1
|
Zhang T, Zhang R, Zhang Y, Kannan PR, Li Y, Lv Y, Zhao R, Kong X. Silk-based biomaterials for tissue engineering. Adv Colloid Interface Sci 2025; 338:103413. [PMID: 39879886 DOI: 10.1016/j.cis.2025.103413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/23/2024] [Accepted: 01/18/2025] [Indexed: 01/31/2025]
Abstract
Tissue engineering (TE) involves repairing, replacing, regeneration, or improving the function of tissues and organs by combining cells, growth factors and scaffold materials. Among these, scaffold materials play a crucial role. Silk fibroin (SF), a natural biopolymer, has been widely used in the TE field due to its good biodegradability, biocompatibility, and mechanical properties attributed to its chemical composition and structure. This paper reviews the structure, extraction, and modification methods of SF. In addition, it discusses SF's regulation of cell behavior and its various processing modes. Finally, the applications of SF in TE and perspectives on future developments are presented. This review provides comprehensive and alternative rational insights for further biomedical translation in SF medical device design, further revealing the great potential of SF biomaterials.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Rui Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yunyang Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Perumal Ramesh Kannan
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yao Li
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yudie Lv
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
2
|
Zhu Y, Su Y, Guo Y, Wang X, Zhang Z, Lu Y, Yang H, Pang H. Current state of cancer immunity cycle: new strategies and challenges of using precision hydrogels to treat breast cancer. Front Immunol 2025; 16:1535464. [PMID: 40124373 PMCID: PMC11926806 DOI: 10.3389/fimmu.2025.1535464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
The cancer-immunity cycle provides a framework for a series of events in anti-cancer immune responses, initiated by T cell-mediated tumor cell killing, which leads to antigen presentation and T cell stimulation. Current immunomodulatory therapies for breast cancer are often associated with short duration, poor targeting to sites of action, and severe side effects. Hydrogels, with their extracellular matrix-mimicking properties, tunable characteristics, and diverse bioactivities, have garnered significant attention for their ability to locally deliver immunomodulators and cells, providing an immunomodulatory microenvironment to recruit, activate, and expand host immune cells. This review focuses on the design considerations of hydrogel platforms, including polymer backbone, crosslinking mechanisms, physicochemical properties, and immunomodulatory components. The immunomodulatory effects and therapeutic outcomes of various hydrogel systems in breast cancer treatment and tissue regeneration are highlighted, encompassing hydrogel depots for immunomodulator delivery, hydrogel scaffolds for cell delivery, and immunomodulatory hydrogels dependent on inherent material properties. Finally, the challenges that persist in current systems and future directions for immunomodulatory hydrogels are discussed.
Collapse
Affiliation(s)
- Yingze Zhu
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanlin Su
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yaxin Guo
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xinyue Wang
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhuoqi Zhang
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yige Lu
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hang Yang
- Department of Gastroenterology and Hepatology, Tianjin Second People’s Hospital, Tianjin, China
| | - Hui Pang
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
3
|
Dravid AA, Singh A, García AJ. Biomaterial-Based Therapeutic Delivery of Immune Cells. Adv Healthc Mater 2025; 14:e2400586. [PMID: 38813869 PMCID: PMC11607182 DOI: 10.1002/adhm.202400586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Immune cell therapy (ICT) is a transformative approach used to treat a wide range of diseases including type 1 diabetes, sickle cell disease, disorders of the hematopoietic system, and certain forms of cancers. Despite excellent clinical successes, the scope of adoptively transferred immune cells is limited because of toxicities like cytokine release syndrome and immune effector cell-associated neurotoxicity in patients. Furthermore, reports suggest that such treatment can impact major organ systems including cardiac, renal, pulmonary, and hepatic systems in the long term. Additionally, adoptively transferred immune cells cannot achieve significant penetration into solid tissues, thus limiting their therapeutic potential. Recent studies suggest that biomaterial-assisted delivery of immune cells can address these challenges by reducing toxicity, improving localization, and maintaining desired phenotypes to eventually regain tissue function. In this review, recent efforts in the field of biomaterial-based immune cell delivery for the treatment of diseases, their pros and cons, and where these approaches stand in terms of clinical treatment are highlighted.
Collapse
Affiliation(s)
- Ameya A. Dravid
- Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Ankur Singh
- Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
- Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
- Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Andrés J. García
- Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
- Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaGA30332USA
| |
Collapse
|
4
|
Mozafari N, Jahanbekam S, Ashrafi H, Shahbazi MA, Azadi A. Recent Biomaterial-Assisted Approaches for Immunotherapeutic Inhibition of Cancer Recurrence. ACS Biomater Sci Eng 2024; 10:1207-1234. [PMID: 38416058 DOI: 10.1021/acsbiomaterials.3c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Biomaterials possess distinctive properties, notably their ability to encapsulate active biological products while providing biocompatible support. The immune system plays a vital role in preventing cancer recurrence, and there is considerable demand for an effective strategy to prevent cancer recurrence, necessitating effective strategies to address this concern. This review elucidates crucial cellular signaling pathways in cancer recurrence. Furthermore, it underscores the potential of biomaterial-based tools in averting or inhibiting cancer recurrence by modulating the immune system. Diverse biomaterials, including hydrogels, particles, films, microneedles, etc., exhibit promising capabilities in mitigating cancer recurrence. These materials are compelling candidates for cancer immunotherapy, offering in situ immunostimulatory activity through transdermal, implantable, and injectable devices. They function by reshaping the tumor microenvironment and impeding tumor growth by reducing immunosuppression. Biomaterials facilitate alterations in biodistribution, release kinetics, and colocalization of immunostimulatory agents, enhancing the safety and efficacy of therapy. Additionally, how the method addresses the limitations of other therapeutic approaches is discussed.
Collapse
Affiliation(s)
- Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| | - Sheida Jahanbekam
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| |
Collapse
|
5
|
Chen P, Paraiso WKD, Cabral H. Revitalizing Cytokine-Based Cancer Immunotherapy through Advanced Delivery Systems. Macromol Biosci 2023; 23:e2300275. [PMID: 37565723 DOI: 10.1002/mabi.202300275] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Cytokines can coordinate robust immune responses, holding great promise as therapeutics against infections, autoimmune diseases, and cancers. In cancer treatment, numerous pro-inflammatory cytokines have displayed promising efficacy in preclinical studies. However, their clinical application is hindered by poor pharmacokinetics, significant toxicity and unsatisfactory anticancer efficacy. Thus, while IFN-α and IL-2 are approved for specific cancer treatments, other cytokines still remain subject of intense investigation. To accelerate the application of cytokines as cancer immunotherapeutics, strategies need to be directed to improve their safety and anticancer performance. In this regard, delivery systems could be used to generate innovative therapies by targeting the cytokines or nucleic acids, such as DNA and mRNA, encoding the cytokines to tumor tissues. This review centers on these innovative delivery strategies for cytokines, summarizing key approaches, such as gene delivery and protein delivery, and critically examining their potential and challenges for clinical translation.
Collapse
Affiliation(s)
- Pengwen Chen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | | | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
6
|
Alum-anchored intratumoral retention improves the tolerability and antitumor efficacy of type I interferon therapies. Proc Natl Acad Sci U S A 2022; 119:e2205983119. [PMID: 36037341 PMCID: PMC9457244 DOI: 10.1073/pnas.2205983119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Effective antitumor immunity in mice requires activation of the type I interferon (IFN) response pathway. IFNα and IFNβ therapies have proven promising in humans, but suffer from limited efficacy and high toxicity. Intratumoral IFN retention ameliorates systemic toxicity, but given the complexity of IFN signaling, it was unclear whether long-term intratumoral retention of type I IFNs would promote or inhibit antitumor responses. To this end, we compared the efficacy of IFNα and IFNβ that exhibit either brief or sustained retention after intratumoral injection in syngeneic mouse tumor models. Significant enhancement in tumor retention, mediated by anchoring these IFNs to coinjected aluminum-hydroxide (alum) particles, greatly improved both their tolerability and efficacy. The improved efficacy of alum-anchored IFNs could be attributed to sustained pleiotropic effects on tumor cells, immune cells, and nonhematopoietic cells. Alum-anchored IFNs achieved high cure rates of B16F10 tumors upon combination with either anti-PD-1 antibody or interleukin-2. Interestingly however, these alternative combination immunotherapies yielded disparate T cell phenotypes and differential resistance to tumor rechallenge, highlighting important distinctions in adaptive memory formation for combinations of type I IFNs with other immunotherapies.
