1
|
Yeoman BM, Katira P. A stochastic algorithm for accurately predicting path persistence of cells migrating in 3D matrix environments. PLoS One 2018; 13:e0207216. [PMID: 30440015 PMCID: PMC6237354 DOI: 10.1371/journal.pone.0207216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/26/2018] [Indexed: 01/07/2023] Open
Abstract
Cell mobility plays a critical role in immune response, wound healing, and the rate of cancer metastasis and tumor progression. Mobility within a three-dimensional (3D) matrix environment can be characterized by the average velocity of cell migration and the persistence length of the path it follows. Computational models that aim to predict cell migration within such 3D environments need to be able predict both of these properties as a function of the various cellular and extra-cellular factors that influence the migration process. A large number of models have been developed to predict the velocity of cell migration driven by cellular protrusions in 3D environments. However, prediction of the persistence of a cell's path is a more tedious matter, as it requires simulating cells for a long time while they migrate through the model extra-cellular matrix (ECM). This can be a computationally expensive process, and only recently have there been attempts to quantify cell persistence as a function of key cellular or matrix properties. Here, we propose a new stochastic algorithm that can simulate and analyze 3D cell migration occurring over days with a computation time of minutes, opening new possibilities of testing and predicting long-term cell migration behavior as a function of a large variety of cell and matrix properties. In this model, the matrix elements are generated as needed and stochastically based on the biophysical and biochemical properties of the ECM the cell migrates through. This approach significantly reduces the computational resources required to track and calculate cell matrix interactions. Using this algorithm, we predict the effect of various cellular and matrix properties such as cell polarity, cell mechanoactivity, matrix fiber density, matrix stiffness, fiber alignment, and fiber binding site density on path persistence of cellular migration and the mean squared displacement of cells over long periods of time.
Collapse
Affiliation(s)
- Benjamin Michael Yeoman
- Mechanical Engineering Department, San Diego State University, San Diego, CA, United States of America
- Department of Bioengineering, University of California San Diego, San Diego, CA, United States of America
| | - Parag Katira
- Mechanical Engineering Department, San Diego State University, San Diego, CA, United States of America
- Computational Science Research Center, San Diego State University, San Diego, CA, United States of America
| |
Collapse
|
2
|
Khademi F, Ai J, Soleimani M, Verdi J, Mohammad Tavangar S, Sadroddiny E, Massumi M, Mahmoud Hashemi S. Improved human endometrial stem cells differentiation into functional hepatocyte‐like cells on a glycosaminoglycan/collagen‐grafted polyethersulfone nanofibrous scaffold. J Biomed Mater Res B Appl Biomater 2017; 105:2516-2529. [DOI: 10.1002/jbm.b.33758] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/13/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022]
Abstract
AbstractLiver tissue engineering (TE) is rapidly emerging as an effective technique which combines engineering and biological processes to compensate for the shortage of damaged or destroyed liver tissues. We examined the viability, differentiation, and integration of hepatocyte‐like cells on an electrospun polyethersulfone (PES) scaffold, derived from human endometrial stem cells (hEnSCs). Natural polymers were separately grafted on plasma‐treated PES nanofibers, that is, collagen, heparan sulfate (HS) and collagen–HS. Galactosilated PES (PES‐Gal) nanofibrous were created. The engineering and cell growth parameters were considered and compared with each sample. The cellular studies revealed increased cell survival, attachment, and normal morphology on the bioactive natural polymer‐grafted scaffolds after 30 days of hepatic differentiation. The chemical and molecular assays displayed hepatocyte differentiation. These cells were also functional, showing glycogen storage, α‐fetoprotein, and albumin secretion. The HS nanoparticle‐grafted PES nanofibers demonstrated a high rate of cell proliferation, differentiation, and integration. Based on the observations mentioned above, engineered tissue is a good option in the future, for the commercial production of three‐dimensional liver tissues for clinical purposes. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2516–2529, 2017.
Collapse
Affiliation(s)
- Farzaneh Khademi
- Department of Tissue Engineering and Cell Therapy, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences Shiraz Iran
- Regenerative Medicine of Cardiovascular Surgery Research Center Regenerative Medicine Institute, Shiraz University of Medical Sciences Shiraz Iran
- Department of Tissue engineering and Nanotechnology Stem Cells Technology Research Center Tehran Iran
| | - Jafar Ai
- Department of Tissue Engineering and Cell Therapy, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences Shiraz Iran
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | - Masoud Soleimani
- Department of Tissue engineering and Nanotechnology Stem Cells Technology Research Center Tehran Iran
- Department of Hematology, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
| | - Javad Verdi
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | - Seyed Mohammad Tavangar
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
- Department of Pathology Shariati Hospital, Tehran University of Medical Sciences Tehran Iran
| | - Esmaeil Sadroddiny
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Massumi
- Department of Stem Cells National Institute of Genetic Engineering and Biotechnology Tehran Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
3
|
Liu Y, Wei J, Lu J, Lei D, Yan S, Li X. Micropatterned coculture of hepatocytes on electrospun fibers as a potential in vitro model for predictive drug metabolism. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:475-84. [PMID: 27040241 DOI: 10.1016/j.msec.2016.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/14/2016] [Accepted: 03/07/2016] [Indexed: 12/26/2022]
Abstract
The liver is the major organ of importance to determine drug dispositions in the body, thus the development of hepatocyte culture systems is of great scientific and practical interests to provide reliable and predictable models for in vitro drug screening. In the current study, to address the challenges of a rapid function loss of primary hepatocytes, the coculture of hepatocytes with fibroblasts and endothelial cells (Hep-Fib-EC) was established on micropatterned fibrous scaffolds. Liver-specific functions, such as the albumin secretion and urea synthesis, were well maintained in the coculture system, accompanied by a rapid formation of multicellular hepatocyte spheroids. The activities of phase I (CYP3A11 and CYP2C9) and phase II enzymes indicated a gradual increase for cocultured hepatocytes, and a maximum level was achieved after 5 days and maintained throughout 15 days of culture. The metabolism testing on model drugs indicated that the scaled clearance rates for hepatocytes in the Hep-Fib-EC coculture system were significantly higher than those of other culture methods, and a linear regression analysis indicated good correlations between the observed data of rats and in vitro predicted values during 15 days of culture. In addition, the enzyme activities and drug clearance rates of hepatocytes in the Hep-Fib-EC coculture model experienced sensitive responsiveness to the inducers and inhibitors of metabolizing enzymes. These results demonstrated the feasibility of micropatterned coculture of hepatocytes as a potential in vitro testing model for the prediction of in vivo drug metabolism.
