effect (93 ± 5.7 nM). The determined dissociation constants (KD) are significantly below the threshold value of 30 µM. The ligand binding increases the thermal stability between 4 °C and 8 °C. Unexpectedly, riboflavin showed inhibiting activity against another viral protein; the molecule was also able to inhibit the viral entry of CHIKV. Molecular dynamics simulations indicated great stability of riboflavin in the protease active site, which validates the repurposing of riboflavin as a promising molecule in drug development against the viruses presented here.
Collapse
Affiliation(s)
- Raphael J. Eberle
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany;
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, 40225 Düsseldorf, Germany
| | - Danilo S. Olivier
- Center of Integrated Sciences, Campus Cimba, Federal University of Tocantins, Araguaína 77824-838, TO, Brazil;
| | - Marcos S. Amaral
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | - Carolina C. Pacca
- Instituto Superior de Educação Ceres, FACERES Medical School, São José do Rio Preto 15090-305, SP, Brazil;
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto-FAMERP, São José do Rio Preto 15090-000, SP, Brazil;
| | - Mauricio L. Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto-FAMERP, São José do Rio Preto 15090-000, SP, Brazil;
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Raghuvir K. Arni
- Multiuser Center for Biomolecular Innovation, Department of Physics, IBILCE, São Paulo State University, São Jose do Rio Preto 15054-000, SP, Brazil;
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany;
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, 40225 Düsseldorf, Germany
- JuStruct: Jülich Centre for Structural Biology, Forchungszentrum Jülich, 52428 Jülich, Germany
| | - Monika A. Coronado
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany;
| |
Collapse
|
9
|
Wilson RD, O'Connor DL. Guideline No. 427: Folic Acid and Multivitamin Supplementation for Prevention of Folic Acid-Sensitive Congenital Anomalies. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2022; 44:707-719.e1. [PMID: 35691683 DOI: 10.1016/j.jogc.2022.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To provide updated guidance on pre-conception folic acid and multivitamin supplementation for primary and secondary (recurrence) prevention of neural tube defects and other folate-sensitive congenital anomalies. TARGET POPULATION Women aged 12-45 years who could become pregnant should be aware of the risk of serious birth defects without adequate pre-conception and first-trimester folic acid supplementation. OPTIONS Optimizing folic acid supplementation is complex and depends on factors including dosage; type of supplement; bioavailability of folate from food, timing of initiating supplementation; and metabolic and genetic factors. For all women who could become pregnant, a low daily dosage of folic acid is recommended before conception and throughout pregnancy and breastfeeding. High-dosage folic acid supplementation is recommended only for women who can become pregnant and have had a previous pregnancy affected by a neural tube defect or other folate-sensitive congenital anomaly. Directed personalized approaches could be considered and adopted for women who can become pregnant and have complex risks (genetic, medical, or surgical risk factors), using new knowledge of co-factor metabolism and synergy, as well as red blood cell or serum folate testing. Such approaches would require changes to current provincial health care maternal serum folate screening/testing. OUTCOMES New approaches to oral folic acid supplementation, including triage tools, need to be considered to optimize the benefits of decreasing risk of neural tube defects and folate-sensitive congenital anomalies. BENEFITS, HARMS, AND COSTS Oral folic acid supplementation, or dietary folate intake combined with a multivitamin/micronutrient supplement, is associated with lower rates of neural tube defects, other folate-sensitive birth defects, and obstetrical complications. The costs are those attributable to daily vitamin supplementation and a healthy, folate-rich diet. EVIDENCE A literature search was designed and carried in PubMed and the Cochrane Library databases from 1990 to 2021 using following MeSH terms and keywords (and variants): folic acid supplementation; folate food fortification; primary neural tube defect prevention; prevention of recurrence of neural tube defects; folate-sensitive birth defects; folate supplementation benefit; folate supplementation risk; folate pregnant woman physiology; pregnant woman RBC folate level; pregnant woman serum folate levels; folate and epilepsy; folate and obesity. This guideline was based upon expert guidelines or opinions, systematic reviews, randomized controlled clinical trials, and observational case-control studies and case series retrieved, published in English from 1990 to 2021. VALIDATION METHODS The authors rated the quality of evidence and strength of recommendations using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. See online Appendix A (Tables A1 for definitions and A2 for interpretations of strong and weak recommendations). INTENDED AUDIENCE Maternity health care providers (physicians, midwives, nurses) and other providers of pregnancy-related wellness and health counselling. SUMMARY STATEMENTS RECOMMENDATIONS.
