1
|
Mukherjee S, Kim B, Cheng LY, Doerfert MD, Li J, Hernandez A, Liang L, Jarvis MI, Rios PD, Ghani S, Joshi I, Isa D, Ray T, Terlier T, Fell C, Song P, Miranda RN, Oberholzer J, Zhang DY, Veiseh O. Screening hydrogels for antifibrotic properties by implanting cellularly barcoded alginates in mice and a non-human primate. Nat Biomed Eng 2023; 7:867-886. [PMID: 37106151 PMCID: PMC10593184 DOI: 10.1038/s41551-023-01016-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 02/27/2023] [Indexed: 04/29/2023]
Abstract
Screening implantable biomaterials for antifibrotic properties is constrained by the need for in vivo testing. Here we show that the throughput of in vivo screening can be increased by cellularly barcoding a chemically modified combinatorial library of hydrogel formulations. The method involves the implantation of a mixture of alginate formulations, each barcoded with human umbilical vein endothelial cells from different donors, and the association of the identity and performance of each formulation by genotyping single nucleotide polymorphisms of the cells via next-generation sequencing. We used the method to screen 20 alginate formulations in a single mouse and 100 alginate formulations in a single non-human primate, and identified three lead hydrogel formulations with antifibrotic properties. Encapsulating human islets with one of the formulations led to long-term glycaemic control in a mouse model of diabetes, and coating medical-grade catheters with the other two formulations prevented fibrotic overgrowth. High-throughput screening of barcoded biomaterials in vivo may help identify formulations that enhance the long-term performance of medical devices and of biomaterial-encapsulated therapeutic cells.
Collapse
Affiliation(s)
- Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX, USA
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Boram Kim
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Lauren Y Cheng
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | - Jiaming Li
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | - Lily Liang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Maria I Jarvis
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | | | | | | | - Trisha Ray
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Tanguy Terlier
- SIMS Laboratory, Shared Equipment Authority, Rice University, Houston, TX, USA
| | - Cody Fell
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Ping Song
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Roberto N Miranda
- Department of Hematopathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jose Oberholzer
- Division of Transplant Surgery, University of Virginia, Charlottesville, VA, USA
| | - David Yu Zhang
- Department of Bioengineering, Rice University, Houston, TX, USA.
- NuProbe USA, Houston, TX, USA.
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
2
|
Polishevska K, Kelly S, Kuppan P, Seeberger KL, Aggarwal S, Paramor J, Unsworth LD, Tse HM, Korbutt GS, Pepper AR. Nanothin Conformal Coating with Poly(N-vinylpyrrolidone) and Tannic Acid (PVPON/TA) Preserves Murine and Human Pancreatic Islets Function. Pharmaceutics 2023; 15:pharmaceutics15041137. [PMID: 37111623 PMCID: PMC10143619 DOI: 10.3390/pharmaceutics15041137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
Beta cell replacement therapies can restore glycemic control to select individuals living with type 1 diabetes. However, the obligation of lifelong immunosuppression restricts cell therapies from replacing exogenous insulin administration. Encapsulation strategies can reduce the inherent adaptive immune response; however, few are successfully translated into clinical testing. Herein, we evaluated if the conformal coating of islets with poly(N-vinylpyrrolidone) (PVPON) and tannic acid (TA) (PVPON/TA) could preserve murine and human islet function while conferring islet allograft protection. In vitro function was evaluated using static glucose-stimulated insulin secretion, oxygen consumption rates, and islet membrane integrity. In vivo function was evaluated by transplanting human islets into diabetic immunodeficient B6.129S7-Rag1tm1Mom/J (Rag-/-) mice. The immunoprotective capacity of the PVPON/TA-coating was assessed by transplanting BALB/c islets into diabetic C57BL/6 mice. Graft function was evaluated by non-fasting blood glucose measurements and glucose tolerance testing. Both coated and non-coated murine and human islets exhibited indistinguishable in vitro potency. PVPON/TA-coated and control human islets were able to restore euglycemia post-transplant. The PVPON/TA-coating as monotherapy and adjuvant to systemic immunosuppression reduced intragraft inflammation and delayed murine allograft rejection. This study demonstrates that PVPON/TA-coated islets may be clinically relevant as they retain their in vitro and in vivo function while modulating post-transplant immune responses.
Collapse
Affiliation(s)
- Kateryna Polishevska
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2T9, Canada
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Sandra Kelly
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2T9, Canada
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Purushothaman Kuppan
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2T9, Canada
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Karen L. Seeberger
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2T9, Canada
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Saloni Aggarwal
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2T9, Canada
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Joy Paramor
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2T9, Canada
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Larry D. Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Hubert M. Tse
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Gregory S. Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2T9, Canada
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2T9, Canada
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
3
|
Barra JM, Kozlovskaya V, Kepple JD, Seeberger KL, Kuppan P, Hunter CS, Korbutt GS, Kharlampieva E, Tse HM. Xenotransplantation of tannic acid-encapsulated neonatal porcine islets decreases proinflammatory innate immune responses. Xenotransplantation 2021; 28:e12706. [PMID: 34245064 DOI: 10.1111/xen.12706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/10/2021] [Accepted: 06/27/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Islet transplantation with neonatal porcine islets (NPIs) is a promising treatment for type 1 diabetes (T1D), but immune rejection poses a major hurdle for clinical use. Innate immune-derived reactive oxygen species (ROS) synthesis can facilitate islet xenograft destruction and enhance adaptive immune responses. METHODS To suppress ROS-mediated xenograft destruction, we utilized nanothin encapsulation materials composed of multilayers of tannic acid (TA), an antioxidant, and a neutral polymer, poly(N-vinylpyrrolidone) (PVPON). We hypothesized that (PVPON/TA)-encapsulated NPIs will maintain euglycemia and dampen proinflammatory innate immune responses following xenotransplantation. RESULTS (PVPON/TA)-encapsulated NPIs were viable and glucose-responsive similar to non-encapsulated NPIs. Transplantation of (PVPON/TA)-encapsulated NPIs into hyperglycemic C57BL/6.Rag or NOD.Rag mice restored euglycemia, exhibited glucose tolerance, and maintained islet-specific transcription factor levels similar to non-encapsulated NPIs. Gene expression analysis of (PVPON/TA)-encapsulated grafts post-transplantation displayed reduced proinflammatory Ccl5, Cxcl10, Tnf, and Stat1 while enhancing alternatively activated macrophage Retnla, Arg1, and Stat6 mRNA accumulation compared with controls. Flow cytometry analysis demonstrated significantly reduced innate immune infiltration, MHC-II, co-stimulatory molecule, and TNF expression with concomitant increases in arginase-1+ macrophages and dendritic cells. Similar alterations in immune responses were observed following xenotransplantation into immunocompetent NOD mice. CONCLUSION Our data suggest that (PVPON/TA) encapsulation of NPIs is an effective strategy to decrease inflammatory innate immune signals involved in NPI xenograft responses through STAT1/6 modulation without compromising islet function.
Collapse
Affiliation(s)
- Jessie M Barra
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA.,Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica D Kepple
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Medicine, Division of Endocrinology Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karen L Seeberger
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Purushothaman Kuppan
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Chad S Hunter
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Medicine, Division of Endocrinology Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory S Korbutt
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Eugenia Kharlampieva
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA.,Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hubert M Tse
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
4
|
Yalman V, Laçin NT. Development of humic acid and alginate-based wound dressing and evaluation on inflammation. MATERIALS TECHNOLOGY 2019; 34:705-717. [DOI: 10.1080/10667857.2019.1619961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/12/2019] [Indexed: 01/06/2025]
Affiliation(s)
- Volkan Yalman
- Department of Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey
| | - Nelisa Türkoğlu Laçin
- Department of Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
5
|
Fan Y, Li Y, Zhang J, Ding X, Cui J, Wang G, Wang Z, Wang L. Alginate Enhances Memory Properties of Antitumor CD8+ T Cells by Promoting Cellular Antioxidation. ACS Biomater Sci Eng 2019; 5:4717-4725. [PMID: 33448815 DOI: 10.1021/acsbiomaterials.9b00373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yongli Fan
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongkui Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jian Zhang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiuli Ding
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinyuan Cui
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
6
|
Park E, Lee J, Huh KM, Lee SH, Lee H. Toxicity-Attenuated Glycol Chitosan Adhesive Inspired by Mussel Adhesion Mechanisms. Adv Healthc Mater 2019; 8:e1900275. [PMID: 31091015 DOI: 10.1002/adhm.201900275] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/25/2019] [Indexed: 01/04/2023]
Abstract
Chitosan-catechol, inspired from mussel-adhesive-proteins, is characterized by the formation of an adhesive membrane complex through instant bonding with serum proteins not found in chitosan. Using this intrinsic property, chitosan-catechol is widely applied for hemostatic needles, general hemostatic materials, nanoparticle composites, and 3D printing. Despite its versatility, the practical use of chitosan-catechol in the clinic is limited due to its undesired immune responses. Herein, a catechol-conjugated glycol chitosan is proposed as an alternative hemostatic hydrogel with negligible immune responses enabling the replacement of chitosan-catechol. Comparative cellular toxicity and in vivo skin irritation between chitosan-catechol and glycol chitosan-catechol are evaluated. Their immune responses are also assessed using histological analysis after subcutaneous implantation into mice. The results show that glycol chitosan-catechol significantly attenuates the immune response compared with chitosan-catechol; this finding is likely due to the antibiofouling effect of ethylene glycol groups and the reduced adhesion of immune cells. Finally, the tissue adhesion and hemostatic ability of glycol chitosan-catechol hydrogels reveal that these ethylene glycol groups do not dramatically modify the adhesiveness and hemostatic ability compared with nonglycol chitosan-catechol. This study suggests that glycol chitosan-catechol can be a promising alternative to chitosan-catechol in various biomedical fields such as hemostatic agents.
