1
|
Durand T, Dodge GJ, Siuda RP, Higinbotham HR, Arbour CA, Ghosh S, Allen KN, Imperiali B. Proteome-wide bioinformatic annotation and functional validation of the monotopic phosphoglycosyl transferase superfamily. Proc Natl Acad Sci U S A 2024; 121:e2417572121. [PMID: 39602253 PMCID: PMC11626204 DOI: 10.1073/pnas.2417572121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Phosphoglycosyl transferases (PGTs) are membrane proteins that initiate glycoconjugate biosynthesis by transferring a phospho-sugar moiety from a soluble nucleoside diphosphate sugar to a membrane-embedded polyprenol phosphate acceptor. The centrality of PGTs in complex glycan assembly and the current lack of functional information make these enzymes high-value targets for biochemical investigation. In particular, the small monotopic PGT family is exclusively bacterial and represents the minimal functional unit of the monotopic PGT superfamily. Here, we combine a sequence similarity network analysis with a generalizable, luminescence-based activity assay to probe the substrate specificity of this family of monoPGTs in the bacterial cell-membrane fraction. This strategy allows us to identify specificity on a far more significant scale than previously achievable and correlate preferred substrate specificities with predicted structural differences within the conserved monoPGT fold. Finally, we present the proof-of-concept for a small-scale inhibitor screen (eight nucleoside analogs) with four monoPGTs of diverse substrate specificity, thus building a foundation for future inhibitor discovery initiatives.
Collapse
Affiliation(s)
- Theo Durand
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
- Imperial College London, South Kensington, LondonSW7 2AZ, United Kingdom
| | - Greg J. Dodge
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
- Structural Biology Unit, Biogen, Cambridge, MA02139
| | - Roxanne P. Siuda
- Department of Chemistry, Boston University, Boston, MA02215
- Department of Pharmacology Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA02215
| | - Hugh R. Higinbotham
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Christine A. Arbour
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Soumi Ghosh
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Karen N. Allen
- Department of Chemistry, Boston University, Boston, MA02215
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
2
|
Koatale P, Welling MM, Ndlovu H, Kgatle M, Mdanda S, Mdlophane A, Okem A, Takyi-Williams J, Sathekge MM, Ebenhan T. Insights into Peptidoglycan-Targeting Radiotracers for Imaging Bacterial Infections: Updates, Challenges, and Future Perspectives. ACS Infect Dis 2024; 10:270-286. [PMID: 38290525 PMCID: PMC10862554 DOI: 10.1021/acsinfecdis.3c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024]
Abstract
The unique structural architecture of the peptidoglycan allows for the stratification of bacteria as either Gram-negative or Gram-positive, which makes bacterial cells distinguishable from mammalian cells. This classification has received attention as a potential target for diagnostic and therapeutic purposes. Bacteria's ability to metabolically integrate peptidoglycan precursors during cell wall biosynthesis and recycling offers an opportunity to target and image pathogens in their biological state. This Review explores the peptidoglycan biosynthesis for bacteria-specific targeting for infection imaging. Current and potential radiolabeled peptidoglycan precursors for bacterial infection imaging, their development status, and their performance in vitro and/or in vivo are highlighted. We conclude by providing our thoughts on how to shape this area of research for future clinical translation.
Collapse
Affiliation(s)
- Palesa
C. Koatale
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Mick M. Welling
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Honest Ndlovu
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Mankgopo Kgatle
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Sipho Mdanda
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Amanda Mdlophane
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Ambrose Okem
- Department
of Anaesthesia, School of Clinical Medicine, University of Witwatersrand, 2050 Johannesburg, South Africa
| | - John Takyi-Williams
- Pharmacokinetic
and Mass Spectrometry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mike M. Sathekge
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Thomas Ebenhan
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
- DSI/NWU Pre-clinical
Drug Development Platform, North West University, 2520 Potchefstroom, South Africa
| |
Collapse
|
3
|
Seebald LM, Haratipour P, Jacobs MR, Bernstein HM, Kashemirov BA, McKenna CE, Imperiali B. Uridine Bisphosphonates Differentiate Phosphoglycosyl Transferase Superfamilies. J Am Chem Soc 2024; 146:3220-3229. [PMID: 38271668 PMCID: PMC10922802 DOI: 10.1021/jacs.3c11402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Complex bacterial glycoconjugates drive interactions between pathogens, symbionts, and their human hosts. Glycoconjugate biosynthesis is initiated at the membrane interface by phosphoglycosyl transferases (PGTs), which catalyze the transfer of a phosphosugar from a soluble uridine diphosphosugar (UDP-sugar) substrate to a membrane-bound polyprenol-phosphate (Pren-P). The two distinct superfamilies of PGT enzymes (polytopic and monotopic) show striking differences in their structure and mechanism. We designed and synthesized a series of uridine bisphosphonates (UBPs), wherein the diphosphate of the UDP and UDP-sugar is replaced by a substituted methylene bisphosphonate (CXY-BPs; X/Y = F/F, Cl/Cl, (S)-H/F, (R)-H/F, H/H, CH3/CH3). UBPs and UBPs incorporating an N-acetylglucosamine (GlcNAc) substituent at the β-phosphonate were evaluated as inhibitors of a polytopic PGT (WecA from Thermotoga maritima) and a monotopic PGT (PglC from Campylobacter jejuni). Although CHF-BP most closely mimics diphosphate with respect to its acid/base properties, the less basic CF2-BP conjugate more strongly inhibited PglC, whereas the more basic CH2-BP analogue was the strongest inhibitor of WecA. These surprising differences indicate different modes of ligand binding for the different PGT superfamilies, implicating a modified P-O- interaction with the structural Mg2+. For the monoPGT enzyme, the two diastereomeric CHF-BP conjugates, which feature a chiral center at the Pα-CHF-Pβ carbon, also exhibited strikingly different binding affinities and the inclusion of GlcNAc with the native α-anomer configuration significantly improved binding affinity. UBP-sugars are thus revealed as informative new mechanistic probes of PGTs that may aid development of novel antibiotic agents for the exclusively prokaryotic monoPGT superfamily.