Collapse
|
10
|
Wilson RD, O'Connor DL. Directive clinique n o427 : Suppléments d'acide folique et multivitamines en prévention des anomalies congénitales sensibles à l'acide folique. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2022; 44:720-732.e1. [PMID: 35691684 DOI: 10.1016/j.jogc.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIF Offrir des recommandations à jour sur l'utilisation de multivitamines et de suppléments d'acide folique avant la conception pour la prévention primaire et secondaire (récidive) des anomalies du tube neural et des autres anomalies congénitales sensibles à l'acide folique. POPULATION CIBLE Les femmes de 12 à 45 ans qui pourraient devenir enceintes doivent être informées des risques importants d'anomalies congénitales en l'absence d'une supplémentation adéquate en acide folique avant la conception et pendant le premier trimestre. OPTIONS La supplémentation optimale en acide folique est complexe et repose sur divers facteurs tels que la dose, le type de suppléments, la biodisponibilité du folate dans l'alimentation, le moment du début de la supplémentation ainsi que sur les facteurs métaboliques et génétiques. Pour toutes les femmes qui peuvent devenir enceintes, une faible dose quotidienne d'acide folique est recommandée avant la conception et pendant la grossesse et l'allaitement. La supplémentation à forte dose d'acide folique est recommandée uniquement chez les femmes qui peuvent devenir enceintes et qui ont un antécédent de grossesse avec anomalie du tube neural ou toute autre anomalie congénitale sensible à l'acide folique. Il est possible d'envisager et d'adopter une approche personnalisée chez les femmes qui peuvent devenir enceintes et qui présentent des risques complexes (facteurs de risque génétiques, médicaux ou chirurgicaux) en se fondant sur les nouvelles connaissances en matière de métabolisme et synergie des cofacteurs et sur l'analyse du taux sérique et érythrocytaire d'acide folique. Ce genre d'approche exige une modification des protocoles provinciaux actuels de santé publique concernant le dépistage et l'analyse du taux sérique maternel d'acide folique. RéSULTATS: Les nouvelles stratégies de supplémentation en acide folique par voie orale, y compris dans les outils de triage, doivent être prises en compte pour diminuer de façon optimale le risque d'anomalies du tube neural et d'anomalies congénitales sensibles à l'acide folique. BéNéFICES, RISQUES ET COûTS: On observe une diminution du taux d'anomalies du tube neural, des autres anomalies congénitales sensibles à l'acide folique et des complications obstétricales chez les femmes qui prennent des suppléments oraux d'acide folique ou qui complémentent leur apport alimentaire en folate au moyen de multivitamines ou de suppléments de micronutriments. Les coûts relatifs sont liés à la prise quotidienne de suppléments vitaminiques et à l'adoption d'un régime alimentaire sain et riche en folate. DONNéES PROBANTES: Une recherche a été effectuée dans les bases de données PubMed et Cochrane Library pour trouver des articles publiés entre 1990 et 2021, en utilisant les termes MeSH et mots-clés (et leurs variantes) suivants : folate food fortification; primary neural tube defect prevention; prevention of recurrence of neural tube defects; folate-sensitive birth defects; folate supplementation benefit; folate supplementation risk; folate pregnant woman physiology; pregnant woman RBC folate level; pregnant woman serum folate levels; folate and epilepsy; folate and obesity. Cette directive clinique repose sur des lignes directrices et opinions de spécialistes, des revues systématiques, des essais cliniques randomisés et des études observationnelles de cas-témoin et de séries de cas qui ont été publiés en anglais entre 1990 et 2021. MéTHODES DE VALIDATION: Les auteurs ont évalué la qualité des données probantes et la force des recommandations en utilisant le cadre méthodologique GRADE (Grading of Recommendations, Assessment, Development, and Evaluation). Voir l'annexe A en ligne (tableau A1 pour les définitions et tableau A2 pour l'interprétation des recommandations fortes et faibles). PROFESSIONNELS CONCERNéS: Fournisseurs de soins de maternité (médecins, sages-femmes et infirmières) et autres fournisseurs d'accompagnement en santé et bien-être lié à la grossesse. DÉCLARATIONS SOMMAIRES: RECOMMANDATIONS.
Collapse
|
11
|
Huang L, Zhao J, Chen Y, Ma F, Huang G, Li W. Baseline folic acid status affects the effectiveness of folic acid supplements in cognitively relevant outcomes in older adults: a systematic review. Aging Ment Health 2022; 26:457-463. [PMID: 33463361 DOI: 10.1080/13607863.2021.1875194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Folic acid was investigated for decreased concentrations of the same type of cysteine (Hcy), which is considered a risk factor for Alzheimer's disease. However, the conclusions are inconsistent, while supplementing elders with different folic acid states. METHOD The PubMed, Science Network and EMBASE databases were searched for randomized controlled trials published over the past decade; The 11/485 study was included on the basis of pre-defined criteria. Cognitive-related results, including cognitive function and brain atrophy, were measured using cognitive scales and magnetic resonance imaging. RESULTS Significant cognitive benefits were reported in individuals with incomplete folic acid (n s 4); However, individuals with sufficient folic acid (n s 2) do not benefit from supplements, evaluated by the cognitive scale. On the other hand, a significant positive association was established in the participants of plasma Hcy, but the folic acid state was sufficient (n s 2). One study reported that folic acid supplements did not provide any benefit, but folic acid status data were missing. In addition, folic acid supplementation also improves brain atrophy (n s 2). CONCLUSION Baseline folic acid status may be a potential factor affecting the results of cognitive function folic acid supplementation in older adults. Older people with insufficient folic acid will benefit from folic acid supplementation.