Collapse
Affiliation(s)
- Eunsook Park
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST) 291 University Rd Yuseong‐gu Daejeon 34141 Republic of Korea
| | - Jeehee Lee
- Biomedical Science and Engineering Interdisciplinary ProgramKorea Advanced Institute of Science and Technology (KAIST) 291 University Rd Yuseong‐gu Daejeon 34141 Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and EngineeringChungnam National University 99 University Rd Yuseong‐gu Daejeon 34134 Republic of Korea
| | - Soo Hyeon Lee
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST) 291 University Rd Yuseong‐gu Daejeon 34141 Republic of Korea
| | - Haeshin Lee
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST) 291 University Rd Yuseong‐gu Daejeon 34141 Republic of Korea
| |
Collapse
|
7
|
Veiseh O, Vegas AJ. Domesticating the foreign body response: Recent advances and applications. Adv Drug Deliv Rev 2019; 144:148-161. [PMID: 31491445 PMCID: PMC6774350 DOI: 10.1016/j.addr.2019.08.010] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 01/03/2023]
Abstract
The foreign body response is an immunological process that leads to the rejection of implanted devices and presents a fundamental challenge to their performance, durability, and therapeutic utility. Recent advances in materials development and device design are now providing strategies to overcome this immune-mediated reaction. Here, we briefly review our current mechanistic understanding of the foreign body response and highlight new anti-FBR technologies from this decade that have been applied successfully in biomedical applications relevant to implants, devices, and cell-based therapies. Further development of these important technologies promises to enable new therapies, diagnostics, and revolutionize the management of patient care for many intractable diseases.
Collapse
Affiliation(s)
- Omid Veiseh
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77030, USA.
| | - Arturo J Vegas
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA.
| |
Collapse
|
8
|
Espona-Noguera A, Etxebarria-Elezgarai J, Saenz Del Burgo L, Cañibano-Hernández A, Gurruchaga H, Blanco FJ, Orive G, Hernández RM, Benito-Lopez F, Ciriza J, Basabe-Desmonts L, Pedraz JL. Type 1 Diabetes Mellitus reversal via implantation of magnetically purified microencapsulated pseudoislets. Int J Pharm 2019; 560:65-77. [PMID: 30742984 DOI: 10.1016/j.ijpharm.2019.01.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 01/13/2023]
Abstract
Microencapsulation of pancreatic islets for the treatment of Type I Diabetes Mellitus (T1DM) generates a high quantity of empty microcapsules, resulting in high therapeutic graft volumes that can enhance the host's immune response. We report a 3D printed microfluidic magnetic sorting device for microcapsules purification with the objective to reduce the number of empty microcapsules prior transplantation. In this study, INS1E pseudoislets were microencapsulated within alginate (A) and alginate-poly-L-lysine-alginate (APA) microcapsules and purified through the microfluidic device. APA microcapsules demonstrated higher mechanical integrity and stability than A microcapsules, showing better pseudoislets viability and biological function. Importantly, we obtained a reduction of the graft volume of 77.5% for A microcapsules and 78.6% for APA microcapsules. After subcutaneous implantation of induced diabetic Wistar rats with magnetically purified APA microencapsulated pseudoislets, blood glucose levels were restored into normoglycemia (<200 mg/dL) for almost 17 weeks. In conclusion, our described microfluidic magnetic sorting device represents a great alternative approach for the graft volume reduction of microencapsulated pseudoislets and its application in T1DM disease.
Collapse
Affiliation(s)
- A Espona-Noguera
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - J Etxebarria-Elezgarai
- BIOMICs-microfluidics Research Group, Microfluidics Cluster UPV/EHU, University of the Basque Country, Spain
| | - L Saenz Del Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - A Cañibano-Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - H Gurruchaga
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - F J Blanco
- INIBIC-Hospital Universitario La Coruña, La Coruña, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), La Coruña, Spain
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), BTI Biotechnology Institute, Vitoria-Gasteiz, Spain
| | - Rosa M Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - F Benito-Lopez
- AMMa LOAC Research Group, Microfluidics Cluster UPV/EHU, University of the Basque Country, Spain
| | - J Ciriza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - L Basabe-Desmonts
- BIOMICs-microfluidics Research Group, Microfluidics Cluster UPV/EHU, University of the Basque Country, Spain; Basque Foundation of Science, IKERBASQUE, Spain.
| | - J L Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
9
|
Zhu H, Xi Z, Yang S, Zhang Y, Wang H, Guo H, Zhang Y, Chen D, Guo D. Responses of Free Radicals to Subcutaneous Implantation of Alginate-Chitosan-Alginate (ACA) Microcapsules in Mice. Int J Artif Organs 2018; 32:224-31. [DOI: 10.1177/039139880903200406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of this study was to characterize the levels of free radicals in serum and antioxidase activity after microcapsules were implanted into the subcutaneous space of mice. Cell viability was evaluated using AO/EB staining. Serum free radicals, malondialdehyde and superoxide dismutase levels were evaluated by colorimetry analysis. The mice were divided into three groups: saline injection group (n=15), empty microcapsules injected group (n=21), encapsulated cells injected group (n=21). Cell viability and serum analysis were executed at 1, 4 and 7 days post-implantation. Hydrogen peroxide and malondialdehyde levels initially increased in the recipients of the empty microcapsules, before decreasing to the basal level. However, in mice receiving the encapsulated cells, the levels were higher at the end of study. Nitric oxide and superoxide dismutase increased after the implantation of microcapsules with or without the BHK-21 cells, but were not changed in response to the saline injection. The viability of the encapsulated cells was high in vivo, although some microcapsules had broken by 7 days post-implantation. These results suggest that nitric oxide plays a role in the specific response to microcapsules. The levels of free radicals rapidly increased immediately following microcapsule transplantation, but they caused only slight cellular damage before the microencapsulated cells were exposed.
Collapse
Affiliation(s)
- Haibao Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan - China
| | - Zhaofang Xi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan - China
| | - Shijin Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan - China
| | - Yanhong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan - China
| | - Hong Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan - China
| | - Huitian Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan - China
| | - Yao Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan - China
| | - Dachi Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan - China
| | - Dingzong Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan - China
| |
Collapse
|
10
|
de la Oliva N, Navarro X, Del Valle J. Time course study of long-term biocompatibility and foreign body reaction to intraneural polyimide-based implants. J Biomed Mater Res A 2017; 106:746-757. [PMID: 29052368 DOI: 10.1002/jbm.a.36274] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/06/2017] [Accepted: 10/17/2017] [Indexed: 12/26/2022]
Abstract
The foreign body reaction (FBR) against an implanted device is characterized by the formation of a fibrotic tissue around the implant. In the case of interfaces for peripheral nerves, used to stimulate specific group of axons and to record different nerve signals, the FBR induces a matrix deposition around the implant creating a physical separation between nerve fibers and the interface that may reduce its functionality over time. In order to understand how the FBR to intraneural interfaces evolves, polyimide non-functional devices were implanted in rat peripheral nerve. Functional tests (electrophysiological, pain and locomotion) and histological evaluation demonstrated that implanted devices did not cause any alteration in nerve function, in myelinated axons or in nerve architecture. The inflammatory response due to the surgical implantation decreased after 2 weeks. In contrast, inflammation was higher and more prolonged in the device implanted nerves with a peak after 2 weeks. With regard to tissue deposition, a tissue capsule appeared soon around the devices, acquiring maximal thickness at 2 weeks and being remodeled subsequently. Immunohistochemical analysis revealed two different cell types implicated in the FBR in the nerve: macrophages as the first cells in contact with the interface and fibroblasts that appear later at the edge of the capsule. Our results describe how the FBR against a polyimide implant in the peripheral nerve occurs and which are the main cellular players. Increasing knowledge of these responses will help to improve strategies to decrease the FBR against intraneural implants and to extend their usability. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 746-757, 2018.