Collapse
|
7
|
Agarwal Y, Milling LE, Chang JYH, Santollani L, Sheen A, Lutz EA, Tabet A, Stinson J, Ni K, Rodrigues KA, Moyer TJ, Melo MB, Irvine DJ, Wittrup KD. Intratumourally injected alum-tethered cytokines elicit potent and safer local and systemic anticancer immunity. Nat Biomed Eng 2022; 6:129-143. [PMID: 35013574 PMCID: PMC9681025 DOI: 10.1038/s41551-021-00831-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023]
Abstract
Anti-tumour inflammatory cytokines are highly toxic when administered systemically. Here, in multiple syngeneic mouse models, we show that the intratumoural injection of recombinantly expressed cytokines bound tightly to the common vaccine adjuvant aluminium hydroxide (alum) (via ligand exchange between hydroxyls on the surface of alum and phosphoserine residues tagged to the cytokine by an alum-binding peptide) leads to weeks-long retention of the cytokines in the tumours, with minimal side effects. Specifically, a single dose of alum-tethered interleukin-12 induced substantial interferon-γ-mediated T-cell and natural-killer-cell activities in murine melanoma tumours, increased tumour antigen accumulation in draining lymph nodes and elicited robust tumour-specific T-cell priming. Moreover, intratumoural injection of alum-anchored cytokines enhanced responses to checkpoint blockade, promoting cures in distinct poorly immunogenic syngeneic tumour models and eliciting control over metastases and distant untreated lesions. Intratumoural treatment with alum-anchored cytokines represents a safer and tumour-agnostic strategy to improving local and systemic anticancer immunity.
Collapse
Affiliation(s)
- Yash Agarwal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lauren E Milling
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jason Y H Chang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Allison Sheen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emi A Lutz
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony Tabet
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jordan Stinson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kaiyuan Ni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kristen A Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Harvard-MIT Health Sciences and Technology Program, Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
| | - Tyson J Moyer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Mariane B Melo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - K Dane Wittrup
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
8
|
Wang J, Zhang Y, Pi J, Xing D, Wang C. Localized delivery of immunotherapeutics: A rising trend in the field. J Control Release 2021; 340:149-167. [PMID: 34699871 DOI: 10.1016/j.jconrel.2021.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
Immunotherapy is becoming a new standard of care for multiple cancers, while several limitations are impending its further clinical success. Immunotherapeutic agents often have inappropriate pharmacokinetics on their own and/or exhibit limited specificity to tumor cells, leading to severe immuno-related adverse effects and limited efficacy. Suitable formulating strategies that confer prolonged contact with or efficient proliferation in tumors while reducing exposure to normal tissues are highly worthy to explore. With the assistance of biomaterial carriers, targeted therapy can be achieved artificially by implanting or injecting drug depots into desired sites, about which the wisdoms in literature have been rich. The relevant results have suggested a "local but systemic" effect, that is, local replenishment of immune modulators achieves a high treatment efficacy that also governs distant metastases, thereby building another rationale for localized delivery. Particularly, implantable scaffolds have been further engineered to recruit disseminated tumor cells with an efficiency high enough to reduce tumor burdens at typical metastatic organs, and simultaneously provide diagnostic signals. This review introduces recent advances in this emerging area along with a perspective on the opportunities and challenges in the way to clinical application.
Collapse
Affiliation(s)
- Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China.
| | - Yukun Zhang
- Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Jiuchan Pi
- Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
9
|
Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021; 121:11385-11457. [PMID: 33938724 PMCID: PMC8461619 DOI: 10.1021/acs.chemrev.0c01177] [Citation(s) in RCA: 463] [Impact Index Per Article: 115.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.
Collapse
Affiliation(s)
- Santiago Correa
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Doreen Chan
- Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anthony C. Yu
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Eric A. Appel
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
- Bioengineering, Stanford University, Stanford, California 94305, United States
- Pediatric
Endocrinology, Stanford University School
of Medicine, Stanford, California 94305, United States
- ChEM-H Institute, Stanford
University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
10
|
Pires IS, Hammond PT, Irvine DJ. Engineering Strategies for Immunomodulatory Cytokine Therapies - Challenges and Clinical Progress. ADVANCED THERAPEUTICS 2021; 4:2100035. [PMID: 34734110 PMCID: PMC8562465 DOI: 10.1002/adtp.202100035] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Cytokines are immunoregulatory proteins involved in many pathological states with promising potential as therapeutic agents. A diverse array of cytokines have been studied in preclinical disease models since the 1950s, some of which became successful biopharmaceutical products with the advancement of recombinant protein technology in the 1980s. However, following these early approvals, clinical translation of these natural immune signaling molecules has been limited due to their pleiotropic action in many cell types, and the fact that they have evolved to act primarily locally in tissues. These characteristics, combined with poor pharmacokinetics, have hindered the delivery of cytokines via systemic administration routes due to dose-limiting toxicities. However, given their clinical potential and recent clinical successes in cancer immunotherapy, cytokines continue to be extensively pursued in preclinical and clinical studies, and a range of molecular and formulation engineering strategies are being applied to reduce treatment toxicity while maintaining or enhancing therapeutic efficacy. This review provides a brief background on the characteristics of cytokines and their history as clinical therapeutics, followed by a deeper discussion on the engineering strategies developed for cytokine therapies with a focus on the translational relevance of these approaches.
Collapse
Affiliation(s)
- Ivan S Pires
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
11
|
Varshney D, Qiu SY, Graf TP, McHugh KJ. Employing Drug Delivery Strategies to Overcome Challenges Using TLR7/8 Agonists for Cancer Immunotherapy. AAPS JOURNAL 2021; 23:90. [PMID: 34181117 DOI: 10.1208/s12248-021-00620-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) are a potential target for cancer immunotherapy due to their role in the activation of the innate immune system. More specifically, TLR7 and TLR8, two structurally similar pattern recognition receptors that trigger interferon and cytokine responses, have proven to be therapeutically relevant targets for cancer in numerous preclinical and clinical studies. When triggered by an agonist, such as imiquimod or resiquimod, the TLR7/8 activation pathway induces cellular and humoral immune responses that can kill cancer cells with high specificity. Unfortunately, TLR7/8 agonists also present a number of issues that must be overcome prior to broad clinical implementation, such as poor drug solubility and systemic toxic effects. To overcome the key limitations of TLR7/8 agonists as a cancer therapy, biomaterial-based drug delivery systems have been developed. These delivery devices are highly diverse in their design and include systems that can be directly administered to the tumor, passively accumulated in relevant cancerous and lymph tissues, triggered by environmental stimuli, or actively targeted to specific physiological areas and cellular populations. In addition to improved delivery systems, recent studies have also demonstrated the potential benefits of TLR7/8 agonist co-delivery with other types of therapies, particularly checkpoint inhibitors, cancer vaccines, and chemotherapeutics, which can yield impressive anti-cancer effects. In this review, we discuss recent advances in the development of TLR7/8 agonist delivery systems and provide perspective on promising future directions.
Collapse
Affiliation(s)
- Dhruv Varshney
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
| | - Sherry Yue Qiu
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
| | - Tyler P Graf
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
| |
Collapse
|
12
|
Han L, Peng K, Qiu LY, Li M, Ruan JH, He LL, Yuan ZX. Hitchhiking on Controlled-Release Drug Delivery Systems: Opportunities and Challenges for Cancer Vaccines. Front Pharmacol 2021; 12:679602. [PMID: 34040536 PMCID: PMC8141731 DOI: 10.3389/fphar.2021.679602] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer vaccines represent among the most promising strategies in the battle against cancers. However, the clinical efficacy of current cancer vaccines is largely limited by the lack of optimized delivery systems to generate strong and persistent antitumor immune responses. Moreover, most cancer vaccines require multiple injections to boost the immune responses, leading to poor patient compliance. Controlled-release drug delivery systems are able to address these issues by presenting drugs in a controlled spatiotemporal manner, which allows co-delivery of multiple drugs, reduction of dosing frequency and avoidance of significant systemic toxicities. In this review, we outline the recent progress in cancer vaccines including subunit vaccines, genetic vaccines, dendritic cell-based vaccines, tumor cell-based vaccines and in situ vaccines. Furthermore, we highlight the efforts and challenges of controlled or sustained release drug delivery systems (e.g., microparticles, scaffolds, injectable gels, and microneedles) in ameliorating the safety, effectiveness and operability of cancer vaccines. Finally, we briefly discuss the correlations of vaccine release kinetics and the immune responses to enlighten the rational design of the next-generation platforms for cancer therapy.