Collapse
Affiliation(s)
- Ling Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, China
| | - Jing Zhao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, China
| | - Yongjie Chen
- Department of Epidemiology and Biostatists, School of Public Health, Tianjin Medical University, China.,Tianjin Key Laboratory for Environment, Nutrition and Public Health, Tianjin
| | - Fei Ma
- Department of Epidemiology and Biostatists, School of Public Health, Tianjin Medical University, China.,Tianjin Key Laboratory for Environment, Nutrition and Public Health, Tianjin
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, China.,Tianjin Key Laboratory for Environment, Nutrition and Public Health, Tianjin
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, China.,Tianjin Key Laboratory for Environment, Nutrition and Public Health, Tianjin
| |
Collapse
|
12
|
Wilson R, O'Connor D. Maternal folic acid and multivitamin supplementation: International clinical evidence with considerations for the prevention of folate-sensitive birth defects. Prev Med Rep 2021; 24:101617. [PMID: 34976673 PMCID: PMC8684027 DOI: 10.1016/j.pmedr.2021.101617] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
More evidence is available for maternal intake, absorption, distribution, tissue specific concentrations, and pregnancy outcomes with folic acid (fortification/supplementation) during preconception - first trimester. This Quality Improvement prevention review used expert guidelines/opinions, systematic reviews, randomized control trials/controlled clinical trials, and observational case control/case series studies, published in English, from 1990 to August 2021. Optimization for an oral maternal folic acid supplementation is difficult because it relies on folic acid dose, type of folate supplement, bio-availability of the folate from foods, timing of supplementation initiation, maternal metabolism/genetic factors, and many other factors. There is continued use of high dose pre-food fortification 'RCT evidenced-based' folic acid supplementation for NTD recurrence pregnancy prevention. Innovation requires preconception and pregnancy use of 'carbon one nutrient' supplements (folic acid, vitamin B12, B6, choline), using the appropriate evidence, need to be considered. The consideration and adoption of directed personalized approaches for maternal complex risk could use serum folate testing for supplementation dosing choice. Routine daily folic acid dosing for low-risk women should consider a multivitamin with 0.4 mg of folic acid starting 3 months prior to conception until completion of breastfeeding. Routine folic acid dosing or preconception measurement of maternal serum folate (after 4-6 weeks of folate supplementation) could be considered for maternal complex risk group with genetic/medical/surgical co-morbidities. These new approaches for folic acid oral supplementation are required to optimize benefit (decreasing folate sensitive congenital anomalies; childhood morbidity) and minimizing potential maternal and childhood risk.
Collapse
Affiliation(s)
- R.D. Wilson
- Cumming School of Medicine, Department of Obstetrics and Gynecology, University of Calgary, FMC NT 435, 1403 29 St NW, Calgary, Alberta, Canada
| | - D.L. O'Connor
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Zhang R, Yan K, Wu Y, Yao X, Li G, Ge L, Chen Z. Quantitative proteomics reveals the effect of Yigu decoction (YGD) on protein expression in bone tissue. Clin Proteomics 2021; 18:24. [PMID: 34641785 PMCID: PMC8513338 DOI: 10.1186/s12014-021-09330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/29/2021] [Indexed: 01/10/2025] Open
Abstract
Background Osteoporosis (OP) is a systemic bone disease characterized by decreased bone mass, destruction of the bone tissue microstructure, increased bone brittleness and an increased risk of fracture. OP has a high incidence rate and long disease course and is associated with serious complications. Yigu decoction (YGD) is a compound prescription in traditional Chinese medicine that is used to treat OP. However, its mechanism in OP is not clear. This study used a tandem mass tag (TMT)quantitative proteomics method to explore the potential bone-protective mechanism of YGD in an osteoporotic rat model. Materials and methods A rat model of OP was established by ovariectomy. Eighteen 12-week-old specific-pathogen-free female Wistar rats weighing 220 ± 10 g were selected. The eighteen rats were randomly divided into 3 groups (n = 6 in each group): the normal, model and YGD groups. The right femurs from each group were subjected to quantitative biological analysis. TMT quantitative proteomics was used to analyze the proteins extracted from the bone tissue of rats in the model and YGD groups, and the differentially expressed proteins after intervention with YGD were identified as biologically relevant proteins of interest. Functional annotation correlation analysis was also performed to explore the biological function and mechanism of YGD. Result Compared with the model group, the YGD group showed significant upregulation of 26 proteins (FC > 1.2, P < 0.05) and significant downregulation of 39 proteins (FC < 0.833, P < 0.05). Four important targets involved in OP and 5 important signaling pathways involved in bone metabolism were identified. Conclusions YGD can significantly increase the bone mineral density (BMD) of osteoporotic rats and may play a therapeutic role by regulating target proteins involved in multiple signaling pathways. Therefore, these results improve the understanding of the OP mechanism and provide an experimental basis for the clinical application of YGD in OP treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09330-0.