Collapse
Affiliation(s)
- Natàlia de la Oliva
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Institute of Neurosciences, Bellaterra, 08193, Barcelona, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Institute of Neurosciences, Bellaterra, 08193, Barcelona, Spain
| | - Jaume Del Valle
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Institute of Neurosciences, Bellaterra, 08193, Barcelona, Spain.,Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
11
|
Abstract
Transplantation of pancreatic islets encapsulated within immuno-protective microcapsules is a strategy that has the potential to overcome graft rejection without the need for toxic immunosuppressive medication. However, despite promising preclinical studies, clinical trials using encapsulated islets have lacked long-term efficacy, and although generally considered clinically safe, have not been encouraging overall. One of the major factors limiting the long-term function of encapsulated islets is the host's immunological reaction to the transplanted graft which is often manifested as pericapsular fibrotic overgrowth (PFO). PFO forms a barrier on the capsule surface that prevents the ingress of oxygen and nutrients leading to islet cell starvation, hypoxia and death. The mechanism of PFO formation is still not elucidated fully and studies using a pig model have tried to understand the host immune response to empty alginate microcapsules. In this review, the varied strategies to overcome or reduce PFO are discussed, including alginate purification, altering microcapsule geometry, modifying alginate chemical composition, co-encapsulation with immunomodulatory cells, administration of pharmacological agents, and alternative transplantation sites. Nanoencapsulation technologies, such as conformal and layer-by-layer coating technologies, as well as nanofiber, thin-film nanoporous devices, and silicone based NanoGland devices are also addressed. Finally, this review outlines recent progress in imaging technologies to track encapsulated cells, as well as promising perspectives concerning the production of insulin-producing cells from stem cells for encapsulation.
Collapse
Affiliation(s)
- Vijayaganapathy Vaithilingam
- Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organization (CSIRO), North Ryde, New South Wales, Australia
| | - Sumeet Bal
- Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organization (CSIRO), North Ryde, New South Wales, Australia
| | - Bernard E Tuch
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Doloff JC, Veiseh O, Vegas AJ, Tam HH, Farah S, Ma M, Li J, Bader A, Chiu A, Sadraei A, Aresta-Dasilva S, Griffin M, Jhunjhunwala S, Webber M, Siebert S, Tang K, Chen M, Langan E, Dholokia N, Thakrar R, Qi M, Oberholzer J, Greiner DL, Langer R, Anderson DG. Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. NATURE MATERIALS 2017; 16:671-680. [PMID: 28319612 PMCID: PMC5445003 DOI: 10.1038/nmat4866] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/19/2017] [Indexed: 05/11/2023]
Abstract
Host recognition and immune-mediated foreign body response to biomaterials can compromise the performance of implanted medical devices. To identify key cell and cytokine targets, here we perform in-depth systems analysis of innate and adaptive immune system responses to implanted biomaterials in rodents and non-human primates. While macrophages are indispensable to the fibrotic cascade, surprisingly neutrophils and complement are not. Macrophages, via CXCL13, lead to downstream B cell recruitment, which further potentiated fibrosis, as confirmed by B cell knockout and CXCL13 neutralization. Interestingly, colony stimulating factor-1 receptor (CSF1R) is significantly increased following implantation of multiple biomaterial classes: ceramic, polymer and hydrogel. Its inhibition, like macrophage depletion, leads to complete loss of fibrosis, but spares other macrophage functions such as wound healing, reactive oxygen species production and phagocytosis. Our results indicate that targeting CSF1R may allow for a more selective method of fibrosis inhibition, and improve biomaterial biocompatibility without the need for broad immunosuppression.
Collapse
Affiliation(s)
- Joshua C. Doloff
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Omid Veiseh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Arturo J. Vegas
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Hok Hei Tam
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Shady Farah
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Minglin Ma
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Jie Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Andrew Bader
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Alan Chiu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Atieh Sadraei
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
| | - Stephanie Aresta-Dasilva
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Marissa Griffin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
| | - Siddharth Jhunjhunwala
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Matthew Webber
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Sean Siebert
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Katherine Tang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Michael Chen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Erin Langan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Nimit Dholokia
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Raj Thakrar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Meirigeng Qi
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL
| | - Jose Oberholzer
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL
| | - Dale L. Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- ; Tel.: +1 617 258 6843; fax: +1 617 258 8827
| |
Collapse
|
13
|
Nurlidar F, Kobayashi M, Terada K, Ando T, Tanihara M. Cytocompatible polyion complex gel of poly(Pro-Hyp-Gly) for simultaneous rat bone marrow stromal cell encapsulation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1480-1496. [PMID: 28514893 DOI: 10.1080/09205063.2017.1331872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Polyion complex (PIC) gel of poly(Pro-Hyp-Gly) was successfully fabricated by simply mixing polyanion and polycation derivatives of poly(Pro-Hyp-Gly), a collagen-like polypeptide. The polyanion, succinylated poly(Pro-Hyp-Gly), and the polycation, arginylated poly(Pro-Hyp-Gly), contain carboxy (pKa = 5.2) and guanidinium (pKa = 12.4) groups, respectively. Mixing the polyanion and the polycation at physiological pH (pH = 7.4) resulted in PIC gel. The hydrogel formation was optimum at an equimolar ratio of carboxy to guanidinium groups, suggesting that ionic interaction is the main determinant for the hydrogel formation. The hydrogel was successfully used for simultaneous rat bone marrow stromal cell encapsulation. The encapsulated cells survived and proliferated within the hydrogel. In addition, the cells exhibited different morphology in the hydrogel compared with cells cultured on a tissue culture dish as a two-dimensional (2D) control. At day one, a round morphology and homogeneous single cell distribution were observed in the hydrogel. In contrast, the cells spread and formed a fibroblast-like morphology on the 2D control. After three days, the cells in the hydrogel maintained their morphology and some of them formed multicellular aggregates, which is similar to cell morphology in an in vivo microenvironment. These results suggest that the PIC gel of poly(Pro-Hyp-Gly) can serve as a cytocompatible three-dimensional scaffold for stem cell encapsulation, supporting their viability, proliferation, and in vivo-like behavior.
Collapse
Affiliation(s)
- Farah Nurlidar
- a Graduate School of Materials Science , Nara Institute of Science and Technology , Nara , Japan
| | - Mime Kobayashi
- a Graduate School of Materials Science , Nara Institute of Science and Technology , Nara , Japan
| | - Kayo Terada
- a Graduate School of Materials Science , Nara Institute of Science and Technology , Nara , Japan
| | - Tsuyoshi Ando
- a Graduate School of Materials Science , Nara Institute of Science and Technology , Nara , Japan
| | - Masao Tanihara
- a Graduate School of Materials Science , Nara Institute of Science and Technology , Nara , Japan
| |
Collapse
|
14
|
Zhu L, Ge F, Yang L, Li W, Wei S, Tao Y, Du G. Alginate Particles with Ovalbumin (OVA) Peptide Can Serve as a Carrier and Adjuvant for Immune Therapy in B16-OVA Cancer Model. Med Sci Monit Basic Res 2017; 23:166-172. [PMID: 28450696 PMCID: PMC5421747 DOI: 10.12659/msmbr.901576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 03/18/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Alginate is a natural polysaccharide obtained from brown algae and has been shown to have numerous applications in biomedical science, such as wound healing, delivery of bioactive agents, and cell transplantation. Ovalbumin (OVA) peptide 323-339 has been reported to be involved in immune response. MATERIAL AND METHODS This work investigated the use of alginate particles as a carrier and adjuvant for the immune therapy of cancer. Alginate particles loaded with OVA peptide were produced via emulsion. A tumor model was established in C57BL/6J mice via subcutaneous injection of 3×105 B16-OVA tumor cells. The effect of alginate/OVA peptide on cell viability was analyzed by use of the CCK-8 assay kit. Activation of macrophages was examined by checking cell surface makers CD40 and CD86 by FACs. RESULTS Alginate/OVA peptide inhibited tumor progression more effectively than using the peptide alone. The viability and uptake study illustrated that this particle is safe and non-toxic. The activation study demonstrated that alginate particles can promote the activation of surface markers on macrophages. ELISA assay showed that the particles with peptide can promote the secretion of inflammatory and effector cytokines from macrophages. CONCLUSIONS This study demonstrated that alginate has dual functions in immune therapy of cancer, serving both as a carrier and an adjuvant.
Collapse
Affiliation(s)
- Longbao Zhu
- School of Biochemical Engineering, Anhui Polytechnic University, Wuhu, Anhui, P.R. China
| | - Fei Ge
- School of Biochemical Engineering, Anhui Polytechnic University, Wuhu, Anhui, P.R. China
| | - Liangjun Yang
- School of Biochemical Engineering, Anhui Polytechnic University, Wuhu, Anhui, P.R. China
| | - Wanzhen Li
- School of Biochemical Engineering, Anhui Polytechnic University, Wuhu, Anhui, P.R. China
| | - Shenghua Wei
- School of Biochemical Engineering, Anhui Polytechnic University, Wuhu, Anhui, P.R. China
| | - Yuigui Tao
- School of Biochemical Engineering, Anhui Polytechnic University, Wuhu, Anhui, P.R. China
| | - Guocheng Du
- School of Biochemical Engineering, Anhui Polytechnic University, Wuhu, Anhui, P.R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
15
|
Kim IY, Choi H, Kim KK. Improved survival of anchorage-dependent cells in core-shell hydrogel microcapsules via co-encapsulation with cell-friendly microspheres. J Microencapsul 2017; 34:57-62. [PMID: 28097929 DOI: 10.1080/02652048.2017.1284275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this study, we investigated the effect of intracapsular environment on the survival of anchorage-dependent cells (ADCs) encapsulated in alginate microcapsules with three different core structures, i.e. liquid, semi-liquid and microsphere-encapsulating semi-liquid core, using NIH 3T3 fibroblasts as an ADC model. For the latter, we fabricated poly (ɛ-caprolactone) microspheres and co-encapsulated them with the cells, to establish cell-substrate interactions in the capsule. The fibroblast cells co-encapsulated with the microspheres exhibited higher survival and growth than those without. This study provides a "proof of concept" for employing microspheres as a cell-friendly surface to establish intracapsular cell-substrate interactions thus prolonging the survival of encapsulated therapeutic ADCs.
