1
|
Oladokun R, Adekanmbi EO, An V, Gangavaram I, Srivastava SK. Dielectrophoretic profiling of erythrocytes to study the impacts of metabolic stress, temperature, and storage duration utilizing a point-and-planar microdevice. Sci Rep 2023; 13:17281. [PMID: 37828082 PMCID: PMC10570315 DOI: 10.1038/s41598-023-44022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Dielectrophoresis (DEP) is widely utilized for trapping and sorting various types of cells, including live and dead cells and healthy and infected cells. This article focuses on the dielectric characterization of erythrocytes (red blood cells or RBCs) by quantifying DEP crossover frequency using a novel point-and-planar microwell device platform. Numerical simulations using COMSOL Multiphysics software demonstrate that the distribution of the DEP force is influenced by factors such as the shape of the point electrode, spacing between the point and planar electrodes, and the type of bioparticle being investigated. The dependency on electrode spacing is experimentally evaluated by analyzing the DEP crossover response of erythrocytes. Furthermore, the results are validated against the traditional electrical characterization technique called electrorotation, which typically requires laborious fabrication and operation using quadrupole electrodes. Other significant factors, including erythrocyte storage age and the changes in cell properties over time since collection, osmolarity, and temperature, are also assessed to determine the optimal conditions for erythrocyte characterization. The findings indicate a significant difference between fresh and stored erythrocyte samples (up to 4 days), highlighting the importance of maintaining an isotonic medium for cell storage.
Collapse
Affiliation(s)
- Raphael Oladokun
- Department of Chemical and Biomedical Engineering, West Virginia University, 1306 Evansdale Dr., PO Box 6102, Morgantown, WV, 26506-6102, USA
| | | | - Vanessa An
- Summer 2022 High School Intern, Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA
| | - Isha Gangavaram
- Summer 2022 High School Intern, Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA
| | - Soumya K Srivastava
- Department of Chemical and Biomedical Engineering, West Virginia University, 1306 Evansdale Dr., PO Box 6102, Morgantown, WV, 26506-6102, USA.
| |
Collapse
|
2
|
Lopes MG, Recktenwald SM, Simionato G, Eichler H, Wagner C, Quint S, Kaestner L. Big Data in Transfusion Medicine and Artificial Intelligence Analysis for Red Blood Cell Quality Control. Transfus Med Hemother 2023; 50:163-173. [PMID: 37408647 PMCID: PMC10319094 DOI: 10.1159/000530458] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/27/2023] [Indexed: 07/07/2023] Open
Abstract
Background "Artificial intelligence" and "big data" increasingly take the step from just being interesting concepts to being relevant or even part of our lives. This general statement holds also true for transfusion medicine. Besides all advancements in transfusion medicine, there is not yet an established red blood cell quality measure, which is generally applied. Summary We highlight the usefulness of big data in transfusion medicine. Furthermore, we emphasize in the example of quality control of red blood cell units the application of artificial intelligence. Key Messages A variety of concepts making use of big data and artificial intelligence are readily available but still await to be implemented into any clinical routine. For the quality control of red blood cell units, clinical validation is still required.
Collapse
Affiliation(s)
- Marcelle G.M. Lopes
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Cysmic GmbH, Saarbrücken, Germany
| | | | - Greta Simionato
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Institute for Clinical and Experimental Surgery, Saarland University, Saarbrücken, Germany
| | - Hermann Eichler
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University, Saarbrücken, Germany
| | - Christian Wagner
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg City, Luxembourg
| | | | - Lars Kaestner
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Saarland University, Saarbrücken, Germany
| |
Collapse
|
3
|
Buks R, Dagher T, Rotordam MG, Monedero Alonso D, Cochet S, Gautier EF, Chafey P, Cassinat B, Kiladjian JJ, Becker N, Plo I, Egée S, El Nemer W. Altered Ca 2+ Homeostasis in Red Blood Cells of Polycythemia Vera Patients Following Disturbed Organelle Sorting during Terminal Erythropoiesis. Cells 2021; 11:49. [PMID: 35011611 PMCID: PMC8750512 DOI: 10.3390/cells11010049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
Over 95% of Polycythemia Vera (PV) patients carry the V617F mutation in the tyrosine kinase Janus kinase 2 (JAK2), resulting in uncontrolled erythroid proliferation and a high risk of thrombosis. Using mass spectrometry, we analyzed the RBC membrane proteome and showed elevated levels of multiple Ca2+ binding proteins as well as endoplasmic-reticulum-residing proteins in PV RBC membranes compared with RBC membranes from healthy individuals. In this study, we investigated the impact of JAK2V617F on (1) calcium homeostasis and RBC ion channel activity and (2) protein expression and sorting during terminal erythroid differentiation. Our data from automated patch-clamp show modified calcium homeostasis in PV RBCs and cell lines expressing JAK2V617F, with a functional impact on the activity of the Gárdos channel that could contribute to cellular dehydration. We show that JAK2V617F could play a role in organelle retention during the enucleation step of erythroid differentiation, resulting in modified whole cell proteome in reticulocytes and RBCs in PV patients. Given the central role that calcium plays in the regulation of signaling pathways, our study opens new perspectives to exploring the relationship between JAK2V617F, calcium homeostasis, and cellular abnormalities in myeloproliferative neoplasms, including cellular interactions in the bloodstream in relation to thrombotic events.
Collapse
Affiliation(s)
- Ralfs Buks
- BIGR, UMR_S1134, Inserm, Université de Paris, F-75015 Paris, France; (R.B.); (S.C.)
- Institut National de la Transfusion Sanguine, F-75015 Paris, France
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
| | - Tracy Dagher
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- U1287, Inserm, Université Paris-Saclay, Gustave Roussy, F-94800 Villejuif, France
| | - Maria Giustina Rotordam
- Nanion Technologies GmbH, 80339 Munich, Germany; (M.G.R.); (N.B.)
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Kirrbergerstr. 100, DE-66424 Homburg, Germany
| | - David Monedero Alonso
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- Sorbonne Université, CNRS, UMR LBI2M, Station Biologique de Roscoff SBR, F-29680 Roscoff, France
| | - Sylvie Cochet
- BIGR, UMR_S1134, Inserm, Université de Paris, F-75015 Paris, France; (R.B.); (S.C.)
- Institut National de la Transfusion Sanguine, F-75015 Paris, France
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
| | - Emilie-Fleur Gautier
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- Institut Imagine-INSERM U1163, Necker Hospital, Université de Paris, F-75015 Paris, France
- Proteomics Platform 3P5, Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104 Paris, France;
| | - Philippe Chafey
- Proteomics Platform 3P5, Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104 Paris, France;
| | - Bruno Cassinat
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- IRSL, U1131, INSERM, Université de Paris, F-75010 Paris, France
- Hôpital Saint-Louis, Laboratoire de Biologie Cellulaire, AP-HP, F-75010 Paris, France
| | - Jean-Jacques Kiladjian
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- IRSL, U1131, INSERM, Université de Paris, F-75010 Paris, France
- Centre d’Investigations Cliniques, Hôpital Saint-Louis, Université de Paris, F-75010 Paris, France
| | - Nadine Becker
- Nanion Technologies GmbH, 80339 Munich, Germany; (M.G.R.); (N.B.)
| | - Isabelle Plo
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- U1287, Inserm, Université Paris-Saclay, Gustave Roussy, F-94800 Villejuif, France
| | - Stéphane Egée
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- Sorbonne Université, CNRS, UMR LBI2M, Station Biologique de Roscoff SBR, F-29680 Roscoff, France
| | - Wassim El Nemer
- BIGR, UMR_S1134, Inserm, Université de Paris, F-75015 Paris, France; (R.B.); (S.C.)
