1
|
Asadi Tokmedash M, Kim C, Chavda AP, Li A, Robins J, Min J. Engineering multifunctional surface topography to regulate multiple biological responses. Biomaterials 2025; 319:123136. [PMID: 39978049 PMCID: PMC11893264 DOI: 10.1016/j.biomaterials.2025.123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
Surface topography or curvature plays a crucial role in regulating cell behavior, influencing processes such as adhesion, proliferation, and gene expression. Recent advancements in nano- and micro-fabrication techniques have enabled the development of biomimetic systems that mimic native extracellular matrix (ECM) structures, providing new insights into cell-adhesion mechanisms, mechanotransduction, and cell-environment interactions. This review examines the diverse applications of engineered topographies across multiple domains, including antibacterial surfaces, immunomodulatory devices, tissue engineering scaffolds, and cancer therapies. It highlights how nanoscale features like nanopillars and nanospikes exhibit bactericidal properties, while many microscale patterns can direct stem cell differentiation and modulate immune cell responses. Furthermore, we discuss the interdisciplinary use of topography for combined applications, such as the simultaneous regulation of immune and tissue cells in 2D and 3D environments. Despite significant advances, key knowledge gaps remain, particularly regarding the effects of topographical cues on multicellular interactions and dynamic 3D contexts. This review summarizes current fabrication methods, explores specific and interdisciplinary applications, and proposes future research directions to enhance the design and utility of topographically patterned biomaterials in clinical and experimental settings.
Collapse
Affiliation(s)
| | - Changheon Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ajay P Chavda
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Adrian Li
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob Robins
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jouha Min
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Zhang X, Al‐Danakh A, Zhu X, Feng D, Yang L, Wu H, Li Y, Wang S, Chen Q, Yang D. Insights into the mechanisms, regulation, and therapeutic implications of extracellular matrix stiffness in cancer. Bioeng Transl Med 2025; 10:e10698. [PMID: 39801760 PMCID: PMC11711218 DOI: 10.1002/btm2.10698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 01/03/2025] Open
Abstract
The tumor microenvironment (TME) is critical for cancer initiation, growth, metastasis, and therapeutic resistance. The extracellular matrix (ECM) is a significant tumor component that serves various functions, including mechanical support, TME regulation, and signal molecule generation. The quantity and cross-linking status of ECM components are crucial factors in tumor development, as they determine tissue stiffness and the interaction between stiff TME and cancer cells, resulting in aberrant mechanotransduction, proliferation, migration, invasion, angiogenesis, immune evasion, and treatment resistance. Therefore, broad knowledge of ECM dysregulation in the TME might aid in developing innovative cancer therapies. This review summarized the available information on major ECM components, their functions, factors that increase and decrease matrix stiffness, and related signaling pathways that interplay between cancer cells and the ECM in TME. Moreover, mechanotransduction alters during tumorogenesis, and current drug therapy based on ECM as targets, as well as future efforts in ECM and cancer, are also discussed.
Collapse
Affiliation(s)
- Ximo Zhang
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Abdullah Al‐Danakh
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xinqing Zhu
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Dan Feng
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Linlin Yang
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Haotian Wu
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Yingying Li
- Department of Discipline ConstructionDalian Medical UniversityDalianChina
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of GlycobiologyDalian Medical UniversityDalianChina
| | - Qiwei Chen
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Zhongda Hospital, Medical School Advanced Institute Life HealthSoutheast UniversityNanjingChina
| | - Deyong Yang
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of SurgeryHealinghands ClinicDalianChina
| |
Collapse
|
3
|
Kirmanidou Y, Chatzinikolaidou M, Michalakis K, Tsouknidas A. Clinical translation of polycaprolactone-based tissue engineering scaffolds, fabricated via additive manufacturing: A review of their craniofacial applications. BIOMATERIALS ADVANCES 2024; 162:213902. [PMID: 38823255 DOI: 10.1016/j.bioadv.2024.213902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
The craniofacial region is characterized by its intricate bony anatomy and exposure to heightened functional forces presenting a unique challenge for reconstruction. Additive manufacturing has revolutionized the creation of customized scaffolds with interconnected pores and biomimetic microarchitecture, offering precise adaptation to various craniofacial defects. Within this domain, medical-grade poly(ε-caprolactone) (PCL) has been extensively used for the fabrication of 3D printed scaffolds, specifically tailored for bone regeneration. Its adoption for load-bearing applications was driven mainly by its mechanical properties, adjustable biodegradation rates, and high biocompatibility. The present review aims to consolidating current insights into the clinical translation of PCL-based constructs designed for bone regeneration. It encompasses recent advances in enhancing the mechanical properties and augmenting biodegradation rates of PCL and PCL-based composite scaffolds. Moreover, it delves into various strategies improving cell proliferation and the osteogenic potential of PCL-based materials. These strategies provide insight into the refinement of scaffold microarchitecture, composition, and surface treatments or coatings, that include certain bioactive molecules such as growth factors, proteins, and ceramic nanoparticles. The review critically examines published data on the clinical applications of PCL scaffolds in both extraoral and intraoral craniofacial reconstructions. These applications include cranioplasty, nasal and orbital floor reconstruction, maxillofacial reconstruction, and intraoral bone regeneration. Patient demographics, surgical procedures, follow-up periods, complications and failures are thoroughly discussed. Although results from extraoral applications in the craniofacial region are encouraging, intraoral applications present a high frequency of complications and related failures. Moving forward, future studies should prioritize refining the clinical performance, particularly in the domain of intraoral applications, and providing comprehensive data on the long-term outcomes of PCL-based scaffolds in bone regeneration. Future perspective and limitations regarding the transition of such constructs from bench to bedside are also discussed.
Collapse
Affiliation(s)
- Y Kirmanidou
- Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, University Campus ZEP, 50100 Kozani, Greece
| | - M Chatzinikolaidou
- Department of Materials Science and Engineering, University of Crete, 70013 Heraklion, Greece; Foundation for Research and Technology Hellas (FO.R.T.H), Institute of Electronic Structure and Laser (IESL), 70013 Heraklion, Greece
| | - K Michalakis
- Laboratory of Biomechanics, Department of Restorative Sciences & Biomaterials, Henry M. Goldman School of Dental Medicine, Boston University, Boston MA-02111, USA; Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, USA
| | - A Tsouknidas
- Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, University Campus ZEP, 50100 Kozani, Greece; Laboratory of Biomechanics, Department of Restorative Sciences & Biomaterials, Henry M. Goldman School of Dental Medicine, Boston University, Boston MA-02111, USA.
| |
Collapse
|
4
|
Wang W, Zhu Y, Liu Y, Chen B, Li M, Yuan C, Wang P. 3D bioprinting of DPSCs with GelMA hydrogel of various concentrations for bone regeneration. Tissue Cell 2024; 88:102418. [PMID: 38776731 DOI: 10.1016/j.tice.2024.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Bioprinting technology promotes innovation of fabricating tissue engineered constructs. Dental pulp stem cells (DPSCs) have significant advantages over classical bone mesenchymal stem cells (BMSCs) and are a promising seed cell candidate for bone engineering bioprinting. However, current reports about bioprinted DPSCs for bone regeneration are incomprehensive. The objective of this study was to investigate the osteogenic potential of DPSCs in methacrylate gelatin (GelMA) hydrogels bioprinted scaffolds in vitro and in vivo. Firstly, we successfully bioprinted GelMA with different concentrations embedded with or without DPSCs. Printability, physical features and biological properties of the bioprinted constructs were evaluated. Then, osteogenic differentiation levels of DPSCs in bioprinted constructs with various concentrated GelMA were compared. Finally, effects of bioprinted constructs on cranial bone regeneration were evaluated in vivo. The results of our study demonstrated that 10% GelMA had higher compression modulus, smaller pores, lower swelling and degradation rate than 3% GelMA. Twenty-eight days after printing, DPSCs in three groups of bioprinted structures still maintained high cell activities (>90%). Moreover, DPSCs in 10% GelMA showed an upregulated expression of osteogenic markers and a highly activated ephrinB2/EphB4 signaling, a signaling involved in bone homeostasis. In vivo experiments showed that DPSCs survived at a higher rate in 10% GelMA, and more new bones were observed in DPSC-laden 10% GelMA group, compared with GelMA of other concentrations. In conclusion, bioprinted DPSC-laden 10% GelMA might be more appropriate for bone regeneration application, in contrast to GelMA with other concentrations.
Collapse
Affiliation(s)
- Wen Wang
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, Jiangsu 221000, China
| | - Yaru Zhu
- Quanzhou Women 's and Children's Hospital, NO.700 Fengze Street, Quanzhou, Fujian 362000, China
| | - Ya Liu
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Banghui Chen
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Mengying Li
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Changyong Yuan
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, Jiangsu 221000, China; School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Penglai Wang
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, Jiangsu 221000, China; School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
5
|
Balachander GM, Nilawar S, Meka SRK, Ghosh LD, Chatterjee K. Unravelling microRNA regulation and miRNA-mRNA regulatory networks in osteogenesis driven by 3D nanotopographical cues. Biomater Sci 2024; 12:978-989. [PMID: 38189225 DOI: 10.1039/d3bm01597a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Three-dimensional (3D) culturing of cells is being adopted for developing tissues for various applications such as mechanistic studies, drug testing, tissue regeneration, and animal-free meat. These approaches often involve cost-effective differentiation of stem or progenitor cells. One approach is to exploit architectural cues on a 3D substrate to drive cellular differentiation, which has been shown to be effective in various studies. Although extensive gene expression data from such studies have shown that gene expression patterns might differ, the gene regulatory networks controlling the expression of genes are rarely studied. In this study, we profiled genes and microRNAs (miRNAs) via next-generation sequencing (NGS) in human mesenchymal stem cells (hMSCs) driven toward osteogenesis via architectural cues in 3D matrices (3D conditions) and compared with cells in two-dimensional (2D) culture driven toward osteogenesis via soluble osteoinductive factors (OF conditions). The total number of differentially expressed genes was smaller in 3D compared to OF conditions. A distinct set of genes was observed under these conditions that have been shown to control osteogenic differentiation via different pathways. Small RNA sequencing revealed a core set of miRNAs to be differentially expressed under these conditions, similar to those that have been previously implicated in osteogenesis. We also observed a distinct regulation of miRNAs in these samples that can modulate gene expression, suggesting supplementary gene regulatory networks operative under different stimuli. This study provides insights into studying gene regulatory networks for identifying critical nodes to target for enhanced cellular differentiation and reveal the differences in physical and biochemical cues to drive cell fates.