Collapse
Affiliation(s)
- Lu Han
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Ke Peng
- School of pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Li-Ying Qiu
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Meng Li
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Jing-Hua Ruan
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Li-Li He
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Zhi-Xiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| |
Collapse
|
13
|
Ma H, He C, Chen X. Injectable Hydrogels as Local Depots at Tumor Sites for Antitumor Immunotherapy and Immune-Based Combination Therapy. Macromol Biosci 2021; 21:e2100039. [PMID: 33818918 DOI: 10.1002/mabi.202100039] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Indexed: 12/17/2022]
Abstract
Despite the encouraging clinical responses of several human cancers to immunotherapy, the efficacy of this treatment remains limited by variable objective response rates and severe systemic immune-related adverse events. To overcome these issues, injectable hydrogels have been developed as local depots that permit the sustained release of single or multiple immunotherapy agents, including traditional immunomodulatory factors, immune checkpoint blocking antibodies, and exogenous immune cells. The antitumor efficacy of immunotherapy can also be enhanced by its combination with other therapeutic approaches, including chemotherapy, radiotherapy, and phototherapy. Despite local treatment strategies, potent systemic antitumor immune responses with low systemic toxicity can be obtained, leading to significant local and abscopal tumor-killing, reduced tumor metastasis, and the prevention of tumor recurrence. This review highlights recent progress in injectable hydrogel-based local depots for tumor immunotherapy and immune-based combination therapy. Moreover, the proposed mechanisms responsible for these antitumor effects are discussed.
Collapse
Affiliation(s)
- Hongyu Ma
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
14
|
Harnessing the bioresponsive adhesion of immuno-bioglue for enhanced local immune checkpoint blockade therapy. Biomaterials 2020; 263:120380. [PMID: 32942128 DOI: 10.1016/j.biomaterials.2020.120380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
|
15
|
Singh D. Current updates and future perspectives on the management of renal cell carcinoma. Life Sci 2020; 264:118632. [PMID: 33115605 DOI: 10.1016/j.lfs.2020.118632] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
Renal cell carcinoma (RCC) refers to renal-epithelial cancer, which represents over 90% of kidney cancer and is a cause for cancer related deaths in the world. Studies suggested somatic VHL mutations to be the cause for the occurrence of cancer, but with the time, more latest genomic and biological studies have detected variation in epigenetic regulatory genes and showed significant heterogeneity of the intratumor that may lead to strategies of diagnostic, predictive, and therapeutic importance. Immune dysfunction is responsible for almost all types of renal cancer, and angiogenesis and immunosuppression function together in the tumor microenvironment of renal cell carcinoma (RCC). Over the past few years, advancement in the management of the RCC has finally revolutionized with the arrival of the entrapped immune inhibitors which particularly concentrated on the receptor (programmed cell death-1) and focus on the new generation receptor i.e. TKRI (tyrosine-kinase receptor inhibitors). The present review deals with the comprehensive review of RCC and emphasizes on its types, pathogenesis and advancement in these diseases. This review also overviews the role of innate and adaptive immune response-related mechanism, the function of cancer stem cell in this diseases, therapeutic targeted drugs and hormonal signaling pathways as an emerging strategy in the management of the renal cancer.
Collapse
Affiliation(s)
- Deepika Singh
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, Uttar Pradesh, India.
| |
Collapse
|
16
|
Abdou P, Wang Z, Chen Q, Chan A, Zhou DR, Gunadhi V, Gu Z. Advances in engineering local drug delivery systems for cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1632. [PMID: 32255276 PMCID: PMC7725287 DOI: 10.1002/wnan.1632] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy aims to leverage the immune system to suppress the growth of tumors and to inhibit metastasis. The recent promising clinical outcomes associated with cancer immunotherapy have prompted research and development efforts towards enhancing the efficacy of immune checkpoint blockade, cancer vaccines, cytokine therapy, and adoptive T cell therapy. Advancements in biomaterials, nanomedicine, and micro-/nano-technology have facilitated the development of enhanced local delivery systems for cancer immunotherapy, which can enhance treatment efficacy while minimizing toxicity. Furthermore, locally administered cancer therapies that combine immunotherapy with chemotherapy, radiotherapy, or phototherapy have the potential to achieve synergistic antitumor effects. Herein, the latest studies on local delivery systems for cancer immunotherapy are surveyed, with an emphasis on the therapeutic benefits associated with the design of biomaterials and nanomedicines. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Peter Abdou
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Amanda Chan
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Daojia R. Zhou
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Vivienne Gunadhi
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Facklam AL, Volpatti LR, Anderson DG. Biomaterials for Personalized Cell Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902005. [PMID: 31495970 DOI: 10.1002/adma.201902005] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/26/2019] [Indexed: 05/13/2023]
Abstract
Cell therapy has already had an important impact on healthcare and provided new treatments for previously intractable diseases. Notable examples include mesenchymal stem cells for tissue regeneration, islet transplantation for diabetes treatment, and T cell delivery for cancer immunotherapy. Biomaterials have the potential to extend the therapeutic impact of cell therapies by serving as carriers that provide 3D organization and support cell viability and function. With the growing emphasis on personalized medicine, cell therapies hold great potential for their ability to sense and respond to the biology of an individual patient. These therapies can be further personalized through the use of patient-specific cells or with precision biomaterials to guide cellular activity in response to the needs of each patient. Here, the role of biomaterials for applications in tissue regeneration, therapeutic protein delivery, and cancer immunotherapy is reviewed, with a focus on progress in engineering material properties and functionalities for personalized cell therapies.
Collapse
Affiliation(s)
- Amanda L Facklam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lisa R Volpatti
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel G Anderson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
18
|
Abstract
Therapeutic targeting of the immune system in cancer is now a clinical reality and marked successes have been achieved, most notably through the use of checkpoint blockade antibodies and chimeric antigen receptor T cell therapy. However, efforts to develop new immunotherapy agents or combination treatments to increase the proportion of patients who benefit have met with challenges of limited efficacy and/or significant toxicity. Nanomedicines - therapeutics composed of or formulated in carrier materials typically smaller than 100 nm - were originally developed to increase the uptake of chemotherapy agents by tumours and to reduce their off-target toxicity. Here, we discuss how nanomedicine-based treatment strategies are well suited to immunotherapy on the basis of nanomaterials' ability to direct immunomodulators to tumours and lymphoid organs, to alter the way biologics engage with target immune cells and to accumulate in myeloid cells in tumours and systemic compartments. We also discuss early efforts towards clinical translation of nanomedicine-based immunotherapy.
Collapse
|
19
|
Dunn ZS, Mac J, Wang P. T cell immunotherapy enhanced by designer biomaterials. Biomaterials 2019; 217:119265. [PMID: 31271861 PMCID: PMC6689323 DOI: 10.1016/j.biomaterials.2019.119265] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/21/2022]
Abstract
Cancer immunotherapy has recently burst onto the center stage of cancer treatment and research. T lymphocyte adoptive cellular transfer (ACT), a form of cancer immunotherapy, has spawned unprecedented complete remissions for terminal patients with certain leukemias and lymphomas. Unfortunately, the successes have been overshadowed by the disappointing clinical results of ACT administered to treat solid tumors, in addition to the toxicities associated with the treatment, a lack of efficacy in a significant proportion of the patient population, and cancer relapse following the treatment. Biomaterials hold the promise of addressing these shortcomings. ACT consists of two main stages - T lymphocyte ex vivo expansion followed by reinfusion into the patient - and biomaterials can improve the efficacy of ACT at both stages. In this review, we highlight recent advances in the use of biomaterials for T lymphocyte adoptive cellular cancer immunotherapy and discuss the challenges at each stage.
Collapse
Affiliation(s)
- Zachary S Dunn
- Mork Family Department of of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, United States
| | - John Mac
- Mork Family Department of of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, United States
| | - Pin Wang
- Mork Family Department of of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
20
|
Singh A, Thakur S, Sharma T, Kaur M, Sahajpal NS, Aurora R, Jain SK. Harmonious Biomaterials for Development of In situ Approaches for Locoregional Delivery of Anti-cancer Drugs: Current Trends. Curr Med Chem 2019; 27:3463-3498. [PMID: 31223077 DOI: 10.2174/1573406415666190621095726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 11/22/2022]
Abstract
Locoregional drug delivery is a novel approach for the effective delivery of anti-cancer agents as it exposes the tumors to high concentration of drugs. In situ gelling systems have fetched paramount attention in the field of localized cancer chemotherapy due to their targeted delivery, ease of preparation, prolonged or sustained drug release and improved patient compliance. Numerous polymers have been investigated for their properties like swelling along with biodegradation, drug release and physicochemical properties for successful targeting of the drugs at the site of implantation. The polymers such as chitosan, Hyaluronic Acid (HA), poloxamer, Poly Glycolic Lactic Acid (PGLA) and Poly Lactic Acid (PLA) tend to form in situ hydrogels and have been exploited to develop localized delivery vehicles. These formulations are administered in the solution form and on exposure to physiological environment such as temperature, pH or ionic composition they undergo phase conversion into a hydrogel drug depot. The use of in situ gelling approach has provided prospects to increase overall survival and life quality of cancer patient by enhancing the bioavailability of drug to the site of tumor by minimizing the exposure to normal cells and alleviating systemic side effects. Because of its favorable safety profile and clinical benefits, United States Food and Drug Administration (U.S. FDA) has approved polymer based in situ systems for prolonged locoregional activity. This article discusses the rationale for developing in situ systems for targeted delivery of anti-cancer agents with special emphasis on types of polymers used to formulate the in situ system. In situ formulations for locoregional anti-cancer drug delivery that are marketed and are under clinical trials have also been discussed in detail in this article.