- Institut National de la Transfusion Sanguine, F-75015 Paris, France
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- Etablissement Français du Sang PACA-Corse, F-13005Marseille, France
- Aix Marseille Univ, EFS, CNRS, ADES, “Biologie des Groupes Sanguins”, F-13005 Marseille, France
| |
Collapse
|
4
|
Papadopoulos C, Tentes I, Anagnostopoulos K. Lipotoxicity Disrupts Erythrocyte Function: A Perspective. Cardiovasc Hematol Disord Drug Targets 2021; 21:91-94. [PMID: 34825642 DOI: 10.2174/1871529x21666210719125728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/25/2021] [Accepted: 03/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lipid accumulation in the liver, skeletal and cardiac muscle, kidneys and pancreas causes cell dysfunction, death and inflammation, a biological phenomenon named lipotoxicity. Erythrocytes participate in the transport of lipids in the circulation, and their lipidome is determined by exchange with blood components. OBJECTIVE The objective of this study is to summarize the current knowledge regarding the effect of toxic lipid accumulation in erythrocytes. RESULTS Erythrocyte lipidome is altered in lipotoxic diseases, such as fatty liver disease, heart failure and diabetes. In addition, ceramide, lysophosphatidylcholine, lysophosphatidic acid, palmitic acid and free cholesterol induce erythrocyte malfunction. CONCLUSION Erythrocytes are an additional cell target of lipotoxicity. Further exploration of the implicated molecular mechanisms could lead to novel therapeutic targets for cardiometabolic and hematological diseases.
Collapse
Affiliation(s)
- Charalampos Papadopoulos
- Laboratory of Biochemistry, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Tentes
- Laboratory of Biochemistry, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | |
Collapse
|
5
|
Wang Q, Zennadi R. The Role of RBC Oxidative Stress in Sickle Cell Disease: From the Molecular Basis to Pathologic Implications. Antioxidants (Basel) 2021; 10:antiox10101608. [PMID: 34679742 PMCID: PMC8533084 DOI: 10.3390/antiox10101608] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited monogenic disorder and the most common severe hemoglobinopathy in the world. SCD is characterized by a point mutation in the β-globin gene, which results in hemoglobin (Hb) S production, leading to a variety of mechanistic and phenotypic changes within the sickle red blood cell (RBC). In SCD, the sickle RBCs are the root cause of the disease and they are a primary source of oxidative stress since sickle RBC redox state is compromised due to an imbalance between prooxidants and antioxidants. This imbalance in redox state is a result of a continuous production of reactive oxygen species (ROS) within the sickle RBC caused by the constant endogenous Hb autoxidation and NADPH oxidase activation, as well as by a deficiency in the antioxidant defense system. Accumulation of non-neutralized ROS within the sickle RBCs affects RBC membrane structure and function, leading to membrane integrity deficiency, low deformability, phosphatidylserine exposure, and release of micro-vesicles. These oxidative stress-associated RBC phenotypic modifications consequently evoke a myriad of physiological changes involved in multi-system manifestations. Thus, RBC oxidative stress in SCD can ultimately instigate major processes involved in organ damage. The critical role of the sickle RBC ROS production and its regulation in SCD pathophysiology are discussed here.
Collapse
|
6
|
Hasse S, Duchez AC, Fortin P, Boilard E, Bourgoin SG. Interplay between LPA2 and LPA3 in LPA-mediated phosphatidylserine cell surface exposure and extracellular vesicles release by erythrocytes. Biochem Pharmacol 2021; 192:114667. [PMID: 34216604 DOI: 10.1016/j.bcp.2021.114667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022]
Abstract
Evidence is growing for the role of red blood cells (RBCs) in vascular homeostasis, including thrombogenic events and inflammation. Lysophosphatidic acid (LPA) is known to induce phosphatidylserine (PS) exposure and the release of RBC Extracellular Vesicles (REVs). Using high sensitivity flow cytometry, we examined the effects and the mechanisms by which the LPA species commonly found in human plasma could activate RBCs. We report that LPA 16:0, 18:0 and 18:1, but not LPA 20:4, induced PS exposure and the release of small PS- and large PS+ REVs through LPA3 receptor signalling in RBCs. The release of large PS+ REVs required higher concentrations of LPA. RBCs were not activated by LPA 20:4. Interestingly, blockade of LPA2 enhanced LPA-mediated PS- REV release in RBCs. Furthermore, LPA receptor agonists and antagonists highlighted that LPA 20:4 inhibited LPA3-dependent PS exposure and, through the LPA2 receptor, inhibited PS- REV production. Activation of RBCs with LPA 18:1 in normal plasma stimulated the release of PS- and PS+ REVs. REVs released in response to LPA were similar to those found in the plasma of systemic lupus erythematosus patients. Our results suggest that LPA species exhibit different biological activities in RBCs through targeting LPA2 and/or LPA3 receptors.
Collapse
Affiliation(s)
- Stephan Hasse
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC G1V 4G2, Canada.
| | - Anne-Claire Duchez
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de médecine, Faculté de médecine, Université Laval, QC G1V 4G2, Canada
| | - Paul Fortin
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de médecine, Faculté de médecine, Université Laval, QC G1V 4G2, Canada.
| | - Eric Boilard
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC G1V 4G2, Canada.
| | - Sylvain G Bourgoin
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
7
|
Wang J, Hertz L, Ruppenthal S, El Nemer W, Connes P, Goede JS, Bogdanova A, Birnbaumer L, Kaestner L. Lysophosphatidic Acid-Activated Calcium Signaling Is Elevated in Red Cells from Sickle Cell Disease Patients. Cells 2021; 10:456. [PMID: 33672679 PMCID: PMC7924404 DOI: 10.3390/cells10020456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
(1) Background: It is known that sickle cells contain a higher amount of Ca2+ compared to healthy red blood cells (RBCs). The increased Ca2+ is associated with the most severe symptom of sickle cell disease (SCD), the vaso-occlusive crisis (VOC). The Ca2+ entry pathway received the name of Psickle but its molecular identity remains only partly resolved. We aimed to map the involved Ca2+ signaling to provide putative pharmacological targets for treatment. (2) Methods: The main technique applied was Ca2+ imaging of RBCs from healthy donors, SCD patients and a number of transgenic mouse models in comparison to wild-type mice. Life-cell Ca2+ imaging was applied to monitor responses to pharmacological targeting of the elements of signaling cascades. Infection as a trigger of VOC was imitated by stimulation of RBCs with lysophosphatidic acid (LPA). These measurements were complemented with biochemical assays. (3) Results: Ca2+ entry into SCD RBCs in response to LPA stimulation exceeded that of healthy donors. LPA receptor 4 levels were increased in SCD RBCs. Their activation was followed by the activation of Gi protein, which in turn triggered opening of TRPC6 and CaV2.1 channels via a protein kinase Cα and a MAP kinase pathway, respectively. (4) Conclusions: We found a new Ca2+ signaling cascade that is increased in SCD patients and identified new pharmacological targets that might be promising in addressing the most severe symptom of SCD, the VOC.