Collapse
Affiliation(s)
- In-Yong Kim
- a Department of Electrical and Computer Engineering , University of Illinois , Urbana , IL , USA.,b Micro and Nanotechnology Laboratory , University of Illinois , Urbana , IL , USA
| | - Hyungsoo Choi
- a Department of Electrical and Computer Engineering , University of Illinois , Urbana , IL , USA.,b Micro and Nanotechnology Laboratory , University of Illinois , Urbana , IL , USA
| | - Kyekyoon Kevin Kim
- a Department of Electrical and Computer Engineering , University of Illinois , Urbana , IL , USA.,b Micro and Nanotechnology Laboratory , University of Illinois , Urbana , IL , USA.,c Department of Bioengineering , University of Illinois , Urbana , IL , USA.,d Department of Materials Science and Engineering , University of Illinois , Urbana , IL , USA
| |
Collapse
|
16
|
Wasilewska M, Adamczyk Z, Basinska T, Gosecka M, Lupa D. Monolayers of Poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) Microparticles Formed by Controlled Self-Assembly with Potential Application as Protein-Repelling Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9566-9574. [PMID: 27552337 DOI: 10.1021/acs.langmuir.6b02069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The kinetics of the self-assembly of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microparticles on poly(allylamine hydrochloride)-derivatized silicon/silica substrate was determined by direct AFM imaging and streaming potential (SP) measurements. The kinetic runs acquired under diffusion-controlled transport were quantitatively interpreted in terms of the extended random sequential adsorption (RSA) model. This allowed confirmation of a core/shell morphology of the microparticles. The polyglycidol-rich shell of thickness equal to 25 nm exhibited a fuzzy structure that enabled penetration of particles into each other resulting in high coverage inaccessible for ordinary microparticles. The SP measurements interpreted by using the 3D electrokinetic model confirmed this microparticle structure. Additionally, the acid-base characteristics of the microparticle monolayers were determined for a broad pH range. By using the streaming potential measurements, human serum albumin (HSA) adsorption on the microparticle monolayers was investigated under in situ conditions. It was confirmed that the protein adsorption was considerably lower than for the reference case of bare silicon/silica substrate under the same physicochemical conditions. This effect was attributed to the presence of the shell diminishing the protein/microparticle physical interactions.
Collapse
Affiliation(s)
- Monika Wasilewska
- J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science , Niezapominajek 8, 30-239 Krakow, Poland
| | - Zbigniew Adamczyk
- J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science , Niezapominajek 8, 30-239 Krakow, Poland
| | - Teresa Basinska
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences , ul. Sienkiewicza 112, 90-363 Łódź, Poland
| | - Monika Gosecka
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences , ul. Sienkiewicza 112, 90-363 Łódź, Poland
| | - Dawid Lupa
- J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science , Niezapominajek 8, 30-239 Krakow, Poland
| |
Collapse
|
17
|
Itoh T, Hata Y, Nishinakamura H, Kumano K, Takahashi H, Kodama S. Islet-derived damage-associated molecular pattern molecule contributes to immune responses following microencapsulated neonatal porcine islet xenotransplantation in mice. Xenotransplantation 2016; 23:393-404. [PMID: 27422454 DOI: 10.1111/xen.12253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/29/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Clinical allogeneic islet transplantation has become an attractive procedure for type 1 diabetes mellitus treatment. However, there is a severe shortage of human donors. Microencapsulated neonatal porcine islet (NPI) xenotransplantation may be an alternative transplantation procedure. Currently, the efficacy of microencapsulated NPI xenotransplantation into the peritoneal cavity is limited because of early non-function resulting from inflammation, which is a serious hindrance to promoting this procedure as a standard therapy. Previously, we have demonstrated that high-mobility group box 1 (HMGB1), a damage-associated molecular pattern (DAMP) molecule, was released from transplanted islets and triggered inflammatory reactions leading to early loss of intrahepatic syngeneic islet grafts in mice. In this study, we hypothesized that the inflammatory reaction in the peritoneal cavity following the transplantation of microencapsulated NPIs is more severe than that of empty capsules. Additionally, we predicted that HMGB1 released from transplanted microencapsulated NPIs triggers further inflammatory reactions in mice. Finally, we hypothesized that microencapsulated NPI xenotransplantation efficacy would be improved by treatment-targeting inflammatory reactions in a mouse model. METHODS A total of 10 000 empty capsules (alginate-poly-L-ornithine-alginate) or 10 000 IEQ microencapsulated NPIs were transplanted into the peritoneal cavity of streptozotocin-induced diabetic C57BL/6 mice. RESULTS The numbers of mononuclear cells in the peritoneal cavity following empty capsule or microencapsulated NPI transplantation were 4.8 × 10(6) ± 0.9 × 10(6) and 13.6 × 10(6) ± 3.0 × 10(6) , respectively (P < 0.05). Fluorescence-activated cell sorting (FACS) analysis revealed that tumor necrosis factor (TNF)-α-, interleukin (IL)-6-, interferon (IFN)-γ-, and/or IL-12-positive macrophages, neutrophils, and dendritic cells had infiltrated the peritoneal cavity after empty capsules or microencapsulated NPIs administration. IL-6 concentrations in the peritoneal lavage fluids on 7 days after empty capsule or microencapsulated NPI transplantation were 18.5 ± 10.0 and 157.4 ± 46.3 pg/ml, respectively (P < 0.001), while TNF-α concentrations were 4.6 ± 1.4 and 19.8 ± 8.4 pg/ml, respectively (P < 0.01). In addition, HMGB1 concentrations were 37.6 ± 6.6 and 117.4 ± 8.1 ng/ml, respectively (P < 0.0001). In vitro experiments revealed that the total amount of released HMGB1 into the culture medium of empty capsule (200 capsules/dish) and microencapsulated NPI (200 IEQ/dish) after hypoxic culture (1% O2 , 5% CO2 , and 94% N2 ) was 0 and 8.6 ± 2.2 ng, respectively (P < 0.001). FACS analysis revealed that TNF-α- and IL-6-positive macrophages were also observed in the peritoneal cavity following intraperitoneal injection of HMGB1 itself. Anti-TNF-α antibody treatment was associated with slightly prolonged graft survival and improved glucose tolerance 30 days after transplantation, but none of the recipients were remained normoglycemic. CONCLUSIONS In conclusion, early inflammatory reactions might be therapeutic targets for the prolongation of microencapsulated NPIs graft survival. Thus, treatment-targeting inflammation might improve the efficiency of clinical microencapsulated NPI xenotransplantation.
Collapse
Affiliation(s)
- Takeshi Itoh
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Yuko Hata
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Hitomi Nishinakamura
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kenjiro Kumano
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Takahashi
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan.
| |
Collapse
|
18
|
Ibarra V, Appel AA, Anastasio MA, Opara EC, Brey EM. This paper is a winner in the Undergraduate category for the SFB awards: Evaluation of the tissue response to alginate encapsulated islets in an omentum pouch model. J Biomed Mater Res A 2016; 104:1581-90. [PMID: 27144389 PMCID: PMC5897127 DOI: 10.1002/jbm.a.35769] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/02/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
Abstract
Islet transplantation is currently in clinical use as a treatment for type I diabetes, but donor shortages and long-term immunosuppression limit broad application. Alginate microcapsules coated with poly-l-ornithine can be used to encapsulate islets in an environment that allows diffusion of glucose, insulin, nutrients, and waste products while inhibiting cells and antibodies. While clinical trials are ongoing using islets encapsulated in alginate microbeads, there are concerns in regards to long-term stability. Evaluation of the local tissue response following implantation provides insight into the underlying mechanisms contributing to biomaterial failure, which can be used to the design of new material strategies. Macrophages play an important role in driving the response. In this study, the stability of alginate microbeads coated with PLO containing islets transplanted in the omentum pouch model was investigated. Biomaterial structure and the inflammatory response were characterized by X-ray phase contrast (XPC) μCT imaging, histology, and immunostaining. XPC allowed evaluation of microbead 3D structure and identification of failed and stable microbeads. A robust inflammatory response characterized by high cell density and the presence of pro-inflammatory macrophages was found around the failed grafts. The results obtained provide insight into the local tissue response and possible failure mechanisms for alginate microbeads. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1581-1590, 2016.