Collapse
Affiliation(s)
- Leah M. Seebald
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pouya Haratipour
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Michaela R. Jacobs
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Hannah M. Bernstein
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Boris A. Kashemirov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Seebald LM, Haratipour P, Jacobs MR, Bernstein HM, Kashemirov BA, McKenna CE, Imperiali B. Uridine Bisphosphonates Differentiate Phosphoglycosyl Transferase Superfamilies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558431. [PMID: 37786673 PMCID: PMC10541605 DOI: 10.1101/2023.09.19.558431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Complex bacterial glycoconjugates are essential for bacterial survival, and drive interactions between pathogens and symbionts, and their human hosts. Glycoconjugate biosynthesis is initiated at the membrane interface by phosphoglycosyl transferases (PGTs), which catalyze the transfer of a phosphosugar from a soluble uridine diphospho-sugar (UDP-sugar) substrate to a membrane-bound polyprenol-phosphate (Pren-P). Two distinct superfamilies of PGT enzymes, denoted as polytopic and monotopic, carry out this reaction but show striking differences in structure and mechanism. With the goal of creating non-hydrolyzable mimics (UBP-sugars) of the UDP-sugar substrates as chemical probes to interrogate critical aspects of these essential enzymes, we designed and synthesized a series of uridine bisphosphonates (UBPs), wherein the diphosphate bridging oxygen of the UDP and UDP-sugar is replaced by a substituted methylene group (CXY; X/Y = F/F, Cl/Cl, (S)-H/F, (R)-H/F, H/H, CH3/CH3). These compounds, which incorporated as the conjugating sugar an N-acetylglucosamine (GlcNAc) substituent at the β-phosphonate, were evaluated as inhibitors of a representative polytopic PGT (WecA from Thermotoga maritima) and a monotopic PGT (PglC from Campylobacter jejuni). Although CHF-BP most closely mimics pyrophosphate with respect to its acid/base properties, the less basic CF2-BP conjugate most strongly inhibited PglC, whereas the more basic CH2-BP analogue was the strongest inhibitor of WecA. These surprising differences indicate different modes of ligand binding for the different PGT superfamilies implicating a modified P-O- interaction with the structural Mg2+, consistent with their catalytic divergence. Furthermore, at least for the monoPGT superfamily example, this was not the sole determinant of ligand binding: the two diastereomeric CHF-BP conjugates, which feature a chiral center at the Pα-CHF-Pβ carbon, exhibited strikingly different binding affinities and the inclusion of GlcNAc with the native α-anomer configuration significantly improved binding affinity. UBP-sugars are a valuable tool for elucidating the structures and mechanisms of the distinct PGT superfamilies and offer a promising scaffold to develop novel antibiotic agents for the exclusively prokaryotic monoPGT superfamily.
Collapse
Affiliation(s)
- Leah M. Seebald
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pouya Haratipour
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Michaela R. Jacobs
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Hannah M. Bernstein
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Boris A. Kashemirov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
New MraY AA Inhibitors with an Aminoribosyl Uridine Structure and an Oxadiazole. Antibiotics (Basel) 2022; 11:antibiotics11091189. [PMID: 36139968 PMCID: PMC9495235 DOI: 10.3390/antibiotics11091189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
New inhibitors of the bacterial transferase MraY from Aquifex aeolicus (MraYAA), based on the aminoribosyl uridine central core of known natural MraY inhibitors, have been designed to generate interaction of their oxadiazole linker with the key amino acids (H324 or H325) of the enzyme active site, as observed for the highly potent inhibitors carbacaprazamycin, muraymycin D2 and tunicamycin. A panel of ten compounds was synthetized notably thanks to a robust microwave-activated one-step sequence for the synthesis of the oxadiazole ring that involved the O-acylation of an amidoxime and subsequent cyclization. The synthetized compounds, with various hydrophobic substituents on the oxadiazole ring, were tested against the MraYAA transferase activity. Although with poor antibacterial activity, nine out of the ten compounds revealed the inhibition of the MraYAA activity in the range of 0.8 µM to 27.5 µM.
Collapse
|
6
|
Interdependence of Shigella flexneri O Antigen and Enterobacterial Common Antigen Biosynthetic Pathways. J Bacteriol 2022; 204:e0054621. [PMID: 35293778 DOI: 10.1128/jb.00546-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Outer membrane (OM) polysaccharides allow bacteria to resist harsh environmental conditions and antimicrobial agents, traffic to and persist in pathogenic niches, and evade immune responses. Shigella flexneri has two OM polysaccharide populations, being enterobacterial common antigen (ECA) and lipopolysaccharide (LPS) O antigen (Oag); both are polymerized into chains by separate homologs of the Wzy-dependent pathway. The two polysaccharide pathways, along with peptidoglycan (PG) biosynthesis, compete for the universal biosynthetic membrane anchor, undecaprenyl phosphate (Und-P), as the finite pool of available Und-P is critical in all three cell wall biosynthetic pathways. Interactions between the two OM polysaccharide pathways have been proposed in the past where, through the use of mutants in both pathways, various perturbations have been observed. Here, we show for the first time that mutations in one of the two OM polysaccharide pathways can affect each other, dependent on where the mutation lies along the pathway, while the second pathway remains genetically intact. We then expand on this and show that the mutations also affect PG biosynthesis pathways and provide data which supports that the classical mutant phenotypes of cell wall mutants are due to a lack of available Und-P. Our work here provides another layer in understanding the complex intricacies of the cell wall biosynthetic pathways and demonstrates their interdependence on Und-P, the universal biosynthetic membrane anchor. IMPORTANCE Bacterial outer membrane polysaccharides play key roles in a range of bacterial activities from homeostasis to virulence. Two such OM polysaccharide populations are ECA and LPS Oag, which are synthesized by separate homologs of the Wzy-dependent pathway. Both ECA and LPS Oag biosynthesis join with PG biosynthesis to form the cell wall biosynthetic pathways, which all are interdependent on the availability of Und-P for proper function. Our data show the direct effects of cell wall pathway mutations affecting all related pathways when they themselves remain genetically unchanged. This work furthers our understanding of the complexities and interdependence of the three cell wall pathways.
Collapse
|
7
|
A Sub-Micromolar MraY AA Inhibitor with an Aminoribosyl Uridine Structure and a ( S, S)-Tartaric Diamide: Synthesis, Biological Evaluation and Molecular Modeling. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061769. [PMID: 35335131 PMCID: PMC8954382 DOI: 10.3390/molecules27061769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/28/2023]
Abstract
New inhibitors of the bacterial tranferase MraY are described. Their structure is based on an aminoribosyl uridine scaffold, which is known to be important for the biological activity of natural MraY inhibitors. A decyl alkyl chain was introduced onto this scaffold through various linkers. The synthesized compounds were tested against the MraYAA transferase activity, and the most active compound with an original (S,S)-tartaric diamide linker inhibits MraY activity with an IC50 equal to 0.37 µM. Their antibacterial activity was also evaluated on a panel of Gram-positive and Gram-negative strains; however, the compounds showed no antibacterial activity. Docking and molecular dynamics studies revealed that this new linker established two stabilizing key interactions with N190 and H325, as observed for the highly potent inhibitors carbacaprazamycin, muraymycin D2 and tunicamycin.