Collapse
Affiliation(s)
- Jue Wang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
| | - Laura Hertz
- Theoretical Medicine and Biosciences, Saarland University, 66421 Homburg, Germany;
- Experimental Physics, Dynamics of Fluids, Saarland University, 66123 Saarbrücken, Germany;
| | - Sandra Ruppenthal
- Experimental Physics, Dynamics of Fluids, Saarland University, 66123 Saarbrücken, Germany;
- Gynaecology, Obstetrics and Reproductive Medicine, Saarland University Hospital, 66421 Homburg, Germany
| | - Wassim El Nemer
- Etablissement Français du Sang PACA-Corse, Aix Marseille Université, EFS, CNRS, ADES, 13005 Marseille, France;
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France;
| | - Philippe Connes
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France;
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Teal, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Jeroen S. Goede
- Division of Oncology and Hematology, Kantonsspital Winterthur, CH-8401 Winterthur, Switzerland;
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zürich, CH-8057 Zürich, Switzerland;
| | - Lutz Birnbaumer
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF Buenos Aires, Argentina;
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, 66421 Homburg, Germany;
- Experimental Physics, Dynamics of Fluids, Saarland University, 66123 Saarbrücken, Germany;
| |
Collapse
|
8
|
Effect of Red Blood Cell Aging In Vivo on Their Aggregation Properties In Vitro: Measurements with Laser Tweezers. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Red blood cell (RBC) aggregation highly influences hemorheology and blood microcirculation in the human body. The aggregation properties of RBCs can vary due to numerous factors, including RBC age. The aim of this work was to estimate in vitro the differences in the RBC aggregation properties of different RBC age populations in single-cell experiments using laser tweezers. RBCs from five healthy volunteers were separated into four subpopulations by Percoll density gradient centrifugation. Each subpopulation of the RBC was separately resuspended in autologous plasma or dextran 70 kDa (50 mg/mL). The aggregation force between the single cells was measured with holographic laser tweezers. The obtained data demonstrated an enhancement of RBC aggregation force in doublets with age: the older the cells, the higher the aggregation force. The obtained data revealed the differences between the aggregation and aggregability of RBC in dependence of the RBC in vivo age.
Collapse
|
9
|
Öhlinger T, Müllner EW, Fritz M, Sauer T, Werning M, Baron DM, Salzer U. Lysophosphatidic acid-induced pro-thrombotic phosphatidylserine exposure and ionophore-induced microvesiculation is mediated by the scramblase TMEM16F in erythrocytes. Blood Cells Mol Dis 2020; 83:102426. [PMID: 32222693 DOI: 10.1016/j.bcmd.2020.102426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/31/2022]
Abstract
Recent studies indicate that erythrocytes actively modulate blood clotting and thrombus formation. The lipid mediator lysophosphatidic acid (LPA) is produced by activated platelets, and triggers a signaling process in erythrocytes. This results in cellular calcium uptake and exposure of phosphatidylserine (PS) at the cell surface, thereby generating activated membrane binding sites for factors of the clotting cascade. Moreover, erythrocytes of patients with a bleeding disorder and mutations in the scramblase TMEM16F show impaired PS exposure and microvesiculation upon treatment with calcium ionophore. We report that TMEM16F inhibitors tannic acid (TA) and epigallocatechin-3-gallate (EGCG) inhibit LPA-induced PS exposure and calcium uptake at low micromolar concentrations; fluoxetine, an antidepressant and a known activator of TMEM16F, enhances these processes. These effectors likewise modulate erythrocyte PS exposure and microvesicle shedding induced by calcium ionophore treatment. Further, LPA-treated erythrocytes triggered thrombin generation in platelet-free plasma which was partially impaired in the presence of TA and EGCG. Thus, this study suggests that LPA activates the scramblase TMEM16F in erythrocytes, thereby possibly mediating a pro-thrombotic function in these cells. EGCG as well as fluoxetine, substances with potentially high plasma concentrations due to alimentation or medical treatment, should be considered as potential effectors of systemic hemostatic regulation.
Collapse
Affiliation(s)
- Thomas Öhlinger
- Center for Medical Biochemistry, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria; Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Ernst W Müllner
- Center for Medical Biochemistry, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Magdalena Fritz
- Center for Medical Biochemistry, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Thomas Sauer
- Center for Medical Biochemistry, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Maike Werning
- Center for Medical Biochemistry, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - David M Baron
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Ulrich Salzer
- Center for Medical Biochemistry, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Oxidative Stress and Thrombosis during Aging: The Roles of Oxidative Stress in RBCs in Venous Thrombosis. Int J Mol Sci 2020; 21:ijms21124259. [PMID: 32549393 PMCID: PMC7352981 DOI: 10.3390/ijms21124259] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/17/2023] Open
Abstract
Mid-life stage adults are at higher risk of developing venous thrombosis (VT)/thromboembolism (VT/E). Aging is characterized by an overproduction of reactive oxygen species (ROS), which could evoke a series of physiological changes involved in thrombosis. Here, we focus on the critical role of ROS within the red blood cell (RBC) in initiating venous thrombosis during aging. Growing evidence has shifted our interest in the role of unjustifiably unvalued RBCs in blood coagulation. RBCs can be a major source of oxidative stress during aging, since RBC redox homeostasis is generally compromised due to the discrepancy between prooxidants and antioxidants. As a result, ROS accumulate within the RBC due to the constant endogenous hemoglobin (Hb) autoxidation and NADPH oxidase activation, and the uptake of extracellular ROS released by other cells in the circulation. The elevated RBC ROS level affects the RBC membrane structure and function, causing loss of membrane integrity, and decreased deformability. These changes impair RBC function in hemostasis and thrombosis, favoring a hypercoagulable state through enhanced RBC aggregation, RBC binding to endothelial cells affecting nitric oxide availability, RBC-induced platelet activation consequently modulating their activity, RBC interaction with and activation of coagulation factors, increased RBC phosphatidylserine exposure and release of microvesicles, accelerated aging and hemolysis. Thus, RBC oxidative stress during aging typifies an ultimate mechanism in system failure, which can affect major processes involved in the development of venous thrombosis in a variety of ways. The reevaluated concept of the critical role of RBC ROS in the activation of thrombotic events during aging will help identify potential targets for novel strategies to prevent/reduce the risk for VT/E or VT/E recurrences in mid-life stage adults.