Collapse
Affiliation(s)
- Amrinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Tushit Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Manjot Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nikhil Shri Sahajpal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rohan Aurora
- The International School Bangalore, Karnataka, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
21
|
Lei K, Tang L. Surgery-free injectable macroscale biomaterials for local cancer immunotherapy. Biomater Sci 2019; 7:733-749. [PMID: 30637428 DOI: 10.1039/c8bm01470a] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Immunotherapy can harness the power of host's immune system to fight cancer. In the last few decades, tremendous progress has been made in this field, with remarkable clinical successes achieved consisting of a durable response in a fraction of patients. However, there are enormous challenges to extending this therapy to the majority of cancer patients while retaining minimal adverse effects. Local immunotherapy is a promising approach for concentrating immunomodulation in situ without systemic exposure, therefore minimizing systemic toxicities. More importantly, local immunomodulation can still lead to systemic effects that confer overall anticancer immunity to eradicate disseminated diseases. To facilitate these local immunotherapies, a wide range of biomaterials have been developed as delivery systems to protect the locally injected immune-related therapeutics and extend their retention. Surgery-free injectable macroscale biomaterials are one of the most promising classes of biomaterials developed to date, as they are suitable for minimally invasive injection with needles or catheters and form a biocompatible three-dimensional matrix in situ as a drug-depot for controlled local delivery. In this mini-review, we provide an overview of the recent advancements in applying injectable macroscale biomaterials in local cancer immunotherapy by highlighting some recent examples. We compare various injectable biomaterials with different gelation mechanisms and discuss their applications in the delivery of immunomodulators, immune cells, and cancer vaccines. We also discuss current challenges and provide a perspective for the future development of injectable macroscale biomaterials in cancer immunotherapy.
Collapse
Affiliation(s)
- Kewen Lei
- Institute of Materials Science & Engineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, SwitzerlandCH-1015
| | | |
Collapse
|
22
|
Sun Q, Barz M, De Geest BG, Diken M, Hennink WE, Kiessling F, Lammers T, Shi Y. Nanomedicine and macroscale materials in immuno-oncology. Chem Soc Rev 2019; 48:351-381. [PMID: 30465669 PMCID: PMC7115880 DOI: 10.1039/c8cs00473k] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunotherapy is revolutionizing the treatment of cancer. It can achieve unprecedented responses in advanced-stage patients, including complete cures and long-term survival. However, immunotherapy also has limitations, such as its relatively low response rates and the development of severe side effects. These drawbacks are gradually being overcome by improving our understanding of the immune system, as well as by establishing combination regimens in which immunotherapy is combined with other treatment modalities. In addition to this, in recent years, progress made in chemistry, nanotechnology and materials science has started to impact immuno-oncology, resulting in more effective and less toxic immunotherapy interventions. In this context, multiple different nanomedicine formulations and macroscale materials have been shown to be able to boost anti-cancer immunity and the efficacy of immunomodulatory drugs. We here review nanotechnological and materials chemistry efforts related to endogenous and exogenous vaccination, to the engineering of antigen-presenting cells and T cells, and to the modulation of the tumor microenvironment. We also discuss limitations, current trends and future directions. Together, the insights provided and the evidence obtained indicate that there is a bright future ahead for engineering nanomedicines and macroscale materials for immuno-oncology applications.
Collapse
Affiliation(s)
- Qingxue Sun
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Bruno G. De Geest
- Department of Pharmaceutics, Ghent University, B-9000 Ghent, Belgium
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, 55131, Mainz, Germany
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Fabian Kiessling
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
- Fraunhofer MEVIS, Institute for Medical Image Computing, 52074 Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE Enschede, The Netherlands
| | - Yang Shi
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
23
|
Geskovski N, Sazdovska SD, Goracinova K. Macroalgal Polysaccharides in Biomimetic Nanodelivery Systems. Curr Pharm Des 2019; 25:1265-1289. [PMID: 31020934 DOI: 10.2174/1381612825666190423155116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Imitating nature in the design of bio-inspired drug delivery systems resulted in several success stories. However, the practical application of biomimicry is still largely unrealized owing to the fact that we tend to copy the shape more often than the whole biology. Interesting chemistry of polysaccharides provides endless possibilities for drug complex formation and creation of delivery systems with diverse morphological and surface properties. However, the type of biological response, which may be induced by these systems, remains largely unexploited. METHODS Considering the most current research for the given topic, in this review, we will try to present the integrative approaches for the design of biomimetic DDS's with improved therapeutic or theranostic effects based on different algal polysaccharides that exert multiple biological functions. RESULTS Algal polysaccharides may provide building blocks for bioinspired drug delivery systems capable of supporting the mechanical properties of nanomedicines and mimicking various biological processes by molecular interactions at the nanoscale. Numerous research studies demonstrate the efficacy and safety of multifunctional nanoparticles integrating several functions in one delivery system, composed of alginate, carrageenan, ulvan, fucoidan and their derivatives, intended to be used as bioartificial microenvironment or for diagnosis and therapy of different diseases. CONCLUSION Nanodimensional structure of polysaccharide DDS's shows substantial influence on the bioactive motifs potential availability for interaction with a variety of biomolecules and cells. Evaluation of the nano dimensional structure-activity relationship is crucial for unlocking the full potential of the future application of polysaccharide bio-mimicking DDS in modern diagnostic and therapeutic procedures.
Collapse
Affiliation(s)
- Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss Cyril and Methodius, Skopje, Republic of North Macedonia
| | - Simona Dimchevska Sazdovska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss Cyril and Methodius, Skopje, Republic of North Macedonia
| | | |
Collapse
|
24
|
Yang P, Song H, Qin Y, Huang P, Zhang C, Kong D, Wang W. Engineering Dendritic-Cell-Based Vaccines and PD-1 Blockade in Self-Assembled Peptide Nanofibrous Hydrogel to Amplify Antitumor T-Cell Immunity. NANO LETTERS 2018; 18:4377-4385. [PMID: 29932335 DOI: 10.1021/acs.nanolett.8b01406] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dendritic cells (DCs) are increasingly used in cancer vaccines due to their ability to regulate T-cell immunity. Major limitations associated with the present DC adoptive transfer immunotherapy are low cell viability and transient duration of transplanted DCs at the vaccination site and the lack of recruitment of host DCs, leading to unsatisfactory T-cell immune response. Here, we developed a novel vaccine nodule comprising a simple physical mixture of the peptide nanofibrous hydrogel, anti-PD-1 antibodies, DCs, and tumor antigens. Upon subcutaneous injection, the vaccine nodule maintained the viability and biological function including the antigen uptake and maturation of encapsulated DCs and simultaneously recruited a number of host DCs and promoted the drainage of activated DCs to lymph nodes, resulting in enhanced proliferation of antigen-specific splenocytes and provoking potent cellular immune responses. Compared with adoptive transfer of DCs and subcutaneous administration of antigen vaccine, such a vaccine nodule shows superior antitumor immunotherapy efficiency in both prophylactic and therapeutic tumor models including delayed tumor growth and prolonged mice survival due to effective stimulation of antitumor T-cell immunity and increased infiltration of activated CD8+ effector T-cells in the tumor. Our findings provide a simple and robust vaccination strategy for DC-based vaccines and also a unique vaccine product for stimulating and enhancing T-cell immunity, holding great promise for immunotherapy against cancer and infectious diseases.