Collapse
Affiliation(s)
- Yaowen Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China; College of Food Science, Sichuan Agricultural University, Yaan 625014, PR China
| | - Jiaojun Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Jinfu Lu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Dongmei Lei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Shili Yan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
4
|
Kumari J, Karande AA, Kumar A. Combined Effect of Cryogel Matrix and Temperature-Reversible Soluble-Insoluble Polymer for the Development of in Vitro Human Liver Tissue. ACS APPLIED MATERIALS & INTERFACES 2016; 8:264-277. [PMID: 26654271 DOI: 10.1021/acsami.5b08607] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hepatic cell culture on a three-dimensional (3D) matrix or as a hepatosphere appears to be a promising in vitro biomimetic system for liver tissue engineering applications. In this study, we have combined the concept of a 3D scaffold and a spheroid culture to develop an in vitro model to engineer liver tissue for drug screening. We have evaluated the potential of poly(ethylene glycol)-alginate-gelatin (PAG) cryogel matrix for in vitro culture of human liver cell lines. The synthesized cryogel matrix has a flow rate of 7 mL/min and water uptake capacity of 94% that enables easy nutrient transportation in the in vitro cell culture. Young's modulus of 2.4 kPa and viscoelastic property determine the soft and elastic nature of synthesized cryogel. Biocompatibility of PAG cryogel was evaluated through MTT assay of HepG2 and Huh-7 cells on matrices. The proliferation and functionality of the liver cells were enhanced by culturing hepatic cells as spheroids (hepatospheres) on the PAG cryogel using temperature-reversible soluble-insoluble polymer, poly(N-isopropylacrylamide) (PNIPAAm). Pore size of the cryogel above 100 μm modulated spheroid size that can prevent hypoxia condition within the spheroid culture. Both the hepatic cells have shown a significant difference (P < 0.05) in terms of cell number and functionality when cultured with PNIPAAm. After 10 days of culture using 0.05% PNIPAAm, the cell number increased by 11- and 7-fold in case of HepG2 and Huh-7 cells, respectively. Similarly, after 10 days of hepatic spheroids culture on PAG cryogel, the albumin production, urea secretion, and CYP450 activity were significantly higher in case of culture with PNIPAAm. The developed tissue mass on the PAG cryogel in the presence of PNIPAAm possess polarity, which was confirmed using F-actin staining and by presence of intercellular bile canalicular lumen. The developed cryogel matrix supports liver cells proliferation and functionality and therefore can be used for in vitro and in vivo drug testing.
Collapse
Affiliation(s)
- Jyoti Kumari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur, 208016 UP, India
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Sciences , Bangalore 560012, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur, 208016 UP, India
| |
Collapse
|
5
|
Wei J, Lu J, Liu Y, Yan S, Li X. Spheroid culture of primary hepatocytes with short fibers as a predictable in vitro model for drug screening. J Mater Chem B 2016; 4:7155-7167. [DOI: 10.1039/c6tb02014c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Short fibers are utilized as scaffolds for generation of size-controlled hepatocyte spheroids, exhibiting an efficient in vitro model for determining drug metabolism.