Collapse
|
11
|
Bogdanova A, Kaestner L, Simionato G, Wickrema A, Makhro A. Heterogeneity of Red Blood Cells: Causes and Consequences. Front Physiol 2020; 11:392. [PMID: 32457644 PMCID: PMC7221019 DOI: 10.3389/fphys.2020.00392] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022] Open
Abstract
Mean values of hematological parameters are currently used in the clinical laboratory settings to characterize red blood cell properties. Those include red blood cell indices, osmotic fragility test, eosin 5-maleimide (EMA) test, and deformability assessment using ektacytometry to name a few. Diagnosis of hereditary red blood cell disorders is complemented by identification of mutations in distinct genes that are recognized "molecular causes of disease." The power of these measurements is clinically well-established. However, the evidence is growing that the available information is not enough to understand the determinants of severity of diseases and heterogeneity in manifestation of pathologies such as hereditary hemolytic anemias. This review focuses on an alternative approach to assess red blood cell properties based on heterogeneity of red blood cells and characterization of fractions of cells with similar properties such as density, hydration, membrane loss, redox state, Ca2+ levels, and morphology. Methodological approaches to detect variance of red blood cell properties will be presented. Causes of red blood cell heterogeneity include cell age, environmental stress as well as shear and metabolic stress, and multiple other factors. Heterogeneity of red blood cell properties is also promoted by pathological conditions that are not limited to the red blood cells disorders, but inflammatory state, metabolic diseases and cancer. Therapeutic interventions such as splenectomy and transfusion as well as drug administration also impact the variance in red blood cell properties. Based on the overview of the studies in this area, the possible applications of heterogeneity in red blood cell properties as prognostic and diagnostic marker commenting on the power and selectivity of such markers are discussed.
Collapse
Affiliation(s)
- Anna Bogdanova
- Red Blood Cell Research Group, Vetsuisse Faculty, The Zurich Center for Integrative Human Physiology (ZHIP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Lars Kaestner
- Experimental Physics, Dynamics of Fluids, Faculty of Natural Sciences and Technology, Saarland University, Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
| | - Greta Simionato
- Experimental Physics, Dynamics of Fluids, Faculty of Natural Sciences and Technology, Saarland University, Saarbrücken, Germany
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Amittha Wickrema
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Asya Makhro
- Red Blood Cell Research Group, Vetsuisse Faculty, The Zurich Center for Integrative Human Physiology (ZHIP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Kaestner L, Bogdanova A, Egee S. Calcium Channels and Calcium-Regulated Channels in Human Red Blood Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:625-648. [PMID: 31646528 DOI: 10.1007/978-3-030-12457-1_25] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Free Calcium (Ca2+) is an important and universal signalling entity in all cells, red blood cells included. Although mature mammalian red blood cells are believed to not contain organelles as Ca2+ stores such as the endoplasmic reticulum or mitochondria, a 20,000-fold gradient based on a intracellular Ca2+ concentration of approximately 60 nM vs. an extracellular concentration of 1.2 mM makes Ca2+-permeable channels a major signalling tool of red blood cells. However, the internal Ca2+ concentration is tightly controlled, regulated and maintained primarily by the Ca2+ pumps PMCA1 and PMCA4. Within the last two decades it became evident that an increased intracellular Ca2+ is associated with red blood cell clearance in the spleen and promotes red blood cell aggregability and clot formation. In contrast to this rather uncontrolled deadly Ca2+ signals only recently it became evident, that a temporal increase in intracellular Ca2+ can also have positive effects such as the modulation of the red blood cells O2 binding properties or even be vital for brief transient cellular volume adaptation when passing constrictions like small capillaries or slits in the spleen. Here we give an overview of Ca2+ channels and Ca2+-regulated channels in red blood cells, namely the Gárdos channel, the non-selective voltage dependent cation channel, Piezo1, the NMDA receptor, VDAC, TRPC channels, CaV2.1, a Ca2+-inhibited channel novel to red blood cells and i.a. relate these channels to the molecular unknown sickle cell disease conductance Psickle. Particular attention is given to correlation of functional measurements with molecular entities as well as the physiological and pathophysiological function of these channels. This view is in constant progress and in particular the understanding of the interaction of several ion channels in a physiological context just started. This includes on the one hand channelopathies, where a mutation of the ion channel is the direct cause of the disease, like Hereditary Xerocytosis and the Gárdos Channelopathy. On the other hand it applies to red blood cell related diseases where an altered channel activity is a secondary effect like in sickle cell disease or thalassemia. Also these secondary effects should receive medical and pharmacologic attention because they can be crucial when it comes to the life-threatening symptoms of the disease.
Collapse
Affiliation(s)
- Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany. .,Experimental Physics, Saarland University, Saarbrücken, Germany.
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zürich, Switzerland
| | - Stephane Egee
- CNRS, UMR8227 LBI2M, Sorbonne Université, Roscoff, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
13
|
Conrard L, Tyteca D. Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment. Biomolecules 2019; 9:E513. [PMID: 31547139 PMCID: PMC6843150 DOI: 10.3390/biom9100513] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Calcium ions (Ca2+) are major messengers in cell signaling, impacting nearly every aspect of cellular life. Those signals are generated within a wide spatial and temporal range through a large variety of Ca2+ channels, pumps, and exchangers. More and more evidences suggest that Ca2+ exchanges are regulated by their surrounding lipid environment. In this review, we point out the technical challenges that are currently being overcome and those that still need to be defeated to analyze the Ca2+ transport protein-lipid interactions. We then provide evidences for the modulation of Ca2+ transport proteins by lipids, including cholesterol, acidic phospholipids, sphingolipids, and their metabolites. We also integrate documented mechanisms involved in the regulation of Ca2+ transport proteins by the lipid environment. Those include: (i) Direct interaction inside the protein with non-annular lipids; (ii) close interaction with the first shell of annular lipids; (iii) regulation of membrane biophysical properties (e.g., membrane lipid packing, thickness, and curvature) directly around the protein through annular lipids; and (iv) gathering and downstream signaling of several proteins inside lipid domains. We finally discuss recent reports supporting the related alteration of Ca2+ and lipids in different pathophysiological events and the possibility to target lipids in Ca2+-related diseases.
Collapse
Affiliation(s)
- Louise Conrard
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
14
|
Pretini V, Koenen MH, Kaestner L, Fens MHAM, Schiffelers RM, Bartels M, Van Wijk R. Red Blood Cells: Chasing Interactions. Front Physiol 2019; 10:945. [PMID: 31417415 PMCID: PMC6684843 DOI: 10.3389/fphys.2019.00945] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Human red blood cells (RBC) are highly differentiated cells that have lost all organelles and most intracellular machineries during their maturation process. RBC are fundamental for the nearly all basic physiologic dynamics and they are key cells in the body's respiratory system by being responsible for the oxygen transport to all cells and tissues, and delivery of carbon dioxide to the lungs. With their flexible structure RBC are capable to deform in order to travel through all blood vessels including very small capillaries. Throughout their in average 120 days lifespan, human RBC travel in the bloodstream and come in contact with a broad range of different cell types. In fact, RBC are able to interact and communicate with endothelial cells (ECs), platelets, macrophages, and bacteria. Additionally, they are involved in the maintenance of thrombosis and hemostasis and play an important role in the immune response against pathogens. To clarify the mechanisms of interaction of RBC and these other cells both in health and disease as well as to highlight the role of important key players, we focused our interest on RBC membrane components such as ion channels, proteins, and phospholipids.