Collapse
Affiliation(s)
- Pengxiang Yang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science , Harbin Medical University , Harbin 150081 , China
| | - Huijuan Song
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| | - Yibo Qin
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences , Nankai University , Tianjin 300071 , China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy , Cancer Institute, Xuzhou Medical University , Xuzhou 221004 , Jiangsu , China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| |
Collapse
|
25
|
An M, Yu C, Xi J, Reyes J, Mao G, Wei WZ, Liu H. Induction of necrotic cell death and activation of STING in the tumor microenvironment via cationic silica nanoparticles leading to enhanced antitumor immunity. NANOSCALE 2018; 10:9311-9319. [PMID: 29737353 PMCID: PMC5969905 DOI: 10.1039/c8nr01376d] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nanotechnology has demonstrated tremendous clinical utility, with potential applications in cancer immunotherapy. Although nanoparticles with intrinsic cytotoxicity are often considered unsuitable for clinical applications, such toxicity may be harnessed in the fight against cancer. Nanoparticle-associated toxicity can induce acute necrotic cell death, releasing tumor-associated antigens which may be captured by antigen-presenting cells to initiate or amplify tumor immunity. To test this hypothesis, cytotoxic cationic silica nanoparticles (CSiNPs) were directly administered into B16F10 melanoma implanted in C57BL/6 mice. CSiNPs caused plasma membrane rupture and oxidative stress of tumor cells, inducing local inflammation, tumor cell death and the release of tumor-associated antigens. The CSiNPs were further complexed with bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), a molecular adjuvant which activates the stimulator of interferon genes (STING) in antigen-presenting cells. Compared with unformulated c-di-GMP, the delivery of c-di-GMP with CSiNPs markedly prolonged its local retention within the tumor microenvironment and activated tumor-infiltrating antigen-presenting cells. The combination of CSiNPs and a STING agonist showed dramatically increased expansion of antigen-specific CD8+ T cells, and potent tumor growth inhibition in murine melanoma. These results demonstrate that cationic nanoparticles can be used as an effective in situ vaccine platform which simultaneously causes tumor destruction and immune activation.
Collapse
Affiliation(s)
- Myunggi An
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Madl CM, Heilshorn SC, Blau HM. Bioengineering strategies to accelerate stem cell therapeutics. Nature 2018; 557:335-342. [PMID: 29769665 PMCID: PMC6773426 DOI: 10.1038/s41586-018-0089-z] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023]
Abstract
Although only a few stem cell-based therapies are currently available to patients, stem cells hold tremendous regenerative potential, and several exciting clinical applications are on the horizon. Biomaterials with tuneable mechanical and biochemical properties can preserve stem cell function in culture, enhance survival of transplanted cells and guide tissue regeneration. Rapid progress with three-dimensional hydrogel culture platforms provides the opportunity to grow patient-specific organoids, and has led to the discovery of drugs that stimulate endogenous tissue-specific stem cells and enabled screens for drugs to treat disease. Therefore, bioengineering technologies are poised to overcome current bottlenecks and revolutionize the field of regenerative medicine.
Collapse
Affiliation(s)
- Christopher M Madl
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
27
|
Gammon JM, Dold NM, Jewell CM. Improving the clinical impact of biomaterials in cancer immunotherapy. Oncotarget 2017; 7:15421-43. [PMID: 26871948 PMCID: PMC4941251 DOI: 10.18632/oncotarget.7304] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/29/2016] [Indexed: 12/20/2022] Open
Abstract
Immunotherapies for cancer have progressed enormously over the past few decades, and hold great promise for the future. The successes of these therapies, with some patients showing durable and complete remission, demonstrate the power of harnessing the immune system to eradicate tumors. However, the effectiveness of current immunotherapies is limited by hurdles ranging from immunosuppressive strategies employed by tumors, to inadequate specificity of existing therapies, to heterogeneity of disease. Further, the vast majority of approved immunotherapies employ systemic delivery of immunomodulators or cells that make addressing some of these challenges more difficult. Natural and synthetic biomaterials–such as biocompatible polymers, self-assembled lipid particles, and implantable biodegradable devices–offer unique potential to address these hurdles by harnessing the benefits of therapeutic targeting, tissue engineering, co-delivery, controlled release, and sensing. However, despite the enormous investment in new materials and nanotechnology, translation of these ideas to the clinic is still an uncommon outcome. Here we review the major challenges facing immunotherapies and discuss how the newest biomaterials and nanotechnologies could help overcome these challenges to create new clinical options for patients.
Collapse
Affiliation(s)
- Joshua M Gammon
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Neil M Dold
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.,Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, USA
| |
Collapse
|
28
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 521] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
29
|
Abstract
Cancer immunotherapy can successfully promote long-term anticancer immune responses, although there is still only a limited number of patients who benefit from such treatment, and it can sometimes have severe treatment-associated adverse events. Compared with systemic immunomodulation, local immunomodulation may enable more effective treatment at lower doses and, at the same time, prevent systemic toxicity. Local delivery of engineered three-dimensional scaffolds may fulfil this role by acting as synthetic immune niches that boost anticancer immunity. In this Opinion article, we highlight the potential of scaffold-based adoptive cell transfer and scaffold-based cancer vaccines that, although applied locally, can promote systemic antitumour immunity. Furthermore, we discuss how scaffold-based cancer immunotherapy may contribute to the development of the next generation of cancer treatments.
Collapse
|
30
|
Abstract
Background Immunotherapy consists of activating the patient’s immune system to fight cancer and has the great potential of preventing future relapses thanks to immunological memory. A great variety of strategies have emerged to harness the immune system against tumors, from the administration of immunomodulatory agents that activate immune cells, to therapeutic vaccines or infusion of previously activated cancer-specific T cells. However, despite great recent progress many difficulties still remain, which prevent the widespread use of immunotherapy. Some of these limitations include: systemic toxicity, weak immune cellular responses or persistence over time and most ultimately costly and time-consuming procedures. Main body Synthetic and natural biomaterials hold great potential to address these hurdles providing biocompatible systems capable of targeted local delivery, co-delivery, and controlled and/or sustained release. In this review we discuss some of the bioengineered solutions and approaches developed so far and how biomaterials can be further implemented to help and shape the future of cancer immunotherapy. Conclusion The bioengineering strategies here presented constitute a powerful toolkit to develop safe and successful novel cancer immunotherapies.
Collapse
|
31
|
Delivering safer immunotherapies for cancer. Adv Drug Deliv Rev 2017; 114:79-101. [PMID: 28545888 DOI: 10.1016/j.addr.2017.05.011] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 12/14/2022]
Abstract
Cancer immunotherapy is now a powerful clinical reality, with a steady progression of new drug approvals and a massive pipeline of additional treatments in clinical and preclinical development. However, modulation of the immune system can be a double-edged sword: Drugs that activate immune effectors are prone to serious non-specific systemic inflammation and autoimmune side effects. Drug delivery technologies have an important role to play in harnessing the power of immune therapeutics while avoiding on-target/off-tumor toxicities. Here we review mechanisms of toxicity for clinically-relevant immunotherapeutics, and discuss approaches based in drug delivery technology to enhance the safety and potency of these treatments. These include strategies to merge drug delivery with adoptive cellular therapies, targeting immunotherapies to tumors or select immune cells, and localizing therapeutics intratumorally. Rational design employing lessons learned from the drug delivery and nanomedicine fields has the potential to facilitate immunotherapy reaching its full potential.
Collapse
|
32
|
Chan WI, Zhang G, Li X, Leung CH, Ma DL, Dong L, Wang C. Carrageenan activates monocytes via type-specific binding with interleukin-8: an implication for design of immuno-active biomaterials. Biomater Sci 2017; 5:403-407. [DOI: 10.1039/c6bm00799f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
λ-Type carrageenan activates monocytes via binding interleukin-8 in serum.
Collapse
Affiliation(s)
- Weng-I Chan
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macau SAR
- China
| | - Guangpan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macau SAR
- China
| | - Xin Li
- Thermo Fisher Scientific
- Singapore
- Singapore 739256
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macau SAR
- China
| | - Dik-Lung Ma
- Department of Chemistry
- Hong Kong Baptist University
- China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing
- China 210093
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macau SAR
- China
| |
Collapse
|
33
|
Chew SA, Danti S. Biomaterial-Based Implantable Devices for Cancer Therapy. Adv Healthc Mater 2017; 6. [PMID: 27886461 DOI: 10.1002/adhm.201600766] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/30/2016] [Indexed: 11/10/2022]
Abstract
This review article focuses on the current local therapies mediated by implanted macroscaled biomaterials available or proposed for fighting cancer and also highlights the upcoming research in this field. Several authoritative review articles have collected and discussed the state-of-the-art as well as the advancements in using biomaterial-based micro- and nano-particle systems for drug delivery in cancer therapy. On the other hand, implantable biomaterial devices are emerging as highly versatile therapeutic platforms, which deserve an increased attention by the healthcare scientific community, as they are able to offer innovative, more effective and creative strategies against tumors. This review summarizes the current approaches which exploit biomaterial-based devices as implantable tools for locally administrating drugs and describes their specific medical applications, which mainly target resected brain tumors or brain metastases for the inaccessibility of conventional chemotherapies. Moreover, a special focus in this review is given to innovative approaches, such as combined delivery therapies, as well as to alternative approaches, such as scaffolds for gene therapy, cancer immunotherapy and metastatic cell capture, the later as promising future trends in implantable biomaterials for cancer applications.