Collapse
Affiliation(s)
- Gowri Manohari Balachander
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Sagar Nilawar
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.
| | - Sai Rama Krishna Meka
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.
| | - Lopamudra Das Ghosh
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
6
|
Kim MJ, Park JH, Seok JM, Jung J, Hwang TS, Lee HC, Lee JH, Park SA, Byun JH, Oh SH. BMP-2-immobilized PCL 3D printing scaffold with a leaf-stacked structure as a physically and biologically activated bone graft. Biofabrication 2024; 16:025014. [PMID: 38306679 DOI: 10.1088/1758-5090/ad2537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
Although three-dimensional (3D) printing techniques are used to mimic macro- and micro-structures as well as multi-structural human tissues in tissue engineering, efficient target tissue regeneration requires bioactive 3D printing scaffolds. In this study, we developed a bone morphogenetic protein-2 (BMP-2)-immobilized polycaprolactone (PCL) 3D printing scaffold with leaf-stacked structure (LSS) (3D-PLSS-BMP) as a bioactive patient-tailored bone graft. The unique LSS was introduced on the strand surface of the scaffold via heating/cooling in tetraglycol without significant deterioration in physical properties. The BMP-2 adsorbed on3D-PLSS-BMPwas continuously released from LSS over a period of 32 d. The LSS can be a microtopographical cue for improved focal cell adhesion, proliferation, and osteogenic differentiation.In vitrocell culture andin vivoanimal studies demonstrated the biological (bioactive BMP-2) and physical (microrough structure) mechanisms of3D-PLSS-BMPfor accelerated bone regeneration. Thus, bioactive molecule-immobilized 3D printing scaffold with LSS represents a promising physically and biologically activated bone graft as well as an advanced tool for widespread application in clinical and research fields.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ji Min Seok
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - Jiwoon Jung
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Tae Sung Hwang
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hee-Chun Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials, Hannam University, Daejeon 34054, Republic of Korea
| | - Su A Park
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
7
|
Fang K, Müller S, Ueda M, Nakagawa Y, S Furukawa K, Ushida T, Ikoma T, Ito Y. Cyclic stretch modulates the cell morphology transition under geometrical confinement by covalently immobilized gelatin. J Mater Chem B 2023; 11:9155-9162. [PMID: 37455606 DOI: 10.1039/d3tb00421j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Fibroblasts geometrically confined by photo-immobilized gelatin micropatterns were subjected to cyclic stretch on the silicone elastomer. By using covalently micropatterned surfaces, the cell morphologies such as cell area and length were quantitatively investigated under a cyclic stretch for 20 hours. The mechanical forces did not affect the cell growth but significantly altered the cellular morphology on both non-patterned and micropatterned surfaces. It was found that cells on non-patterns showed increasing cell length and decreasing cell area under the stretch. The width of the strip micropatterns provided a different extent of contact guidance for fibroblasts. The highly extended cells on the 10 μm pattern under static conditions would perform a contraction behavior once treated by cyclic stretch. In contrast, cells with a low extension on the 2 μm pattern kept elongating according to the micropattern under the cyclic stretch. The vertical stretch induced an increase in cell area and length more than the parallel stretch in both the 10 μm and 2 μm patterns. These results provided new insights into cell behaviors under geometrical confinement in a dynamic biomechanical environment and may guide biomaterial design for tissue engineering in the future.
Collapse
Affiliation(s)
- Kun Fang
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Graduate School of Material Science and Engineering, Tokyo Institute of Technology, Meguro, 2-12-1 Ookayama, Tokyo 152-8550, Japan
| | - Stefan Müller
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Motoki Ueda
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yasuhiro Nakagawa
- Graduate School of Material Science and Engineering, Tokyo Institute of Technology, Meguro, 2-12-1 Ookayama, Tokyo 152-8550, Japan
| | - Katsuko S Furukawa
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Takashi Ushida
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Toshiyuki Ikoma
- Graduate School of Material Science and Engineering, Tokyo Institute of Technology, Meguro, 2-12-1 Ookayama, Tokyo 152-8550, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Graduate School of Material Science and Engineering, Tokyo Institute of Technology, Meguro, 2-12-1 Ookayama, Tokyo 152-8550, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
8
|
Zhu Y, Wang W, Chen Q, Ren T, Yang J, Li G, Qi Y, Yuan C, Wang P. Bioprinted PDLSCs with high-concentration GelMA hydrogels exhibit enhanced osteogenic differentiation in vitro and promote bone regeneration in vivo. Clin Oral Investig 2023; 27:5153-5170. [PMID: 37428274 DOI: 10.1007/s00784-023-05135-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES We aimed to explore the osteogenic potential of periodontal ligament stem cells (PDLSCs) in bioprinted methacrylate gelatine (GelMA) hydrogels in vitro and in vivo. MATERIALS AND METHODS PDLSCs in GelMA hydrogels at various concentrations (3%, 5%, and 10%) were bioprinted. The mechanical properties (stiffness, nanostructure, swelling, and degradation properties) of bioprinted constructs and the biological properties (cell viability, proliferation, spreading, osteogenic differentiation, and cell survival in vivo) of PDLSCs in bioprinted constructs were evaluated. Then, the effect of bioprinted constructs on bone regeneration was investigated using a mouse cranial defect model. RESULTS Ten percent GelMA printed constructs had a higher compression modulus, smaller porosity, lower swelling rate, and lower degradation rate than 3% GelMA. PDLSCs in bioprinted 10% GelMA bioprinted constructs showed lower cell viability, less cell spreading, upregulated osteogenic differentiation in vitro, and lower cell survival in vivo. Moreover, upregulated expression of ephrinB2 and EphB4 protein and their phosphorylated forms were found in PDLSCs in 10% GelMA bioprinted constructs, and inhibition of eprhinB2/EphB4 signalling reversed the enhanced osteogenic differentiation of PDLSCs in 10% GelMA. The in vivo experiment showed that 10% GelMA bioprinted constructs with PDLSCs contributed to more new bone formation than 10% GelMA constructs without PDLSCs and constructs with lower GelMA concentrations. CONCLUSIONS Bioprinted PDLSCs with high-concentrated GelMA hydrogels exhibited enhanced osteogenic differentiation partially through upregulated ephrinB2/EphB4 signalling in vitro and promoted bone regeneration in vivo, which might be more appropriate for future bone regeneration applications. CLINICAL RELEVANCE Bone defects are a common clinical oral problem. Our results provide a promising strategy for bone regeneration through bioprinting PDLSCs in GelMA hydrogels.
Collapse
Affiliation(s)
- Yaru Zhu
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Wen Wang
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China
| | - Qiyu Chen
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Tianshui Ren
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jianguang Yang
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China
| | - Gan Li
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China
| | - Yanbin Qi
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China.
| | - Penglai Wang
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China.
| |
Collapse
|
9
|
Blaudez F, Ivanovski S, Fernandez T, Vaquette C. Effect of In Vitro Culture Length on the Bone-Forming Capacity of Osteoblast-Derived Decellularized Extracellular Matrix Melt Electrowritten Scaffolds. Biomacromolecules 2023; 24:3450-3462. [PMID: 37458386 DOI: 10.1021/acs.biomac.2c01504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Recent advancements in decellularization have seen the development of extracellular matrix (ECM)-decorated scaffolds for bone regeneration; however, little is understood of the impact of in vitro culture prior to decellularization on the performances of these constructs. Therefore, this study investigated the effect of in vitro culture on ECM-decorated melt electrowritten polycaprolactone scaffold bioactivity. The scaffolds were seeded with osteoblasts and cultured for 1, 2, or 4 weeks to facilitate bone-specific ECM deposition and subsequently decellularized to form an acellular ECM-decorated scaffold. The utilization of mild chemicals and DNase was highly efficient in removing DNA while preserving ECM structure and composition. ECM decoration of the melt electrowritten fibers was observed within the first week of culture, with increased ECM at 2 and 4 week culture periods. Infiltration of re-seeded cells as well as overall bone regeneration in a rodent calvarial model was impeded by a longer culture period. Thus, it was demonstrated that the length of culture has a key influence on the osteogenic properties of decellularized ECM-decorated scaffolds, with long-term culture (2+ weeks) causing pore obstruction and creating a physical barrier which interfered with bone formation. These findings have important implications for the development of effective ECM-decorated scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Fanny Blaudez
- School of Dentistry and Oral Health, Griffith University, Parklands Dr., Southport QLD 4222, Australia
- The University of Queensland, School of Dentistry, 288 Herston Rd., Herston QLD 4006, Australia
| | - Saso Ivanovski
- The University of Queensland, School of Dentistry, 288 Herston Rd., Herston QLD 4006, Australia
| | - Tulio Fernandez
- The University of Queensland, School of Dentistry, 288 Herston Rd., Herston QLD 4006, Australia
- College of Medicine and Dentistry, James Cook University, Cairns Campus, Cairns 4870, Australia
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, 288 Herston Rd., Herston QLD 4006, Australia
| |
Collapse
|
10
|
Rashad A, Grøndahl M, Heggset EB, Mustafa K, Syverud K. Responses of Rat Mesenchymal Stromal Cells to Nanocellulose with Different Functional Groups. ACS APPLIED BIO MATERIALS 2023; 6:987-998. [PMID: 36763504 PMCID: PMC10031564 DOI: 10.1021/acsabm.2c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Cellulose nanofibrils (CNFs) are multiscale hydrophilic biocompatible polysaccharide materials derived from wood and plants. TEMPO-mediated oxidation of CNFs (TO-CNF) turns some of the primary hydroxyl groups to carboxylate and aldehyde groups. Unlike carboxylic functional groups, there is little or no information about the biological role of the aldehyde groups on the surface of wood-based CNFs. In this work, we replaced the aldehyde groups in the TO-CNF samples with carboxyl groups by another oxidation treatment (TO-O-CNF) or with primary alcohols with terminal hydroxyl groups by a reduction reaction (TO-R-CNF). Rat mesenchymal stem/stromal cells (MSCs) derived from bone marrow were seeded on polystyrene tissue culture plates (TCP) coated with CNFs with and without aldehyde groups. TCP and TCP coated with bacterial nanocellulose (BNC) were used as control groups. Protein adsorption measurements demonstrated that more proteins were adsorbed from cell culture media on all CNF surfaces compared to BNC. Live/dead and lactate dehydrogenase assays confirmed that all nanocellulose biomaterials supported excellent cell viability. Interestingly, TO-R-CNF samples, which have no aldehyde groups, showed better cell spreading than BNC and comparable results to TCP. Unlike TO-O-CNF surfaces, which have no aldehyde groups either, TO-R-CNF stimulated cells, in osteogenic medium, to have higher alkaline phosphatase activity and to form more biomineralization than TCP and TO-CNF groups. These findings indicate that the presence of aldehyde groups (280 ± 14 μmol/g) on the surface of TEMPO-oxidized CNFs might have little or no effect on attachment, proliferation, and osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Ahmad Rashad
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
| | - Martha Grøndahl
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | | | - Kamal Mustafa
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
| | - Kristin Syverud
- RISE PFI, Trondheim 7491, Norway
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| |
Collapse
|
11
|
Adhikari J, Roy A, Chanda A, D A G, Thomas S, Ghosh M, Kim J, Saha P. Effects of surface patterning and topography on the cellular functions of tissue engineered scaffolds with special reference to 3D bioprinting. Biomater Sci 2023; 11:1236-1269. [PMID: 36644788 DOI: 10.1039/d2bm01499h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The extracellular matrix (ECM) of the tissue organ exhibits a topography from the nano to micrometer range, and the design of scaffolds has been inspired by the host environment. Modern bioprinting aims to replicate the host tissue environment to mimic the native physiological functions. A detailed discussion on the topographical features controlling cell attachment, proliferation, migration, differentiation, and the effect of geometrical design on the wettability and mechanical properties of the scaffold are presented in this review. Moreover, geometrical pattern-mediated stiffness and pore arrangement variations for guiding cell functions have also been discussed. This review also covers the application of designed patterns, gradients, or topographic modulation on 3D bioprinted structures in fabricating the anisotropic features. Finally, this review accounts for the tissue-specific requirements that can be adopted for topography-motivated enhancement of cellular functions during the fabrication process with a special thrust on bioprinting.