Collapse
Affiliation(s)
- Virginia Pretini
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Mischa H. Koenen
- Department of Laboratory of Translational Immunology and Department of Pediatric Immunology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Marcel H. A. M. Fens
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marije Bartels
- Paediatric Haematology Department, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Richard Van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
15
|
Huisjes R, Bogdanova A, van Solinge WW, Schiffelers RM, Kaestner L, van Wijk R. Squeezing for Life - Properties of Red Blood Cell Deformability. Front Physiol 2018; 9:656. [PMID: 29910743 PMCID: PMC5992676 DOI: 10.3389/fphys.2018.00656] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022] Open
Abstract
Deformability is an essential feature of blood cells (RBCs) that enables them to travel through even the smallest capillaries of the human body. Deformability is a function of (i) structural elements of cytoskeletal proteins, (ii) processes controlling intracellular ion and water handling and (iii) membrane surface-to-volume ratio. All these factors may be altered in various forms of hereditary hemolytic anemia, such as sickle cell disease, thalassemia, hereditary spherocytosis and hereditary xerocytosis. Although mutations are known as the primary causes of these congenital anemias, little is known about the resulting secondary processes that affect RBC deformability (such as secondary changes in RBC hydration, membrane protein phosphorylation, and RBC vesiculation). These secondary processes could, however, play an important role in the premature removal of the aberrant RBCs by the spleen. Altered RBC deformability could contribute to disease pathophysiology in various disorders of the RBC. Here we review the current knowledge on RBC deformability in different forms of hereditary hemolytic anemia and describe secondary mechanisms involved in RBC deformability.
Collapse
Affiliation(s)
- Rick Huisjes
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zürich, Switzerland
| | - Wouter W van Solinge
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Saarbrücken, Germany.,Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
16
|
Danielczok JG, Terriac E, Hertz L, Petkova-Kirova P, Lautenschläger F, Laschke MW, Kaestner L. Red Blood Cell Passage of Small Capillaries Is Associated with Transient Ca 2+-mediated Adaptations. Front Physiol 2017; 8:979. [PMID: 29259557 PMCID: PMC5723316 DOI: 10.3389/fphys.2017.00979] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
When red blood cells (RBCs) pass constrictions or small capillaries they need to pass apertures falling well below their own cross section size. We used different means of mechanical stimulations (hypoosmotic swelling, local mechanical stimulation, passing through microfluidic constrictions) to observe cellular responses of human RBCs in terms of intracellular Ca2+-signaling by confocal microscopy of Fluo-4 loaded RBCs. We were able to confirm our in vitro results in a mouse dorsal skinfold chamber model showing a transiently increased intracellular Ca2+ when RBCs were passing through small capillaries in vivo. Furthermore, we performed the above-mentioned in vitro experiments as well as measurements of RBCs filterability under various pharmacological manipulations (GsMTx-4, TRAM-34) to explore the molecular mechanism of the Ca2+-signaling. Based on these experiments we conclude that mechanical stimulation of RBCs activates mechano-sensitive channels most likely Piezo1. This channel activity allows Ca2+ to enter the cell, leading to a transient activation of the Gardos-channel associated with K+, Cl-, and water loss, i.e., with a transient volume adaptation facilitating the passage of the RBCs through the constriction.
Collapse
Affiliation(s)
- Jens G Danielczok
- Institute for Molecular Cell Biology, Saarland University, Homburg, Germany
| | - Emmanuel Terriac
- Experimental Physics, Saarland University, Saarbrücken, Germany.,Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Laura Hertz
- Institute for Molecular Cell Biology, Saarland University, Homburg, Germany
| | | | - Franziska Lautenschläger
- Experimental Physics, Saarland University, Saarbrücken, Germany.,Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Lars Kaestner
- Experimental Physics, Saarland University, Saarbrücken, Germany.,Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| |
Collapse
|
17
|
Fermo E, Bogdanova A, Petkova-Kirova P, Zaninoni A, Marcello AP, Makhro A, Hänggi P, Hertz L, Danielczok J, Vercellati C, Mirra N, Zanella A, Cortelezzi A, Barcellini W, Kaestner L, Bianchi P. 'Gardos Channelopathy': a variant of hereditary Stomatocytosis with complex molecular regulation. Sci Rep 2017; 7:1744. [PMID: 28496185 PMCID: PMC5431847 DOI: 10.1038/s41598-017-01591-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/31/2017] [Indexed: 11/17/2022] Open
Abstract
The Gardos channel is a Ca2+ sensitive, K+ selective channel present in several tissues including RBCs, where it is involved in cell volume regulation. Recently, mutations at two different aminoacid residues in KCNN4 have been reported in patients with hereditary xerocytosis. We identified by whole exome sequencing a new family with two members affected by chronic hemolytic anemia carrying mutation R352H in the KCNN4 gene. No additional mutations in genes encoding for RBCs cytoskeletal, membrane or channel proteins were detected. We performed functional studies on patients’ RBCs to evaluate the effects of R352H mutation on the cellular properties and eventually on the clinical phenotype. Gardos channel hyperactivation was demonstrated in circulating erythrocytes and erythroblasts differentiated ex-vivo from peripheral CD34+ cells. Pathological alterations in the function of multiple ion transport systems were observed, suggesting the presence of compensatory effects ultimately preventing cellular dehydration in patient’s RBCs; moreover, flow cytometry and confocal fluorescence live-cell imaging showed Ca2+ overload in the RBCs of both patients and hypersensitivity of Ca2+ uptake by RBCs to swelling. Altogether these findings suggest that the ‘Gardos channelopathy’ is a complex pathology, to some extent different from the common hereditary xerocytosis.