Collapse
Affiliation(s)
- Veronica Ibarra
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Alyssa A Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Mark A Anastasio
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, Illinois
| | - Eric M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
- Research Services, Edward Hines Jr. VA Hospital, Ines, IL
| |
Collapse
|
19
|
Sondermeijer HP, Witkowski P, Woodland D, Seki T, Aangenendt FJ, van der Laarse A, Itescu S, Hardy MA. Optimization of alginate purification using polyvinylidene difluoride membrane filtration: Effects on immunogenicity and biocompatibility of three-dimensional alginate scaffolds. J Biomater Appl 2016; 31:510-520. [PMID: 27114440 DOI: 10.1177/0885328216645952] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sodium alginate is an effective biomaterial for tissue engineering applications. Non-purified alginate is contaminated with protein, lipopolysaccharide, DNA, and RNA, which could elicit adverse immunological reactions. We developed a purification protocol to generate biocompatible alginate based on (a) activated charcoal treatment, (b) use of hydrophobic membrane filtration (we used hydrophobic polyvinylidene difluoride membranes to remove organic contaminants), (c) dialysis, and finally (d) ethanol precipitation. Using this approach, we could omit pre-treatment with chloroform and significantly reduce the quantities of reagents used. Purification resulted in reduction of residual protein by 70% down to 0.315 mg/g, DNA by 62% down to 1.28 µg/g, and RNA by 61% down to less than 10 µg/g, respectively. Lipopolysaccharide levels were reduced by >90% to less than 125 EU/g. Purified alginate did not induce splenocyte proliferation in vitro. Three-dimensional scaffolds generated from purified alginate did not elicit a significant foreign body reaction, fibrotic overgrowth, or macrophage infiltration 4 weeks after implantation. This study describes a simplified and economical alginate purification method that results in alginate purity, which meets clinically useful criteria.
Collapse
Affiliation(s)
- Hugo P Sondermeijer
- Department of Surgery, Columbia University Medical Center, USA Department of Physiology, Maastricht University Medical Center, The Netherlands
| | - Piotr Witkowski
- Department of Surgery, Columbia University Medical Center, USA Department of Surgery, Section of Transplantation, University of Chicago Medicine, USA
| | - David Woodland
- Department of Surgery, Columbia University Medical Center, USA
| | - Tetsunori Seki
- Department of Surgery, Columbia University Medical Center, USA
| | - Frank J Aangenendt
- Department of Mechanical Engineering, Eindhoven University of Technology, The Netherlands
| | - Arnoud van der Laarse
- Departments of Cardiology and Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, The Netherlands
| | - Silviu Itescu
- Department of Surgery, Columbia University Medical Center, USA Mesoblast Limited, Melbourne, Australia
| | - Mark A Hardy
- Department of Surgery, Columbia University Medical Center, USA
| |
Collapse
|
20
|
Vegas AJ, Veiseh O, Doloff JC, Ma M, Tam HH, Bratlie K, Li J, Bader AR, Langan E, Olejnik K, Fenton P, Kang JW, Hollister-Locke J, Bochenek MA, Chiu A, Siebert S, Tang K, Jhunjhunwala S, Aresta-Dasilva S, Dholakia N, Thakrar R, Vietti T, Chen M, Cohen J, Siniakowicz K, Qi M, McGarrigle J, Graham AC, Lyle S, Harlan DM, Greiner DL, Oberholzer J, Weir GC, Langer R, Anderson DG. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat Biotechnol 2016; 34:345-52. [PMID: 26807527 PMCID: PMC4904301 DOI: 10.1038/nbt.3462] [Citation(s) in RCA: 361] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 12/16/2015] [Indexed: 01/02/2023]
Abstract
The foreign body response is an immune-mediated reaction that can lead to the failure of implanted medical devices and discomfort for the recipient. There is a critical need for biomaterials that overcome this key challenge in the development of medical devices. Here we use a combinatorial approach for covalent chemical modification to generate a large library of variants of one of the most widely used hydrogel biomaterials, alginate. We evaluated the materials in vivo and identified three triazole-containing analogs that substantially reduce foreign body reactions in both rodents and, for at least 6 months, in non-human primates. The distribution of the triazole modification creates a unique hydrogel surface that inhibits recognition by macrophages and fibrous deposition. In addition to the utility of the compounds reported here, our approach may enable the discovery of other materials that mitigate the foreign body response.
Collapse
Affiliation(s)
- Arturo J Vegas
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Omid Veiseh
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Joshua C Doloff
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Minglin Ma
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Hok Hei Tam
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kaitlin Bratlie
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jie Li
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Andrew R Bader
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Erin Langan
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Karsten Olejnik
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Patrick Fenton
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jeon Woong Kang
- MIT Spectroscopy Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jennifer Hollister-Locke
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Matthew A Bochenek
- Department of Surgery, Division of Transplantation, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alan Chiu
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sean Siebert
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Katherine Tang
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Siddharth Jhunjhunwala
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Stephanie Aresta-Dasilva
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Nimit Dholakia
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Raj Thakrar
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Thema Vietti
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Michael Chen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Josh Cohen
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Karolina Siniakowicz
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Meirigeng Qi
- Department of Surgery, Division of Transplantation, University of Illinois at Chicago, Chicago, Illinois, USA
| | - James McGarrigle
- Department of Surgery, Division of Transplantation, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Stephen Lyle
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - David M Harlan
- Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dale L Greiner
- Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jose Oberholzer
- Department of Surgery, Division of Transplantation, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Gordon C Weir
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
21
|
Daskalopoulos EP, Vilaeti AD, Barka E, Mantzouratou P, Kouroupis D, Kontonika M, Tourmousoglou C, Papalois A, Pantos C, Blankesteijn WM, Agathopoulos S, Kolettis TM. Attenuation of post-infarction remodeling in rats by sustained myocardial growth hormone administration. Growth Factors 2015; 33:250-8. [PMID: 26290214 DOI: 10.3109/08977194.2015.1072527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Prevention of left ventricular remodeling is an important therapeutic target post-myocardial infarction. Experimentally, treatment with growth hormone (GH) is beneficial, but sustained local administration has not been thoroughly investigated. We studied 58 rats (322 ± 4 g). GH was administered via a biomaterial-scaffold, following in vitro and in vivo evaluation of degradation and drug-release curves. Treatment consisted of intra-myocardial injection of saline or alginate-hydrogel, with or without GH, 10 min after permanent coronary artery ligation. Echocardiographic and histologic remodeling-indices were examined 3 weeks post-ligation, followed by immunohistochemical evaluation of angiogenesis, collagen, macrophages and myofibroblasts. GH-release completed at 3 days and alginate-degradation at ∼7 days. Alginate + GH consistently improved left ventricular end-diastolic and end-systolic diameters, ventricular sphericity, wall tension index and infarct-thickness. Microvascular-density and myofibroblast-count in the infarct and peri-infarct areas were higher after alginate + GH. Macrophage-count and collagen-content did not differ between groups. Early, sustained GH-administration enhances angiogenesis and myofibroblast-activation and ameliorates post-infarction remodeling.
Collapse
Affiliation(s)
- Evangelos P Daskalopoulos
- a Department of Pharmacology , Cardiovascular Research Institute Maastricht, Maastricht University , Maastricht , The Netherlands
- b Cardiovascular Research Institute , Ioannina , Athens , Greece
| | - Agapi D Vilaeti
- b Cardiovascular Research Institute , Ioannina , Athens , Greece
| | - Eleonora Barka
- b Cardiovascular Research Institute , Ioannina , Athens , Greece
- c Ceramics and Composites Laboratory, Department of Materials Science and Engineering, University of Ioannina , Ioannina , Greece
| | - Polixeni Mantzouratou
- d Department of Pharmacology , Medical School, University of Athens , Athens , Greece
| | - Dimitrios Kouroupis
- e Department of Biomedical Research, Foundation for Research and Technology-Hellas , Institute of Molecular Biology and Biotechnology , Ioannina , Greece , and
| | | | | | - Apostolos Papalois
- b Cardiovascular Research Institute , Ioannina , Athens , Greece
- f Experimental Research Center ELPEN , Pikermi , Athens , Greece
| | - Constantinos Pantos
- d Department of Pharmacology , Medical School, University of Athens , Athens , Greece
| | - W Matthijs Blankesteijn
- a Department of Pharmacology , Cardiovascular Research Institute Maastricht, Maastricht University , Maastricht , The Netherlands
| | - Simeon Agathopoulos
- c Ceramics and Composites Laboratory, Department of Materials Science and Engineering, University of Ioannina , Ioannina , Greece
| | | |
Collapse
|
22
|
Tan G, Elefanty AG, Stanley EG. β-cell regeneration and differentiation: how close are we to the 'holy grail'? J Mol Endocrinol 2014; 53:R119-29. [PMID: 25385843 DOI: 10.1530/jme-14-0188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes can be managed by careful monitoring of blood glucose and timely delivery of exogenous insulin. However, even with fastidious compliance, people with diabetes can suffer from numerous complications including atherosclerosis, retinopathy, neuropathy, and kidney disease. This is because delivery of exogenous insulin coupled with glucose monitoring cannot provide the fine level of glucose control normally provided by endogenous β-cells in the context of intact islets. Moreover, a subset of people with diabetes lack awareness of hypoglycemic events; a status that can have grave consequences. Therefore, much effort has been focused on replacing lost or dysfunctional β-cells with cells derived from other sources. The advent of stem cell biology and cellular reprogramming strategies have provided impetus to this work and raised hopes that a β-cell replacement therapy is on the horizon. In this review, we look at two components that will be required for successful β-cell replacement therapy: a reliable and safe source of β-cells and a mechanism by which such cells can be delivered and protected from host immune destruction. Particular attention is paid to insulin-producing cells derived from pluripotent stem cells because this platform addresses the issue of scale, one of the more significant hurdles associated with potential cell-based therapies. We also review methods for encapsulating transplanted cells, a technique that allows grafts to evade immune attack and survive for a long term in the absence of ongoing immunosuppression. In surveying the literature, we conclude that there are still several substantial hurdles that need to be cleared before a stem cell-based β-cell replacement therapy for diabetes becomes a reality.