Collapse
Affiliation(s)
- Ruikun Zhang
- The Third Clinical Medical College of Zhejiang, Chinese Medical University, Zhejiang, Hangzhou, 310053, China.,Department of Orthopedics, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Zhejiang, Hangzhou, 310005, China
| | - Kun Yan
- The Third Clinical Medical College of Zhejiang, Chinese Medical University, Zhejiang, Hangzhou, 310053, China.,Department of Orthopedics, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Zhejiang, Hangzhou, 310005, China
| | - Yulun Wu
- Rehabilitation Medicine Center of Zhejiang Provincial People's Hospital, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Xinmiao Yao
- The Third Clinical Medical College of Zhejiang, Chinese Medical University, Zhejiang, Hangzhou, 310053, China.,Department of Orthopedics, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Zhejiang, Hangzhou, 310005, China
| | - Guijin Li
- Department of Orthopedics, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Zhejiang, Hangzhou, 310005, China
| | - Linpu Ge
- Department of Orthopedics, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Zhejiang, Hangzhou, 310005, China
| | - Zhineng Chen
- Department of Orthopedics, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Zhejiang, Hangzhou, 310005, China.
| |
Collapse
|
14
|
Selhub J, Miller JW, Troen AM, Mason JB, Jacques PF. Perspective: The High-Folate-Low-Vitamin B-12 Interaction Is a Novel Cause of Vitamin B-12 Depletion with a Specific Etiology-A Hypothesis. Adv Nutr 2021; 13:16-33. [PMID: 34634124 PMCID: PMC8803489 DOI: 10.1093/advances/nmab106] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022] Open
Abstract
Vitamin B-12 is a water-soluble vitamin that plays important roles in intermediary metabolism. Vitamin B-12 deficiency has many identifiable causes, including autoimmune and other gastrointestinal malabsorption disorders, dietary deficiency, and congenital defects in genes that are involved in vitamin B-12 trafficking and functions. Another putative cause of vitamin B-12 deficiency is the high-folate-low vitamin B-12 interaction, first suspected as the cause for observed relapse and exacerbation of the neurological symptoms in patients with pernicious anemia who were prescribed high oral doses of folic acid. We propose that this interaction is real and represents a novel cause of vitamin B-12 depletion with specific etiology. We hypothesize that excessive intake of folic acid depletes serum holotranscobalamin (holoTC), thereby decreasing active vitamin B-12 in the circulation and limiting its availability for tissues. This effect is specific for holoTC and does not affect holohaptocorrin, the inert form of serum vitamin B-12. Depletion of holoTC by folic acid in individuals with already low vitamin B-12 status further compromises the availability of vitamin B-12 coenzymes to their respective enzymes, and consequently a more pronounced state of biochemical deficiency. This hypothesis is drawn from evidence of observational and intervention studies of vitamin B-12-deficient patients and epidemiological cohorts. The evidence also suggests that, in a depleted state, vitamin B-12 is diverted to the hematopoietic system or the kidney. This most likely reflects a selective response of tissues expressing folate receptors with high affinity for unmetabolized folic acid (UMFA; e.g., hematopoietic progenitors and renal tubules) compared with those tissues (e.g., liver) that only express the reduced folate carrier, which is universally expressed but has poor affinity for UMFA. The biochemical and physiological mechanisms underlying this interaction require elucidation to clarify its potential public health significance.
Collapse
Affiliation(s)
| | | | - Aron M Troen
- School of Nutritional Sciences and Institute of Biochemistry Food Science and Nutrition, The Robert H Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joel B Mason
- Tufts–USDA Human Nutrition Research Center on Aging, Boston, MA, USA
| | - Paul F Jacques
- Tufts–USDA Human Nutrition Research Center on Aging, Boston, MA, USA
| |
Collapse
|
15
|
Patent highlights April–May 2021. Pharm Pat Anal 2021. [DOI: 10.4155/ppa-2021-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
16
|
Tiozon RJN, Fernie AR, Sreenivasulu N. Meeting human dietary vitamin requirements in the staple rice via strategies of biofortification and post-harvest fortification. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
17
|
A homozygous deletion in the SLC19A1 gene as a cause of folate-dependent recurrent megaloblastic anemia. Blood 2021; 135:2427-2431. [PMID: 32276275 DOI: 10.1182/blood.2019003178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
18
|
Palladino E, Van Mieghem T, Connor KL. Diet Alters Micronutrient Pathways in the Gut and Placenta that Regulate Fetal Growth and Development in Pregnant Mice. Reprod Sci 2021; 28:447-461. [PMID: 32886339 DOI: 10.1007/s43032-020-00297-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
Maternal malnutrition and micronutrient deficiencies can alter fetal development. However, the mechanisms underlying these relationships are poorly understood. We used a systems physiology approach to investigate diet-induced effects on maternal gut microbes and folate/inositol transport in the maternal/fetal gut and placenta. Female mice were fed a control diet (CON) diet, undernourished (UN, restricted by 30% of CON intake) or a high-fat diet (HF, 60% kcals fat) during pregnancy to model normal pregnancy, fetal growth restriction or maternal metabolic dysfunction, respectively. At gestational day 18.5, we assessed circulating folate levels by microbiological assay, relative abundance of gut lactobacilli by G3PhyloChip™, and folate/inositol transporters in placenta and maternal/fetal gut by qPCR/immunohistochemistry. UN and HF-fed mothers had lower plasma folate concentrations vs. CON. Relative abundances of three lactobacilli taxa were higher in HF vs. UN and CON. HF-fed mothers had higher gut proton coupled folate transporter (Pcft) and reduced folate carrier 1 (Rfc1), and lower sodium myo-inositol co-transporter 2 (Smit2), mRNA expression vs. UN and CON. HF placentae had increased folate receptor beta (Frβ) expression vs. UN. mRNA expression of Pcft, folate receptor alpha (Frα), and Smit2 was higher in gut of HF fetuses vs. UN and CON. Transporter protein expression was not different between groups. Maternal malnutrition alters abundance of select gut microbes and folate/inositol transporters, which may influence maternal micronutrient status and delivery to the fetus, impacting pregnancy/fetal outcomes.