Collapse
Affiliation(s)
- Elisa Fermo
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna Bogdanova
- Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Polina Petkova-Kirova
- Research Center for Molecular Imaging and Screening, Medical School, Institute for Molecular Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Anna Zaninoni
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna Paola Marcello
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Asya Makhro
- Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Pascal Hänggi
- Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Laura Hertz
- Research Center for Molecular Imaging and Screening, Medical School, Institute for Molecular Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Jens Danielczok
- Research Center for Molecular Imaging and Screening, Medical School, Institute for Molecular Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Cristina Vercellati
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nadia Mirra
- UOC Pronto soccorso, Pediatria ambulatoriale e DH/MAC. Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Alberto Zanella
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Agostino Cortelezzi
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.,Universita' degli Studi di Milano, Milano, Italy
| | - Wilma Barcellini
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Lars Kaestner
- Experimental Physics, Saarland University, Saarbruecken, Germany.,Theoretical Medicine and Biosciences, Saarland University, Homburg/Saar, Germany
| | - Paola Bianchi
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| |
Collapse
|
18
|
Smeets MWJ, Bierings R, Meems H, Mul FPJ, Geerts D, Vlaar APJ, Voorberg J, Hordijk PL. Platelet-independent adhesion of calcium-loaded erythrocytes to von Willebrand factor. PLoS One 2017; 12:e0173077. [PMID: 28249049 PMCID: PMC5332109 DOI: 10.1371/journal.pone.0173077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022] Open
Abstract
Adhesion of erythrocytes to endothelial cells lining the vascular wall can cause vaso-occlusive events that impair blood flow which in turn may result in ischemia and tissue damage. Adhesion of erythrocytes to vascular endothelial cells has been described in multiple hemolytic disorders, especially in sickle cell disease, but the adhesion of normal erythrocytes to endothelial cells has hardly been described. It was shown that calcium-loaded erythrocytes can adhere to endothelial cells. Because sickle erythrocyte adhesion to ECs can be enhanced by ultra-large von Willebrand factor multimers, we investigated whether calcium loading of erythrocytes could promote binding to endothelial cells via ultra-large von Willebrand factor multimers. We used (immunofluorescent) live-cell imaging of washed erythrocytes perfused over primary endothelial cells at venular flow rate. Using this approach, we show that calcium-loaded erythrocytes strongly adhere to histamine-stimulated primary human endothelial cells. This adhesion is mediated by ultra-large von Willebrand factor multimers. Von Willebrand factor knockdown or ADAMTS13 cleavage abolished the binding of erythrocytes to activated endothelial cells under flow. Platelet depletion did not interfere with erythrocyte binding to von Willebrand factor. Our results reveal platelet-independent adhesion of calcium-loaded erythrocytes to endothelium-derived von Willebrand factor. Erythrocyte adhesion to von Willebrand factor may be particularly relevant for venous thrombosis, which is characterized by the formation of erythrocyte-rich thrombi.
Collapse
Affiliation(s)
- Michel W. J. Smeets
- Department of Molecular Cell Biology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Ruben Bierings
- Department of Plasma Proteins, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Henriet Meems
- Department of Plasma Proteins, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Frederik P. J. Mul
- Department of Molecular Cell Biology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Dirk Geerts
- Department of Pediatric Oncology/Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alexander P. J. Vlaar
- Department of Intensive Care Medicine, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Jan Voorberg
- Department of Plasma Proteins, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Peter L. Hordijk
- Department of Molecular Cell Biology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
19
|
Lee H, Lee K, Lee BK, Priezzhev AV, Shin S. Effect of shear-induced platelet activation on red blood cell aggregation. Clin Hemorheol Microcirc 2017; 66:97-104. [PMID: 28211801 DOI: 10.3233/ch-16191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mechanical shear stress is one of the important factors for platelet activation. Although shear stress has been frequently utilized in many applications of diagnostic bio-equipment, there has been little consideration as to whether shear stress induces platelet activation and consequently alters hemorheological characteristics. Therefore, we investigated the effect of shear-induced platelet activation on red blood cell (RBC) aggregation. The hypothesis of the present research is as follows: Platelets activated by high shear stress secrete substances, which can affect hemorheological characteristics to promote RBC aggregation. In our study, an increase in RBC aggregation indices (critical shear stress (CSS) and aggregation index (AI)) by shear-induced platelet activation was observed. Significantly, an increase of 19% in CSS was observed. However, deformability remained unchanged. These phenomena could be a result of the increased cellular adhesion force on RBC membranes due to secreted substances from activated platelets. Therefore, since high shear application results in the unexpected effect on RBC aggregation, conditions for shear application in diagnostic bio-equipment are to be carefully determined.
Collapse
Affiliation(s)
- Hoyoon Lee
- School of Mechanical Engineering, Korea University, Seoul, Korea
| | - Kisung Lee
- Department of Experimental Physics, University of Saarland, Saarbrücken, Germany.,Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Byoung-Kwon Lee
- Department of Internal Medicine, GangNam Severance Hospital, Yonsei University, Seoul, Korea
| | - Alexander V Priezzhev
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Physics and International Laser Centre, Lomonosov Moscow State University, Moscow, Russia
| | - Sehyun Shin
- School of Mechanical Engineering, Korea University, Seoul, Korea
| |
Collapse
|
20
|
Makhro A, Huisjes R, Verhagen LP, Mañú-Pereira MDM, Llaudet-Planas E, Petkova-Kirova P, Wang J, Eichler H, Bogdanova A, van Wijk R, Vives-Corrons JL, Kaestner L. Red Cell Properties after Different Modes of Blood Transportation. Front Physiol 2016; 7:288. [PMID: 27471472 PMCID: PMC4945647 DOI: 10.3389/fphys.2016.00288] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/27/2016] [Indexed: 12/24/2022] Open
Abstract
Transportation of blood samples is unavoidable for assessment of specific parameters in blood of patients with rare anemias, blood doping testing, or for research purposes. Despite the awareness that shipment may substantially alter multiple parameters, no study of that extent has been performed to assess these changes and optimize shipment conditions to reduce transportation-related artifacts. Here we investigate the changes in multiple parameters in blood of healthy donors over 72 h of simulated shipment conditions. Three different anticoagulants (K3EDTA, Sodium Heparin, and citrate-based CPDA) for two temperatures (4°C and room temperature) were tested to define the optimal transportation conditions. Parameters measured cover common cytology and biochemistry parameters (complete blood count, hematocrit, morphological examination), red blood cell (RBC) volume, ion content and density, membrane properties and stability (hemolysis, osmotic fragility, membrane heat stability, patch-clamp investigations, and formation of micro vesicles), Ca(2+) handling, RBC metabolism, activity of numerous enzymes, and O2 transport capacity. Our findings indicate that individual sets of parameters may require different shipment settings (anticoagulants, temperature). Most of the parameters except for ion (Na(+), K(+), Ca(2+)) handling and, possibly, reticulocytes counts, tend to favor transportation at 4°C. Whereas plasma and intraerythrocytic Ca(2+) cannot be accurately measured in the presence of chelators such as citrate and EDTA, the majority of Ca(2+)-dependent parameters are stabilized in CPDA samples. Even in blood samples from healthy donors transported using an optimized shipment protocol, the majority of parameters were stable within 24 h, a condition that may not hold for the samples of patients with rare anemias. This implies for as short as possible shipping using fast courier services to the closest expert laboratory at reach. Mobile laboratories or the travel of the patients to the specialized laboratories may be the only option for some groups of patients with highly unstable RBCs.