Collapse
Affiliation(s)
- Gemma Tan
- Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| | - Andrew G Elefanty
- Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| | - Edouard G Stanley
- Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| |
Collapse
|
23
|
Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl Microbiol Biotechnol 2014; 98:7423-35. [DOI: 10.1007/s00253-014-5819-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
|
24
|
Rokstad AMA, Lacík I, de Vos P, Strand BL. Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Adv Drug Deliv Rev 2014; 67-68:111-30. [PMID: 23876549 DOI: 10.1016/j.addr.2013.07.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/28/2013] [Accepted: 07/12/2013] [Indexed: 02/06/2023]
Abstract
Cell encapsulation has already shown its high potential and holds the promise for future cell therapies to enter the clinics as a large scale treatment option for various types of diseases. The advancement in cell biology towards this goal has to be complemented with functional biomaterials suitable for cell encapsulation. This cannot be achieved without understanding the close correlation between cell performance and properties of microspheres. The ongoing challenges in the field of cell encapsulation require a critical view on techniques and approaches currently utilized to characterize microspheres. This review deals with both principal subjects of microspheres characterization in the cell encapsulation field: physico-chemical characterization and biocompatibility. The up-to-day knowledge is summarized and discussed with the focus to identify missing knowledge and uncertainties, and to propose the mandatory next steps in characterization of microspheres for cell encapsulation. The primary conclusion of this review is that further success in development of microspheres for cell therapies cannot be accomplished without careful selection of characterization techniques, which are employed in conjunction with biological tests.
Collapse
Affiliation(s)
- Anne Mari A Rokstad
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinasgt. 1, N-7491 Trondheim, Norway; The Central Norway Health Authority (RHA), Trondheim, Norway.
| | - Igor Lacík
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia.
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA11, 9700 RB Groningen, The Netherlands.
| | - Berit L Strand
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinasgt. 1, N-7491 Trondheim, Norway; Department of Biotechnology, NTNU, Sem Saelandsvei 6/8, N-7491 Trondheim, Norway; The Central Norway Health Authority (RHA), Trondheim, Norway.
| |
Collapse
|
25
|
Dagbert F, McConnell YJ, Carmona E, Sideris L, Hallé JP, Dube P. Intraperitoneal distribution of alginate microcapsules in mice. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/mc.2014.31001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Lagranha VL, de Carvalho TG, Giugliani R, Matte U. Treatment of MPS I mice with microencapsulated cells overexpressing IDUA: effect of the prednisolone administration. J Microencapsul 2013; 30:383-9. [DOI: 10.3109/02652048.2012.746745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Gardner CM, Potter MA, Stöver HDH. Improving covalent cell encapsulation with temporarily reactive polyelectrolytes. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:181-193. [PMID: 22180141 DOI: 10.1007/s10856-011-4523-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/20/2011] [Indexed: 05/31/2023]
Abstract
Calcium alginate/poly-L-lysine beads were coated with either 50% hydrolyzed poly(methyl vinyl ether-alt-maleic anhydride) (PMM(50)), or with poly(vinyl dimethyl azlactone-co-methacrylic acid) (50:50, PMV(50)), to form covalently shell-crosslinked capsules, and compared with analogous capsules coated with sodium alginate. All capsule types were prepared with and without C2C12 murine myoblast cells, and implanted into mice for up to 6 weeks. Cell viability, capsule integrity, fibrotic overgrowth, and mechanical strength of the capsules were assessed, and correlated with inflammatory cytokine marker levels in tail vein blood samples taken at different time points. AP-PMM(50) capsules displayed the least amount of fibrotic overgrowth, were found to be the strongest, and showed the lowest levels of TNF-α in tail vein serum samples taken at 4 h, 24 h, 1 and 6 weeks post transplantation. The results for APA and AP-PMV(50) capsules were more variable and depended on the presence or absence of encapsulated cells.
Collapse
Affiliation(s)
- C M Gardner
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada.
| | | | | |
Collapse
|
28
|
de Haan BJ, Rossi A, Faas MM, Smelt MJ, Sonvico F, Colombo P, de Vos P. Structural surface changes and inflammatory responses against alginate-based microcapsules after exposure to human peritoneal fluid. J Biomed Mater Res A 2011; 98:394-403. [DOI: 10.1002/jbm.a.33123] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/09/2011] [Accepted: 03/25/2011] [Indexed: 11/06/2022]
|
29
|
Vaithilingam V, Tuch BE. Islet transplantation and encapsulation: an update on recent developments. Rev Diabet Stud 2011; 8:51-67. [PMID: 21720673 DOI: 10.1900/rds.2011.8.51] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Human islet transplantation can provide good glycemic control in diabetic recipients without exogenous insulin. However, a major factor limiting its application is the recipient's need to adhere to life-long immunosuppression, something that has serious side effects. Microencapsulating human islets is a strategy that should prevent rejection of the grafted tissue without the need for anti-rejection drugs. Despite promising studies in various animal models, the encapsulated human islets so far have not made an impact in the clinical setting. Many non-immunological and immunological factors such as biocompatibility, reduced immunoprotection, hypoxia, pericapsular fibrotic overgrowth, effects of the encapsulation process and post-transplant inflammation hamper the successful application of this promising technology. In this review, strategies are discussed to overcome the above-mentioned factors and to enhance the survival and function of encapsulated insulin-producing cells, whether in islets or surrogate β-cells. Studies at our center show that barium alginate microcapsules are biocompatible in rodents, but not in humans, raising concerns over the use of rodents to predict outcomes. Studies at our center also show that the encapsulation process had little or no effect on the cellular transcriptome of human islets and on their ability to function either in vitro or in vivo. New approaches incorporating further modifications to the microcapsule surface to prevent fibrotic overgrowth are vital, if encapsulated human islets or β-cell surrogates are to become a viable therapy option for type 1 diabetes in humans.
Collapse
|
30
|
Mu X, Bellayr I, Walters T, Li Y. Mediators leading to fibrosis - how to measure and control them in tissue engineering. ACTA ACUST UNITED AC 2010; 20:110-118. [PMID: 20890400 DOI: 10.1053/j.oto.2009.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fibrosis is the result of an excessive amount of fibrous connective tissue deposited into the extracellular matrix (ECM) space of damaged tissues from injury or disease. Collagens, particularly types I and III are the main constituents of the fibrotic scar tissue as well as a mixture of fibrotic cells. Severely fibrotic tissue will develop chronic healing problems resulting in tissue/organ dysfunction. More attention needs to be given to the fibrotic differentiation and related effects in bioengineered tissues. The current review provides an update on the mechanism behind fibrosis formation as well as technical measurements and preventions.
Collapse
Affiliation(s)
- Xd Mu
- Laboratory of Molecular Pathology, Stem Cell Research Center, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA15213
| | | | | | | |
Collapse
|
31
|
de Vos P, Spasojevic M, Faas MM. Treatment of diabetes with encapsulated islets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 670:38-53. [PMID: 20384217 DOI: 10.1007/978-1-4419-5786-3_5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Cell encapsulation has been proposed for the treatment of a wide variety of diseases since it allows for transplantation of cells in the absence of undesired immunosuppression. The technology has been proposed to be a solution for the treatment of diabetes since it potentially allows a mandatory minute-to-minute regulation of glucose levels without side-effects. Encapsulation is based on the principle that transplanted tissue is protected for the host immune system by a semipermeable capsule. Many different concepts of capsules have been tested. During the past two decades three major approaches of encapsulation have been studied. These include (i) intravascular macrocapsules, which are anastomosed to the vascular system as AV shunt, (ii) extravascular macrocapsules, which are mostly diffusion chambers transplanted at different sites and (iii) extravascular microcapsules transplanted in the peritoneal cavity. The advantages and pitfalls of the three approaches are discussed and compared in view of applicability in clinical islet transplantation.
Collapse
Affiliation(s)
- Paul de Vos
- Department of Pathology and Laboratory Medicine, Section of Immunoendocrinology, University of Groningen. Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | |
Collapse
|
32
|
Santos E, Zarate J, Orive G, Hernández RM, Pedraz JL. Biomaterials in Cell Microencapsulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 670:5-21. [DOI: 10.1007/978-1-4419-5786-3_2] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Mooney JE, Rolfe BE, Osborne GW, Sester DP, van Rooijen N, Campbell GR, Hume DA, Campbell JH. Cellular plasticity of inflammatory myeloid cells in the peritoneal foreign body response. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:369-80. [PMID: 20008135 DOI: 10.2353/ajpath.2010.090545] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Implantation of sterile foreign objects in the peritoneal cavity of an animal initiates an inflammatory response and results in encapsulation of the objects by bone marrow-derived cells. Over time, a multilayered tissue capsule develops with abundant myofibroblasts embedded in extracellular matrix. The present study used the transgenic MacGreen mouse to characterize the time-dependent accumulation of monocyte subsets and neutrophilic granulocytes in the inflammatory infiltrate and within the tissue capsule by their differential expression of the csf1r-EGFP transgene, F4/80, and Ly6C. As the tissue capsule developed, enhanced green fluorescent protein-positive cells changed from rounded to spindle-shaped morphology and began to co-express the myofibroblast marker alpha-smooth muscle actin. Expression increased with time: at day 14, 11.13 +/- 0.67% of tissue capsule cells co-expressed these markers, compared with 50.77 +/- 12.85% of cells at day 28. The importance of monocyte/macrophages in tissue capsule development was confirmed by clodronate-encapsulated liposome removal, which resulted in almost complete abrogation of capsule development. These results confirm the importance of monocyte/macrophages in the tissue response to sterile foreign objects implanted in the peritoneal cavity. In addition, the in vivo plasticity of peritoneal macrophages and their ability to transdifferentiate from a myeloid to mesenchymal phenotype is demonstrated.