Collapse
Affiliation(s)
- Elia Palladino
- Carleton University (Health Sciences), Ottawa, Ontario, Canada
| | - Tim Van Mieghem
- Mount Sinai Hospital (Obstetrics and Gynaecology), Toronto, Ontario, Canada
| | | |
Collapse
|
19
|
Serum Vitamin B12, and Related MTRR and Cubilin Genotypes, Predict Neural Outcomes across the AD Spectrum. Br J Nutr 2020; 124:135-145. [PMID: 32180545 DOI: 10.1017/s0007114520000951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Epidemiological studies show mixed findings for serum vitamin B12 and both cognitive and regional volume outcomes. No studies to date have comprehensively examined, in non-supplemented individuals, serum B12 level associations with neurodegeneration, hypometabolism, and cognition across the Alzheimer's disease (AD) spectrum. Serum vitamin B12 was assayed from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL). Voxel-wise analyses regressed B12 levels against regional gray matter (GM) volume and glucose metabolism (p<.05, family-wise corrected). For ADNI GM, there were 39 cognitively normal (CN), 73 mild cognitive impairment (MCI), and 31 AD participants. For AIBL GM, there were 311 CN, 59 MCI, and 31 AD participants. Covariates were age, sex, baseline diagnosis, APOE4 status, and Body Mass Index (BMI). In ADNI, higher B12 was negatively associated with GM in the right precuneus and bilateral frontal gyri. When diagnostic groups were examined separately, only participants with MCI or above an established cutoff for CSF total tau showed such associations. In AIBL, higher B12 was associated with more grey matter in the right amygdala and right superior temporal pole, which largely seemed to be driven by CN participants that constituted most of the sample. Our results suggest that B12 may show different patterns of association based on clinical status and, for ADNI, AD CSF biomarkers. Accounting for these factors may clarify the relationship between B12 with neural outcomes in late-life.
Collapse
|
20
|
Lemoine M, Grangé S, Guerrot D. [Kidney disease in cobalamin C deficiency]. Nephrol Ther 2019; 15:201-214. [PMID: 31130431 DOI: 10.1016/j.nephro.2019.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 12/23/2022]
Abstract
Cobalamin C deficiency (cblC) is the most common inborn error of vitamin B12 metabolism. This autosomal recessive disease is due to mutations in MMACHC gene, encoding a cyanocobalamin decyanase. It leads to hyperhomocysteinemia associated with hypomethioninemia and methylmalonic aciduria. Two distinct phenotypes have been described : early-onset forms occur before the age of one year and are characterized by a severe multisystem disease associating failure to thrive to neurological and ophthalmological manifestations. They are opposed to late-onset forms, less severe and heterogeneous. CblC deficiency-associated kidney lesions remain poorly defined. Thirty-eight cases have been described. Age at initial presentation varied from a few days to 28 years. Most of the patients presented renal thrombotic microangiopathy (TMA) associated with acute renal failure, and 21 patients presented typical lesions of renal thrombotic microangiopathy on kidney biopsy. Prognosis was poor, leading to death in the absence of treatment, and related to the severity of renal lesions in the early-onset forms. Late-onset disease had better prognosis and most of patients were weaned off dialysis after treatment initiation. We suggest that all the patients with renal TMA be screened for cobalamin metabolism disorder, regardless of age and even in the absence of neurological symptoms, to rapidly initiate the appropriate treatment.
Collapse
Affiliation(s)
- Mathilde Lemoine
- Service de néphrologie, dialyse et transplantation, CHU de Rouen, 1, rue de Germont, 76031 Rouen, France.