Collapse
Affiliation(s)
- Sue Anne Chew
- University of Texas Rio Grande Valley; Department of Health and Biomedical Sciences; One West University Blvd; Brownsville TX 78520 USA
| | - Serena Danti
- University of Pisa; Department of Civil and Industrial Engineering; Largo L. Lazzarino 2 56122 Pisa Italy
| |
Collapse
|
34
|
Garcia-Mazas C, Csaba N, Garcia-Fuentes M. Biomaterials to suppress cancer stem cells and disrupt their tumoral niche. Int J Pharm 2016; 523:490-505. [PMID: 27940172 DOI: 10.1016/j.ijpharm.2016.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 01/04/2023]
Abstract
Lack of improvement in the treatment options of several types of cancer can largely be attributed to the presence of a subpopulation of cancer cells with stem cell signatures and to the tumoral niche that supports and protects these cells. This review analyses the main strategies that specifically modulate or suppress cancer stem cells (CSCs) and the tumoral niche (TN), focusing on the role of biomaterials (i.e. implants, nanomedicines, etc.) in these therapies. In the case of CSCs, we discuss differentiation therapies and the disruption of critical cellular signaling networks. For the TN, we analyze diverse strategies to modulate tumor hypervascularization and hypoxia, tumor extracellular matrix, and the inflammatory and tumor immunosuppressive environment. Due to their capacity to control drug disposition and integrate diverse functionalities, biomaterial-based therapies can provide important benefits in these strategies. We illustrate this by providing case studies where biomaterial-based therapies either show CSC suppression and TN disruption or improved delivery of major modulators of these features. Finally, we discuss the future of these technologies in the framework of these emerging therapeutic concepts.
Collapse
Affiliation(s)
- Carla Garcia-Mazas
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) and Dept. of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Campus Vida, Santiago de Compostela, Spain
| | - Noemi Csaba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) and Dept. of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Campus Vida, Santiago de Compostela, Spain
| | - Marcos Garcia-Fuentes
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) and Dept. of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Campus Vida, Santiago de Compostela, Spain.
| |
Collapse
|
35
|
Bennett NK, Dhaliwal A, Moghe PV. Convergence of Highly Resolved and Rapid Screening Platforms with Dynamically Engineered, Cell Phenotype-Prescriptive Biomaterials. ACTA ACUST UNITED AC 2016; 2:142-151. [PMID: 27482508 DOI: 10.1007/s40495-016-0057-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Biophysical and biochemical cues from the cellular microenvironment initiate intracellular signaling through cellular membrane receptors and trigger specific cell developmental programs. Extracellular substrates and matrix scaffolds engineered to mimic cell's native physiological environment must incorporate the multifactorial parameters (composition, micro and nanoscale organization and topography) of the extracellular matrix as well as the dynamic nature of the matrix. The design of such engineered biomaterials is challenged by the inherent complexity and dynamic nature of the cell-extracellular matrix reciprocity, while the validation of robust microenvironments requires a deeper, higher content phenotypic resolution of cell-matrix interactions alongside a rapid screening capability. To this end, high-throughput platforms are integral to facilitating the screening and optimization of complex engineered microenvironments for directing desired cell developmental pathway. This review highlights the recent advances in biomaterial platforms that present dynamic cues and enable high throughput screening of cell's response to a combination of micro-environmental factors. We also address some newer techniques involving high content image informatics to elucidate emergent cellular behaviors with a focus on stem cell regenerative endpoints.
Collapse
Affiliation(s)
- Neal K Bennett
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ
| | - Anandika Dhaliwal
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ; Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ
| |
Collapse
|
36
|
Co-delivery of chemotherapeutics and proteins for synergistic therapy. Adv Drug Deliv Rev 2016; 98:64-76. [PMID: 26546464 DOI: 10.1016/j.addr.2015.10.021] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/15/2023]
Abstract
Combination therapy with chemotherapeutics and protein therapeutics, typically cytokines and antibodies, has been a type of crucial approaches for synergistic cancer treatment. However, conventional approaches by simultaneous administration of free chemotherapeutic drugs and proteins lead to limitations for further optimizing the synergistic effects, due to the distinct in vivo pharmacokinetics and distribution of small drugs and proteins, insufficient tumor selectivity and tumor accumulation, unpredictable drug/protein ratios at tumor sites, short half-lives, and serious systemic adverse effects. Consequently, to obtain optimal synergistic anti-tumor efficacy, considerable efforts have been devoted to develop the co-delivery systems for co-incorporating chemotherapeutics and proteins into a single carrier system and subsequently releasing the dual or multiple payloads at desired target sites in a more controllable manner. The co-delivery systems result in markedly enhanced blood stability and in vivo half-lives of the small drugs and proteins, elevated tumor accumulation, as well as the capability of delivering the multiple agents to the same target sites with rational drug/protein ratios, which may facilitate maximizing the synergistic effects and therefore lead to optimal antitumor efficacy. This review emphasizes the recent advances in the co-delivery systems for chemotherapeutics and proteins, typically cytokines and antibodies, for systemic or localized synergistic cancer treatment. Moreover, the proposed mechanisms responsible for the synergy of chemotherapeutic drugs and proteins are discussed.
Collapse
|
37
|
Abstract
Strategies to enhance, suppress, or qualitatively shape the immune response are of importance for diverse biomedical applications, such as the development of new vaccines, treatments for autoimmune diseases and allergies, strategies for regenerative medicine, and immunotherapies for cancer. However, the intricate cellular and molecular signals regulating the immune system are major hurdles to predictably manipulating the immune response and developing safe and effective therapies. To meet this challenge, biomaterials are being developed that control how, where, and when immune cells are stimulated in vivo, and that can finely control their differentiation in vitro. We review recent advances in the field of biomaterials for immunomodulation, focusing particularly on designing biomaterials to provide controlled immunostimulation, targeting drugs and vaccines to lymphoid organs, and serving as scaffolds to organize immune cells and emulate lymphoid tissues. These ongoing efforts highlight the many ways in which biomaterials can be brought to bear to engineer the immune system.
Collapse
Affiliation(s)
- Nathan A Hotaling
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine
- Parker H. Petit Institute for Bioengineering and Biosciences, and
| | - Li Tang
- Department of Materials Science and Engineering
- Department of Biological Engineering, and
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139
| | - Darrell J Irvine
- Department of Materials Science and Engineering
- Department of Biological Engineering, and
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Julia E Babensee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine
- Parker H. Petit Institute for Bioengineering and Biosciences, and
- Center for Immunoengineering, Georgia Institute of Technology, Atlanta, Georgia 30332;
| |
Collapse
|
38
|
Abstract
Recently, a number of promising approaches have been developed using synthetic chemistry, materials science, and bioengineering-based strategies to address challenges in the design of more effective cancer vaccines. At the stage of initial priming, potency can be improved by maximizing vaccine delivery to lymph nodes. Because lymphatic uptake from peripheral tissues is strongly size dependent, antigens and adjuvants packaged into optimally sized nanoparticles access the lymph node with much greater efficiency than unformulated vaccines. Once primed, T cells must home to the tumor site. Because T cells acquire the necessary surface receptors in the local lymph node draining the tissue of interest, vaccines must be engineered that reach organs, such as the lung and gut, which are common sites of tumor lesions but inaccessible by traditional vaccination routes. Particulate vaccine carriers can improve antigen exposure in these organs, resulting in greater lymphocyte priming. Immunomodulatory agents can also be injected directly into the tumor site to stimulate a systemic response capable of clearing even distal lesions; materials have been designed that entrap or slowly release immunomodulators at the tumor site, reducing systemic exposure and improving therapeutic efficacy. Finally, lessons learned from the design of biomaterial-based scaffolds in regenerative medicine have led to the development of implantable vaccines that recruit and activate antigen-presenting cells to drive antitumor immunity. Overall, these engineering strategies represent an expanding toolkit to create safe and effective cancer vaccines.