Collapse
|
8
|
Wang J, Xu Y, Qin C, Hu J, Yin J, Guo X. Structural Determination and Genetic Identification of the O-Antigen from an Escherichia coli Strain, LL004, Representing a Novel Serogroup. Int J Mol Sci 2021; 22:ijms222312746. [PMID: 34884549 PMCID: PMC8657804 DOI: 10.3390/ijms222312746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022] Open
Abstract
The O-antigen is the outermost component of the lipopolysaccharide layer in Gram-negative bacteria, and the variation of O-antigen structure provides the basis for bacterial serological diversity. Here, we determined the O-antigen structure of an Escherichia coli strain, LL004, which is totally different from all of the E. coli serogroups. The tetrasaccharide repeating unit was determined as →4)-β-d-Galp-(1→3)-β-d-GlcpNAc6OAc(~70%)-(1→3)-β-d-GalpA-(1→3)-β-d-GalpNAc-(1→ with monosaccharide analysis and NMR spectra. We also characterized the O-antigen gene cluster of LL004, and sequence analysis showed that it correlated well with the O-antigen structure. Deletion and complementation testing further confirmed its role in O-antigen biosynthesis, and indicated that the O-antigen of LL004 is assembled via the Wzx/Wzy dependent pathway. Our findings, in combination, suggest that LL004 should represent a novel serogroup of E. coli.
Collapse
Affiliation(s)
- Jing Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China;
| | - Yujuan Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Ave. 1800, Wuxi 214122, China; (Y.X.); (C.Q.); (J.Y.)
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Ave. 1800, Wuxi 214122, China; (Y.X.); (C.Q.); (J.Y.)
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Ave. 1800, Wuxi 214122, China
- Correspondence: (J.H.); (X.G.)
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Ave. 1800, Wuxi 214122, China; (Y.X.); (C.Q.); (J.Y.)
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China;
- Correspondence: (J.H.); (X.G.)
| |
Collapse
|
9
|
Zheng M, Zheng M, Epstein S, Harnagel AP, Kim H, Lupoli TJ. Chemical Biology Tools for Modulating and Visualizing Gram-Negative Bacterial Surface Polysaccharides. ACS Chem Biol 2021; 16:1841-1865. [PMID: 34569792 DOI: 10.1021/acschembio.1c00341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial cells present a wide diversity of saccharides that decorate the cell surface and help mediate interactions with the environment. Many Gram-negative cells express O-antigens, which are long sugar polymers that makeup the distal portion of lipopolysaccharide (LPS) that constitutes the surface of the outer membrane. This review highlights chemical biology tools that have been developed in recent years to facilitate the modulation of O-antigen synthesis and composition, as well as related bacterial polysaccharide pathways, and the detection of unique glycan sequences. Advances in the biochemistry and structural biology of O-antigen biosynthetic machinery are also described, which provide guidance for the design of novel chemical and biomolecular probes. Many of the tools noted here have not yet been utilized in biological systems and offer researchers the opportunity to investigate the complex sugar architecture of Gram-negative cells.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Maggie Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Samuel Epstein
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Alexa P. Harnagel
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Hanee Kim
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Tania J. Lupoli
- Department of Chemistry, New York University, New York, 10003 New York, United States
| |
Collapse
|
10
|
Glycoconjugate pathway connections revealed by sequence similarity network analysis of the monotopic phosphoglycosyl transferases. Proc Natl Acad Sci U S A 2021; 118:2018289118. [PMID: 33472976 DOI: 10.1073/pnas.2018289118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The monotopic phosphoglycosyl transferase (monoPGT) superfamily comprises over 38,000 nonredundant sequences represented in bacterial and archaeal domains of life. Members of the superfamily catalyze the first membrane-committed step in en bloc oligosaccharide biosynthetic pathways, transferring a phosphosugar from a soluble nucleoside diphosphosugar to a membrane-resident polyprenol phosphate. The singularity of the monoPGT fold and its employment in the pivotal first membrane-committed step allows confident assignment of both protein and corresponding pathway. The diversity of the family is revealed by the generation and analysis of a sequence similarity network for the superfamily, with fusion of monoPGTs with other pathway members being the most frequent and extensive elaboration. Three common fusions were identified: sugar-modifying enzymes, glycosyl transferases, and regulatory domains. Additionally, unexpected fusions of the monoPGT with members of the polytopic PGT superfamily were discovered, implying a possible evolutionary link through the shared polyprenol phosphate substrate. Notably, a phylogenetic reconstruction of the monoPGT superfamily shows a radial burst of functionalization, with a minority of members comprising only the minimal PGT catalytic domain. The commonality and identity of the fusion partners in the monoPGT superfamily is consistent with advantageous colocalization of pathway members at membrane interfaces.
Collapse
|
11
|
The surprising structural and mechanistic dichotomy of membrane-associated phosphoglycosyl transferases. Biochem Soc Trans 2021; 49:1189-1203. [PMID: 34100892 DOI: 10.1042/bst20200762] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
Phosphoglycosyl transferases (PGTs) play a pivotal role at the inception of complex glycoconjugate biosynthesis pathways across all domains of life. PGTs promote the first membrane-committed step in the en bloc biosynthetic strategy by catalyzing the transfer of a phospho-sugar from a nucleoside diphospho-sugar to a membrane-resident polyprenol phosphate. Studies on the PGTs have been hampered because they are integral membrane proteins, and often prove to be recalcitrant to expression, purification and analysis. However, in recent years exciting new information has been derived on the structures and the mechanisms of PGTs, revealing the existence of two unique superfamilies of PGT enzymes that enact catalysis at the membrane interface. Genome neighborhood analysis shows that these superfamilies, the polytopic PGT (polyPGT) and monotopic PGT (monoPGT), may initiate different pathways within the same organism. Moreover, the same fundamental two-substrate reaction is enacted through two different chemical mechanisms with distinct modes of catalysis. This review highlights the structural and mechanistic divergence between the PGT enzyme superfamilies and how this is reflected in differences in regulation in their varied glycoconjugate biosynthesis pathways.