| | - Steven Grangé
- Service de réanimation médicale, CHU de Rouen, 1, rue de Germont, 76031 Rouen, France
| | - Dominique Guerrot
- Service de néphrologie, dialyse et transplantation, CHU de Rouen, 1, rue de Germont, 76031 Rouen, France; Inserm U1096, UFR médecine pharmacie, 22, boulevard Gambetta, 76183 Rouen, France
| |
Collapse
|
21
|
Zhang Y, Ying H, Xu Y. Comparative genomics and metagenomics of the metallomes. Metallomics 2019; 11:1026-1043. [DOI: 10.1039/c9mt00023b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent achievements and advances in comparative genomic and metagenomic analyses of trace metals were reviewed and discussed.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- P. R. China
| | - Huimin Ying
- Department of Endocrinology
- Hangzhou Xixi Hospital
- Hangzhou
- P. R. China
| | - Yinzhen Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- P. R. China
| |
Collapse
|
22
|
van Gool JD, Hirche H, Lax H, De Schaepdrijver L. Folic acid and primary prevention of neural tube defects: A review. Reprod Toxicol 2018; 80:73-84. [DOI: 10.1016/j.reprotox.2018.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/03/2018] [Accepted: 05/14/2018] [Indexed: 12/31/2022]
|
23
|
Kinoshita Y, Nogami K, Jomura R, Akanuma SI, Abe H, Inouye M, Kubo Y, Hosoya KI. Investigation of Receptor-Mediated Cyanocobalamin (Vitamin B 12) Transport across the Inner Blood-Retinal Barrier Using Fluorescence-Labeled Cyanocobalamin. Mol Pharm 2018; 15:3583-3594. [PMID: 29966424 DOI: 10.1021/acs.molpharmaceut.8b00617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The blood-to-retina supply of cyanocobalamin (vitamin B12) across the blood-retinal barrier (BRB) was investigated by synthesizing a fluorescence-labeled cyanocobalamin (Cy5-cyanocobalamin). In the in vivo analysis following internal jugular injection of Cy5-cyanocobalamin, confocal microscopy showed the distribution of Cy5-cyanocobalamin in the inner plexiform layer (IPL), the outer plexiform layer (OPL), and the retinal pigment epithelium (RPE). In the in vitro analysis with TR-iBRB2 cells, an in vitro model cell line of the inner BRB, Cy5-cyanocobalamin uptake by TR-iBRB2 cells exhibited a time-dependent increase after preincubation with transcobalamin II (TCII) protein, during its residual uptake without preincubation with TCII protein. The Cy5-cyanocobalamin uptake by TR-iBRB2 cells was significantly reduced in the presence of unlabeled cyanocobalamin, chlorpromazine, and chloroquine and was also significantly reduced under Ca2+-free conditions. Confocal microscopy of the TR-iBRB2 cells showed fluorescence signals of Cy5-cyanocobalamin and GFP-TCII protein, and these signals merged with each other. The RT-PCR, Western blot, and immunohistochemistry clearly suggested the expression of TCII receptor (TCII-R) in the inner and outer BRB. These results suggested the involvement of receptor-mediated endocytosis in the blood-to-retina transport of cyanocobalamin at the inner BRB with implying its possible involvement at the outer BRB.
Collapse
Affiliation(s)
- Yuri Kinoshita
- Department of Pharmaceutics and ‡Department of Chemical Biology, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| | | | - Ryuta Jomura
- Department of Pharmaceutics and ‡Department of Chemical Biology, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics and ‡Department of Chemical Biology, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| | | | | | - Yoshiyuki Kubo
- Department of Pharmaceutics and ‡Department of Chemical Biology, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics and ‡Department of Chemical Biology, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| |
Collapse
|
24
|
Brosnan JT, Mills JL, Ueland PM, Shane B, Fan R, Chiu CY, Pangilinan F, Brody LC, Brosnan ME, Pongnopparat T, Molloy AM. Lifestyle, metabolite, and genetic determinants of formate concentrations in a cross-sectional study in young, healthy adults. Am J Clin Nutr 2018; 107:345-354. [PMID: 29566195 PMCID: PMC6373436 DOI: 10.1093/ajcn/nqx065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/06/2017] [Indexed: 01/11/2023] Open
Abstract
Background Formate is an important metabolite that serves as a donor of one-carbon groups to the intracellular tetrahydrofolate pool. However, little is known of its circulating concentrations or of their determinants. Objective This study aimed to define formate concentrations and their determinants in a healthy young population. Design Serum formate was measured in 1701 participants from the Trinity Student Study. The participants were men and women, aged 18 to 28 y, enrolled at Trinity College, Dublin. Formate concentrations were compared with other one-carbon metabolites, vitamin status, potential formate precursors, genetic polymorphisms, and lifestyle factors. Results Serum formate concentrations ranged from 8.7 to 96.5 µM, with a mean of 25.9 µM. Formate concentrations were significantly higher in women than in men; oral contraceptive use did not further affect them. There was no effect of smoking or of alcohol ingestion, but the TT genotype of the methylenetetrahydrofolate reductase (MTHFR) 677C→T (rs1801133) polymorphism was associated with a significantly decreased formate concentration. Formate was positively associated with potential metabolic precursors (serine, methionine, tryptophan, choline) but not with glycine. Formate concentrations were positively related to serum folate and negatively related to serum vitamin B-12. Conclusions Formate concentrations were sensitive to the concentrations of metabolic precursors. In view of the increased susceptibility of women with the TT genotype of MTHFR to give birth to infants with neural tube defects as well as the effectiveness of formate supplementation in decreasing the incidence of folate-resistant neural tube defects in susceptible mice, it will be important to understand how this genotype decreases the serum formate concentration. This trial was registered at www.clinicaltrials.gov as NCT03305900.