Collapse
Affiliation(s)
- Jiaojun Wei
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Jinfu Lu
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Yaowen Liu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Shili Yan
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| |
Collapse
|
6
|
Hepatocyte spheroid culture on fibrous scaffolds with grafted functional ligands as an in vitro model for predicting drug metabolism and hepatotoxicity. Acta Biomater 2015; 28:138-148. [PMID: 26409440 DOI: 10.1016/j.actbio.2015.09.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/18/2015] [Accepted: 09/22/2015] [Indexed: 12/25/2022]
Abstract
The identification of a biologic substrate for maintaining hepatocyte functions is essential to provide reliable and predictable models for in vitro drug screening. In the current study, a three-dimensional culture of hepatocytes was established on highly porous fibrous scaffolds with grafted galactose and RGD to afford extensive cell-cell and cell-scaffold interactions spatially. The pore size and ligand densities indicated significant effects on the formation of hepatocyte spheroids in balancing the cell retention, adhesion, and migration on fibrous scaffolds. Fibrous scaffolds with an average pore size of 60 μm and surface grafting densities of galactose at 5.9 nmol/cm(2) and RGD at 6.9 pmol/cm(2) provided optimal microenvironments for hepatocyte infiltration and multicellular spheroid formation. Significant promotions were also demonstrated in the syntheses of albumin and urea and the activities of phase I (CYP 3A11 and CYP 2C9) and phase II enzymes. The in vitro metabolism tests on testosterone and acetaminophen by hepatocytes on the optimal scaffolds indicated the predicated clearance rates of 50.7 and 22.6 ml/min/kg, respectively, which were comparable to the in vivo values of rats. The in vitro hepatotoxicity tests on amiodarone hydrochloride and acetaminophen predicted the half maximal effective concentrations (EC50) to reflect the in vivo toxic plasma concentrations in human. In addition, the enzyme activities, predicted clearance rates and hepatotoxicity values of hepatocytes on the optimal scaffolds experienced sensitive responsiveness to specific inducers or inhibitors of CYP 3A11 and phase II enzymes, exhibiting in vivo-in vitro correlations to a certain extent. These results demonstrate the feasibility of hepatocyte spheroid culture on fibrous scaffolds as an potential in vitro testing model to predict the in vivo drug metabolism, hepatotoxicity, and drug-drug interactions.
Collapse
|
7
|
Du C, Narayanan K, Leong MF, Wan AC. Induced pluripotent stem cell-derived hepatocytes and endothelial cells in multi-component hydrogel fibers for liver tissue engineering. Biomaterials 2014; 35:6006-14. [DOI: 10.1016/j.biomaterials.2014.04.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/07/2014] [Indexed: 12/22/2022]
|
8
|
Patterned prevascularised tissue constructs by assembly of polyelectrolyte hydrogel fibres. Nat Commun 2014; 4:2353. [PMID: 23955534 DOI: 10.1038/ncomms3353] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/25/2013] [Indexed: 12/26/2022] Open
Abstract
The in vivo efficacy of engineered tissue constructs depends largely on their integration with the host vasculature. Prevascularisation has been noted to facilitate integration of the constructs via anastomosis of preformed microvascular networks. Here we report a technique to fabricate aligned, spatially defined prevascularised tissue constructs with endothelial vessels by assembling individually tailored cell-laden polyelectrolyte hydrogel fibres. Stable, aligned endothelial vessels form in vitro within these constructs in 24 h, and these vessels anastomose with the host circulation in a mouse subcutaneous model. We create vascularised adipose and hepatic tissues by co-patterning the respective cell types with the preformed endothelial vessels. Our study indicates that the formation of aligned endothelial vessels in a hydrogel is an efficient prevascularisation approach in the engineering of tissue constructs.
Collapse
|
9
|
Gevaert E, Billiet T, Declercq H, Dubruel P, Cornelissen R. Galactose-functionalized gelatin hydrogels improve the functionality of encapsulated HepG2 cells. Macromol Biosci 2013; 14:419-27. [PMID: 24821670 DOI: 10.1002/mabi.201300320] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/20/2013] [Indexed: 11/10/2022]
Abstract
The present study investigates the effect of galactosylated gelatin on encapsulated HepG2 cells. Methacrylamide modified gelatin is evaluated and compared with its galactosylated counterpart with respect to effects on viability, morphological characteristics, proliferation, and the expression of hepatocyte specific markers. The research reveals that further modifications of methacrylamide modified gelatin are possible without affecting the survival of the encapsulated cells (viability of 90%). Moreover, the study demonstrates a clear and long-term (up to 21 d) improvement in hepatocyte specific gene expression when the cells are encapsulated in the galactosylated gelatin. It is concluded that the use of galactosylated gelatin derivates supports the hepatocyte phenotype.
Collapse
Affiliation(s)
- Elien Gevaert
- Ghent University, Tissue Engineering Group, De Pintelaan 185, Building 6B3, B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
10
|
Capone SH, Dufresne M, Rechel M, Fleury MJ, Salsac AV, Paullier P, Daujat-Chavanieu M, Legallais C. Impact of alginate composition: from bead mechanical properties to encapsulated HepG2/C3A cell activities for in vivo implantation. PLoS One 2013; 8:e62032. [PMID: 23637958 PMCID: PMC3636232 DOI: 10.1371/journal.pone.0062032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 03/18/2013] [Indexed: 12/14/2022] Open
Abstract
Recently, interest has focused on hepatocytes' implantation to provide end stage liver failure patients with a temporary support until spontaneous recovery or a suitable donor becomes available. To avoid cell damage and use of an immunosuppressive treatment, hepatic cells could be implanted after encapsulation in a porous biomaterial of bead or capsule shape. The aim of this study was to compare the production and the physical properties of the beads, together with some hepatic cell functions, resulting from the use of different material combinations for cell microencapsulation: alginate alone or combined with type I collagen with or without poly-L-lysine and alginate coatings. Collagen and poly-L-lysine increased the bead mechanical resistance but lowered the mass transfer kinetics of vitamin B12. Proliferation of encapsulated HepG2/C3A cells was shown to be improved in alginate-collagen beads. Finally, when the beads were subcutaneously implanted in mice, the inflammatory response was reduced in the case of alginate mixed with collagen. This in vitro and in vivo study clearly outlines, based on a systematic comparison, the necessity of compromising between material physical properties (mechanical stability and porosity) and cell behavior (viability, proliferation, functionalities) to define optima hepatic cell microencapsulation conditions before implantation.