Collapse
Affiliation(s)
- Jaideep Adhikari
- School of Advanced Materials, Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Avinava Roy
- Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Amit Chanda
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Gouripriya D A
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, West Bengal 700091, India.
| | - Sabu Thomas
- School of Chemical Sciences, MG University, Kottayam 686560, Kerala, India
| | - Manojit Ghosh
- Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Jinku Kim
- Department of Bio and Chemical Engineering, Hongik University, Sejong, 30016, South Korea.
| | - Prosenjit Saha
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, West Bengal 700091, India.
| |
Collapse
|
12
|
Calore AR, Srinivas V, Groenendijk L, Serafim A, Stancu IC, Wilbers A, Leoné N, Sanchez AA, Auhl D, Mota C, Bernaerts K, Harings JAW, Moroni L. Manufacturing of scaffolds with interconnected internal open porosity and surface roughness. Acta Biomater 2023; 156:158-176. [PMID: 35868592 DOI: 10.1016/j.actbio.2022.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023]
Abstract
Manufacturing of three-dimensional scaffolds with multiple levels of porosity are an advantage in tissue regeneration approaches to influence cell behavior. Three-dimensional scaffolds with surface roughness and intra-filament open porosity were successfully fabricated by additive manufacturing combined with chemical foaming and porogen leaching without the need of toxic solvents. The decomposition of sodium citrate, a chemical blowing agent, generated pores within the scaffold filaments, which were interconnected and opened to the external environment by leaching of a water-soluble sacrificial phase, as confirmed by micro-CT and buoyancy measurements. The additional porosity did not result in lower elastic modulus, but in higher strain at maximum load, i.e. scaffold ductility. Human mesenchymal stromal cells cultured for 24 h adhered in greater numbers on these scaffolds when compared to plain additive-manufactured ones, irrespectively of the scaffold pre-treatment method. Additionally, they showed a more spread and random morphology, which is known to influence cell fate. Cells cultured for a longer period exhibited enhanced metabolic activity while secreting higher osteogenic markers after 7 days in culture. STATEMENT OF SIGNIFICANCE: Inspired by the function of hierarchical cellular structures in natural materials, this work elucidates the development of scaffolds with multiscale porosity by combining in-situ foaming and additive manufacturing, and successive porogen leaching. The resulting scaffolds displayed enhanced mechanical toughness and multiscale pore network interconnectivity, combined with early differentiation of adult mesenchymal stromal cells into the osteogenic lineage.
Collapse
Affiliation(s)
- Andrea Roberto Calore
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration department, Maastricht University, Maastricht, the Netherlands; Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen, the Netherlands
| | - Varun Srinivas
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen, the Netherlands
| | - Linda Groenendijk
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen, the Netherlands
| | - Andrada Serafim
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Romania
| | | | | | - Nils Leoné
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration department, Maastricht University, Maastricht, the Netherlands
| | - Ane Albillos Sanchez
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration department, Maastricht University, Maastricht, the Netherlands
| | - Dietmar Auhl
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen, the Netherlands; Polymerwerkstoffe und -technologien, Technische Universität Berlin, the Netherlands
| | - Carlos Mota
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration department, Maastricht University, Maastricht, the Netherlands
| | - Katrien Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen, the Netherlands
| | - Jules A W Harings
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen, the Netherlands.
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration department, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
13
|
Deng B, Zhao Z, Kong W, Han C, Shen X, Zhou C. Biological role of matrix stiffness in tumor growth and treatment. J Transl Med 2022; 20:540. [PMID: 36419159 PMCID: PMC9682678 DOI: 10.1186/s12967-022-03768-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, the biological role of changes in physical factors in carcinogenesis and progression has attracted increasing attention. Matrix stiffness, also known as ECM stress, is a critical physical factor of tumor microenvironment and remains alternating during carcinogenesis as a result of ECM remodeling through activation of cancer-associated fibroblasts and extracellular collagen accumulation, crosslinking and fibrosis. Different content and density of extracellular collagen in ECM endows matrix with varying stiffness. Physical signals induced by matrix stiffness are transmitted to tumor cells primarily by the integrins receptor family and trigger a series of mechanotransduction that result in changes in tumor cell morphology, proliferative capacity, and invasive ability. Importantly, accumulating evidence revealed that changes in matrix stiffness in tumor tissues greatly control the sensitivity of tumor cells in response to chemotherapy, radiotherapy, and immunotherapy through integrin signaling, YAP signaling, and related signaling pathways. Here, the present review analyzes the current research advances on matrix stiffness and tumor cell behavior with a view to contributing to tumor cell growth and treatment, with the hope of improving the understanding of the biological role of matrix stiffness in tumors.
Collapse
Affiliation(s)
- Boer Deng
- grid.24696.3f0000 0004 0369 153XDepartment of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People’s Republic of China ,grid.10698.360000000122483208Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Ziyi Zhao
- grid.24696.3f0000 0004 0369 153XDepartment of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People’s Republic of China ,grid.10698.360000000122483208Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Weimin Kong
- grid.24696.3f0000 0004 0369 153XDepartment of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People’s Republic of China ,grid.10698.360000000122483208Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Chao Han
- grid.24696.3f0000 0004 0369 153XDepartment of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People’s Republic of China
| | - Xiaochang Shen
- grid.24696.3f0000 0004 0369 153XDepartment of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People’s Republic of China ,grid.10698.360000000122483208Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Chunxiao Zhou
- grid.10698.360000000122483208Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.10698.360000000122483208Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
14
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. COATINGS 2022; 12:1380. [DOI: 10.3390/coatings12101380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Various types of materials have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A short time later, such synthetic biomaterials were called bioceramics. Bioceramics can be prepared from diverse inorganic substances, but this review is limited to calcium orthophosphate (CaPO4)-based formulations only, due to its chemical similarity to mammalian bones and teeth. During the past 50 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the CaPO4-based implants would remain biologically stable once incorporated into the skeletal structure or whether they would be resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed, and such formulations became an integrated part of the tissue engineering approach. Now, CaPO4-based scaffolds are designed to induce bone formation and vascularization. These scaffolds are usually porous and harbor various biomolecules and/or cells. Therefore, current biomedical applications of CaPO4-based bioceramics include artificial bone grafts, bone augmentations, maxillofacial reconstruction, spinal fusion, and periodontal disease repairs, as well as bone fillers after tumor surgery. Prospective future applications comprise drug delivery and tissue engineering purposes because CaPO4 appear to be promising carriers of growth factors, bioactive peptides, and various types of cells.
Collapse
|
15
|
Martin A, Cai J, Schaedel AL, van der Plas M, Malmsten M, Rades T, Heinz A. Zein-polycaprolactone core-shell nanofibers for wound healing. Int J Pharm 2022; 621:121809. [PMID: 35550408 DOI: 10.1016/j.ijpharm.2022.121809] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022]
Abstract
In a previous study, we developed electrospun antimicrobial microfiber scaffolds for wound healing composed of a core of zein protein and a shell containing polyethylene oxide. While providing a promising platform for composite nanofiber design, the scaffolds showed low tensile strengths, insufficient water stability, as well as burst release of the antimicrobial drug tetracycline hydrochloride, properties which are not ideal for the use of the scaffolds as wound dressings. Therefore, the aim of the present study was to develop fibers with enhanced mechanical strength and water stability, also displaying sustained release of tetracycline hydrochloride. Zein was chosen as core material, while the shell was formed by the hydrophobic polymer polycaprolactone, either alone or in combination with polyethylene oxide. As compared to control fibers of pristine polycaprolactone, the zein-polycaprolactone fibers exhibited a reduced diameter and hydrophobicity, which is beneficial for cell attachment and wound closure. Such fibers also demonstrated sustained release of tetracycline hydrochloride, as well as water stability, ductility, high mechanical strength and fibroblast attachment, hence representing a step towards the development of biodegradable wound dressings with prolonged drug release, which can be left on the wound for a longer time.
Collapse
Affiliation(s)
- Alma Martin
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; School of Medicine, Nazarbayev University, 010000 Nur-Sultan, Kazakhstan (current address)
| | - Jun Cai
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anna-Lena Schaedel
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mariena van der Plas
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, S-22184 Lund, Sweden
| | - Martin Malmsten
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; Department of Physical Chemistry, Lund University, S-221 00 Lund, Sweden
| | - Thomas Rades
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
16
|
Gómez-Cerezo MN, Patel R, Vaquette C, Grøndahl L, Lu M. In vitro evaluation of porous poly(hydroxybutyrate-co-hydroxyvalerate)/akermanite composite scaffolds manufactured using selective laser sintering. BIOMATERIALS ADVANCES 2022; 135:212748. [PMID: 35929220 DOI: 10.1016/j.bioadv.2022.212748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 10/18/2022]
Abstract
Incorporation of a bioactive mineral filler in a biodegradable polyester scaffold is a promising strategy for scaffold assisted bone tissue engineering (TE). The current study evaluates the in vitro behavior of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)/Akermanite (AKM) composite scaffolds manufactured using selective laser sintering (SLS). Exposure of the mineral filler on the surface of the scaffold skeleton was evident from in vitro mineralization in PBS. PHBV scaffolds and solvent cast films served as control samples and all materials showed preferential adsorption of fibronectin compared to serum albumin as well as non-cytotoxic response in human osteoblasts (hOB) at 24 h. hOB culture for up to 21 days revealed that the metabolic activity in PHBV films and scaffolds was significantly higher than that of PHBV/AKM scaffolds within the first two weeks of incubation. Afterwards, the metabolic activity in PHBV/AKM scaffolds exceeded that of the control samples. Confocal imaging showed cell penetration into the porous scaffolds. Significantly higher ALP activity was observed in PHBV/AKM scaffolds at all time points in both basal and osteogenic media. Mineralization during cell culture was observed on all samples with PHBV/AKM scaffolds exhibiting distinctly different mineral morphology. This study has demonstrated that the bioactivity of PHBV SLS scaffolds can be enhanced by incorporating AKM, making this an attractive candidate for bone TE application.
Collapse
Affiliation(s)
| | - Rushabh Patel
- School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cedryck Vaquette
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia
| | - Lisbeth Grøndahl
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Mingyuan Lu
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia.
| |
Collapse
|
17
|
Enhanced osteogenic effect in reduced BMP-2 doses with siNoggin transfected pre-osteoblasts in 3D silk scaffolds. Int J Pharm 2022; 612:121352. [PMID: 34883207 DOI: 10.1016/j.ijpharm.2021.121352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 01/02/2023]
Abstract
Bone morphogenetic proteins (BMPs), especially BMP-2, are being increasingly used in bone tissue engineering due to its osteo-inductive effects. Although recombinant human BMP-2 (rhBMP-2) was approved by Food and Drug Administration (FDA) to use for bone repair, its high doses cause undesired side effects. In order to reduce the BMP-2 dose for enhanced osteogenic differentiation, in this study we decided to suppress the synthesis of Noggin protein, the primary antagonist of BMP-2, on the MC3T3-E1 cells using Noggin targeted small interfering RNA (siRNA). Unlike other studies, Noggin siRNA (siNoggin) transfected cells were seeded on silk scaffolds, and osteogenic differentiation was investigated for a long-term period (21 days) with MTT, qPCR, SEM/EDS, and histological analysis. Besides, siNoggin transfected MC3T3-E1 cells were evaluated as a new cell source for tissue engineering studies. It was determined that Nog gene expression was suppressed in the siNoggin group and Ocn gene expression increased 5-fold compared to the control group (*p < 0.05). The osteogenic effect of BMP-2 was clearly observed in siNoggin transfected cells. According to the SEM/EDS analysis, the siNoggin group has mineral structures clustered on cells, which contain intense Ca and P elements. Histological staining showed that the siNoggin group has a more intense mineralized area than that of the control group. In conclusion, this study indicated that Noggin silencing by siRNA induces osteogenic differentiation in reduced BMP-2 doses for scaffold-based bone regeneration. This non-gene integration strategy has as a safe therapeutic potential to enhance tissue regeneration.