Collapse
Affiliation(s)
- John T Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's,
Newfoundland, Canada,Address correspondence to JTB (e-mail: )
| | | | - Per M Ueland
- Section of Pharmacology, Institute of Medicine, University of Bergen and
Haukeland University Hospital, Bergen, Norway
| | - Barry Shane
- Nutritional Science and Toxicology, University of California, Berkeley,
Berkeley, CA
| | - Ruzong Fan
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown
University Medical Center, Washington, DC
| | - Chi-Yang Chiu
- Biostatistics and Bioinformatics Branch, Division of Intramural Population
Health Research, Eunice Kennedy Shriver National Institute of Child Health
and Human Development, NIH, Bethesda, MD
| | - Faith Pangilinan
- Molecular Pathogenesis Section, Medical Genomics and Metabolic Genetics Branch,
National Human Genome Research Institute, NIH, Bethesda, MD
| | - Lawrence C Brody
- Molecular Pathogenesis Section, Medical Genomics and Metabolic Genetics Branch,
National Human Genome Research Institute, NIH, Bethesda, MD
| | - Margaret E Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's,
Newfoundland, Canada
| | - Theerawat Pongnopparat
- Department of Biochemistry, Memorial University of Newfoundland, St. John's,
Newfoundland, Canada
| | - Anne M Molloy
- Medicine and Biochemistry and Immunology, Trinity College Dublin, Ireland,Biochemistry and Immunology, Trinity College Dublin, Ireland
| |
Collapse
|
25
|
Chen J, Guo Y, Gui Y, Xu D. Physical exercise, gut, gut microbiota, and atherosclerotic cardiovascular diseases. Lipids Health Dis 2018; 17:17. [PMID: 29357881 PMCID: PMC5778620 DOI: 10.1186/s12944-017-0653-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Arteriosclerotic cardiovascular diseases (ASCVDs) are the leading cause of morbidity and mortality worldwide and its risk can be independently decreased by regular physical activity. Recently, ASCVD and its risk factors were found to be impacted by the gut microbiota through its diversity, distribution and metabolites. Meanwhile, several experiments demonstrated the relationship between physical exercise and diversity, distribution, metabolite of the gut microbiota as well as its functions on the lipid metabolism and chronic systematic inflammation. In this review, we summarize the current knowledge on the effects of physical exercise on ASCVD through modulation of the gut microbiota and intestinal function.
Collapse
Affiliation(s)
- Jingyuan Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yuan Guo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yajun Gui
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
26
|
Danchin A, Braham S. Coenzyme B12 synthesis as a baseline to study metabolite contribution of animal microbiota. Microb Biotechnol 2017; 10:688-701. [PMID: 28612402 PMCID: PMC5481537 DOI: 10.1111/1751-7915.12722] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microbial communities thrive in a number of environments. Exploration of their microbiomes – their global genome – may reveal metabolic features that contribute to the development and welfare of their hosts, or chemical cleansing of environments. Yet we often lack final demonstration of their causal role in features of interest. The reason is that we do not have proper baselines that we could use to monitor how microbiota cope with key metabolites in the hosting environment. Here, focusing on animal gut microbiota, we describe the fate of cobalamins – metabolites of the B12 coenzyme family – that are essential for animals but synthesized only by prokaryotes. Microbiota produce the vitamin used in a variety of animals (and in algae). Coprophagy plays a role in its management. For coprophobic man, preliminary observations suggest that the gut microbial production of vitamin B12 plays only a limited role. By contrast, the vitamin is key for structuring microbiota. This implies that it is freely available in the environment. This can only result from lysis of the microbes that make it. A consequence for biotechnology applications is that, if valuable for their host, B12‐producing microbes should be sensitive to bacteriophages and colicins, or make spores.
Collapse
Affiliation(s)
- Antoine Danchin
- Institute of Cardiometabolism and Nutrition, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France
| | | |
Collapse
|
27
|
Adipocyte Metabolic Pathways Regulated by Diet Control the Female Germline Stem Cell Lineage in Drosophila melanogaster. Genetics 2017; 206:953-971. [PMID: 28396508 DOI: 10.1534/genetics.117.201921] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/05/2017] [Indexed: 12/29/2022] Open
Abstract
Nutrients affect adult stem cells through complex mechanisms involving multiple organs. Adipocytes are highly sensitive to diet and have key metabolic roles, and obesity increases the risk for many cancers. How diet-regulated adipocyte metabolic pathways influence normal stem cell lineages, however, remains unclear. Drosophila melanogaster has highly conserved adipocyte metabolism and a well-characterized female germline stem cell (GSC) lineage response to diet. Here, we conducted an isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis to identify diet-regulated adipocyte metabolic pathways that control the female GSC lineage. On a rich (relative to poor) diet, adipocyte Hexokinase-C and metabolic enzymes involved in pyruvate/acetyl-CoA production are upregulated, promoting a shift of glucose metabolism toward macromolecule biosynthesis. Adipocyte-specific knockdown shows that these enzymes support early GSC progeny survival. Further, enzymes catalyzing fatty acid oxidation and phosphatidylethanolamine synthesis in adipocytes promote GSC maintenance, whereas lipid and iron transport from adipocytes controls vitellogenesis and GSC number, respectively. These results show a functional relationship between specific metabolic pathways in adipocytes and distinct processes in the GSC lineage, suggesting the adipocyte metabolism-stem cell link as an important area of investigation in other stem cell systems.