Collapse
Affiliation(s)
- Stephanie H Capone
- UMR CNRS 7338, Laboratory of Biomechanics and Bioengineering, University of Technology, Compiegne, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Huang X, Lin N, Hang R, Wang X, Zhang X, Tang B. Modulating the behaviors of C3A cells via surface charges of polyelectrolyte multilayers. Carbohydr Polym 2012; 92:1064-70. [PMID: 23399129 DOI: 10.1016/j.carbpol.2012.10.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/05/2012] [Accepted: 10/24/2012] [Indexed: 02/03/2023]
Abstract
The purpose of this study was to evaluate in vitro how the modulating surface charges of materials influenced the behaviors of hepatocytes. Cells of a human hepatocyte cell line, C3A, which have been used in a clinically tested bioartificial liver, were conducted as cell models. Polyelectrolyte multilayers (PEMs) of poly-L-lysine and alginate biopolymers were fabricated and then the zeta potential was assessed. Protein adsorption study showed that fibrinogen deposition could be modulated via tuning the terminal layer and the surface charges of PEMs. Furthermore, through observing the cellular morphology, viability, functional protein analysis and gene expression, we found that the behavior of C3A cells could be modulated via tuning of surface charges on PEMs, which was different from that via grafting functional groups on PEMs. It suggested that the PEMs with different charges could be used in vitro to manipulate cell behaviors to improve upon the design of tissue engineering.
Collapse
Affiliation(s)
- Xiaobo Huang
- Institute of Surface Engineering, Taiyuan University of Technology, 79 Yingze Road, Taiyuan 030024, PR China
| | | | | | | | | | | |
Collapse
|
12
|
Chistiakov DA. Liver regenerative medicine: advances and challenges. Cells Tissues Organs 2012; 196:291-312. [PMID: 22572238 DOI: 10.1159/000335697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2011] [Indexed: 12/16/2022] Open
Abstract
Liver transplantation is the standard care for many end-stage liver diseases. However, donor organs are scarce and some people succumb to liver failure before a donor is found. Liver regenerative medicine is a special interdisciplinary field of medicine focused on the development of new therapies incorporating stem cells, gene therapy and engineered tissues in order to repair or replace the damaged organ. In this review we consider the emerging progress achieved in the hepatic regenerative medicine within the last decade. The review starts with the characterization of liver organogenesis, fetal and adult stem/progenitor cells. Then, applications of primary hepatocytes, embryonic and adult (mesenchymal, hematopoietic and induced pluripotent) stem cells in cell therapy of liver diseases are considered. Current advances and challenges in producing mature hepatocytes from stem/progenitor cells are discussed. A section about hepatic tissue engineering includes consideration of synthetic and natural biomaterials in engineering scaffolds, strategies and achievements in the development of 3D bioactive matrices and 3D hepatocyte cultures, liver microengineering, generating bioartificial liver and prospects for fabrication of the bioengineered liver.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Medical Nanobiotechnology, Pirogov State Medical University, Moscow, Russia.
| |
Collapse
|
13
|
Kasoju N, Bora U. Silk fibroin based biomimetic artificial extracellular matrix for hepatic tissue engineering applications. Biomed Mater 2012; 7:045004. [DOI: 10.1088/1748-6041/7/4/045004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Hepatic differentiation from human mesenchymal stem cells on a novel nanofiber scaffold. Cell Mol Biol Lett 2011; 17:89-106. [PMID: 22207333 PMCID: PMC6275739 DOI: 10.2478/s11658-011-0040-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 12/15/2011] [Indexed: 12/26/2022] Open
Abstract
The emerging fields of tissue engineering and biomaterials have begun to provide potential treatment options for liver failure. The goal of the present study is to investigate the ability of a poly L-lactic acid (PLLA) nanofiber scaffold to support and enhance hepatic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs). A scaffold composed of poly L-lactic acid and collagen was fabricated by the electrospinning technique. After characterizing isolated hMSCs, they were seeded onto PLLA nanofiber scaffolds and induced to differentiate into a hepatocyte lineage. The mRNA levels and protein expression of several important hepatic genes were determined using RT-PCR, immunocytochemistry and ELISA. Flow cytometry revealed that the isolated bone marrow-derived stem cells were positive for hMSC-specific markers CD73, CD44, CD105 and CD166 and negative for hematopoietic markers CD34 and CD45. The differentiation of these stem cells into adipocytes and osteoblasts demonstrated their multipotency. Scanning electron microscopy showed adherence of cells in the nanofiber scaffold during differentiation towards hepatocytes. Our results showed that expression levels of liver-specific markers such as albumin, α-fetoprotein, and cytokeratins 8 and 18 were higher in differentiated cells on the nanofibers than when cultured on plates. Importantly, liver functioning serum proteins, albumin and α-1 antitrypsin were secreted into the culture medium at higher levels by the differentiated cells on the nanofibers than on the plates, demonstrating that our nanofibrous scaffolds promoted and enhanced hepatic differentiation under our culture conditions. Our results show that the engineered PLLA nanofibrous scaffold is a conducive matrix for the differentiation of MSCs into functional hepatocyte-like cells. This represents the first step for the use of this nanofibrous scaffold for culture and differentiation of stem cells that may be employed for tissue engineering and cell-based therapy applications.