Collapse
|
12
|
Mikkola S. Nucleotide Sugars in Chemistry and Biology. Molecules 2020; 25:E5755. [PMID: 33291296 PMCID: PMC7729866 DOI: 10.3390/molecules25235755] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Nucleotide sugars have essential roles in every living creature. They are the building blocks of the biosynthesis of carbohydrates and their conjugates. They are involved in processes that are targets for drug development, and their analogs are potential inhibitors of these processes. Drug development requires efficient methods for the synthesis of oligosaccharides and nucleotide sugar building blocks as well as of modified structures as potential inhibitors. It requires also understanding the details of biological and chemical processes as well as the reactivity and reactions under different conditions. This article addresses all these issues by giving a broad overview on nucleotide sugars in biological and chemical reactions. As the background for the topic, glycosylation reactions in mammalian and bacterial cells are briefly discussed. In the following sections, structures and biosynthetic routes for nucleotide sugars, as well as the mechanisms of action of nucleotide sugar-utilizing enzymes, are discussed. Chemical topics include the reactivity and chemical synthesis methods. Finally, the enzymatic in vitro synthesis of nucleotide sugars and the utilization of enzyme cascades in the synthesis of nucleotide sugars and oligosaccharides are briefly discussed.
Collapse
Affiliation(s)
- Satu Mikkola
- Department of Chemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
13
|
Liu B, Furevi A, Perepelov AV, Guo X, Cao H, Wang Q, Reeves PR, Knirel YA, Wang L, Widmalm G. Structure and genetics of Escherichia coli O antigens. FEMS Microbiol Rev 2020; 44:655-683. [PMID: 31778182 PMCID: PMC7685785 DOI: 10.1093/femsre/fuz028] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli includes clonal groups of both commensal and pathogenic strains, with some of the latter causing serious infectious diseases. O antigen variation is current standard in defining strains for taxonomy and epidemiology, providing the basis for many serotyping schemes for Gram-negative bacteria. This review covers the diversity in E. coli O antigen structures and gene clusters, and the genetic basis for the structural diversity. Of the 187 formally defined O antigens, six (O31, O47, O67, O72, O94 and O122) have since been removed and three (O34, O89 and O144) strains do not produce any O antigen. Therefore, structures are presented for 176 of the 181 E. coli O antigens, some of which include subgroups. Most (93%) of these O antigens are synthesized via the Wzx/Wzy pathway, 11 via the ABC transporter pathway, with O20, O57 and O60 still uncharacterized due to failure to find their O antigen gene clusters. Biosynthetic pathways are given for 38 of the 49 sugars found in E. coli O antigens, and several pairs or groups of the E. coli antigens that have related structures show close relationships of the O antigen gene clusters within clades, thereby highlighting the genetic basis of the evolution of diversity.
Collapse
Affiliation(s)
- Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Axel Furevi
- Department of Organic Chemistry, Arrhenius Laboratory, Svante Arrhenius väg 16C, Stockholm University, S-106 91 Stockholm, Sweden
| | - Andrei V Perepelov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, Russia
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Hengchun Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Quan Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Peter R Reeves
- School of Molecular and Microbial Bioscience, University of Sydney, 2 Butilin Ave, Darlington NSW 2008, Sydney, Australia
| | - Yuriy A Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, Russia
| | - Lei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Svante Arrhenius väg 16C, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
14
|
CbrA Mediates Colicin M Resistance in Escherichia coli through Modification of Undecaprenyl-Phosphate-Linked Peptidoglycan Precursors. J Bacteriol 2020; 202:JB.00436-20. [PMID: 32958631 DOI: 10.1128/jb.00436-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Colicin M is an enzymatic bacteriocin produced by some Escherichia coli strains which provokes cell lysis of competitor strains by hydrolysis of the cell wall peptidoglycan undecaprenyl-PP-MurNAc(-pentapeptide)-GlcNAc (lipid II) precursor. The overexpression of a gene, cbrA (formerly yidS), was shown to protect E. coli cells from the deleterious effects of this colicin, but the underlying resistance mechanism was not established. We report here that a major structural modification of the undecaprenyl-phosphate carrier lipid and of its derivatives occurred in membranes of CbrA-overexpressing cells, which explains the acquisition of resistance toward this bacteriocin. Indeed, a main fraction of these lipids, including the lipid II peptidoglycan precursor, now displayed a saturated isoprene unit at the α-position, i.e., the unit closest to the colicin M cleavage site. Only unsaturated forms of these lipids were normally detectable in wild-type cells. In vitro and in vivo assays showed that colicin M did not hydrolyze α-saturated lipid II, clearly identifying this substrate modification as the resistance mechanism. These saturated forms of undecaprenyl-phosphate and lipid II remained substrates of the different enzymes participating in peptidoglycan biosynthesis and carrier lipid recycling, allowing this colicin M-resistance mechanism to occur without affecting this essential pathway.IMPORTANCE Overexpression of the chromosomal cbrA gene allows E. coli to resist colicin M (ColM), a bacteriocin specifically hydrolyzing the undecaprenyl-PP-MurNAc(-pentapeptide)-GlcNAc (lipid II) peptidoglycan precursor of targeted cells. This resistance results from a CbrA-dependent modification of the precursor structure, i.e., reduction of the α-isoprenyl bond of C55-carrier lipid moiety that is proximal to ColM cleavage site. This modification, observed here for the first time in eubacteria, annihilates the ColM activity without affecting peptidoglycan biogenesis. These data, which further increase our knowledge of the substrate specificity of this colicin, highlight the capability of E. coli to generate reduced forms of C55-carrier lipid and its derivatives. Whether the function of this modification is only relevant with respect to ColM resistance is now questioned.
Collapse
|
15
|
Caffalette CA, Kuklewicz J, Spellmon N, Zimmer J. Biosynthesis and Export of Bacterial Glycolipids. Annu Rev Biochem 2020; 89:741-768. [DOI: 10.1146/annurev-biochem-011520-104707] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Complex carbohydrates are essential for many biological processes, from protein quality control to cell recognition, energy storage, and cell wall formation. Many of these processes are performed in topologically extracellular compartments or on the cell surface; hence, diverse secretion systems evolved to transport the hydrophilic molecules to their sites of action. Polyprenyl lipids serve as ubiquitous anchors and facilitators of these transport processes. Here, we summarize and compare bacterial biosynthesis pathways relying on the recognition and transport of lipid-linked complex carbohydrates. In particular, we compare transporters implicated in O antigen and capsular polysaccharide biosyntheses with those facilitating teichoic acid and N-linked glycan transport. Further, we discuss recent insights into the generation, recognition, and recycling of polyprenyl lipids.