Collapse
Affiliation(s)
- Jane E Mooney
- Centre for Research in Vascular Biology, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Rabanel JM, Banquy X, Zouaoui H, Mokhtar M, Hildgen P. Progress technology in microencapsulation methods for cell therapy. Biotechnol Prog 2009; 25:946-63. [PMID: 19551901 DOI: 10.1002/btpr.226] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cell encapsulation in microcapsules allows the in situ delivery of secreted proteins to treat different pathological conditions. Spherical microcapsules offer optimal surface-to-volume ratio for protein and nutrient diffusion, and thus, cell viability. This technology permits cell survival along with protein secretion activity upon appropriate host stimuli without the deleterious effects of immunosuppressant drugs. Microcapsules can be classified in 3 categories: matrix-core/shell microcapsules, liquid-core/shell microcapsules, and cells-core/shell microcapsules (or conformal coating). Many preparation techniques using natural or synthetic polymers as well as inorganic compounds have been reported. Matrix-core/shell microcapsules in which cells are hydrogel-embedded, exemplified by alginates capsule, is by far the most studied method. Numerous refinement of the technique have been proposed over the years such as better material characterization and purification, improvements in microbead generation methods, and new microbeads coating techniques. Other approaches, based on liquid-core capsules showed improved protein production and increased cell survival. But aside those more traditional techniques, new techniques are emerging in response to shortcomings of existing methods. More recently, direct cell aggregate coating have been proposed to minimize membrane thickness and implants size. Microcapsule performances are largely dictated by the physicochemical properties of the materials and the preparation techniques employed. Despite numerous promising pre-clinical results, at the present time each methods proposed need further improvements before reaching the clinical phase.
Collapse
|
35
|
Yang D, Jones KS. Effect of alginate on innate immune activation of macrophages. J Biomed Mater Res A 2009; 90:411-8. [PMID: 18523947 DOI: 10.1002/jbm.a.32096] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alginate, a natural polysaccharide, has been widely used in tissue engineering and drug delivery, but like other biomaterials, it causes inflammation by unknown mechanisms. We hypothesized that alginate would stimulate innate immune responses through macrophage receptors. In this study, we showed that sodium alginate induced activation of macrophage-like cells (RAW264.7) through the NF-kappaB pathway. Production of proinflammatory cytokines, such as IL-1beta, IL-6, IL-12, and TNF-alpha was time and dose-dependent. Treatment with alginate solution caused responses that closely paralleled stimulation by lipopolysaccharide in timing and magnitude. These data suggest that sodium alginate causes innate immune responses through NF-kappaB activation and likely activates the same pathways as pathogen recognition.
Collapse
Affiliation(s)
- Dong Yang
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S4L7, Canada
| | | |
Collapse
|
36
|
Jones KS. Assays on the influence of biomaterials on allogeneic rejection in tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2009; 14:407-17. [PMID: 18826337 DOI: 10.1089/ten.teb.2008.0264] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In tissue engineering, innate responses to biomaterial scaffolds will affect rejection of allogeneic cells. Biomaterials directly influence innate and adaptive immune cell adhesion, reactive oxygen intermediate production, cytokine secretion, nuclear factor-kappa B nuclear translocation, gene expression, and cell surface markers, all of which are likely to affect allogeneic rejection responses. A major goal in tissue engineering is to induce transplant tolerance, potentially by manipulating the biomaterial component. This review describes methods of measuring responses of macrophages, dendritic cells, and T cells stimulated in vitro and in vivo and addresses key factors in assay development. Such tests include mixed leukocyte reactions, enzyme-linked immunosorbent spot assays, trans-vivo delayed-type hypersensitivity assays, and measurement of dendritic cell subsets and anti-donor antibodies; we propose extending these studies to tissue engineering.
Collapse
Affiliation(s)
- Kim S Jones
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
37
|
Tam SK, de Haan BJ, Faas MM, Hallé JP, Yahia L, de Vos P. Adsorption of human immunoglobulin to implantable alginate-poly-L-lysine microcapsules: effect of microcapsule composition. J Biomed Mater Res A 2009; 89:609-15. [PMID: 18435412 DOI: 10.1002/jbm.a.32002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Alginate-poly-L-lysine-alginate (APA) microcapsules continue to be the most widely studied device for the immuno-protection of transplanted therapeutic cells. Producing APA microcapsules having a reproducible and high level of biocompatibility requires an understanding of the mechanisms of the immune response towards the implants. Here, we investigate the adsorption of immunoglobulins (IgG, IgM, and IgA) onto the surface of APA microcapsules in vitro after their exposure to human serum and peritoneal fluid. Immunoglobulins (Ig) are considered to be opsonizing proteins, thus they tend to mediate inflammation when adsorbed to foreign surfaces. Ig adsorption was monitored using direct immunofluorescence. The amount of Ig adsorbed to the microcapsule surface was not significantly influenced by the guluronic acid content nor the purity level of the alginate, although microcapsules of intermediate-G purified alginate corresponded with the lowest adsorption levels. Ig adsorption was negligible when the poly-L-lysine membrane was omitted, suggesting that positive charges at the microcapsule surface are responsible for binding Ig.
Collapse
Affiliation(s)
- Susan K Tam
- Biomedical Engineering Institute, Ecole Polytechnique de Montréal, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
38
|
Orive G, De Castro M, Kong HJ, Hernández RM, Ponce S, Mooney DJ, Pedraz JL. Bioactive cell-hydrogel microcapsules for cell-based drug delivery. J Control Release 2009; 135:203-10. [DOI: 10.1016/j.jconrel.2009.01.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/05/2009] [Accepted: 01/12/2009] [Indexed: 12/11/2022]
|
39
|
Biocompatibility of injectable chitosan-phospholipid implant systems. Biomaterials 2009; 30:3818-24. [PMID: 19394688 DOI: 10.1016/j.biomaterials.2009.04.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 04/01/2009] [Indexed: 01/12/2023]
Abstract
Injectable biomaterials are desirable therapeutic platforms due to minimal invasiveness and improved patient compliance, and are applicable in such areas as compound delivery and tissue engineering. The present work examined the biocompatibility of injectable blends composed of chitosan, phospholipid and lauric aldehyde (PoLi(gel)-LA) or lauric chloride (PoLi(gel)-LCl). In vitro cytotoxicity was evaluated in L929 and HeLa cell lines. Both blends resulted in acceptable biocompatibility, although greater cell viability was seen with PoLi(gel)-LA. In vivo biocompatibility was investigated in healthy CD-1 mice. Subcutaneous injection of the PoLi(gel)-LA blend caused no local or systemic toxicities over a four-week period while the PoLi(gel)-LCl caused immediate local toxicity. Mice injected intraperitoneally with PoLi(gel)-LA did not show physical or behavioural alterations, and body weight changes did not differ from control animals. Furthermore, histological examination of spleen and liver showed unaltered morphology. Interleukin-6 levels in mice injected with PoLi(gel)-LA did not differ from levels of control animals (6.91+/-3.61 pg/mL versus 6.92+/-5.02 pg/mL, respectively). Biodegradation occurred progressively, with 7.4+/-5.02% of the original injected mass remaining after four weeks. Results obtained herein establish the biocompatibility of PoLi(gel)-LA and indicate its potential for use in various localized therapeutic applications.
Collapse
|
40
|
De Castro M, Orive G, Hernández RM, Bartkowiak A, Brylak W, Pedraz JL. Biocompatibility andin vivoevaluation of oligochitosans as cationic modifiers of alginate/Ca microcapsules. J Biomed Mater Res A 2009; 91:1119-30. [PMID: 19145624 DOI: 10.1002/jbm.a.32270] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Weng L, Ivanova ND, Zakhaleva J, Chen W. In vitro and in vivo suppression of cellular activity by guanidinoethyl disulfide released from hydrogel microspheres composed of partially oxidized hyaluronan and gelatin. Biomaterials 2008; 29:4149-56. [PMID: 18678403 DOI: 10.1016/j.biomaterials.2008.07.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 07/15/2008] [Indexed: 11/17/2022]
Abstract
This paper describes the preparation of oxidized hyaluronan crosslinked gelatin microspheres for drug delivery. Microspheres were prepared by a modified water-in-oil-emulsion crosslinking method, where three-dimensional crosslinked hydrogel microspheres formed in the absence of any extraneous crosslinker. SEM analyses of the microspheres showed rough surfaces in their dried state with an average diameter of 90 microm. Lyophilization of fully swollen microspheres revealed a highly porous structure. Guanidinoethyl disulfide (GED) was used as a model drug for incorporation into the microspheres; encapsulation of GED was confirmed by HPLC. There was an inverse correlation between the diameters of the microspheres with their GED loading. Macrophage was used as a model cell to evaluate the in vitro efficacy of GED release from the microspheres. The in vivo efficacy of the microspheres was further validated in a mouse full-thickness transcutaneous dermal wound model through suppression of cell infiltration.