Collapse
Affiliation(s)
- Naveen K Mehta
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kelly D Moynihan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. Ragon Institute of MGH, MIT and Harvard University, Boston, Massachusetts
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. Ragon Institute of MGH, MIT and Harvard University, Boston, Massachusetts. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. Howard Hughes Medical Institute, Chevy Chase, Maryland.
| |
Collapse
|
39
|
Huang FY, Huang FR, Chen B, Liu Q, Wang H, Zhou SL, Zhao HG, Huang YH, Lin YY, Tan GH. Microencapsulation of tumor lysates and live cell engineering with MIP-3α as an effective vaccine. Biomaterials 2015; 53:554-565. [PMID: 25890751 DOI: 10.1016/j.biomaterials.2015.02.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
The combination of several potential strategies so as to develop new tumor vaccines is an attractive field of translational medicine. Pulsing tumor lysates with dendritic cells (DCs), in-vivo attraction of DCs by macrophage inflammatory protein 3α (MIP-3α), and reversion of the tumor suppressive microenvironment have been tested as strategies to develop tumor vaccines. In this study, we generated an alginate microsphere (named PaLtTcAdMIP3α) that encapsulated tumor lysates, live tumor cells engineering with a recombinant MIP-3α adenovirus and BCG. We used PaLtTcAdMIP3α as a model vaccine to test its antitumor activities. Our results showed that PaLtTcAdMIP3α expressed and excreted MIP-3α, which effectively attracted DCs ex vivo and in vivo. Injection of PaLtTcAdMIP3α into tumor-bearing mice effectively induced both therapeutic and prophylactic antitumor immunities in CT26, Meth A, B16-F10 and H22 models, but without any ensuing increase in adverse effects. Both tumor-specific cellular and humoral immune responses, especially the CD8(+) T cell-dependent cytotoxic T immunity, were found in the mice injected with PaLtTcAdMIP3α. The anti-tumor activity was abrogated completely by depletion of CD8(+) and partially by CD4(+) T lymphocytes. In addition, the number of IFN-γ-producing CD8(+) T cells in spleen and tumor tissues was significantly increased; but the number of CD4(+)CD25(+)FOXP3(+) regulatory T cells (Treg) in tumor tissues was decreased. These data strongly suggest that a combination of multi-current-using strategies such as the novel approach of using our PaLtTcAdMIP3α microspheres could be an effective tumor model vaccine.
Collapse
Affiliation(s)
- Feng-ying Huang
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Feng-ru Huang
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Bin Chen
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Quan Liu
- Oncology Institute, Fourth Affiliated Hospital of Soochow University, Wuxi 214062, China
| | - Hua Wang
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Song-lin Zhou
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Huan-ge Zhao
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Yong-hao Huang
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Ying-ying Lin
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Guang-hong Tan
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China.
| |
Collapse
|
40
|
Chan G, Mooney DJ. Ca(2+) released from calcium alginate gels can promote inflammatory responses in vitro and in vivo. Acta Biomater 2013; 9:9281-91. [PMID: 23938198 DOI: 10.1016/j.actbio.2013.08.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/25/2013] [Accepted: 08/01/2013] [Indexed: 11/20/2022]
Abstract
In general, alginate hydrogels are considered to be biologically inert and are commonly used for biomedical purposes that require minimum inflammation. However, Ca(2+), which is commonly used to crosslink alginate, is a critical second messenger in immune cell signaling, and little has been done to understand its effect on immune cell fate when delivered as a component of alginate gels. We found that dendritic cells (DCs) encapsulated in Ca(2+)-crosslinked alginate (calcium alginate) secreted at least fivefold more of the inflammatory cytokine IL-1β when compared to DCs encapsulated in agarose and collagen gels, as well as DCs plated on tissue-culture polystyrene (TCPS). Plating cells on TCPS with the alginate polymer could not reproduce these results, whereas culturing DCs on TCPS with increasing concentrations of Ca(2+) increased IL-1β, MHC class II and CD86 expression in a dose-dependent manner. In agreement with these findings, calcium alginate gels induced greater maturation of encapsulated DCs compared to barium alginate gels. When injected subcutaneously in mice, calcium alginate gels significantly upregulated IL-1β secretion from surrounding tissue relative to barium alginate gels, and similarly, the inflammatory effects of LPS were enhanced when it was delivered from calcium alginate gels rather than barium alginate gels. These results confirm that the Ca(2+) used to crosslink alginate gels can be immunostimulatory and suggest that it is important to take into account Ca(2+)'s bioactive effects on all exposed cells (both immune and non-immune) when using calcium alginate gels for biomedical purposes. This work may strongly impact the way people use alginate gels in the future as well as provide insights into past work utilizing alginate gels.
Collapse
Affiliation(s)
- Gail Chan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
41
|
Kwong B, Gai SA, Elkhader J, Wittrup KD, Irvine DJ. Localized immunotherapy via liposome-anchored Anti-CD137 + IL-2 prevents lethal toxicity and elicits local and systemic antitumor immunity. Cancer Res 2013; 73:1547-58. [PMID: 23436794 PMCID: PMC3594475 DOI: 10.1158/0008-5472.can-12-3343] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immunostimulatory agonists such as anti-CD137 and interleukin (IL)-2 have elicited potent antitumor immune responses in preclinical studies, but their clinical use is limited by inflammatory toxicities that result upon systemic administration. We hypothesized that by rigorously restricting the biodistribution of immunotherapeutic agents to a locally accessible lesion and draining lymph node(s), effective local and systemic antitumor immunity could be achieved in the absence of systemic toxicity. We anchored anti-CD137 and an engineered IL-2Fc fusion protein to the surfaces of PEGylated liposomes, whose physical size permitted dissemination in the tumor parenchyma and tumor-draining lymph nodes but blocked entry into the systemic circulation following intratumoral injection. In the B16F10 melanoma model, intratumoral liposome-coupled anti-CD137 + IL-2Fc therapy cured a majority of established primary tumors while avoiding the lethal inflammatory toxicities caused by equivalent intratumoral doses of soluble immunotherapy. Immunoliposome therapy induced protective antitumor memory and elicited systemic antitumor immunity that significantly inhibited the growth of simultaneously established distal tumors. Tumor inhibition was CD8(+) T-cell-dependent and was associated with increased CD8(+) T-cell infiltration in both treated and distal tumors, enhanced activation of tumor antigen-specific T cells in draining lymph nodes, and a reduction in regulatory T cells in treated tumors. These data suggest that local nanoparticle-anchored delivery of immuno-agonists represents a promising strategy to improve the therapeutic window and clinical applicability of highly potent but otherwise intolerable regimens of cancer immunotherapy. Cancer Res; 73(5); 1547-58. ©2012 AACR.
Collapse
Affiliation(s)
- Brandon Kwong
- Koch Institute for Integrative Cancer Research, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
42
|
Wen Y, Kolonich HR, Kruszewski KM, Giannoukakis N, Gawalt ES, Meng WS. Retaining Antibodies in Tumors with a Self-Assembling Injectable System. Mol Pharm 2013; 10:1035-44. [DOI: 10.1021/mp300504z] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | | | - Ellen S. Gawalt
- McGowan Institute of Regenerative
Medicine, Pittsburgh, Pennsylvania 15219, United States
| | | |
Collapse
|
43
|
Fonseca AC, Ferreira P, Cordeiro RA, Mendonça PV, Góis JR, Gil MH, Coelho JFJ. Drug Delivery Systems for Predictive Medicine: Polymers as Tools for Advanced Applications. NEW STRATEGIES TO ADVANCE PRE/DIABETES CARE: INTEGRATIVE APPROACH BY PPPM 2013. [DOI: 10.1007/978-94-007-5971-8_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Park J, Wrzesinski SH, Stern E, Look M, Criscione J, Ragheb R, Jay SM, Demento SL, Agawu A, Limon PL, Ferrandino AF, Gonzalez D, Habermann A, Flavell RA, Fahmy TM. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. NATURE MATERIALS 2012; 11:895-905. [PMID: 22797827 PMCID: PMC3601683 DOI: 10.1038/nmat3355] [Citation(s) in RCA: 398] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 05/07/2012] [Indexed: 05/12/2023]
Abstract
The tumour microenvironment thwarts conventional immunotherapy through multiple immunologic mechanisms, such as the secretion of the transforming growth factor-β (TGF-β), which stunts local tumour immune responses. Therefore, high doses of interleukin-2 (IL-2), a conventional cytokine for metastatic melanoma, induces only limited responses. To overcome the immunoinhibitory nature of the tumour microenvironment, we developed nanoscale liposomal polymeric gels (nanolipogels; nLGs) of drug-complexed cyclodextrins and cytokine-encapsulating biodegradable polymers that can deliver small hydrophobic molecular inhibitors and water-soluble protein cytokines in a sustained fashion to the tumour microenvironment. nLGs releasing TGF-β inhibitor and IL-2 significantly delayed tumour growth, increased survival of tumour-bearing mice, and increased the activity of natural killer cells and of intratumoral-activated CD8(+) T-cell infiltration. We demonstrate that the efficacy of nLGs in tumour immunotherapy results from a crucial mechanism involving activation of both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Jason Park
- Department of Biomedical and Environmental Engineering, Yale University School of Engineering and Applied Sciences, New Haven, Connecticut 06511, USA
| | - Stephen H. Wrzesinski
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06511, USA
- Yale Cancer Center, New Haven, Connecticut 06511, USA
| | - Eric Stern
- Department of Biomedical and Environmental Engineering, Yale University School of Engineering and Applied Sciences, New Haven, Connecticut 06511, USA