Collapse
|
18
|
Delaine-Smith RM, Hann AJ, Green NH, Reilly GC. Electrospun Fiber Alignment Guides Osteogenesis and Matrix Organization Differentially in Two Different Osteogenic Cell Types. Front Bioeng Biotechnol 2021; 9:672959. [PMID: 34760876 PMCID: PMC8573409 DOI: 10.3389/fbioe.2021.672959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/08/2021] [Indexed: 11/18/2022] Open
Abstract
Biomimetic replication of the structural anisotropy of musculoskeletal tissues is important to restore proper tissue mechanics and function. Physical cues from the local micro-environment, such as matrix fiber orientation, may influence the differentiation and extracellular matrix (ECM) organization of osteogenic progenitor cells. This study investigates how scaffold fiber orientation affects the behavior of mature and progenitor osteogenic cells, the influence on secreted mineralized-collagenous matrix organization, and the resulting construct mechanical properties. Gelatin-coated electrospun poly(caprolactone) fibrous scaffolds were fabricated with either a low or a high degree of anisotropy and cultured with mature osteoblasts (MLO-A5s) or osteogenic mesenchymal progenitor cells (hES-MPs). For MLO-A5 cells, alkaline phosphatase (ALP) activity was highest, and more calcium-containing matrix was deposited onto aligned scaffolds. In contrast, hES-MPs, osteogenic mesenchymal progenitor cells, exhibited higher ALP activity, collagen, and calcium deposition on randomly orientated fibers compared with aligned counterparts. Deposited matrix was isotropic on random fibrous scaffolds, whereas a greater degree of anisotropy was observed in aligned fibrous constructs, as confirmed by second harmonic generation (SHG) and scanning electron microscope (SEM) imaging. This resulted in anisotropic mechanical properties on aligned constructs. This study indicates that mineralized-matrix deposition by osteoblasts can be controlled by scaffold alignment but that the early stages of osteogenesis may not benefit from culture on orientated scaffolds.
Collapse
Affiliation(s)
- Robin M. Delaine-Smith
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Alice Jane Hann
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Nicola H. Green
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Gwendolen Clair Reilly
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
19
|
Ejeian F, Haghani E, Nasr-Esfahani MH, Asadnia M, Razmjou A, Chen V. Mechanobiology of Dental Pulp Stem Cells at the Interface of Aqueous-Based Fabricated ZIF8 Thin Film. ACS APPLIED BIO MATERIALS 2021; 4:4885-4895. [DOI: 10.1021/acsabm.1c00189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fatemeh Ejeian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 73441-81746, Iran
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Elnaz Haghani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 73441-81746, Iran
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 73441-81746, Iran
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Vicki Chen
- School of Chemical Engineering, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
20
|
Xie D, Xu C, Ye C, Mei S, Wang L, Zhu Q, Chen Q, Zhao Q, Xu Z, Wei J, Yang L. Fabrication of Submicro-Nano Structures on Polyetheretherketone Surface by Femtosecond Laser for Exciting Cellular Responses of MC3T3-E1 Cells/Gingival Epithelial Cells. Int J Nanomedicine 2021; 16:3201-3216. [PMID: 34007174 PMCID: PMC8121686 DOI: 10.2147/ijn.s303411] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 01/24/2023] Open
Abstract
Purpose Polyetheretherketone (PEEK) exhibits high mechanical strengths and outstanding biocompatibility but biological inertness that does not excite the cell responses and stimulate bone formation. The objective of this study was to construct submicro-nano structures on PEEK by femtosecond laser (FSL) for exciting the responses of MC3T3-E1 cells and gingival epithelial (GE) cells, which induce regeneration of bone/gingival tissues for long-term stability of dental implants. Materials and Methods In this study, submicro-nano structures were created on PEEK surface by FSL with power of 80 mW (80FPK) and 160 mW (160FPK). Results Compared with PEEK, both 80FPK and 160FPK with submicro-nano structures exhibited elevated surface performances (hydrophilicity, surface energy, roughness and protein absorption). Furthermore, in comparison with 80FPK, 160FPK further enhanced the surface performances. In addition, compared with PEEK, both 80FPK and 160FPK significantly excited not only the responses (adhesion, proliferation, alkaline phosphatase [ALP] activity and osteogenic gene expression) of MC3T3-E1 cells but also responses (adhesion as well as proliferation) of GE cells of human in vitro. Moreover, in comparison with 80FPK, 160FPK further enhanced the responses of MC3T3-E1 cells/GE cells. Conclusion FSL created submicro-nano structures on PEEK with elevated surface performances, which played crucial roles in exciting the responses of MC3T3-E1 cells/GE cells. Consequently, 160FPK with elevated surface performances and outstanding cytocompatibility would have enormous potential as an implant for dental replacement.
Collapse
Affiliation(s)
- Dong Xie
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China.,Department of Orthopaedics, PLA Navy No.905 Hospital, Shanghai, 200052, People's Republic of China
| | - Chenhui Xu
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Cheng Ye
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Shiqi Mei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Longqing Wang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Qi Zhu
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Qing Chen
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Qi Zhao
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Zhiyan Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Lili Yang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| |
Collapse
|
21
|
Chen D, Dunkers JP, Losert W, Sarkar S. Early time-point cell morphology classifiers successfully predict human bone marrow stromal cell differentiation modulated by fiber density in nanofiber scaffolds. Biomaterials 2021; 274:120812. [PMID: 33962216 DOI: 10.1016/j.biomaterials.2021.120812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/12/2021] [Accepted: 04/03/2021] [Indexed: 12/21/2022]
Abstract
Nanofiber scaffolds can induce osteogenic differentiation and cell morphology alterations of human bone marrow stromal cells (hBMSCs) without introduction of chemical cues. In this study, we investigate the predictive power of day 1 cell morphology, quantified by a machine learning based method, as an indicator of osteogenic differentiation modulated by nanofiber density. Nanofiber scaffolds are fabricated via electrospinning. Microscopy, quantitative image processing and clustering analysis are used to systematically quantify scaffold properties as a function of fiber density. hBMSC osteogenic differentiation potential is evaluated after 14 days using osteogenic marker gene expression and after 50 days using calcium mineralization, showing enhanced osteogenic differentiation with an increase in nanofiber density. Cell morphology measurements at day 1 successfully predict differentiation potential when analyzed with the support vector machine (SVM)/supercell tools previously developed and trained on cells from a different donor. A correlation is observed between differentiation potential and cell morphology, demonstrating sensitivity of the morphology measurement to varying degrees of differentiation potential. To further understand how nanofiber density determines hBMSC morphology, both full 3-D morphology measurements as well as other measurements of the 2-D projected morphology are investigated in this study. To achieve predictive power on hBMSC osteogenic differentiation, at least two morphology metrics need to be considered together for each cell, with the majority of metric pairs including one 3-D morphology metric. Analysis of the local nanofiber structure surrounding each cell reveals a correlation with single-cell morphology and indicates that the osteogenic differentiation phenotype may be predictive at the single-cell level.
Collapse
Affiliation(s)
- Desu Chen
- University of Maryland, Department of Physics, 1147 Physical Sciences Complex, College Park, MD, 20742, USA.
| | - Joy P Dunkers
- National Institute of Standards & Technology, Biosystems & Biomaterials Division, 100 Bureau Dr. Stop 8543, Gaithersburg, MD, 20899, USA.
| | - Wolfgang Losert
- University of Maryland, Department of Physics, 1147 Physical Sciences Complex, College Park, MD, 20742, USA.
| | - Sumona Sarkar
- National Institute of Standards & Technology, Biosystems & Biomaterials Division, 100 Bureau Dr. Stop 8543, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
22
|
Elkhenany H, Elkodous MA, Newby SD, El-Derby AM, Dhar M, El-Badri N. Tissue Engineering Modalities and Nanotechnology. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-3-030-55359-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Steering cell behavior through mechanobiology in 3D: A regenerative medicine perspective. Biomaterials 2020; 268:120572. [PMID: 33285439 DOI: 10.1016/j.biomaterials.2020.120572] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/04/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Mechanobiology, translating mechanical signals into biological ones, greatly affects cellular behavior. Steering cellular behavior for cell-based regenerative medicine approaches requires a thorough understanding of the orchestrating molecular mechanisms, among which mechanotransducive ones are being more and more elucidated. Because of their wide use and highly mechanotransduction dependent differentiation, this review focuses on mesenchymal stromal cells (MSCs), while also briefly relating the discussed results to other cell types. While the mechanotransduction pathways are relatively well-studied in 2D, much remains unknown of the role and regulation of these pathways in 3D. Ultimately, cells need to be cultured in a 3D environment to create functional de novo tissue. In this review, we explore the literature on the roles of different material properties on cellular behavior and mechanobiology in 2D and 3D. For example, while stiffness plays a dominant role in 2D MSCs differentiation, it seems to be of subordinate importance in 3D MSCs differentiation, where matrix remodeling seems to be key. Also, the role and regulation of some of the main mechanotransduction players are discussed, focusing on MSCs. We have only just begun to fundamentally understand MSCs and other stem cells behavior in 3D and more fundamental research is required to advance biomaterials able to replicate the stem cell niche and control cell activity. This better understanding will contribute to smarter tissue engineering scaffold design and the advancement of regenerative medicine.
Collapse
|
24
|
Gómez-Cerezo MN, Peña J, Ivanovski S, Arcos D, Vallet-Regí M, Vaquette C. Multiscale porosity in mesoporous bioglass 3D-printed scaffolds for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111706. [PMID: 33545865 DOI: 10.1016/j.msec.2020.111706] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022]
Abstract
In order to increase the bone forming ability of MBG-PCL composite scaffold, microporosity was created in the struts of 3D-printed MBG-PCL scaffolds for the manufacturing of a construct with a multiscale porosity consisting of meso- micro- and macropores. 3D-printing imparted macroporosity while the microporosity was created by porogen removal from the struts, and the MBG particles were responsible for the mesoporosity. The scaffolds were 3D-printed using a mixture of PCL, MBG and phosphate buffered saline (PBS) particles, subsequently leached out. Microporous-PCL (pPCL) as a negative control, microporous MBG-PCL (pMBG-PCL) and non-microporous-MBG-PCL (MBG-PCL) were investigated. Scanning electron microscopy, mercury intrusion porosimetry and micro-computed tomography demonstrated that the PBS removal resulted in the formation of micropores inside the struts with porosity of around 30% for both pPCL and pMBG-PCL, with both constructs displaying an overall porosity of 8090%. In contrast, the MBG-PCL group had a microporosity of 6% and an overall porosity of 70%. Early mineralisation was found in the pMBG-PCL post-leaching out and this resulted in the formation a more homogeneous calcium phosphate layer when using a biomimetic mineralisation assay. Mechanical properties ranged from 5 to 25 MPa for microporous and non-microporous specimens, hence microporosity was the determining factor affecting compressive properties. MC3T3-E1 metabolic activity was increased in the pMBG-PCL along with an increased production of RUNX2. Therefore, the microporosity within a 3D-printed bioceramic composite construct may result in additional physical and biological benefits.
Collapse
Affiliation(s)
| | - Juan Peña
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Herston, QLD, Australia
| | - Daniel Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, Herston, QLD, Australia.
| |
Collapse
|
25
|
Li Y, Zhou J, Wu C, Yu Z, Zhang W, Li W, Zhang X. Development of Cryogenic Electrohydrodynamic Jet Printing for Fabrication of Fine Scaffolds with Extra Filament Surface Topography. 3D PRINTING AND ADDITIVE MANUFACTURING 2020; 7:230-236. [PMID: 36654919 PMCID: PMC9586236 DOI: 10.1089/3dp.2019.0182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrohydrodynamic jet printing (EJP) is a developing additive manufacture technology that enables the fabrication of fine scaffolds directly from polymer solutions or melt. Timely solidification of the polymer jet is the key factor for the success of EJP process. In conventional solution-based EJP methods, it is usually achieved by rapid solvent evaporation and producing a scaffold with smooth filaments. In current study, by combining solution-based EJP with a cryogenic workbench, a cryogenic electrohydrodynamic jet printing (CEJP) system was developed, in which the polymer jet was frozen and solidified quickly at the freezing temperature rather than solvent evaporation. The feasibility and versatility of the CEJP system were verified by successful printing of scaffolds with different hole shapes and pore sizes. Meanwhile, the resulting scaffolds not only had a resolution in the range of 50-80 μm but also possessed oriented "ridges" and "valleys" on surface of the filaments, which was conductive to cell orientation. Therefore, this work provides a novel method to print fine scaffolds with extra surface topography.