Collapse
|
28
|
Zhao H, Ruberu K, Li H, Garner B. Cell Type-Specific Modulation of Cobalamin Uptake by Bovine Serum. PLoS One 2016; 11:e0167044. [PMID: 27893837 PMCID: PMC5125665 DOI: 10.1371/journal.pone.0167044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/07/2016] [Indexed: 12/04/2022] Open
Abstract
Tracking cellular 57Co-labelled cobalamin (57Co-Cbl) uptake is a well-established method for studying Cbl homeostasis. Previous studies established that bovine serum is not generally permissive for cellular Cbl uptake when used as a supplement in cell culture medium, whereas supplementation with human serum promotes cellular Cbl uptake. The underlying reasons for these differences are not fully defined. In the current study we address this question. We extend earlier observations by showing that fetal calf serum inhibits cellular 57Co-Cbl uptake by HT1080 cells (a fibrosarcoma-derived fibroblast cell line). Furthermore, we discovered that a simple heat-treatment protocol (95°C for 10 min) ameliorates this inhibitory activity for HT1080 cell 57Co-Cbl uptake. We provide evidence that the very high level of haptocorrin in bovine serum (as compared to human serum) is responsible for this inhibitory activity. We suggest that bovine haptocorrin competes with cell-derived transcobalamin for Cbl binding, and that cellular Cbl uptake may be minimised in the presence of large amounts of bovine haptocorrin that are present under routine in vitro cell culture conditions. In experiments conducted with AG01518 cells (a neonatal foreskin-derived fibroblast cell line), overall cellular 57Co-Cbl uptake was 86% lower than for HT1080 cells, cellular TC production was below levels detectable by western blotting, and heat treatment of fetal calf serum resulted in only a modest increase in cellular 57Co-Cbl uptake. We recommend a careful assessment of cell culture protocols should be conducted in order to determine the potential benefits that heat-treated bovine serum may provide for in vitro studies of mammalian cell lines.
Collapse
Affiliation(s)
- Hua Zhao
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Kalani Ruberu
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Hongyun Li
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Brett Garner
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- * E-mail:
| |
Collapse
|
29
|
Gominak SC. Vitamin D deficiency changes the intestinal microbiome reducing B vitamin production in the gut. The resulting lack of pantothenic acid adversely affects the immune system, producing a "pro-inflammatory" state associated with atherosclerosis and autoimmunity. Med Hypotheses 2016; 94:103-7. [PMID: 27515213 DOI: 10.1016/j.mehy.2016.07.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 07/02/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022]
Abstract
STUDY OBJECTIVES Vitamin D blood levels of 60-80ng/ml promote normal sleep. The present study was undertaken to explore why this beneficial effect waned after 2years as arthritic pain increased. Pantothenic acid becomes coenzyme A, a cofactor necessary for cortisol and acetylcholine production. 1950s experiments suggested a connection between pantothenic acid deficiency, autoimmune arthritis and insomnia. The B vitamins have been shown to have an intestinal bacterial source and a food source, suggesting that the normal intestinal microbiome may have always been the primary source of B vitamins. Review of the scientific literature shows that pantothenic acid does not have a natural food source, it is supplied by the normal intestinal bacteria. In order to test the hypothesis that vitamin D replacement slowly induced a secondary pantothenic acid deficiency, B100 (100mg of all B vitamins except 100mcg of B12 and biotin and 400mcg of folate) was added to vitamin D supplementation. METHODS Vitamin D and B100 were recommended to over 1000 neurology patients. Sleep characteristics, pain levels, neurologic symptoms, and bowel complaints were recorded by the author at routine appointments. RESULTS Three months of vitamin D plus B100 resulted in improved sleep, reduced pain and unexpected resolution of bowel symptoms. These results suggest that the combination of vitamin D plus B100 creates an intestinal environment that favors the return of the four specific species, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria that make up the normal human microbiome. HYPOTHESES 1) Seasonal fluctuations in vitamin D levels have normally produced changes in the intestinal microbiome that promoted weight gain in winter. Years of vitamin D deficiency, however, results in a permanently altered intestinal environment that no longer favors the "healthy foursome". 2) Humans have always had a commensal relationship with their intestinal microbiome. We supplied them vitamin D, they supplied us B vitamins. 3) The four species that make up the normal microbiome are also commensal, each excretes at least one B vitamin that the other three need but cannot make. 4) Improved sleep and more cellular repairs eventually depletes body stores of pantothenic acid, causing reduced cortisol production, increased arthritic pain and widespread "pro-inflammatory" effects on the immune system. 5) Pantothenic acid deficiency also decreases available acetylcholine, the neurotransmitter used by the parasympathetic nervous system. Unopposed, increased sympathetic tone then produces hypertension, tachycardia, atrial arrhythmias and a "hyper-adrenergic" state known to predispose to heart disease and stroke.
Collapse
Affiliation(s)
- S C Gominak
- 1635 NE Fremont St., Portland, OR 97212, United States.
| |
Collapse
|
30
|
Guéant JL. One carbon metabolism, a complex metabolic network involved in pathomechanisms of inherited disorders, birth defects and age-related pathologies. Biochimie 2016; 126:1-2. [DOI: 10.1016/j.biochi.2016.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|