| | - Michael Look
- Department of Biomedical and Environmental Engineering, Yale University School of Engineering and Applied Sciences, New Haven, Connecticut 06511, USA
| | - Jason Criscione
- Department of Biomedical and Environmental Engineering, Yale University School of Engineering and Applied Sciences, New Haven, Connecticut 06511, USA
| | - Ragy Ragheb
- Department of Biomedical and Environmental Engineering, Yale University School of Engineering and Applied Sciences, New Haven, Connecticut 06511, USA
| | - Steven M. Jay
- Department of Biomedical and Environmental Engineering, Yale University School of Engineering and Applied Sciences, New Haven, Connecticut 06511, USA
| | - Stacey L. Demento
- Department of Biomedical and Environmental Engineering, Yale University School of Engineering and Applied Sciences, New Haven, Connecticut 06511, USA
| | - Atu Agawu
- Department of Biomedical and Environmental Engineering, Yale University School of Engineering and Applied Sciences, New Haven, Connecticut 06511, USA
| | - Paula Licona Limon
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Anthony F. Ferrandino
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - David Gonzalez
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Ann Habermann
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06511, USA
- Yale Cancer Center, New Haven, Connecticut 06511, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Tarek M. Fahmy
- Department of Biomedical and Environmental Engineering, Yale University School of Engineering and Applied Sciences, New Haven, Connecticut 06511, USA
- Yale Cancer Center, New Haven, Connecticut 06511, USA
- Department of Chemical and Environmental Engineering, Yale University School of Engineering and Applied Sciences, New Haven, Connecticut 06511, USA
- Correspondence and requests for materials should be addressed to T.M.F.,
| |
Collapse
|
45
|
Kim J, Mooney DJ. In Vivo Modulation of Dendritic Cells by Engineered Materials: Towards New Cancer Vaccines. NANO TODAY 2011; 6:466-477. [PMID: 22125572 PMCID: PMC3224090 DOI: 10.1016/j.nantod.2011.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Therapeutic cancer vaccines are emerging as novel and potent approaches to treat cancer. These vaccines enhance the body's immune response to cancerous cells, and dendritic cells (DCs), an initiator of adaptive immunity, are a key cell type targeted by these strategies. Current DC-based cancer vaccines are based on ex vivo manipulation of the cells following their isolation from the patient, followed by reintroduction to the patient, but this approach has many limitations in practical cancer treatment. However, recent progress in materials science has allowed the design and fabrication of physically and chemically functionalized materials platforms that can specifically target DCs in the body. These materials, through their in vivo modulation of DCs, have tremendous potentials as new cancer therapies. Nanoparticles, which are several orders of magnitude smaller than DCs, can efficiently deliver antigen and danger signals to these cells through passive or active targeting. Three-dimensional biomaterials, with sizes several orders of magnitude larger than DCs, create microenvironments that allow the effective recruitment and programming of these cells, and can be used as local depots of nanoparticles targeting resident DCs. Both material strategies have shown potential in promoting antigen-specific T cell responses of magnitudes relevant to treating cancer.
Collapse
Affiliation(s)
| | - David J. Mooney
- Corresponding Author: Prof. David J. Mooney, School of Engineering and Applied Sciences, and Wyss Institute for Biologically Inspired Engineering, Harvard University, 29 Oxford St., 325 Pierce Hall, Cambridge, MA 02138, Tel: (+1) 617-384-9624, Fax: (+1) 617-495-9837,
| |
Collapse
|
46
|
Kwong B, Liu H, Irvine DJ. Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy. Biomaterials 2011; 32:5134-47. [PMID: 21514665 PMCID: PMC3140866 DOI: 10.1016/j.biomaterials.2011.03.067] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 03/28/2011] [Indexed: 11/24/2022]
Abstract
Immunostimulatory therapies that activate immune response pathways are of great interest for overcoming the immunosuppression present in advanced tumors. Agonistic anti-CD40 antibodies and CpG oligonucleotides have previously demonstrated potent, synergistic anti-tumor effects, but their clinical use even as monotherapies is hampered by dose-limiting inflammatory toxicity provoked upon systemic exposure. We hypothesized that by anchoring immuno-agonist compounds to lipid nanoparticles we could retain the bioactivity of therapeutics in the local tumor tissue and tumor-draining lymph node, but limit systemic exposure to these potent molecules. We prepared PEGylated liposomes bearing surface-conjugated anti-CD40 and CpG and assessed their therapeutic efficacy and systemic toxicity compared to soluble versions of the same immuno-agonists, injected intratumorally in the B16F10 murine model of melanoma. Anti-CD40/CpG-liposomes significantly inhibited tumor growth and induced a survival benefit similar to locally injected soluble anti-CD40 + CpG. Biodistribution analyses following local delivery showed that the liposomal carriers successfully sequestered anti-CD40 and CpG in vivo, reducing leakage into systemic circulation while allowing draining to the tumor-proximal lymph node. Contrary to locally-administered soluble immunotherapy, anti-CD40/CpG-liposomes did not elicit significant increases in serum levels of ALT enzyme, systemic inflammatory cytokines, or overall weight loss, confirming that off-target inflammatory effects had been minimized. The development of a delivery strategy capable of inducing robust anti-tumor responses concurrent with minimal systemic side effects is crucial for the continued progress of potent immunotherapies toward widespread clinical translation.
Collapse
Affiliation(s)
- Brandon Kwong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Haipeng Liu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Darrell J. Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
47
|
Wang Y, Irvine DJ. Engineering chemoattractant gradients using chemokine-releasing polysaccharide microspheres. Biomaterials 2011; 32:4903-13. [PMID: 21463892 PMCID: PMC3139910 DOI: 10.1016/j.biomaterials.2011.03.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 03/10/2011] [Indexed: 01/16/2023]
Abstract
Spatial and temporal concentration gradients of chemoattractants direct many biological processes, especially the guidance of immune cells to tissue sites during homeostasis and responses to infection. Such gradients are ultimately generated by secretion of attractant proteins from single cells or collections of cells. Here we describe cell-sized chemoattractant-releasing polysaccharide microspheres, capable of mimicking chemokine secretion by host cells and generating sustained bioactive chemokine gradients in their local microenvironment. Exploiting the common characteristic of net cationic charge and reversible glycosaminoglycan binding exhibited by many chemokines, we synthesized alginate hydrogel microspheres that could be loaded with several different chemokines (including CCL21, CCL19, CXCL12, and CXCL10) by electrostatic adsorption. These polysaccharide microspheres subsequently released the attractants over periods ranging from a few hours to at least 1 day when placed in serum-containing medium or collagen gels. The generated gradients were able to attract cells more than hundreds of microns away to make contact with individual microspheres. This versatile system for chemoattractant delivery could find applications in immunotherapy, vaccines and fundamental chemotaxis studies in vivo and in vitro.
Collapse
Affiliation(s)
- Yana Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
48
|
Orive G, Ali OA, Anitua E, Pedraz JL, Emerich DF. Biomaterial-based technologies for brain anti-cancer therapeutics and imaging. Biochim Biophys Acta Rev Cancer 2010; 1806:96-107. [PMID: 20406668 DOI: 10.1016/j.bbcan.2010.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/07/2010] [Accepted: 04/11/2010] [Indexed: 01/01/2023]
Abstract
Treating malignant brain tumors represents one of the most formidable challenges in oncology. Contemporary treatment of brain tumors has been hampered by limited drug delivery across the blood-brain barrier (BBB) to the tumor bed. Biomaterials are playing an increasingly important role in developing more effective brain tumor treatments. In particular, polymer (nano)particles can provide prolonged drug delivery directly to the tumor following direct intracerebral injection, by making them physiochemically able to cross the BBB to the tumor, or by functionalizing the material surface with peptides and ligands allowing the drug-loaded material to be systemically administered but still specifically target the tumor endothelium or tumor cells themselves. Biomaterials can also serve as targeted delivery devices for novel therapies including gene therapy, photodynamic therapy, anti-angiogenic and thermotherapy. Nanoparticles also have the potential to play key roles in the diagnosis and imaging of brain tumors by revolutionizing both preoperative and intraoperative brain tumor detection, allowing early detection of pre-cancerous cells, and providing real-time, longitudinal, non-invasive monitoring/imaging of the effects of treatment. Additional efforts are focused on developing biomaterial systems that are uniquely capable of delivering tumor-associated antigens, immunotherapeutic agents or programming immune cells in situ to identify and facilitate immune-mediated tumor cell killing. The continued translation of current research into clinical practice will rely on solving challenges relating to the pharmacology of nanoparticles but it is envisioned that novel biomaterials will ultimately allow clinicians to target tumors and introduce multiple, pharmaceutically relevant entities for simultaneous targeting, imaging, and therapy in a unique and unprecedented manner.
Collapse
Affiliation(s)
- G Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Vitoria, Spain
| | | | | | | | | |
Collapse
|
49
|
Ali OA, Mooney DJ. Immunologically Active Biomaterials for Cancer Therapy. Curr Top Microbiol Immunol 2010; 344:279-97. [DOI: 10.1007/82_2010_69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|