Collapse
Affiliation(s)
- Lihui Weng
- Department of Biomedical Engineering, T18-030 Health Sciences Center, State University of New York-Stony Brook, Stony Brook, NY 11794-8181, USA
| | | | | | | |
Collapse
|
42
|
Matricardi P, Meo CD, Coviello T, Alhaique F. Recent advances and perspectives on coated alginate microspheres for modified drug delivery. Expert Opin Drug Deliv 2008; 5:417-25. [DOI: 10.1517/17425247.5.4.417] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
43
|
Wilson JT, Chaikof EL. Challenges and emerging technologies in the immunoisolation of cells and tissues. Adv Drug Deliv Rev 2008; 60:124-45. [PMID: 18022728 DOI: 10.1016/j.addr.2007.08.034] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 08/13/2007] [Indexed: 12/22/2022]
Abstract
Protection of transplanted cells from the host immune system using immunoisolation technology will be important in realizing the full potential of cell-based therapeutics. Microencapsulation of cells and cell aggregates has been the most widely explored immunoisolation strategy, but widespread clinical application of this technology has been limited, in part, by inadequate transport of nutrients, deleterious innate inflammatory responses, and immune recognition of encapsulated cells via indirect antigen presentation pathways. To reduce mass transport limitations and decrease void volume, recent efforts have focused on developing conformal coatings of micron and submicron scale on individual cells or cell aggregates. Additionally, anti-inflammatory and immunomodulatory capabilities are being integrated into immunoisolation devices to generate bioactive barriers that locally modulate host responses to encapsulated cells. Continued exploration of emerging paradigms governed by the inherent challenges associated with immunoisolation will be critical to actualizing the clinical potential of cell-based therapeutics.
Collapse
|
44
|
Effects of biomaterial-induced inflammation on fibrosis and rejection. Semin Immunol 2008; 20:130-6. [PMID: 18191409 DOI: 10.1016/j.smim.2007.11.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/13/2007] [Accepted: 11/16/2007] [Indexed: 01/16/2023]
Abstract
Evidence is emerging that biomaterials cause inflammation by ligating innate immune receptors on antigen presenting cells. Although inflammation is usually viewed as detrimental, it has unexpected and potentially beneficial effects on fibrosis and transplant rejection. For example, the magnitude of inflammation due to a biomaterial is not predictive of the extent of fibrosis. Similarly, biomaterials do not always show adjuvancy. Some biomaterials suppressed T cell rejection responses in vivo and in vitro, while others non-specifically stimulated T cell proliferation. Understanding these complex inter-relationships is the key to designing a biomaterial that stimulates regeneration and induces tolerance in tissue engineering applications.
Collapse
|
45
|
Rinaudo M. Main properties and current applications of some polysaccharides as biomaterials. POLYM INT 2008. [DOI: 10.1002/pi.2378] [Citation(s) in RCA: 672] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Luttikhuizen DT, Harmsen MC, van Luyn MJA. Cytokine and chemokine dynamics differ between rats and mice after collagen implantation. J Tissue Eng Regen Med 2007; 1:398-405. [DOI: 10.1002/term.50] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Li AG, Quinn MJ, Siddiqui Y, Wood MD, Federiuk IF, Duman HM, Ward WK. Elevation of transforming growth factor beta (TGFβ) and its downstream mediators in subcutaneous foreign body capsule tissue. J Biomed Mater Res A 2007; 82:498-508. [PMID: 17295253 DOI: 10.1002/jbm.a.31168] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Foreign body encapsulation represents a chronic fibrotic response and has been a major obstacle that reduces the useful life of implanted biomedical devices. The precise mechanism underlying such an encapsulation is still unknown. We hypothesized that, considering its central role in many other fibrotic conditions, transforming growth factor beta (TGFbeta) may play an important role during the formation of foreign body capsule (FBC). In the present study, we implanted mock sensors in rats subcutaneously and excised FBC samples at day 7, 21, and 48-55 postimplantation. The most abundant TGFbeta isoform in all tissues was TGFbeta1, which was expressed minimally in control tissue. The expression of both TGFbeta1 RNA and protein was significantly increased in FBC tissues at all time points, with the highest level in day 7 FBC. The number of cells stained for phosphorylated Smad2, an indication of activated TGFbeta signaling, paralleled the expression of TGFbeta. A similar dynamic change was also observed in the numbers of FBC myofibroblasts, which in response to TGFbeta, differentiate from quiescent fibroblasts and synthesize collagen. Type I collagen, the most prominent downstream target of TGFbeta in fibrosis, was found in abundance in the FBC, especially during the latter time periods. We suggest that TGFbeta plays an important role in the FBC formation. Inhibition of TGFbeta signaling could be a promising strategy in the prevention of FBC formation, thereby extending the useful life of subcutaneous implants.
Collapse
Affiliation(s)
- Allen G Li
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abbah SA, Lu WW, Chan D, Cheung KMC, Liu WG, Zhao F, Li ZY, Leong JCY, Luk KDK. In vitro evaluation of alginate encapsulated adipose-tissue stromal cells for use as injectable bone graft substitute. Biochem Biophys Res Commun 2006; 347:185-91. [PMID: 16815293 DOI: 10.1016/j.bbrc.2006.06.072] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 06/12/2006] [Indexed: 01/08/2023]
Abstract
This study aims to investigate the survival and osteogenic behavior of murine-derived adipose-tissue stromal cells (ATSCs) encapsulated in alginate microcapsules thereby instigating further studies in this cell delivery strategy for in vivo osteogenesis. Cell viability was quantified using a tetrazolium-based assay and osteogenic differentiation was evaluated by both alkaline-phosphatase (ALP) histochemistry and osteocalcin mRNA analysis. Following microencapsulation, cell numbers increased from 3.9 x 10(3) on day 1 to 7.8 x 10(3) on day 7 and maintained excellent viability in the course of 21-day culture. ALP was 6.9, 5.5, and 3.2 times higher than monolayer cultures on days 7, 14, and 21, respectively. In addition, osteocalcin mRNA was detectable in encapsulated cultures earlier (day 14) than monolayer cultures. We conclude that alginate microcapsules can act as three-dimensional matrix for ATSC proliferation and has potential for use as injectable, biodegradable scaffold in bone tissue engineering.
Collapse
Affiliation(s)
- S A Abbah
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
de Vos P, Faas MM, Strand B, Calafiore R. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 2006; 27:5603-17. [PMID: 16879864 DOI: 10.1016/j.biomaterials.2006.07.010] [Citation(s) in RCA: 350] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 07/11/2006] [Indexed: 01/12/2023]
Abstract
Transplantation of microencapsulated cells is proposed as a therapy for the treatment of a wide variety of diseases since it allows for transplantation of endocrine cells in the absence of undesired immunosuppression. The technology is based on the principle that foreign cells are protected from the host immune system by an artificial membrane. In spite of the simplicity of the concept, progress in the field of immunoisolation has been hampered for many years due to biocompatibility issues. During the last years important advances have been made in the knowledge of the characteristics and requirements capsules have to meet in order to provide optimal biocompatibility and survival of the enveloped tissue. Novel insight shows that not only the capsules material but also the enveloped cells should be hold responsible for loss of a significant portion of the immunoisolated cells and, thus, failure of the grafts on the long term. Microcapsules without cells can be produced as such that they remain free of any significant foreign body response for prolonged periods of time in both experimental animals and humans. New approaches in which newly discovered inflammatory responses are silenced bring the technology of transplantation of immunoisolated cells close to clinical application.
Collapse
Affiliation(s)
- Paul de Vos
- Department of Pathology and Laboratory Medicine, Division of Medical Biology, University Hospital of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | |
Collapse
|
50
|
Orive G, Tam SK, Pedraz JL, Hallé JP. Biocompatibility of alginate–poly-l-lysine microcapsules for cell therapy☆. Biomaterials 2006; 27:3691-700. [PMID: 16574222 DOI: 10.1016/j.biomaterials.2006.02.048] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
Cell microencapsulation holds promise for the treatment of many diseases by the continuous delivery of therapeutic products. The biocompatibility of the microcapsules and their biomaterials components is a critical issue for the long-term efficacy of this technology. The objective of this paper is to provide detailed information about the principal factors affecting the biocompatibility of alginates and alginate-poly-l-lysine microcapsules, which are the most frequently employed biomaterials and encapsulation devices for cell immobilization, respectively. Some of these factors include the alginate composition and purification, the selection of the polycation, the interactions between the alginates and the polycation, the microcapsule fabrication process, the uniformity of the devices and the implantation procedure. Improved knowledge will lead to the production of standardized transplantation-grade biomaterials and biocompatible microcapsules.
Collapse
Affiliation(s)
- Gorka Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Vitoria-Gasteiz, Spain.
| | | | | | | |
Collapse
|