Collapse
Affiliation(s)
- Christopher A. Caffalette
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jeremi Kuklewicz
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Nicholas Spellmon
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
16
|
Li Y, Huang J, Wang X, Xu C, Han T, Guo X. Genetic Characterization of the O-Antigen and Development of a Molecular Serotyping Scheme for Enterobacter cloacae. Front Microbiol 2020; 11:727. [PMID: 32411106 PMCID: PMC7198725 DOI: 10.3389/fmicb.2020.00727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/27/2020] [Indexed: 11/13/2022] Open
Abstract
Enterobacter cloacae is a well-characterized opportunistic pathogen that is closely associated with various nosocomial infections. The O-antigen, which is one of the most variable constituents on the cell surface, has been used widely and traditionally for serological classification of many gram-negative bacteria. E. cloacae is divided into 30 serotypes, based on its O-antigen diversity. In this study, by using genomic and comparative-genomic approaches, we analyzed the O-antigen gene clusters of 26 E. cloacae serotypes in depth. We also identified the sero-specific gene for each serotype and developed a multiplex polymerase chain reaction (PCR) method. The sensitivity of the assay was 0.1 ng for genomic DNA and 103 colony forming units for pure cultures. The assay reliability was evaluated by double-blinded testing with 81 clinical strains. Furthermore, we established a valid, genome-based tool for in silico serotyping of E. cloacae. By screening 431 E. cloacae genomes deposited in GenBank, 304 were classified into current antigenic scheme, and 112 were allocated into 55 putative novel serotypes. Our results represent the first genetic basis of the O-antigen diversity and variation of E. cloacae, providing a rationale for studying the O-antigen associated evolution and pathogenesis of this bacterium. In addition, we extended the current serotyping system for E. cloacae, which is important for detection and epidemiological surveillance purposes for this important pathogen.
Collapse
Affiliation(s)
- Yayue Li
- The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Junjie Huang
- Department of Vascular Surgery, Tianjin Hospital, Tianjin, China
| | - Xiaotong Wang
- Tianjin Children's Hospital, Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Cong Xu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Tao Han
- The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Xi Guo
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| |
Collapse
|
17
|
Reid AJ, Scarbrough BA, Williams TC, Gates CE, Eade CR, Troutman JM. General Utilization of Fluorescent Polyisoprenoids with Sugar Selective Phosphoglycosyltransferases. Biochemistry 2020; 59:615-626. [PMID: 31876413 DOI: 10.1021/acs.biochem.9b01026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protective surfaces of bacteria are comprised of polysaccharides and are involved in host invasion and colonization, host immune system evasion, and antibacterial resistance. A major barrier to our fundamental understanding of these complex surface polysaccharides lies in the tremendous diversity in glycan composition among bacterial species. The polyisoprenoid bactoprenyl phosphate (or undecaprenyl phosphate) is an essential lipid carrier necessary for early stages of glycopolymer assembly. Because of the ubiquity of bactoprenyl phosphate in these critical processes, molecular probes appended to this lipid carrier simplify identification of enzymatic roles during polysaccharide bioassembly. A limited number of these probes exist in the literature or have been assessed with such pathways, and the limits of their use are not currently known. Herein, we devise an efficient method for producing fluorescently modified bactoprenyl probes. We further expand our previous efforts utilizing 2-nitrileaniline and additionally prepare nitrobenzoxadizol-tagged bactoprenyl phosphate for the first time. We then assess the enzyme promiscuity of these two probes utilizing four well-characterized initiating phosphoglycosyltransferases: CPS2E (Streptococcus pneumoniae), WbaP (Salmonella enterica), WecA (Escherichia coli), and WecP (Aeromonas hydrophilia). Both probes serve as substrates for these enzymes and could be readily used to investigate a wide range of bacterial glycoassembly pathways. Interestingly, we have also identified unique solubility requirements for the nitrobenzoxadizol moiety for efficient enzymatic utilization that was not observed for the 2-nitrileaniline.
Collapse
|
18
|
L’Annunziata MF. Flow-cell radionuclide analysis. HANDBOOK OF RADIOACTIVITY ANALYSIS: VOLUME 2 2020:729-820. [DOI: 10.1016/b978-0-12-814395-7.00010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Ståhle J, Widmalm G. Lipopolysaccharides of Gram-Negative Bacteria: Biosynthesis and Structural Aspects. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1749.7j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jonas Ståhle
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University
| |
Collapse
|
20
|
Ståhle J, Widmalm G. Lipopolysaccharides of Gram-Negative Bacteria: Biosynthesis and Structural Aspects. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1749.7e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jonas Ståhle
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University
| |
Collapse
|
21
|
Synergistic enhancement of beta-lactam antibiotics by modified tunicamycin analogs TunR1 and TunR2. J Antibiot (Tokyo) 2019; 72:807-815. [DOI: 10.1038/s41429-019-0220-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 01/15/2023]
|
22
|
Allen KN, Imperiali B. Structural and mechanistic themes in glycoconjugate biosynthesis at membrane interfaces. Curr Opin Struct Biol 2019; 59:81-90. [PMID: 31003021 DOI: 10.1016/j.sbi.2019.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/29/2022]
Abstract
Peripheral and integral membrane proteins feature in stepwise assembly of complex glycans and glycoconjugates. Catalysis on membrane-bound substrates features challenges with substrate solubility and active-site accessibility. However, advantages in enzyme and substrate orientation and control of lateral membrane diffusion provide order to the multistep processes. Recent glycosyltransferase (GT) studies show that substrate diversity is met by the selection of folds which do not converge upon a common mechanism. Examples of polyprenol phosphate phosphoglycosyl transferases (PGTs) highlight that divergent fold families catalyze the same reaction with different mechanisms. Lipid A biosynthesis enzymes illustrate that variations on the robust Rossmann fold allow substrate diversity. Improved understanding of GT and PGT structure and function holds promise for better function prediction and improvement of therapeutic inhibitory ligands.
Collapse
Affiliation(s)
- Karen N Allen
- Department of Chemistry, Boston University, Boston, MA 02215, United States; Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA 02118, United States.