Collapse
|
15
|
Yin J, Meng Q. Use of primary rat hepatocytes in the gel entrapment culture to predictin vivobiliary excretion. Xenobiotica 2011; 42:417-28. [DOI: 10.3109/00498254.2011.633716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Self-assembled composite matrix in a hierarchical 3-D scaffold for bone tissue engineering. Acta Biomater 2011; 7:2244-55. [PMID: 21195810 DOI: 10.1016/j.actbio.2010.12.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 12/27/2010] [Accepted: 12/29/2010] [Indexed: 11/21/2022]
Abstract
It is of high clinical relevance in bone tissue engineering that scaffolds promote a high seeding efficiency of cells capable of osteogenic differentiation, such as human bone marrow-derived mesenchymal stem cells (hMSCs). We evaluated the effects of a novel polycaprolactone (PCL) scaffold on hMSC seeding efficiency, proliferation, distribution and differentiation. Porous PCL meshes prepared by fused deposition modeling (FDM) were embedded in matrix of hyaluronic acid, methylated collagen and terpolymer via polyelectrolyte complex coacervation. Scaffolds were cultured statically and dynamically in osteogenic stimulation medium for up to 28 days. Compared to naked PCL scaffolds, embedded scaffolds provided a higher cell seeding efficiency (t-test, P<0.05), a more homogeneous cell distribution and more osteogenically differentiated cells, verified by a more pronounced gene expression of the bone markers alkaline phosphatase, osteocalcin, bone sialoprotein I and bone sialoprotein II. Dynamic culture resulted in higher amounts of DNA (day 14 and day 21) and calcium (day 21 and day 28), compared to static culture. Dynamic culture and the embedding synergistically enhanced the calcium deposition of hMSC on day 21 and day 28. This in vitro study provides evidence that hybrid scaffolds made from natural and synthetic polymers improve cellular seeding efficiency, proliferation, distribution and osteogenic differentiation.
Collapse
|
17
|
Miki T, Ring A, Gerlach J. Hepatic differentiation of human embryonic stem cells is promoted by three-dimensional dynamic perfusion culture conditions. Tissue Eng Part C Methods 2011; 17:557-68. [PMID: 21210720 DOI: 10.1089/ten.tec.2010.0437] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The developmental potential of human embryonic stem cells (hESCs) holds great promise to provide a source of human hepatocytes for use in drug discovery, toxicology, hepatitis research, and extracorporeal bioartificial liver support. There are, however, limitations to induce fully functional hepatocytes on conventional two-dimensional (2D) static culture. It had been shown that dynamic three-dimensional (3D) perfusion culture is superior to induce maturation in fetal hepatocytes and prolong hepatic functions of primary adult hepatocytes. We investigated the potential of using a four-compartment 3D perfusion culture to induce hepatic differentiation in hESC. Undifferentiated hESC were inoculated into hollow fiber-based 3D perfusion bioreactors with integral oxygenation. Hepatic differentiation was induced with a multistep growth factor cocktail protocol. Parallel controls were operated under equal perfusion conditions without the growth factor supplementations to allow for spontaneous differentiation, as well as in conventional 2D static conditions using growth factors. Metabolism, hepatocyte-specific gene expression, protein expression, and hepatic function were evaluated after 20 days. Significantly upregulated hepatic gene expression was observed in the hepatic differentiation 3D culture group. Ammonia metabolism activity and albumin production was observed in the 3D directed differentiation culture. Drug-induced cytochrome P450 gene expression was increased with rifampicin induction. Using flow cytometry analysis the mature hepatocyte marker asialoglycoprotein receptor was found on up to 30% of the cells in the 3D system with directed hepatic differentiation. Histological and immunohistochemical analysis revealed structural formation of hepatic and biliary marker-positive cells. In contrast to 2D culture, the 3D perfusion culture induced more functional maturation in hESC-derived hepatic cells. 3D perfusion bioreactor technologies may be useful for further studies on generating hESC-derived hepatic cells.
Collapse
Affiliation(s)
- Toshio Miki
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
18
|
Asgari S, Pournasr B, Salekdeh GH, Ghodsizadeh A, Ott M, Baharvand H. Induced pluripotent stem cells: a new era for hepatology. J Hepatol 2010; 53:738-51. [PMID: 20621379 DOI: 10.1016/j.jhep.2010.05.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 05/09/2010] [Accepted: 05/13/2010] [Indexed: 12/17/2022]
Abstract
Stem cell transplantation has been proposed as an attractive alternative approach to restore liver mass and function. Recent progress has been reported on the generation of induced pluripotent stem (iPS) cells from somatic cells. Human-iPS cells can be differentiated towards the hepatic lineage which presents possibilities for improving research on diseases, drug development, tissue engineering, the development of bio-artificial livers, and a foundation for producing autologous cell therapies that would avoid immune rejection and enable correction of gene defects prior to cell transplantation. This focused review will discuss how human iPS cell advances are likely to have an impact on hepatology.