Collapse
Affiliation(s)
- Asya Makhro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich Zurich, Switzerland
| | - Rick Huisjes
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht Utrecht, Netherlands
| | - Liesbeth P Verhagen
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht Utrecht, Netherlands
| | | | | | - Polina Petkova-Kirova
- Research Centre for Molecular Imaging and Screening, Medical School, Saarland University Homburg/Saar, Germany
| | - Jue Wang
- Research Centre for Molecular Imaging and Screening, Medical School, Saarland University Homburg/Saar, Germany
| | - Hermann Eichler
- Saarland University Hospital, Institute for Clinical Hemostaseology and Transfusion-Medicine Homburg/Saar, Germany
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich Zurich, Switzerland
| | - Richard van Wijk
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht Utrecht, Netherlands
| | | | - Lars Kaestner
- Research Centre for Molecular Imaging and Screening, Medical School, Saarland UniversityHomburg/Saar, Germany; Dynamics of Fluids, Experimental Physics, Saarland UniversitySaarbruecken, Germany
| |
Collapse
|
21
|
Manzur-Jattin F, Álvarez-Ortega N, Moneriz-Pretell C, Corrales-Santander H, Cantillo-García K. Eriptosis: mecanismos moleculares y su implicación en la enfermedad aterotrombótica. REVISTA COLOMBIANA DE CARDIOLOGÍA 2016. [DOI: 10.1016/j.rccar.2015.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Wang XY, Fan XS, Cai L, Liu S, Cong XF, Chen X. Lysophosphatidic acid rescues bone mesenchymal stem cells from hydrogen peroxide-induced apoptosis. Apoptosis 2015; 20:273-84. [PMID: 25633408 DOI: 10.1007/s10495-014-1074-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The increase of reactive oxygen species in infracted heart significantly reduces the survival of donor mesenchymal stem cells, thereby attenuating the therapeutic efficacy for myocardial infarction. In our previous study, we demonstrated that lysophosphatidic acid (LPA) protects bone marrow-derived mesenchymal stem cells (BMSCs) against hypoxia and serum deprivation-induced apoptosis. However, whether LPA protects BMSCs from H2O2-induced apoptosis was not examined. In this study, we report that H2O2 induces rat BMSC apoptosis whereas LPA pre-treatment effectively protects BMSCs from H2O2-induced apoptosis. LPA protection of BMSC from the induced apoptosis is mediated mostly through LPA3 receptor. Furthermore, we found that membrane G protein Gi2 and Gi3 are involved in LPA-elicited anti-apoptotic effects through activation of ERK1/2- and PI3 K-pathways. Additionally, H2O2 increases levels of type II of light chain 3B (LC3B II), an autophagy marker, and H2O2-induced autophagy thus protected BMSCs from apoptosis. LPA further increases the expression of LC3B II in the presence of H2O2. In contrast, autophagy flux inhibitor bafilomycin A1 has no effect on LPA's protection of BMSC from H2O2-induced apoptosis. Taken together, our data suggest that LPA rescues H2O2-induced apoptosis mainly by interacting with Gi-coupled LPA3, resulting activation of the ERK1/2- and PI3 K/AKT-pathways and inhibition caspase-3 cleavage, and LPA protection of BMSCs against the apoptosis is independent of it induced autophagy.
Collapse
Affiliation(s)
- Xian-Yun Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | | | | | | | | | | |
Collapse
|
23
|
VDR gene polymorphisms impact on anemia at 2 weeks of anti-HCV therapy: a possible mechanism for early RBV-induced anemia. Pharmacogenet Genomics 2015; 25:164-72. [PMID: 25713999 DOI: 10.1097/fpc.0000000000000123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Vitamin D receptors (VDR) bind calcitriol and modulate several physiological systems through genomic and nongenomic pathways. Calcitriol stimulates store-operated channels Ca²⁺ influx by translocation of the caveolar VDR to the plasma membrane. Intracellular Ca²⁺ levels in erythrocytes control biophysical properties and an increase in its concentration can deregulate membrane composition, cell volume, glycolytic enzymes regulation, redox state, and cell clearance.We evaluated the role of single nucleotide polymorphisms in ITPA, CYP27B1, CYP24A1, and VDR genes in the prediction of ribavirin-induced anemia in HCV-1/2/3/4 patients at 2 and 4 weeks of treatment. PATIENTS AND METHODS Two hundred and twenty-five patients treated with ribavirin and pegylated interferon-α were genotyped by real-time PCR. RESULTS BMI at baseline more than 30 kg/m² [P=0.013, odds ratio (OR): 10.95, 95% confidence interval (CI): 1.66-74.21], alanine aminotransferase at baseline more than 37 IU/l (P=0.020, OR: 0.26, 95% CI: 0.09-0.81), and the VDR BsmI AA profile (P=0.003, OR: 5.09, 95% CI: 1.72-15.05) were anemia-predictive factors at 2 weeks of therapy. At week 4, the ITPA rs6051702 AC/CC profile (P=0.001, OR: 0.19, 95% CI: 0.07-0.51) was the only factor that could predict this side effect. CONCLUSION The BsmI AA genotype is a predictive factor of 2-week anemia and it could be related to a VDR-enhanced activity, and thus an increased calcium influx, resulting in the deregulation of the Ca²⁺-dependent signaling, which can lead to erythrocytes hemolysis. This rapid mechanism could be responsible for the development of early anemia.These results indicate for the first time the strong, significant, and independent role of VDR in the early development of ribavirin-induced anemia and confirm the ITPA function in the prediction of anemia at week 4.
Collapse
|
24
|
Flormann D, Kuder E, Lipp P, Wagner C, Kaestner L. Is there a role of C-reactive protein in red blood cell aggregation? Int J Lab Hematol 2014; 37:474-82. [PMID: 25382124 DOI: 10.1111/ijlh.12313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/13/2014] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Numerous clinical studies related the plasma level of C-reactive protein (CRP) to the erythrocyte sedimentation rate (ESR) independent of the kind of disease. The molecular regulation of the process is unknown. METHODS We performed a meta-analysis of 10 previous studies and experimentally probed for a direct action of CRP on red blood cells (RBCs) by different methods including determination of a microscopic aggregation index, Ca(2+) imaging and analysis of sedimentation experiments. RESULTS The meta-analysis revealed a statistically significant correlation (Pearson coefficient of 0.37; P < 0.0001), but we could not find any experimental evidence for a direct CRP-RBC interaction. Instead, we could confirm a correlation between fibrinogen level and ESR. CONCLUSION Therefore, we concluded that CRP and ESR cannot account for nor replace each other as a diagnostic measure. The correlation between CRP level and ESR is most probably caused by fibrinogen, because its increase coincides with elevated CRP levels.
Collapse
Affiliation(s)
- D Flormann
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - E Kuder
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, School of Medicine, Saarland University, Homburg/Saar, Germany
| | - P Lipp
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, School of Medicine, Saarland University, Homburg/Saar, Germany
| | - C Wagner
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - L Kaestner
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, School of Medicine, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
25
|
Sheremet’ev YA, Popovicheva AN, Levin GY. Lysophosphatidic acid and human erythrocyte aggregation. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s1990519x14030110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Barvitenko NN, Aslam M, Filosa J, Matteucci E, Nikinmaa M, Pantaleo A, Saldanha C, Baskurt OK. Tissue oxygen demand in regulation of the behavior of the cells in the vasculature. Microcirculation 2014; 20:484-501. [PMID: 23441854 DOI: 10.1111/micc.12052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/19/2013] [Indexed: 12/20/2022]
Abstract
The control of arteriolar diameters in microvasculature has been in the focus of studies on mechanisms matching oxygen demand and supply at the tissue level. Functionally, important vascular elements include EC, VSMC, and RBC. Integration of these different cell types into functional units aimed at matching tissue oxygen supply with tissue oxygen demand is only achieved when all these cells can respond to the signals of tissue oxygen demand. Many vasoactive agents that serve as signals of tissue oxygen demand have their receptors on all these types of cells (VSMC, EC, and RBC) implying that there can be a coordinated regulation of their behavior by the tissue oxygen demand. Such functions of RBC as oxygen carrying by Hb, rheology, and release of vasoactive agents are considered. Several common extra- and intracellular signaling pathways that link tissue oxygen demand with control of VSMC contractility, EC permeability, and RBC functioning are discussed.