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
23
|
Liu Y, Moura ECCM, Dörr JM, Scheidelaar S, Heger M, Egmond MR, Killian JA, Mohammadi T, Breukink E. Bacillus subtilis MraY in detergent-free system of nanodiscs wrapped by styrene-maleic acid copolymers. PLoS One 2018; 13:e0206692. [PMID: 30395652 PMCID: PMC6218056 DOI: 10.1371/journal.pone.0206692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022] Open
Abstract
As an integral membrane protein, purification and characterization of phospho-N- acetylmuramyl- pentapeptide translocase MraY have proven difficult. Low yield and concerns of retaining stability and activity after detergent solubilization have hampered the structure-function analysis. The recently developed detergent-free styrene-maleic acid (SMA) co-polymer system offers an alternative approach that may overcome these disadvantages. In this study, we used the detergent free system to purify MraY from Bacillus subtilis. This allowed efficient extraction of MraY that was heterologously produced in Escherichia coli membranes into SMA-wrapped nanodiscs. The purified MraY embedded in these nanodiscs (SMA-MraY) was comparable to the micellar MraY extracted with a conventional detergent (DDM) with regard to the yield and the purity of the recombinant protein but required significantly less time. The predominantly alpha-helical secondary structure of the protein in SMA-wrapped nanodiscs was also more stable against heat denaturation compared to the micellar protein. Thus, this detergent-free system is amenable to extract MraY efficiently and effectively while maintaining the biophysical properties of the protein. However, the apparent activity of the SMA-MraY was reduced compared to that of the detergent-solubilized protein. The present data indicates that this is caused by a lower accessibility of the enzyme in SMA-wrapped nanodiscs towards its polyisoprenoid substrate.
Collapse
Affiliation(s)
- Yao Liu
- Department of Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Elisabete C. C. M. Moura
- Department of Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Jonas M. Dörr
- Department of Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Stefan Scheidelaar
- Department of Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Michal Heger
- Department of Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Maarten R. Egmond
- Department of Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - J. Antoinette Killian
- Department of Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Tamimount Mohammadi
- Department of Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Eefjan Breukink
- Department of Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
24
|
Hering J, Dunevall E, Ek M, Brändén G. Structural basis for selective inhibition of antibacterial target MraY, a membrane-bound enzyme involved in peptidoglycan synthesis. Drug Discov Today 2018; 23:1426-1435. [DOI: 10.1016/j.drudis.2018.05.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/13/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
|
25
|
Dik DA, Fisher JF, Mobashery S. Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance. Chem Rev 2018; 118:5952-5984. [PMID: 29847102 PMCID: PMC6855303 DOI: 10.1021/acs.chemrev.8b00277] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The importance of the cell wall to the viability of the bacterium is underscored by the breadth of antibiotic structures that act by blocking key enzymes that are tasked with cell-wall creation, preservation, and regulation. The interplay between cell-wall integrity, and the summoning forth of resistance mechanisms to deactivate cell-wall-targeting antibiotics, involves exquisite orchestration among cell-wall synthesis and remodeling and the detection of and response to the antibiotics through modulation of gene regulation by specific effectors. Given the profound importance of antibiotics to the practice of medicine, the assertion that understanding this interplay is among the most fundamentally important questions in bacterial physiology is credible. The enigmatic regulation of the expression of the AmpC β-lactamase, a clinically significant and highly regulated resistance response of certain Gram-negative bacteria to the β-lactam antibiotics, is the exemplar of this challenge. This review gives a current perspective to this compelling, and still not fully solved, 35-year enigma.
Collapse
Affiliation(s)
- David A. Dik
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jed F. Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
26
|
Caveney NA, Li FK, Strynadka NC. Enzyme structures of the bacterial peptidoglycan and wall teichoic acid biogenesis pathways. Curr Opin Struct Biol 2018; 53:45-58. [PMID: 29885610 DOI: 10.1016/j.sbi.2018.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 01/08/2023]
Abstract
The bacterial cell wall is a complex polymeric structure with essential roles in defence, survival and pathogenesis. Common to both Gram-positive and Gram-negative bacteria is the mesh-like peptidoglycan sacculus that surrounds the outer leaflet of the cytoplasmic membrane. Recent crystallographic studies of enzymes that comprise the peptidoglycan biosynthetic pathway have led to significant new understanding of all stages. These include initial multi-step cytosolic formation of sugar-pentapeptide precursors, transfer of the precursors to activated polyprenyl lipids at the membrane inner leaflet and flippase mediated relocalization of the resulting lipid II precursors to the outer leaflet where glycopolymerization and subsequent peptide crosslinking are finalized. Additional, species-specific enzymes allow customized peptidoglycan modifications and biosynthetic regulation that are important to bacterial virulence and survival. These studies have reinforced the unique and specific catalytic mechanisms at play in cell wall biogenesis and expanded the atomic foundation to develop novel, structure guided, antibacterial agents.
Collapse
Affiliation(s)
- Nathanael A Caveney
- University of British Columbia, Biochemistry and Molecular Biology and the Center for Blood Research, Rm 4350 Life Sciences Center, 2350 Health Sciences Mall, Vancouver V6T 1Z3 Canada
| | - Franco Kk Li
- University of British Columbia, Biochemistry and Molecular Biology and the Center for Blood Research, Rm 4350 Life Sciences Center, 2350 Health Sciences Mall, Vancouver V6T 1Z3 Canada
| | - Natalie Cj Strynadka
- University of British Columbia, Biochemistry and Molecular Biology and the Center for Blood Research, Rm 4350 Life Sciences Center, 2350 Health Sciences Mall, Vancouver V6T 1Z3 Canada.
| |
Collapse
|
27
|
Ray LC, Das D, Entova S, Lukose V, Lynch AJ, Imperiali B, Allen KN. Membrane association of monotopic phosphoglycosyl transferase underpins function. Nat Chem Biol 2018; 14:538-541. [PMID: 29769739 PMCID: PMC6202225 DOI: 10.1038/s41589-018-0054-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/14/2018] [Indexed: 11/17/2022]
Abstract
Polyprenol phosphate phosphoglycosyl transferases (PGTs) catalyze the first membrane-committed step in assembly of essential glycoconjugates. Currently there is no structure-function information to describe how monotopic PGTs coordinate the reaction between membrane-embedded and soluble substrates. We describe the structure and mode of membrane association of PglC, a PGT from Campylobacter concisus. The structure reveals a unique architecture, provides mechanistic insight and identifies ligand-binding determinants for PglC and the monotopic PGT superfamily.
Collapse
Affiliation(s)
- Leah C Ray
- Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA, USA
| | - Debasis Das
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sonya Entova
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vinita Lukose
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew J Lynch
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Karen N Allen
- Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA, USA.
- Department of Chemistry, Boston University, Boston, MA, USA.
| |
Collapse
|
28
|
Lukose V, Walvoort MTC, Imperiali B. Bacterial phosphoglycosyl transferases: initiators of glycan biosynthesis at the membrane interface. Glycobiology 2018; 27:820-833. [PMID: 28810664 DOI: 10.1093/glycob/cwx064] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022] Open
Abstract
Phosphoglycosyl transferases (PGTs) initiate the biosynthesis of both essential and virulence-associated bacterial glycoconjugates including lipopolysaccharide, peptidoglycan and glycoproteins. PGTs catalyze the transfer of a phosphosugar moiety from a nucleoside diphosphate sugar to a polyprenol phosphate, to form a membrane-bound polyprenol diphosphosugar product. PGTs are integral membrane proteins, which include between 1 and 11 predicted transmembrane domains. Despite this variation, common motifs have been identified in PGT families through bioinformatics and mutagenesis studies. Bacterial PGTs represent important antibacterial and virulence targets due to their significant role in initiating the biosynthesis of key bacterial glycoconjugates. Considerable effort has gone into mechanistic and inhibition studies for this class of enzymes, both of which depend on reliable, high-throughput assays for easy quantification of activity. This review summarizes recent advances made in the characterization of this challenging but important class of enzymes.