Collapse
Affiliation(s)
- Yihan Li
- The first Clinical Medical School, Nanchang University, Nanchang, P.R. China
| | - Jinge Zhou
- Department of Orthopedics, Tongji Medical College, Huazhong University of Science and Technology, Union Hospital, Wuhan, P.R. China
| | - Chuanxuan Wu
- The second Clinical Medical School, Nanchang University, Nanchang, P.R. China
| | - Zehao Yu
- The first Clinical Medical School, Nanchang University, Nanchang, P.R. China
| | - Wancheng Zhang
- State Key Laboratory of Materials Processing and Die/Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Wenchao Li
- The Mechanic & Electronic Engineering School, Nanchang University, Nanchang, P.R. China
| | - Xianglin Zhang
- State Key Laboratory of Materials Processing and Die/Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
26
|
Wang Z, Florczyk SJ. Freeze-FRESH: A 3D Printing Technique to Produce Biomaterial Scaffolds with Hierarchical Porosity. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E354. [PMID: 31940933 PMCID: PMC7013579 DOI: 10.3390/ma13020354] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/05/2023]
Abstract
Tissues are organized in hierarchical structures comprised of nanoscale, microscale, and macroscale features. Incorporating hierarchical structures into biomaterial scaffolds may enable better resemblance of native tissue structures and improve cell interaction, but it is challenging to produce such scaffolds using a single conventional scaffold production technique. We developed the Freeze-FRESH (FF) technique that combines FRESH 3D printing (3DP) and freeze-casting to produce 3D printed scaffolds with microscale pores in the struts. FF scaffolds were produced by extrusion 3DP using a support bath at room temperature, followed by freezing and lyophilization, then the FF scaffolds were recovered from the bath and crosslinked. The FF scaffolds had a hierarchical pore structure from the combination of microscale pores throughout the scaffold struts and macroscale pores in the printed design, while control scaffolds had only macroscale pores. FF scaffolds frozen at -20 °C and -80 °C had similar pore sizes, due to freezing in the support bath. The -20 °C and -80 °C FF scaffolds had porous struts with 63.55% ± 2.59% and 56.72% ± 13.17% strut porosity, respectively, while control scaffolds had a strut porosity of 3.15% ± 2.20%. The -20 °C and -80 °C FF scaffolds were softer than control scaffolds: they had pore wall stiffness of 0.17 ± 0.06 MPa and 0.23 ± 0.05 MPa, respectively, compared to 1.31 ± 0.39 MPa for the control. The FF scaffolds had increased resilience in bending compared with control. FF scaffolds supported MDA-MB-231 cell growth and had significantly greater cell numbers than control scaffolds. Cells formed clusters on the porous struts of FF scaffolds and had similar morphologies as the freeze cast scaffolds. The FF technique successfully introduced microscale porosity into the 3DP scaffold struts to produce hierarchical pore structures that enhanced MDA-MB-231 growth.
Collapse
Affiliation(s)
- Zi Wang
- Department of Materials Science & Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Stephen J. Florczyk
- Department of Materials Science & Engineering, University of Central Florida, Orlando, FL 32816, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
27
|
Injectable Hydrogel Combined with Nucleus Pulposus-Derived Mesenchymal Stem Cells for the Treatment of Degenerative Intervertebral Disc in Rats. Stem Cells Int 2019; 2019:8496025. [PMID: 31737077 PMCID: PMC6815539 DOI: 10.1155/2019/8496025] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cell-based tissue engineering in treating intervertebral disc (IVD) degeneration is promising. An appropriate cell scaffold can maintain the viability and function of transplanted cells. Injectable hydrogel has the potential to be an appropriate cell scaffold as it can mimic the condition of the natural extracellular matrix (ECM) of nucleus pulposus (NP) and provide binding sites for cells. This study was aimed at investigating the effect of injectable hydrogel-loaded NP-derived mesenchymal stem cells (NPMSC) for the treatment of IVD degeneration (IDD) in rats. In this study, we selected injectable 3D-RGD peptide-modified polysaccharide hydrogel as a cell transplantation scaffold. In vitro, the biocompatibility, microstructure, and induced differentiation effect on NPMSC of the hydrogel were studied. In vivo, the regenerative effect of hydrogel-loaded NPMSC on degenerated NP in a rat model was evaluated. The results showed that NPMSC was biocompatible and able to induce differentiation in hydrogel in vivo. The disc height index (almost 87%) and MRI index (3313.83 ± 227.79) of the hydrogel-loaded NPMSC group were significantly higher than those of other groups at 8 weeks after injection. Histological staining and immunofluorescence showed that the hydrogel-loaded NPMSC also partly restored the structure and ECM content of degenerated NP after 8 weeks. Moreover, the hydrogel could support long-term NPMSC survival and decrease cell apoptosis rate of the rat IVD. In conclusion, injectable hydrogel-loaded NPMSC transplantation can delay the level of IDD and promote the regeneration of the degenerative IVD in the rat model.
Collapse
|
28
|
Patel DK, Lim KT. Biomimetic Polymer-Based Engineered Scaffolds for Improved Stem Cell Function. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2950. [PMID: 31514460 PMCID: PMC6766224 DOI: 10.3390/ma12182950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Abstract
Scaffolds are considered promising materials for tissue engineering applications due to their unique physiochemical properties. The high porosity and adequate mechanical properties of the scaffolds facilitate greater cell adhesion, proliferation, and differentiation. Stem cells are frequently applied in tissue engineering applications due to their excellent potential. It has been noted that cell functions are profoundly affected by the nature of the extracellular matrix (ECM). Naturally derived ECM contains the bioactive motif that also influences the immune response of the organism. The properties of polymer scaffolds mean they can resemble the native ECM and can regulate cellular responses. Various techniques such as electrospinning and 3D printing, among others, are frequently used to fabricate polymer scaffolds, and their cellular responses are different with each technique. Furthermore, enhanced cell viability, as well as the differentiation ability of stem cells on the surface of scaffolds, opens a fascinating approach to the formation of ECM-like environments for tissue engineering applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- The Institute of Forest Science, Kangwon National University, Chuncheon-24341, Korea.
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-24341, Korea.
| |
Collapse
|
29
|
Warner JJ, Wang P, Mellor WM, Hwang HH, Park JH, Pyo SH, Chen S. 3D Printable Non-Isocyanate Polyurethanes with Tunable Material Properties. Polym Chem 2019; 10:4665-4674. [PMID: 33093876 DOI: 10.1039/c9py00999j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Green chemistry-based non-isocyanate polyurethanes (NIPU) are synthesized and 3D-printed via rapid, projection photopolymerization into compliant mechanisms of 3D structure with spatially-localized material properties. Trimethylolpropane allyl ether-cyclic carbonate is used to couple the unique properties of two types of reaction chemistry: (1) primary diamine-cyclic carbonate ring-opening conjugation for supplanting conventional isocyanate-polyol reactions in creating urethane groups, with the additional advantage of enabling modular segment interchangeability within the diurethane prepolymers; and (2) thiol-ene (click) conjugation for non-telechelic, low monodispersity, quasi-crystalline-capable, and alternating step-growth co-photopolymerization. Fourier Transform Infrared Spectroscopy is used to monitor the functional group transformation in reactions, and to confirm these process-associated molecular products. The extent of how these processes utilize molecular tunability to affect material properties were investigated through measurement-based comparison of the various polymer compositions: frequency-related dynamic mechanical analysis, tension-related elastic-deformation mechanical analysis, and material swelling analysis. Stained murine myoblasts cultured on NIPU slabs were evaluated via fluorescent microscopy for "green-chemistry" affects on cytocompatibility and cell adhesion to assess potential biofouling resistance. 3D multi-material structures with micro-features were printed, thus demonstrating the capability to spatially pattern different NIPU materials in a controlled manner and build compliant mechanisms.
Collapse
Affiliation(s)
- John J Warner
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Pengrui Wang
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - William M Mellor
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Henry H Hwang
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Ji Hoon Park
- Carbon Resources Institute, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Sang-Hyun Pyo
- Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, 221 00 Lund, Sweden
| | - Shaochen Chen
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| |
Collapse
|
30
|
Roi A, Ardelean LC, Roi CI, Boia ER, Boia S, Rusu LC. Oral Bone Tissue Engineering: Advanced Biomaterials for Cell Adhesion, Proliferation and Differentiation. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2296. [PMID: 31323766 PMCID: PMC6679077 DOI: 10.3390/ma12142296] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022]
Abstract
The advancements made in biomaterials have an important impact on oral tissue engineering, especially on the bone regeneration process. Currently known as the gold standard in bone regeneration, grafting procedures can sometimes be successfully replaced by a biomaterial scaffold with proper characteristics. Whether natural or synthetic polymers, biomaterials can serve as potential scaffolds with major influences on cell adhesion, proliferation and differentiation. Continuous research has enabled the development of scaffolds that can be specifically designed to replace the targeted tissue through changes in their surface characteristics and the addition of growth factors and biomolecules. The progress in tissue engineering is incontestable and research shows promising contributions to the further development of this field. The present review aims to outline the progress in oral tissue engineering, the advantages of biomaterial scaffolds, their direct implication in the osteogenic process and future research directions.
Collapse
Affiliation(s)
- Alexandra Roi
- Department of Oral Pathology, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lavinia Cosmina Ardelean
- Department of Technology of Materials and Devices in Dental Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania.
| | - Ciprian Ioan Roi
- Department of Anaesthesiology and Oral Surgery, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Eugen-Radu Boia
- Department of Ear, Nose and Throat, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Simina Boia
- Department of Periodontology, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Laura-Cristina Rusu
- Department of Oral Pathology, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| |
Collapse
|
31
|
Cell Morphology on Poly(methyl methacrylate) Microstructures as Function of Surface Energy. Int J Biomater 2019; 2019:2393481. [PMID: 31186649 PMCID: PMC6521382 DOI: 10.1155/2019/2393481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/22/2019] [Accepted: 04/07/2019] [Indexed: 12/24/2022] Open
Abstract
Whilst the significance of substrate topography as a regulator of cell function is well established, a systematic analysis of the principles underlying this is still unavailable. Here we evaluate the hypothesis that surface energy plays a decisive role in substrate-mediated modulation of cell phenotype by evaluation of cell behaviour on synthetic microstructures exhibiting pronounced differences in surface energy. These microstructures, specifically cubes and walls, were fabricated from a biocompatible base polymer, poly(methyl methacrylate), by variotherm injection molding. The dimensions of the cubes were 1 μm x 1 μm x 1 μm (height x width x length) with a periodicity of 1:1 and 1:5 and the dimensions of the walls 1 μm x 1 μm x 15 mm (height x width x length) with a periodicity of 1:1 and 1:5. Mold inserts were made by lithography and electroplating. The surface energy of the resultant microstructures was determined by static contact angle measurements. Light scanning microscopy of the morphology of NT2/D1 and MC3T3-E1 preosteoblast cells cultured on structured PMMA samples in both cases revealed a profound surface energy dependence. “Walls” appeared to promote significant cell elongation, whilst a lack of cell adhesion was observed on “cubes” with the lowest periodicity. Contact angle measurements on walls revealed enhanced surface energy anisotropy (55 mN/m max., 10 mN/m min.) causing a lengthwise spreading of the test liquid droplet, similar to cell elongation. Surface energy measurements for cubes revealed increased isotropic hydrophobicity (87° max., H2O). A critical water contact angle of ≤ 80° appears to be necessary for adequate cell adhesion. A “switch” for cell adhesion and subsequently cell growth could therefore be applied by, for example, adjusting the periodicity of hydrophobic structures. In summary cell elongation on walls and a critical surface energy level for cell adhesion could be produced for NT2/D1 and MC3T3-E1 cells by symmetrical and asymmetrical energy barrier levels. We, furthermore, propose a water-drop model providing a common physicochemical cause regarding similar cell/droplet geometries and cell adhesion on the investigated microstructures.