Collapse
Affiliation(s)
- Samira Asgari
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
19
|
Kim M, Lee JY, Jones CN, Revzin A, Tae G. Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes. Biomaterials 2010; 31:3596-603. [PMID: 20153045 PMCID: PMC2837121 DOI: 10.1016/j.biomaterials.2010.01.068] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 01/13/2010] [Indexed: 01/01/2023]
Abstract
Primary hepatocytes are commonly used as liver surrogates in toxicology and tissue engineering fields, therefore, maintenance of functional hepatocytes in vitro is an important topic of investigation. This paper sought to characterize heparin-based hydrogel as a three-dimensional scaffold for hepatocyte culture. The primary rat hepatocytes were mixed with a prepolymer solution comprised of thiolated heparin and acrylated poly(ethylene glycol) (PEG). Raising the temperature from 25 degrees to 37 degrees C initiated Michael addition reaction between the thiol and acrylated moieties and resulted in formation of hydrogel with entrapped cells. Analysis of liver-specific products, albumin and urea, revealed that the heparin hydrogel was non-cytotoxic to cells and, in fact, promoted hepatic function. Hepatocytes entrapped in the heparin-based hydrogel maintained high levels of albumin and urea synthesis after three weeks in culture. Because heparin is known to bind growth factors, we incorporated hepatocyte growth factor (HGF)-an important liver signaling molecule - into the hydrogel. HGF release from heparin hydrogel matrix was analyzed using enzyme linked immunoassay (ELISA) and was shown to occur in a controlled manner with only 40% of GF molecules released after 30 days in culture. Importantly, hepatocytes cultured within HGF-containing hydrogels exhibited significantly higher levels of albumin and urea synthesis compared to cells cultured in the hydrogel alone. Overall, heparin-based hydrogel showed to be a promising matrix for encapsulation and maintenance of difficult-to-culture primary hepatocytes. In the future, we envision employing heparin-based hyrogels as matrices for in vitro differentiation of hepatocytes or stem cells and as vehicles for transplantation of these cells.
Collapse
Affiliation(s)
- Mihye Kim
- Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Ji Youn Lee
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Caroline N. Jones
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Alexander Revzin
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Giyoong Tae
- Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
- Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
20
|
Three-dimensional culture of human embryonic stem cell derived hepatic endoderm and its role in bioartificial liver construction. J Biomed Biotechnol 2010; 2010:236147. [PMID: 20169088 PMCID: PMC2821762 DOI: 10.1155/2010/236147] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 12/03/2009] [Indexed: 12/11/2022] Open
Abstract
The liver carries out a range of functions essential for bodily homeostasis. The impairment of liver functions has serious implications and is responsible for high rates of patient morbidity and mortality. Presently, liver transplantation remains the only effective treatment, but donor availability is a major limitation. Therefore, artificial and bioartificial liver devices have been developed to bridge patients to liver transplantation. Existing support devices improve hepatic encephalopathy to a certain extent; however their usage is associated with side effects. The major hindrance in the development of bioartificial liver devices and cellular therapies is the limited availability of human hepatocytes. Moreover, primary hepatocytes are difficult to maintain and lose hepatic identity and function over time even with sophisticated tissue culture media. To overcome this limitation, renewable cell sources are being explored. Human embryonic stem cells are one such cellular resource and have been shown to generate a reliable and reproducible supply of human hepatic endoderm. Therefore, the use of human embryonic stem cell-derived hepatic endoderm in combination with tissue engineering has the potential to pave the way for the development of novel bioartificial liver devices and predictive drug toxicity assays.
Collapse
|
21
|
Lu H, Guo L, Kawazoe N, Tateishi T, Chen G. Effects of poly(L-lysine), poly(acrylic acid) and poly(ethylene glycol) on the adhesion, proliferation and chondrogenic differentiation of human mesenchymal stem cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2009; 20:577-89. [PMID: 19323877 DOI: 10.1163/156856209x426402] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microenvironments, composed of many kinds of cytokines and growth factors plus extracellular matrices with diverse electrostatic properties, play key roles in controlling cell functions in vivo. In this study, three kinds of water-soluble polymers, positively charged poly(L-lysine) (PLL), negatively charged poly(acrylic acid) (PAAc) and neutral poly(ethylene glycol) (PEG), were compared based on their effects on the adhesion, spread, proliferation and chondrogenic differentiation of human mesenchymal stem cells (MSCs). The MSCs were seeded and cultured in the presence of polymers of different concentrations applied by methods using coating, mixing or covering. The effects of the water-soluble polymers depended on their electrostatic properties and method of application. The methods were in the order of coating, mixing and covering in terms of high to low influence. A low concentration of PLL promoted MSC adhesion, spread, proliferation and chondrogenic differentiation, while a high concentration of PLL was toxic. The PEG-coated surface facilitated cell aggregation and spheroid formation by inhibiting cell adhesion. A high concentration of mixed PEG (10 microg/ml) promoted cell proliferation in serum-free medium. PAAc showed no obvious effects on MSC adhesion, spread, proliferation, or chondrogenic differentiation.