Collapse
Affiliation(s)
- Vinita Lukose
- Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marthe T C Walvoort
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Barbara Imperiali
- Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
29
|
Koppermann S, Cui Z, Fischer PD, Wang X, Ludwig J, Thorson JS, Van Lanen SG, Ducho C. Insights into the Target Interaction of Naturally Occurring Muraymycin Nucleoside Antibiotics. ChemMedChem 2018; 13:779-784. [PMID: 29438582 PMCID: PMC6019934 DOI: 10.1002/cmdc.201700793] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/02/2018] [Indexed: 11/08/2022]
Abstract
Muraymycins are a subclass of antimicrobially active uridine-derived natural products. Biological data on several muraymycin analogues have been reported, including some inhibitory in vitro activities toward their target protein, the bacterial membrane enzyme MraY. However, a structure-activity relationship (SAR) study on naturally occurring muraymycins based on such in vitro data has been missing so far. In this work, we report a detailed SAR investigation on representatives of the four muraymycin subgroups A-D using a fluorescence-based in vitro MraY assay. For some muraymycins, inhibition of MraY with IC50 values in the low-picomolar range was observed. These inhibitory potencies were compared with antibacterial activities and were correlated to modelling data derived from a previously reported X-ray crystal structure of MraY in complex with a muraymycin inhibitor. Overall, these results will pave the way for the development of muraymycin analogues with optimized properties as antibacterial drug candidates.
Collapse
Affiliation(s)
- Stefan Koppermann
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Zheng Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone Street, Lexington, KY, 40536, USA
| | - Patrick D Fischer
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Xiachang Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R. China
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 S. Limestone Street, Lexington, KY, 40536, USA
| | - Jannine Ludwig
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone Street, Lexington, KY, 40536, USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 S. Limestone Street, Lexington, KY, 40536, USA
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone Street, Lexington, KY, 40536, USA
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| |
Collapse
|
30
|
Otten C, Brilli M, Vollmer W, Viollier PH, Salje J. Peptidoglycan in obligate intracellular bacteria. Mol Microbiol 2018; 107:142-163. [PMID: 29178391 PMCID: PMC5814848 DOI: 10.1111/mmi.13880] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2017] [Indexed: 01/08/2023]
Abstract
Peptidoglycan is the predominant stress-bearing structure in the cell envelope of most bacteria, and also a potent stimulator of the eukaryotic immune system. Obligate intracellular bacteria replicate exclusively within the interior of living cells, an osmotically protected niche. Under these conditions peptidoglycan is not necessarily needed to maintain the integrity of the bacterial cell. Moreover, the presence of peptidoglycan puts bacteria at risk of detection and destruction by host peptidoglycan recognition factors and downstream effectors. This has resulted in a selective pressure and opportunity to reduce the levels of peptidoglycan. In this review we have analysed the occurrence of genes involved in peptidoglycan metabolism across the major obligate intracellular bacterial species. From this comparative analysis, we have identified a group of predicted 'peptidoglycan-intermediate' organisms that includes the Chlamydiae, Orientia tsutsugamushi, Wolbachia and Anaplasma marginale. This grouping is likely to reflect biological differences in their infection cycle compared with peptidoglycan-negative obligate intracellular bacteria such as Ehrlichia and Anaplasma phagocytophilum, as well as obligate intracellular bacteria with classical peptidoglycan such as Coxiella, Buchnera and members of the Rickettsia genus. The signature gene set of the peptidoglycan-intermediate group reveals insights into minimal enzymatic requirements for building a peptidoglycan-like sacculus and/or division septum.
Collapse
Affiliation(s)
- Christian Otten
- The Centre for Bacterial Cell BiologyInstitute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon TyneNE2 4AXUK
| | - Matteo Brilli
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE)University of Padova. Agripolis ‐ V.le dell'Università, 16 | 35020 Legnaro PadovaItaly
- Present address:
Department of BiosciencesUniversity of Milan, via Celoria 26(MI)Italy
| | - Waldemar Vollmer
- The Centre for Bacterial Cell BiologyInstitute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon TyneNE2 4AXUK
| | - Patrick H. Viollier
- Department of Microbiology and Molecular MedicineInstitute of Genetics & Genomics in Geneva (iGE3), University of GenevaGenevaSwitzerland
| | - Jeanne Salje
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global HealthUniversity of OxfordOxfordUK
- Mahidol‐Oxford Tropical Medicine Research UnitMahidol UniversityBangkokThailand
| |
Collapse
|
31
|
Analysis of a dual domain phosphoglycosyl transferase reveals a ping-pong mechanism with a covalent enzyme intermediate. Proc Natl Acad Sci U S A 2017. [PMID: 28630348 DOI: 10.1073/pnas.1703397114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Phosphoglycosyl transferases (PGTs) are integral membrane proteins with diverse architectures that catalyze the formation of polyprenol diphosphate-linked glycans via phosphosugar transfer from a nucleotide diphosphate-sugar to a polyprenol phosphate. There are two PGT superfamilies that differ significantly in overall structure and topology. The polytopic PGT superfamily, represented by MraY and WecA, has been the subject of many studies because of its roles in peptidoglycan and O-antigen biosynthesis. In contrast, less is known about a second, extensive superfamily of PGTs that reveals a core structure with dual domain architecture featuring a C-terminal soluble globular domain and a predicted N-terminal membrane-associated domain. Representative members of this superfamily are the Campylobacter PglCs, which initiate N-linked glycoprotein biosynthesis and are implicated in virulence and pathogenicity. Despite the prevalence of dual domain PGTs, their mechanism of action is unknown. Here, we present the mechanistic analysis of PglC, a prototypic dual domain PGT from Campylobacter concisus Using a luminescence-based assay, together with substrate labeling and kinetics-based approaches, complementary experiments were carried out that support a ping-pong mechanism involving a covalent phosphosugar intermediate for PglC. Significantly, mass spectrometry-based approaches identified Asp93, which is part of a highly conserved AspGlu dyad found in all dual domain PGTs, as the active-site nucleophile of the enzyme involved in the formation of the covalent adduct. The existence of a covalent phosphosugar intermediate provides strong support for a ping-pong mechanism of PglC, differing fundamentally from the ternary complex mechanisms of representative polytopic PGTs.