Collapse
|
32
|
Prasopthum A, Cooper M, Shakesheff KM, Yang J. Three-Dimensional Printed Scaffolds with Controlled Micro-/Nanoporous Surface Topography Direct Chondrogenic and Osteogenic Differentiation of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18896-18906. [PMID: 31067023 DOI: 10.1021/acsami.9b01472] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effect of topography in three-dimensional (3D) printed polymer scaffolds on stem cell differentiation is a significantly underexplored area. Compared to two-dimensional (2D) biomaterials on which various well-defined topographies have been incorporated and shown to direct a range of cell behaviors including adhesion, cytoskeleton organization, and differentiation, incorporating topographical features to 3D polymer scaffolds is challenging due to the difficulty of accessing the inside of a porous scaffold. Only the roughened strut surface has been introduced to 3D printed porous scaffolds. Here, a rapid, single-step 3D printing method to fabricate polymeric scaffolds consisting of microstruts (ca. 60 μm) with micro-/nanosurface pores (0.2-2.4 μm) has been developed based on direct ink writing of an agitated viscous polymer solution. The density, size, and alignment of these pores can be controlled by changing the degree of agitation or the speed of printing. Three-dimensional printed scaffolds with micro-/nanoporous struts enhanced chondrogenic and osteogenic differentiation of mesenchymal stem cells (MSCs) without soluble differentiation factors. The topography also selectively affected adhesion, morphology, and differentiation of MSC to chondrogenic and osteogenic lineages depending on the composition of the differentiation medium. This fabrication method can potentially be used for a wide range of polymers where desirable architecture and topography are required.
Collapse
|
33
|
Tourlomousis F, Jia C, Karydis T, Mershin A, Wang H, Kalyon DM, Chang RC. Machine learning metrology of cell confinement in melt electrowritten three-dimensional biomaterial substrates. MICROSYSTEMS & NANOENGINEERING 2019; 5:15. [PMID: 31057942 PMCID: PMC6431680 DOI: 10.1038/s41378-019-0055-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 05/22/2023]
Abstract
Tuning cell shape by altering the biophysical properties of biomaterial substrates on which cells operate would provide a potential shape-driven pathway to control cell phenotype. However, there is an unexplored dimensional scale window of three-dimensional (3D) substrates with precisely tunable porous microarchitectures and geometrical feature sizes at the cell's operating length scales (10-100 μm). This paper demonstrates the fabrication of such high-fidelity fibrous substrates using a melt electrowriting (MEW) technique. This advanced manufacturing approach is biologically qualified with a metrology framework that models and classifies cell confinement states under various substrate dimensionalities and architectures. Using fibroblasts as a model cell system, the mechanosensing response of adherent cells is investigated as a function of variable substrate dimensionality (2D vs. 3D) and porous microarchitecture (randomly oriented, "non-woven" vs. precision-stacked, "woven"). Single-cell confinement states are modeled using confocal fluorescence microscopy in conjunction with an automated single-cell bioimage data analysis workflow that extracts quantitative metrics of the whole cell and sub-cellular focal adhesion protein features measured. The extracted multidimensional dataset is employed to train a machine learning algorithm to classify cell shape phenotypes. The results show that cells assume distinct confinement states that are enforced by the prescribed substrate dimensionalities and porous microarchitectures with the woven MEW substrates promoting the highest cell shape homogeneity compared to non-woven fibrous substrates. The technology platform established here constitutes a significant step towards the development of integrated additive manufacturing-metrology platforms for a wide range of applications including fundamental mechanobiology studies and 3D bioprinting of tissue constructs to yield specific biological designs qualified at the single-cell level.
Collapse
Affiliation(s)
- Filippos Tourlomousis
- The Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Chao Jia
- Biomedical Engineering Department, Stevens Institute of Technology, Hoboken, NJ USA
| | - Thrasyvoulos Karydis
- The Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Andreas Mershin
- The Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Hongjun Wang
- Biomedical Engineering Department, Stevens Institute of Technology, Hoboken, NJ USA
| | - Dilhan M. Kalyon
- Biomedical Engineering Department, Stevens Institute of Technology, Hoboken, NJ USA
- Chemical Engineering and Materials Science Department, Stevens Institute of Technology, Hoboken, NJ USA
| | - Robert C. Chang
- Mechanical Engineering Department, Stevens Institute of Technology, Hoboken, NJ USA
| |
Collapse
|
34
|
Kosik-Kozioł A, Graham E, Jaroszewicz J, Chlanda A, Kumar PTS, Ivanovski S, Święszkowski W, Vaquette C. Surface Modification of 3D Printed Polycaprolactone Constructs via a Solvent Treatment: Impact on Physical and Osteogenic Properties. ACS Biomater Sci Eng 2018; 5:318-328. [DOI: 10.1021/acsbiomaterials.8b01018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Alicja Kosik-Kozioł
- Faculty of Materials Science and Engineering, Warsaw University of Technology (WUT), 02-507 Warsaw, Poland
| | - Elizabeth Graham
- Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Jakub Jaroszewicz
- Faculty of Materials Science and Engineering, Warsaw University of Technology (WUT), 02-507 Warsaw, Poland
| | - Adrian Chlanda
- Faculty of Materials Science and Engineering, Warsaw University of Technology (WUT), 02-507 Warsaw, Poland
| | - P. T. Sudheesh Kumar
- School of Dentistry and Oral Health, Gold Coast Campus, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Saso Ivanovski
- School of Dentistry and Oral Health, Gold Coast Campus, Griffith University, Gold Coast, Queensland 4222, Australia
- School of Dentistry, The University of Queensland (UQ), Brisbane, Queensland 4006, Australia
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology (WUT), 02-507 Warsaw, Poland
| | - Cedryck Vaquette
- Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
- School of Dentistry, The University of Queensland (UQ), Brisbane, Queensland 4006, Australia
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| |
Collapse
|
35
|
Patelli A, Mussano F, Brun P, Genova T, Ambrosi E, Michieli N, Mattei G, Scopece P, Moroni L. Nanoroughness, Surface Chemistry, and Drug Delivery Control by Atmospheric Plasma Jet on Implantable Devices. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39512-39523. [PMID: 30359523 DOI: 10.1021/acsami.8b15886] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Implantable devices need specific tailored surface morphologies and chemistries to interact with the living systems or to actively induce a biological response also by the release of drugs or proteins. These customized requirements foster technologies that can be implemented in additive manufacturing systems. Here, we present a novel approach based on spraying processes that allow to control separately topographic features in the submicron range (∼60 nm to 2 μm), ammine or carboxylic chemistry, and fluorophore release even on temperature-sensitive biodegradable polymers such as polycaprolactone (PCL). We developed a two-steps process with a first deposition of 220 nm silica and poly(lactic- co-glycolide) (PLGA) fluorescent nanoparticles by aerosol followed by the deposition of a fixing layer by an atmospheric pressure plasma jet (APPJ). The nanoparticles can be used to create the nanoroughness and to include active molecule release, while the capping layer ensures stability and the chemical functionalities. The process is enabled by a novel APPJ which allows deposition rates of 10-20 nm·s-1 at temperatures lower than 50 °C using argon as the process gas. This approach was assessed on titanium alloys for dental implants and on PCL films. The surfaces were characterized by Fourier transform infrared, atomic force microscopy, and scanning electron microscopy (SEM). Titanium alloys were tested with the preosteoblast murine cells line, while the PCL film was tested with fibroblasts. Cell behavior was evaluated by viability and adhesion assays, protein adsorption, cell proliferation, focal adhesion formation, and SEM. The release of a fluorophore molecule was assessed in the cell growing media, simulating a drug release. Osteoblast adhesion on the plasma-treated materials increased by 20% with respect to commercial titanium alloy implants. Fibroblast adhesion increased by a 100% compared to smooth PCL substrates. The release of the fluorophore by the dissolution of the PLGA nanoparticles was verified, and the integrity of the encapsulated drug model was confirmed.
Collapse
Affiliation(s)
- Alessandro Patelli
- Department Physics and Astronomy , Padova University , via Marzolo 8 , 35131 Padova , Italy
| | - Federico Mussano
- CIR Dental School, Department Surgical Sciences , Torino University , 10126 Torino , Italy
| | - Paola Brun
- Department Molecular Medicine, Unit of Microbiology , Padova University , 35121 Padova , Italy
| | - Tullio Genova
- CIR Dental School, Department Surgical Sciences , Torino University , 10126 Torino , Italy
- Department Life Sciences and Systems Biology , Torino University , 10124 Torino , Italy
| | - Emmanuele Ambrosi
- Department Molecular Sciences and Nanosystems , Venezia University , 30172 Venezia , Italy
| | - Niccoló Michieli
- Department Physics and Astronomy , Padova University , via Marzolo 8 , 35131 Padova , Italy
| | - Giovanni Mattei
- Department Physics and Astronomy , Padova University , via Marzolo 8 , 35131 Padova , Italy
| | | | - Lorenzo Moroni
- MERLN-Institute for Technology-Inspired Regenerative Medicine , Maastricht University , 6229 ER Maastricht , The Netherlands
| |
Collapse
|
36
|
Rashad A, Mohamed-Ahmed S, Ojansivu M, Berstad K, Yassin MA, Kivijärvi T, Heggset EB, Syverud K, Mustafa K. Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells. Biomacromolecules 2018; 19:4307-4319. [DOI: 10.1021/acs.biomac.8b01194] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ahmad Rashad
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | | | - Miina Ojansivu
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway
- Adult Stem Cell Research Group, Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Kaia Berstad
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Mohammed A. Yassin
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway
- Department of Fiber and Polymer Technology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Tove Kivijärvi
- Department of Fiber and Polymer Technology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | | - Kristin Syverud
- RISE PFI, Trondheim, Norway
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| |
Collapse
|
37
|
Cengiz IF, Oliveira JM, Reis RL. Micro-CT - a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results. Biomater Res 2018; 22:26. [PMID: 30275969 PMCID: PMC6158835 DOI: 10.1186/s40824-018-0136-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/03/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cell behavior is the key to tissue regeneration. Given the fact that most of the cells used in tissue engineering are anchorage-dependent, their behavior including adhesion, growth, migration, matrix synthesis, and differentiation is related to the design of the scaffolds. Thus, characterization of the scaffolds is highly required. Micro-computed tomography (micro-CT) provides a powerful platform to analyze, visualize, and explore any portion of interest in the scaffold in a 3D fashion without cutting or destroying it with the benefit of almost no sample preparation need. MAIN BODY This review highlights the relationship between the scaffold microstructure and cell behavior, and provides the basics of the micro-CT method. In this work, we also analyzed the original papers that were published in 2016 through a systematic search to address the need for specific improvements in the methods section of the papers including the amount of provided information from the obtained results. CONCLUSION Micro-CT offers a unique microstructural analysis of biomaterials, notwithstanding the associated challenges and limitations. Future studies that will include micro-CT characterization of scaffolds should report the important details of the method, and the derived quantitative and qualitative information can be maximized.
Collapse
Affiliation(s)
- Ibrahim Fatih Cengiz
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
38
|
Paim Á, Cardozo NSM, Tessaro IC, Pranke P. Relevant biological processes for tissue development with stem cells and their mechanistic modeling: A review. Math Biosci 2018; 301:147-158. [PMID: 29746816 DOI: 10.1016/j.mbs.2018.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
Abstract
A potential alternative for tissue transplants is tissue engineering, in which the interaction of cells and biomaterials can be optimized. Tissue development in vitro depends on the complex interaction of several biological processes such as extracellular matrix synthesis, vascularization and cell proliferation, adhesion, migration, death, and differentiation. The complexity of an individual phenomenon or of the combination of these processes can be studied with phenomenological modeling techniques. This work reviews the main biological phenomena in tissue development and their mathematical modeling, focusing on mesenchymal stem cell growth in three-dimensional scaffolds.