Collapse
Affiliation(s)
- Hongxu Lu
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | |
Collapse
|
22
|
Qihao Z, Xigu C, Guanghui C, Weiwei Z. Spheroid formation and differentiation into hepatocyte-like cells of rat mesenchymal stem cell induced by co-culture with liver cells. DNA Cell Biol 2007; 26:497-503. [PMID: 17630854 DOI: 10.1089/dna.2006.0562] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) derived from bone marrow have been shown to differentiate into hepatocytes, which would be an ideal resource for transplantation or artificial liver devices. Here we investigated the efficiency of co-culture system consisting of rat MSCs and adult liver cells to induce differentiation of MSCs into hepatocyte-like cells. Marked MSCs were either co-cultured with freshly isolated liver cells or treated with hepatocyte growth factor (HGF) for 21 days. In co-culture systems, MSCs formed spheroids of round-shaped cells while keeping normal proliferation and viability, strongly expressed albumin, alpha-fetoprotein, and cytokeratin-18 in mRNA and protein level from day 3 to 21. As a control, MSCs treated with HGF showed weak gene expressions in day 14 and had a few cells of protein staining in day 21. These results indicate that the co-culture microenvironment plays a decisive role for the hepatic differentiation of MSCs, and it is more efficient than HGF treatment. Insights gained from this study will be helpful to design optimal culture systems for the hepatic differentiation of human MSCs and the hepatic function maintenance of hepatocytes in vitro.
Collapse
Affiliation(s)
- Zhang Qihao
- Center of Experimental Animals, Sun Yat-Sen University, Guangzhou, China
| | | | | | | |
Collapse
|
23
|
Kuleshova LL, Gouk SS, Hutmacher DW. Vitrification as a prospect for cryopreservation of tissue-engineered constructs. Biomaterials 2007; 28:1585-96. [PMID: 17178158 DOI: 10.1016/j.biomaterials.2006.11.047] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 11/29/2006] [Indexed: 10/23/2022]
Abstract
Cryopreservation plays a significant function in tissue banking and will presume yet larger value when more and more tissue-engineered products will routinely enter the clinical arena. The most common concept underlying tissue engineering is to combine a scaffold (cellular solids) or matrix (hydrogels) with living cells to form a tissue-engineered construct (TEC) to promote the repair and regeneration of tissues. The scaffold and matrix are expected to support cell colonization, migration, growth and differentiation, and to guide the development of the required tissue. The promises of tissue engineering, however, depend on the ability to physically distribute the products to patients in need. For this reason, the ability to cryogenically preserve not only cells, but also TECs, and one day even whole laboratory-produced organs, may be indispensable. Cryopreservation can be achieved by conventional freezing and vitrification (ice-free cryopreservation). In this publication we try to define the needs versus the desires of vitrifying TECs, with particular emphasis on the cryoprotectant properties, suitable materials and morphology. It is concluded that the formation of ice, through both direct and indirect effects, is probably fundamental to these difficulties, and this is why vitrification seems to be the most promising modality of cryopreservation.
Collapse
Affiliation(s)
- L L Kuleshova
- Low Temperature Preservation Unit, National University Medical Institutes, Yong Loo Lin School of Medicine, National University of Singapore, 03-01C Block MD11, 10 Medical Drive, Singapore 117597, Singapore.
| | | | | |
Collapse
|
24
|
Toh YC, Zhang C, Zhang J, Khong YM, Chang S, Samper VD, van Noort D, Hutmacher DW, Yu H. A novel 3D mammalian cell perfusion-culture system in microfluidic channels. LAB ON A CHIP 2007; 7:302-9. [PMID: 17330160 DOI: 10.1039/b614872g] [Citation(s) in RCA: 284] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mammalian cells cultured on 2D surfaces in microfluidic channels are increasingly used in drug development and biological research applications. These systems would have more biological or clinical relevance if the cells exhibit 3D phenotypes similar to the cells in vivo. We have developed a microfluidic channel based system that allows cells to be perfusion-cultured in 3D by supporting them with adequate 3D cell-cell and cell-matrix interactions. The maximal cell-cell interaction was achieved by perfusion-seeding cells through an array of micropillars; and 3D cell-matrix interactions were achieved by a polyelectrolyte complex coacervation process to form a thin layer of matrix conforming to the 3D cell shapes. Carcinoma cell lines (HepG2, MCF7), primary differentiated (hepatocytes) and primary progenitor cells (bone marrow mesenchymal stem cells) were perfusion-cultured for 72 hours to 1 week in the microfluidic channel, which preserved their 3D cyto-architecture and cell-specific functions or differentiation competence. This transparent 3D microfluidic channel-based cell culture system also allows direct optical monitoring of cellular events for a wide range of applications.
Collapse
Affiliation(s)
- Yi-Chin Toh
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, 138669, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wu Y, Yu H, Chang S, Magalhães R, Kuleshova LL. Vitreous Cryopreservation of Cell–Biomaterial Constructs Involving Encapsulated Hepatocytes. ACTA ACUST UNITED AC 2007; 13:649-58. [PMID: 17362134 DOI: 10.1089/ten.2006.0075] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We put forward a new strategy for cryopreservation, namely vitrification or ice-free preservation, of cell-biomaterial constructs for tissue-engineering applications. In this study, for a period of 6 days, we tested vitrified and control hepatocytes entrapped at 2 different cell densities (1.5 x 10(6) and 5 x 10(6) cells/mL) in 2 types of engineered collagen matrices (M- and G-collagen) as models to evaluate efficacy and universality of the developed vitrification method. The nature of collagens caused differences in capsule sizes (100-200 microm versus 350-450 microm). The developed method included rapid step-wise introduction of microencapsulated hepatocytes to vitrification solution (40v/v% ethylene glycol 0.6 M sucrose in medium) and their direct immersion in liquid nitrogen. Vitrification did not affect viability and functions of the microencapsulated hepatocytes, which exhibited trends similar to those of untreated controls in the decline of their functions and the rate of cell death during continuous culture, irrespective of physical and chemical properties of the biomaterial and cell density. For control and vitrification, the percentage of live cells varied from 80.3% +/- 0.9% to 82.3% +/- 1.4% in capsules formed by M-collagen, from 82.8% +/- 1.1% to 85.0% +/- 3.3% in capsules formed by G-collagen with cells entrapped at low density, and from 84.4% +/- 1.3% to 86.8% +/- 0.6% in capsules formed by G-collagen with cells entrapped at high density (p > 0.05). Within the same day, the maximum relative change in cell viability and functions between control and vitrification was 4% and 16%, respectively. The developed vitrification approach, which is an alternative to freezing, can be applied to other tissue-engineered constructs with comparable sizes, various cell numbers, and various properties of the biomaterials involved.