Collapse
|
27
|
Wang J, van Bentum K, Sester U, Kaestner L. Calcium homeostasis in red blood cells of dialysis patients in dependence of erythropoietin treatment. Front Physiol 2014; 5:16. [PMID: 24478727 PMCID: PMC3902209 DOI: 10.3389/fphys.2014.00016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/09/2014] [Indexed: 01/14/2023] Open
Affiliation(s)
- Jue Wang
- Research Centre for Molecular Imaging and Screening, School of Medicine, Institute for Molecular Cell Biology, Saarland University Homburg/Saar, Germany
| | - Kai van Bentum
- Ambulatory Health Care Center Saarpfalz Homburg/Saar, Germany
| | - Urban Sester
- Internal Medicine IV, School of Medicine, Saarland University Homburg/Saar, Germany
| | - Lars Kaestner
- Research Centre for Molecular Imaging and Screening, School of Medicine, Institute for Molecular Cell Biology, Saarland University Homburg/Saar, Germany
| |
Collapse
|
28
|
Wang J, Wagner-Britz L, Bogdanova A, Ruppenthal S, Wiesen K, Kaiser E, Tian Q, Krause E, Bernhardt I, Lipp P, Philipp SE, Kaestner L. Morphologically homogeneous red blood cells present a heterogeneous response to hormonal stimulation. PLoS One 2013; 8:e67697. [PMID: 23840765 PMCID: PMC3695909 DOI: 10.1371/journal.pone.0067697] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 05/22/2013] [Indexed: 11/19/2022] Open
Abstract
Red blood cells (RBCs) are among the most intensively studied cells in natural history, elucidating numerous principles and ground-breaking knowledge in cell biology. Morphologically, RBCs are largely homogeneous, and most of the functional studies have been performed on large populations of cells, masking putative cellular variations. We studied human and mouse RBCs by live-cell video imaging, which allowed single cells to be followed over time. In particular we analysed functional responses to hormonal stimulation with lysophosphatidic acid (LPA), a signalling molecule occurring in blood plasma, with the Ca2+ sensor Fluo-4. Additionally, we developed an approach for analysing the Ca2+ responses of RBCs that allowed the quantitative characterization of single-cell signals. In RBCs, the LPA-induced Ca2+ influx showed substantial diversity in both kinetics and amplitude. Also the age-classification was determined for each particular RBC and consecutively analysed. While reticulocytes lack a Ca2+ response to LPA stimulation, old RBCs approaching clearance generated robust LPA-induced signals, which still displayed broad heterogeneity. Observing phospatidylserine exposure as an effector mechanism of intracellular Ca2+ revealed an even increased heterogeneity of RBC responses. The functional diversity of RBCs needs to be taken into account in future studies, which will increasingly require single-cell analysis approaches. The identified heterogeneity in RBC responses is important for the basic understanding of RBC signalling and their contribution to numerous diseases, especially with respect to Ca2+ influx and the associated pro-thrombotic activity.
Collapse
Affiliation(s)
- Jue Wang
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | | | - Anna Bogdanova
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Sandra Ruppenthal
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | - Kathrina Wiesen
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | - Elisabeth Kaiser
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | - Qinghai Tian
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | - Elmar Krause
- Physiology, Saarland University, Homburg/Saar, Germany
| | - Ingolf Bernhardt
- Biophysics Laboratory, Saarland University, Saarbrücken, Germany
| | - Peter Lipp
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | - Stephan E. Philipp
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg/Saar, Germany
| | - Lars Kaestner
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
- * E-mail:
| |
Collapse
|
29
|
Sheremet’ev YA, Popovicheva AN, Egorihina MN, Levin GY. Study of the relationship between shape and aggregation change in human erythrocytes. Biophysics (Nagoya-shi) 2013. [DOI: 10.1134/s0006350913020176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
30
|
Bogdanova A, Makhro A, Wang J, Lipp P, Kaestner L. Calcium in red blood cells-a perilous balance. Int J Mol Sci 2013; 14:9848-72. [PMID: 23698771 PMCID: PMC3676817 DOI: 10.3390/ijms14059848] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 12/19/2022] Open
Abstract
Ca2+ is a universal signalling molecule involved in regulating cell cycle and fate, metabolism and structural integrity, motility and volume. Like other cells, red blood cells (RBCs) rely on Ca2+ dependent signalling during differentiation from precursor cells. Intracellular Ca2+ levels in the circulating human RBCs take part not only in controlling biophysical properties such as membrane composition, volume and rheological properties, but also physiological parameters such as metabolic activity, redox state and cell clearance. Extremely low basal permeability of the human RBC membrane to Ca2+ and a powerful Ca2+ pump maintains intracellular free Ca2+ levels between 30 and 60 nM, whereas blood plasma Ca2+ is approximately 1.8 mM. Thus, activation of Ca2+ uptake has an impressive impact on multiple processes in the cells rendering Ca2+ a master regulator in RBCs. Malfunction of Ca2+ transporters in human RBCs leads to excessive accumulation of Ca2+ within the cells. This is associated with a number of pathological states including sickle cell disease, thalassemia, phosphofructokinase deficiency and other forms of hereditary anaemia. Continuous progress in unravelling the molecular nature of Ca2+ transport pathways allows harnessing Ca2+ uptake, avoiding premature RBC clearance and thrombotic complications. This review summarizes our current knowledge of Ca2+ signalling in RBCs emphasizing the importance of this inorganic cation in RBC function and survival.
Collapse
Affiliation(s)
- Anna Bogdanova
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zürich, Center for Integrative Human Physiology, University of Zürich, Zürich 8057, Switzerland; E-Mails: (A.B.); (A.M.)
| | - Asya Makhro
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zürich, Center for Integrative Human Physiology, University of Zürich, Zürich 8057, Switzerland; E-Mails: (A.B.); (A.M.)
| | - Jue Wang
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar 66421, Germany; E-Mails: (J.W.); (P.L.)
| | - Peter Lipp
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar 66421, Germany; E-Mails: (J.W.); (P.L.)
| | - Lars Kaestner
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar 66421, Germany; E-Mails: (J.W.); (P.L.)
| |
Collapse
|
31
|
Minetti G, Egée S, Mörsdorf D, Steffen P, Makhro A, Achilli C, Ciana A, Wang J, Bouyer G, Bernhardt I, Wagner C, Thomas S, Bogdanova A, Kaestner L. Red cell investigations: Art and artefacts. Blood Rev 2013; 27:91-101. [DOI: 10.1016/j.blre.2013.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|