Collapse
Affiliation(s)
- Ágata Paim
- Department of Chemical Engineering, Universidade Federal do Rio Grande do Sul (UFRGS), R. Eng. Luis Englert, s/n Porto Alegre, Rio Grande do Sul 90040-040, Brazil; Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752. Porto Alegre, Rio Grande do Sul 90610-000, Brazil.
| | - Nilo S M Cardozo
- Department of Chemical Engineering, Universidade Federal do Rio Grande do Sul (UFRGS), R. Eng. Luis Englert, s/n Porto Alegre, Rio Grande do Sul 90040-040, Brazil
| | - Isabel C Tessaro
- Department of Chemical Engineering, Universidade Federal do Rio Grande do Sul (UFRGS), R. Eng. Luis Englert, s/n Porto Alegre, Rio Grande do Sul 90040-040, Brazil
| | - Patricia Pranke
- Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752. Porto Alegre, Rio Grande do Sul 90610-000, Brazil; Stem Cell Research Institute, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
39
|
Zhou X, Wang J, Fang W, Tao Y, Zhao T, Xia K, Liang C, Hua J, Li F, Chen Q. Genipin cross-linked type II collagen/chondroitin sulfate composite hydrogel-like cell delivery system induces differentiation of adipose-derived stem cells and regenerates degenerated nucleus pulposus. Acta Biomater 2018; 71:496-509. [PMID: 29555463 DOI: 10.1016/j.actbio.2018.03.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/01/2018] [Accepted: 03/08/2018] [Indexed: 01/08/2023]
Abstract
Nucleus pulposus (NP) degeneration is usually the origin of intervertebral disc degeneration and consequent lower back pain. Although adipose-derived stem cell (ADSC)-based therapy is regarded to be promising for the treatment of degenerated NP, there is a lack of viable cell carriers to transplant ADSCs into the NP while maintaining cell function. In this study, we developed a type II collagen/chondroitin sulfate (CS) composite hydrogel-like ADSC (CCSA) delivery system with genipin as the cross-linking agent. The induction effect of the scaffold on ADSC differentiation was studied in vitro, and a rat coccygeal vertebrae degeneration model was used to investigate the regenerative effect of the CCSA system on the degenerated NP in vivo. The results showed that the CCSA delivery system cross-linked with 0.02% genipin was biocompatible and promoted the expressions of NP-specific genes. After the injection of the CCSA system, the disc height, water content, extracellular matrix synthesis, and structure of the degenerated NP were partly restored. Our CCSA delivery system uses minimally invasive approaches to promote the regeneration of degenerated NP and provides an exciting new avenue for the treatment of degenerative disc disease. STATEMENT OF SIGNIFICANCE Nucleus pulposus (NP) degeneration is usually the origin of intervertebral disc degeneration and consequent lower back pain. Stem cell-based tissue engineering is a promising method in NP regeneration, but there is a lack of viable cell carriers to transplant ADSCs into the NP while maintaining cell function. In this study, we developed a type II collagen/chondroitin sulfate (CS) composite hydrogel-like ADSC (CCSA) delivery system with genipin as the cross-linking agent. Although several research groups have studied the fabrication of injectable hydrogel with biological matrix, our study differs from other works. We chose type II collagen and CS, the two primary native components in the NP, as the main materials and combined them according to the natural ratio of collagen and sGAG in the NP. The delivery system is preloaded with ADSCs and can be injected into the NP with a needle, followed by in situ gelation. Genipin is used as a cross-linker to improve the bio-stability of the scaffold, with low cytotoxicity. We investigated the stimulatory effects of our scaffold on the differentiation of ADSCs in vitro and the regenerative effect of the CCSA delivery system on degenerated NP in vivo.
Collapse
|
40
|
Li S, Severino FPU, Ban J, Wang L, Pinato G, Torre V, Chen Y. Improved neuron culture using scaffolds made of three-dimensional PDMS micro-lattices. ACTA ACUST UNITED AC 2018; 13:034105. [PMID: 29332841 DOI: 10.1088/1748-605x/aaa777] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tissue engineering strives to create functional components of organs with different cell types in vitro. One of the challenges is to fabricate scaffolds for three-dimensional (3D) cell culture under physiological conditions. Of particular interest is the investigation of the morphology and function of the central nervous system cultured using such scaffolds. Here, we used an elastomer-polydimethylsiloxane (PDMS)-to produce lattice-type scaffolds from a photolithography-defined template. The photomask with antidot arrays was spin-coated by a thick layer of resist, and was downward mounted on a rotating stage at an angle of 45°. After the exposure was repeated three or more times, maintaining the same exposure plan but rotated by the same angle, a photoresist was developed to produce a 3D porous template. Afterwards, a pre-polymer mixture of PDMS was poured in and cured, followed by a resist etch, resulting in lattice-type PDMS features. Before cell culture, the PDMS lattices were surface functionalized. A culture test was conducted using NIH-3T3 cells and primary hippocampal cells from rats, showing homogenous cell infiltration and 3D attachment. As expected, a much higher cell number was found in the 3D PDMS lattices compared to the 2D culture. We also found a higher neuron-to-astrocyte ratio and a higher degree of cell ramification in the 3D culture compared to the 2D culture due to the change of scaffold topography and the elastic properties of the PDMS micro-lattices. Our results demonstrate that the 3D PDMS micro-lattices improve the survival and growth of cells, as well as the network formation of neurons. We believe that such an enabling technology is useful for research and clinical applications, including disease modeling, regenerative medicine, and drug discovery/drug cytotoxicity studies.
Collapse
Affiliation(s)
- Sisi Li
- PASTEUR, Département de chimie, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 75005 Paris, France. Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, CNRS, PASTEUR, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Prasopthum A, Shakesheff KM, Yang J. Direct three-dimensional printing of polymeric scaffolds with nanofibrous topography. Biofabrication 2018; 10:025002. [PMID: 29235445 DOI: 10.1088/1758-5090/aaa15b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Three-dimensional (3D) printing is a powerful manufacturing tool for making 3D structures with well-defined architectures for a wide range of applications. The field of tissue engineering has also adopted this technology to fabricate scaffolds for tissue regeneration. The ability to control architecture of scaffolds, e.g. matching anatomical shapes and having defined pore size, has since been improved significantly. However, the material surface of these scaffolds is smooth and does not resemble that found in natural extracellular matrix (ECM), in particular, the nanofibrous morphology of collagen. This natural nanoscale morphology plays a critical role in cell behaviour. Here, we have developed a new approach to directly fabricate polymeric scaffolds with an ECM-like nanofibrous topography and defined architectures using extrusion-based 3D printing. 3D printed tall scaffolds with interconnected pores were created with disparate features spanning from nanometres to centimetres. Our approach removes the need for a sacrificial mould and subsequent mould removal compared to previous methods. Moreover, the nanofibrous topography of the 3D printed scaffolds significantly enhanced protein absorption, cell adhesion and differentiation of human mesenchymal stem cells when compared to those with smooth material surfaces. These 3D printed scaffolds with both defined architectures and nanoscale ECM-mimicking morphologies have potential applications in cartilage and bone regeneration.
Collapse
Affiliation(s)
- Aruna Prasopthum
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | | | | |
Collapse
|
42
|
Sun M, Chi G, Li P, Lv S, Xu J, Xu Z, Xia Y, Tan Y, Xu J, Li L, Li Y. Effects of Matrix Stiffness on the Morphology, Adhesion, Proliferation and Osteogenic Differentiation of Mesenchymal Stem Cells. Int J Med Sci 2018; 15:257-268. [PMID: 29483817 PMCID: PMC5820855 DOI: 10.7150/ijms.21620] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 12/21/2017] [Indexed: 01/05/2023] Open
Abstract
BMMSCs have drawn great interest in tissue engineering and regenerative medicine attributable to their multi-lineage differentiation capacity. Increasing evidence has shown that the mechanical stiffness of extracellular matrix is a critical determinant for stem cell behaviors. However, it remains unknown how matrix stiffness influences MSCs commitment with changes in cell morphology, adhesion, proliferation, self-renewal and differentiation. We employed fibronectin coated polyacrylamide hydrogels with variable stiffnesses ranging from 13 to 68 kPa to modulate the mechanical environment of BMMSCs and found that the morphology and adhesion of BMMSCs were highly dependent on mechanical stiffness. Cells became more spread and more adhesive on substrates of higher stiffness. Similarly, the proliferation of BMMSCs increased as stiffness increased. Sox2 expression was lower during 4h to 1 week on the 13-16 kPa and 62-68 kPa, in contrast, it was higher during 4h to 1 week on the 48-53 kPa. Oct4 expression on 13-16 kPa was higher than 48-53 kPa at 4h, and it has no significant differences at other time point among three different stiffness groups. On 62-68 kPa, BMMSCs were able to be induced toward osteogenic phenotype and generated a markedly high level of RUNX2, ALP, and Osteopontin. The cells exhibited a polygonal morphology and larger spreading area. These results suggest that matrix stiffness modulates commitment of BMMSCs. Our findings may eventually aid in the development of novel, effective biomaterials for the applications in tissue engineering.
Collapse
Affiliation(s)
- Meiyu Sun
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 130021, People's Republic of China
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 130021, People's Republic of China
| | - Pengdong Li
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 130021, People's Republic of China
| | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 130021, People's Republic of China
| | - Juanjuan Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 130021, People's Republic of China
| | - Ziran Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 130021, People's Republic of China
| | - Yuhan Xia
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 130021, People's Republic of China
| | - Ye Tan
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 130021, People's Republic of China
| | - Jiayi Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 130021, People's Republic of China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 130021, People's Republic of China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 130021, People's Republic of China
| |
Collapse
|
43
|
Zhao X, Xu L, Sun M, Ma W, Wu X, Xu C, Kuang H. Tuning the interactions between chiral plasmonic films and living cells. Nat Commun 2017; 8:2007. [PMID: 29222410 PMCID: PMC5722823 DOI: 10.1038/s41467-017-02268-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Designing chiral materials to manipulate the biological activities of cells has been an important area not only in chemistry and material science, but also in cell biology and biomedicine. Here, we introduce monolayer plasmonic chiral Au nanoparticle (NP) films modified with L- or D-penicillamine (Pen) to be developed for cell growth, differentiation, and retrieval. The monolayer films display high chiroptical activity, with circular dichroism values of 3.5 mdeg at 550 nm and 26.8 mdeg at 775 nm. The L-Pen-NP films accelerate cell proliferation, whereas the D -Pen-NP films have the opposite effect. Remote irradiation with light is chosen to noninvasively collect the cells. The results demonstrate that left circularly polarized light improves the efficiency of cell detachment up to 91.2% for L-Pen-NP films. These findings will facilitate the development of cell culture in biomedical application and help to understand natural homochirality.