Collapse
Affiliation(s)
- Yingnan Wu
- Tissue Engineering Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
26
|
Cho CS, Seo SJ, Park IK, Kim SH, Kim TH, Hoshiba T, Harada I, Akaike T. Galactose-carrying polymers as extracellular matrices for liver tissue engineering. Biomaterials 2006; 27:576-85. [PMID: 16084586 DOI: 10.1016/j.biomaterials.2005.06.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 06/20/2005] [Indexed: 11/29/2022]
Abstract
Extracellular matrix (ECM) plays important roles in tissue engineering because cellular growth and differentiation, in the two-dimensional cell culture as well as in the three-dimensional space of the developing organism, require ECM with which the cells can interact. Especially, the bioartificial liver-assist device or regeneration of the liver-tissue substitutes for liver tissue engineering requires a suitable ECM for hepatocyte culture because hepatocytes are anchorage-dependent cells and are highly sensitive to the ECM milieu for the maintenance of their viability and differentiated functions. Galactose-carrying synthetic ECMs derived from synthetic polymers and natural polymers bind hepatocytes through a receptor-mediated mechanism, resulting in enhanced hepatocyte functions. Attachment and functions of hepatocytes were affected by physico-chemical properties including ECM geometry as well as the type, density and orientation of galactose. Also, cellular environment, medium composition and dynamic culture system influenced liver-specific functions of hepatocytes beside ECM.
Collapse
Affiliation(s)
- C S Cho
- School of Agricultural Biotechnology, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chia SM, Lin PC, Quek CH, Yin C, Mao HQ, Leong KW, Xu X, Goh CH, Ng ML, Yu H. Engineering microenvironment for expansion of sensitive anchorage-dependent mammalian cells. J Biotechnol 2005; 118:434-47. [PMID: 16026880 DOI: 10.1016/j.jbiotec.2005.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 05/02/2005] [Accepted: 05/12/2005] [Indexed: 01/07/2023]
Abstract
Tissue engineering involves ex vivo seeding of anchorage-dependent mammalian cells onto scaffolds, or transplanting cells in vivo. The cell expansion currently requires repeated cell detachment from solid substrata by enzymatic, chemical or mechanical means. The report here presents a high yield three-dimensional culture and harvest system circumventing the conventional detachment requirements. Cells mixed with dilute cationic collagen were microencapsulated within an ultra-thin shell of synthetic polymers. The cationic collagen could rapidly form a conformal layer of collagen fibers around cells to support cell proliferation and functions. The collagen could be readily removed from cells with a buffer rinse after harvesting from the fragile microcapsules. The cells harvested from this system demonstrate improved attachment, morphology and functions over conventionally cultured cells, upon binding to ligand-conjugated polymer surfaces. The harvested cells can be re-encapsulated and allowed to proliferate again, or used immediately in applications.
Collapse
Affiliation(s)
- Ser-Mien Chia
- Faculty of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Toh YC, Ng S, Khong YM, Samper V, Yu H. A Configurable Three-Dimensional Microenvironment in a Microfluidic Channel for Primary Hepatocyte Culture. Assay Drug Dev Technol 2005; 3:169-76. [PMID: 15871691 DOI: 10.1089/adt.2005.3.169] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed a technique for the in situ three-dimensional (3D) immobilization of primary rat hepatocytes within a localized matrix in a microfluidic channel that provides a 3D microenvironment incorporating both a configurable 3D matrix and fluid perfusion. This is based on the laminar flow complex coacervation of a pair of oppositely charged polyelectrolytes, i.e., methylated collagen and a terpolymer of HEMA-MMA-MAA. 3D collagen matrices were formed with minimal gelation times (<8 min), were able to entrap cells under aqueous noncytotoxic conditions, and permitted culture media to be perfused in the microchannel by virtue of the spatial confinement of the 3D matrix on one side of the channel. The architecture and stability of the collagen matrix could be configured by the use of different material combinations and changes in the polyelectrolyte flow rates and retention time. Primary rat hepatocytes cultured for 24 h in the 3D matrix within the microchannel showed comparable or enhanced cytochrome P450 7-ethoxyresorufin-O-deethylation activity with static controls. The configurable 3D microenvironment in the microfluidic channel may be a potential 3D culture model of primary hepatocytes for drug testing applications.
Collapse
Affiliation(s)
- Yi-Chin Toh
- Institute of Bioengineering and Nanotechnology, Singapore
| | | | | | | | | |
Collapse
|