Collapse
|
32
|
Bugg TDH. Nucleoside Natural Product Antibiotics Targetting Microbial Cell Wall Biosynthesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/7355_2017_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
33
|
Hakulinen JK, Hering J, Brändén G, Chen H, Snijder A, Ek M, Johansson P. MraY–antibiotic complex reveals details of tunicamycin mode of action. Nat Chem Biol 2017; 13:265-267. [DOI: 10.1038/nchembio.2270] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/01/2016] [Indexed: 12/24/2022]
|
34
|
Wohnig S, Spork AP, Koppermann S, Mieskes G, Gisch N, Jahn R, Ducho C. Total Synthesis of Dansylated Park's Nucleotide for High-Throughput MraY Assays. Chemistry 2016; 22:17813-17819. [PMID: 27791327 DOI: 10.1002/chem.201604279] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Indexed: 11/11/2022]
Abstract
The membrane protein translocase I (MraY) is a key enzyme in bacterial peptidoglycan biosynthesis. It is therefore frequently discussed as a target for the development of novel antibiotics. The screening of compound libraries for the identification of MraY inhibitors is enabled by an established fluorescence-based MraY assay. However, this assay requires a dansylated derivative of the bacterial biosynthetic intermediate Park's nucleotide as the MraY substrate. Isolation of Park's nucleotide from bacteria and subsequent dansylation only furnishes limited amounts of this substrate, thus hampering the high-throughput screening for MraY inhibitors. Accordingly, the efficient provision of dansylated Park's nucleotide is a major bottleneck in the exploration of this promising drug target. In this work, we present the first total synthesis of dansylated Park's nucleotide, affording an unprecedented amount of the target compound for high-throughput MraY assays.
Collapse
Affiliation(s)
- Stephanie Wohnig
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany.,Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Anatol P Spork
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany.,Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany.,Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan Koppermann
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany.,Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Gottfried Mieskes
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 1-40, 23845, Borstel, Germany
| | - Reinhard Jahn
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany.,Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| |
Collapse
|
35
|
Glycolipid substrates for ABC transporters required for the assembly of bacterial cell-envelope and cell-surface glycoconjugates. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1394-1403. [PMID: 27793707 DOI: 10.1016/j.bbalip.2016.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 01/07/2023]
Abstract
Glycoconjugates, molecules that contain sugar components, are major components of the cell envelopes of bacteria and cover much of their exposed surfaces. These molecules are involved in interactions with the surrounding environment and, in pathogens, play critical roles in the interplay with the host immune system. Despite the remarkable diversity in glycoconjugate structures, most are assembled by glycosyltransferases that act on lipid acceptors at the cytosolic membrane. The resulting glycolipids are then transported to the cell surface in processes that frequently begin with ATP-binding cassette transporters. This review summarizes current understanding of the structure and biosynthesis of glycolipid substrates and the structure and functions of their transporters. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
|
36
|
The Membrane Steps of Bacterial Cell Wall Synthesis as Antibiotic Targets. Antibiotics (Basel) 2016; 5:antibiotics5030028. [PMID: 27571111 PMCID: PMC5039524 DOI: 10.3390/antibiotics5030028] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 11/23/2022] Open
Abstract
Peptidoglycan is the major component of the cell envelope of virtually all bacteria. It has structural roles and acts as a selective sieve for molecules from the outer environment. Peptidoglycan synthesis is therefore one of the most important biogenesis pathways in bacteria and has been studied extensively over the last twenty years. The pathway starts in the cytoplasm, continues in the cytoplasmic membrane and finishes in the periplasmic space, where the precursor is polymerized into the peptidoglycan layer. A number of proteins involved in this pathway, such as the Mur enzymes and the penicillin binding proteins (PBPs), have been studied and regarded as good targets for antibiotics. The present review focuses on the membrane steps of peptidoglycan synthesis that involve two enzymes, MraY and MurG, the inhibitors of these enzymes and the inhibition mechanisms. We also discuss the challenges of targeting these two cytoplasmic membrane (associated) proteins in bacterial cells and the perspectives on how to overcome the issues.
Collapse
|
37
|
Mitachi K, Siricilla S, Yang D, Kong Y, Skorupinska-Tudek K, Swiezewska E, Franzblau SG, Kurosu M. Fluorescence-based assay for polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA) and identification of novel antimycobacterial WecA inhibitors. Anal Biochem 2016; 512:78-90. [PMID: 27530653 DOI: 10.1016/j.ab.2016.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/18/2016] [Accepted: 08/08/2016] [Indexed: 11/26/2022]
Abstract
Polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA) is an essential enzyme for the growth of Mycobacterium tuberculosis (Mtb) and some other bacteria. Mtb WecA catalyzes the transformation from UDP-GlcNAc to decaprenyl-P-P-GlcNAc, the first membrane-anchored glycophospholipid that is responsible for the biosynthesis of mycolylarabinogalactan in Mtb. Inhibition of WecA will block the entire biosynthesis of essential cell wall components of Mtb in both replicating and non-replicating states, making this enzyme a target for development of novel drugs. Here, we report a fluorescence-based method for the assay of WecA using a modified UDP-GlcNAc, UDP-Glucosamine-C6-FITC (1), a membrane fraction prepared from an M. smegmatis strain, and the E. coli B21WecA. Under the optimized conditions, UDP-Glucosamine-C6-FITC (1) can be converted to the corresponding decaprenyl-P-P-Glucosamine-C6-FITC (3) in 61.5% yield. Decaprenyl-P-P-Glucosamine-C6-FITC is readily extracted with n-butanol and can be quantified by ultraviolet-visible (UV-vis) spectrometry. Screening of the compound libraries designed for bacterial phosphotransferases resulted in the discovery of a selective WecA inhibitor, UT-01320 (12) that kills both replicating and non-replicating Mtb at low concentration. UT-01320 (12) also kills the intracellular Mtb in macrophages. We conclude that the WecA assay reported here is amenable to medium- and high-throughput screening, thus facilitating the discovery of novel WecA inhibitors.
Collapse
Affiliation(s)
- Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Shajila Siricilla
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Dong Yang
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163-0001, United Sates
| | - Ying Kong
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163-0001, United Sates
| | - Karolina Skorupinska-Tudek
- Department of Lipid Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Ewa Swiezewska
- Department of Lipid Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States.
| |
Collapse
|