Collapse
Affiliation(s)
- Xueli Zhao
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Liguang Xu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maozhong Sun
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Ma
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiaoling Wu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
44
|
Bajcsy P, Yoon S, Florczyk SJ, Hotaling NA, Simon M, Szczypinski PM, Schaub NJ, Simon CG, Brady M, Sriram RD. Modeling, validation and verification of three-dimensional cell-scaffold contacts from terabyte-sized images. BMC Bioinformatics 2017; 18:526. [PMID: 29183290 PMCID: PMC5706418 DOI: 10.1186/s12859-017-1928-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/06/2017] [Indexed: 01/28/2023] Open
Abstract
Background Cell-scaffold contact measurements are derived from pairs of co-registered volumetric fluorescent confocal laser scanning microscopy (CLSM) images (z-stacks) of stained cells and three types of scaffolds (i.e., spun coat, large microfiber, and medium microfiber). Our analysis of the acquired terabyte-sized collection is motivated by the need to understand the nature of the shape dimensionality (1D vs 2D vs 3D) of cell-scaffold interactions relevant to tissue engineers that grow cells on biomaterial scaffolds. Results We designed five statistical and three geometrical contact models, and then down-selected them to one from each category using a validation approach based on physically orthogonal measurements to CLSM. The two selected models were applied to 414 z-stacks with three scaffold types and all contact results were visually verified. A planar geometrical model for the spun coat scaffold type was validated from atomic force microscopy images by computing surface roughness of 52.35 nm ±31.76 nm which was 2 to 8 times smaller than the CLSM resolution. A cylindrical model for fiber scaffolds was validated from multi-view 2D scanning electron microscopy (SEM) images. The fiber scaffold segmentation error was assessed by comparing fiber diameters from SEM and CLSM to be between 0.46% to 3.8% of the SEM reference values. For contact verification, we constructed a web-based visual verification system with 414 pairs of images with cells and their segmentation results, and with 4968 movies with animated cell, scaffold, and contact overlays. Based on visual verification by three experts, we report the accuracy of cell segmentation to be 96.4% with 94.3% precision, and the accuracy of cell-scaffold contact for a statistical model to be 62.6% with 76.7% precision and for a geometrical model to be 93.5% with 87.6% precision. Conclusions The novelty of our approach lies in (1) representing cell-scaffold contact sites with statistical intensity and geometrical shape models, (2) designing a methodology for validating 3D geometrical contact models and (3) devising a mechanism for visual verification of hundreds of 3D measurements. The raw and processed data are publicly available from https://isg.nist.gov/deepzoomweb/data/ together with the web -based verification system. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1928-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter Bajcsy
- Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA.
| | - Soweon Yoon
- Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA.,Dakota Consulting Inc, Silver Spring, MD, USA
| | - Stephen J Florczyk
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA.,Department of Materials Science & Engineering, University of Central Florida, Orlando, FL, USA
| | - Nathan A Hotaling
- National Eye Institute, National Institute of Health, Bethesda, MD, USA.
| | - Mylene Simon
- Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | | - Nicholas J Schaub
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Carl G Simon
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Mary Brady
- Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Ram D Sriram
- Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| |
Collapse
|
45
|
Florczyk SJ, Simon M, Juba D, Pine PS, Sarkar S, Chen D, Baker PJ, Bodhak S, Cardone A, Brady MC, Bajcsy P, Simon CG. A Bioinformatics 3D Cellular Morphotyping Strategy for Assessing Biomaterial Scaffold Niches. ACS Biomater Sci Eng 2017; 3:2302-2313. [PMID: 33445289 PMCID: PMC11376592 DOI: 10.1021/acsbiomaterials.7b00473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many biomaterial scaffolds have been advanced to provide synthetic cell niches for tissue engineering and drug screening applications; however, current methods for comparing scaffold niches focus on cell functional outcomes or attempt to normalize materials properties between different scaffold formats. We demonstrate a three-dimensional (3D) cellular morphotyping strategy for comparing biomaterial scaffold cell niches between different biomaterial scaffold formats. Primary human bone marrow stromal cells (hBMSCs) were cultured on 8 different biomaterial scaffolds, including fibrous scaffolds, hydrogels, and porous sponges, in 10 treatment groups to compare a variety of biomaterial scaffolds and cell morphologies. A bioinformatics approach was used to determine the 3D cellular morphotype for each treatment group by using 82 shape metrics to analyze approximately 1000 cells. We found that hBMSCs cultured on planar substrates yielded planar cell morphotypes, while those cultured in 3D scaffolds had elongated or equiaxial cellular morphotypes with greater height. Multivariate analysis was effective at distinguishing mean shapes of cells in flat substrates from cells in scaffolds, as was the metric L1-depth (the cell height along its shortest axis after aligning cells with a characteristic ellipsoid). The 3D cellular morphotyping technique enables direct comparison of cellular microenvironments between widely different types of scaffolds and design of scaffolds based on cell structure-function relationships.
Collapse
Affiliation(s)
| | | | | | | | | | - Desu Chen
- Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
| | | | | | | | | | | | | |
Collapse
|
46
|
Gorodzha SN, Muslimov AR, Syromotina DS, Timin AS, Tcvetkov NY, Lepik KV, Petrova AV, Surmeneva MA, Gorin DA, Sukhorukov GB, Surmenev RA. A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering. Colloids Surf B Biointerfaces 2017; 160:48-59. [PMID: 28917149 DOI: 10.1016/j.colsurfb.2017.09.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/07/2017] [Accepted: 09/02/2017] [Indexed: 01/18/2023]
Abstract
In this study, bone scaffolds composed of polycaprolactone (PCL), piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and a combination of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and silicate containing hydroxyapatite (PHBV-SiHA) were successfully fabricated by a conventional electrospinning process. The morphological, chemical, wetting and biological properties of the scaffolds were examined. All fabricated scaffolds are composed of randomly oriented fibres with diameters from 800nm to 12μm. Fibre size increased with the addition of SiHA to PHBV scaffolds. Moreover, fibre surface roughness in the case of hybrid scaffolds was also increased. XRD, FTIR and Raman spectroscopy were used to analyse the chemical composition of the scaffolds, and contact angle measurements were performed to reveal the wetting behaviour of the synthesized materials. To determine the influence of the piezoelectric nature of PHBV in combination with SiHA nanoparticles on cell attachment and proliferation, PCL (non-piezoelectric), pure PHBV, and PHBV-SiHA scaffolds were seeded with human mesenchymal stem cells (hMSCs). In vitro study on hMSC adhesion, viability, spreading and osteogenic differentiation showed that the PHBV-SiHA scaffolds had the largest adhesion and differentiation abilities compared with other scaffolds. Moreover, the piezoelectric PHBV scaffolds have demonstrated better calcium deposition potential compared with non-piezoelectric PCL. The results of the study revealed pronounced advantages of hybrid PHBV-SiHA scaffolds to be used in bone tissue engineering.
Collapse
Affiliation(s)
- Svetlana N Gorodzha
- Experimental Physics Department, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation
| | - Albert R Muslimov
- First I. P. Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022, Saint-Petersburg, Russian Federation
| | - Dina S Syromotina
- Experimental Physics Department, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation; RASA Center in Tomsk, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation
| | - Alexander S Timin
- RASA Center in Tomsk, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation
| | - Nikolai Y Tcvetkov
- First I. P. Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022, Saint-Petersburg, Russian Federation
| | - Kirill V Lepik
- First I. P. Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022, Saint-Petersburg, Russian Federation
| | - Aleksandra V Petrova
- Department of Molecular Biology, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251, St. Petersburg, Russian Federation; Research Institute of Influenza, Popova str., 15/17, 197376, Saint-Petersburg, Russian Federation
| | - Maria A Surmeneva
- Experimental Physics Department, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation
| | - Dmitry A Gorin
- RASA Center in Tomsk, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation; Saratov State University, Saratov, Russian Federation
| | - Gleb B Sukhorukov
- RASA Center in Tomsk, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation; School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Roman A Surmenev
- Experimental Physics Department, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation.
| |
Collapse
|
47
|
Di Luca A, Wijn JR, Blitterswijk CA, Camarero‐Espinosa S, Moroni L. Tailorable Surface Morphology of 3D Scaffolds by Combining Additive Manufacturing with Thermally Induced Phase Separation. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/13/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Andrea Di Luca
- Institute for BioMedical Technology and Technical Medicine (MIRA)Tissue Regeneration DepartmentUniversity of Twente P.O. Box 217 7500 AE Enschede The Netherlands
| | - Joost R. Wijn
- Institute for BioMedical Technology and Technical Medicine (MIRA)Tissue Regeneration DepartmentUniversity of Twente P.O. Box 217 7500 AE Enschede The Netherlands
| | - Clemens A. Blitterswijk
- Institute for BioMedical Technology and Technical Medicine (MIRA)Tissue Regeneration DepartmentUniversity of Twente P.O. Box 217 7500 AE Enschede The Netherlands
- MERLN Institute for Technology‐inspired Regenerative MedicineComplex Tissue Regeneration DepartmentMaastricht University P.O. Box 616 6200 MD Maastricht The Netherlands
| | - Sandra Camarero‐Espinosa
- MERLN Institute for Technology‐inspired Regenerative MedicineComplex Tissue Regeneration DepartmentMaastricht University P.O. Box 616 6200 MD Maastricht The Netherlands
- Polyganics Rozenburglaan 15A 9727 DL Groningen The Netherlands
| | - Lorenzo Moroni
- Institute for BioMedical Technology and Technical Medicine (MIRA)Tissue Regeneration DepartmentUniversity of Twente P.O. Box 217 7500 AE Enschede The Netherlands
- MERLN Institute for Technology‐inspired Regenerative MedicineComplex Tissue Regeneration DepartmentMaastricht University P.O. Box 616 6200 MD Maastricht The Netherlands
| |
Collapse
|
48
|
Menzies DJ, Ang A, Thissen H, Evans RA. Adhesive Prebiotic Chemistry Inspired Coatings for Bone Contacting Applications. ACS Biomater Sci Eng 2017; 3:793-806. [DOI: 10.1021/acsbiomaterials.7b00038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Donna J. Menzies
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, VIC 3169, Australia
| | - Andrew Ang
- Faculty
of Science, Engineering and Technology, Swinburne University, Hawthorn, VIC 3122, Australia
| | - Helmut Thissen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, VIC 3169, Australia
| | - Richard A. Evans
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, VIC 3169, Australia
| |
Collapse
|
49
|
Clegg JR, Wechsler ME, Peppas NA. Vision for Functionally Decorated and Molecularly Imprinted Polymers in Regenerative Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017; 3:166-175. [PMID: 30906848 DOI: 10.1007/s40883-017-0028-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The emerging field of regenerative engineering offers a great challenge and an even greater opportunity for materials scientists and engineers. How can we develop materials that are highly porous to permit cellular infiltration, yet possess sufficient mechanical integrity to mimic native tissues? How can we retain and deliver bioactive molecules to drive cell organization, proliferation, and differentiation in a predictable manner? In the following perspective, we highlight recent studies that have demonstrated the vital importance of each of these questions, as well as many others pertaining to scaffold development. We posit hybrid materials synthesized by molecular decoration and molecular imprinting as intelligent biomaterials for regenerative engineering applications. These materials have potential to present cell adhesion molecules and soluble growth factors with fine-tuned spatial and temporal control, in response to both cell-driven and external triggers. Future studies in this area will address a pertinent clinical need, expand the existing repertoire of medical materials, and improve the field's understanding of how cells and materials respond to one another.
Collapse
Affiliation(s)
- John R Clegg
- University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
50
|
Geelhoed WJ, Moroni L, Rotmans JI. Utilizing the Foreign Body Response to Grow Tissue Engineered Blood Vessels in Vivo. J Cardiovasc Transl Res 2017; 10:167-179. [PMID: 28205013 PMCID: PMC5437130 DOI: 10.1007/s12265-017-9731-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/23/2017] [Indexed: 12/21/2022]
Abstract
It is well known that the number of patients requiring a vascular grafts for use as vessel replacement in cardiovascular diseases, or as vascular access site for hemodialysis is ever increasing. The development of tissue engineered blood vessels (TEBV's) is a promising method to meet this increasing demand vascular grafts, without having to rely on poorly performing synthetic options such as polytetrafluoroethylene (PTFE) or Dacron. The generation of in vivo TEBV's involves utilizing the host reaction to an implanted biomaterial for the generation of completely autologous tissues. Essentially this approach to the development of TEBV's makes use of the foreign body response to biomaterials for the construction of the entire vascular replacement tissue within the patient's own body. In this review we will discuss the method of developing in vivo TEBV's, and debate the approaches of several research groups that have implemented this method.
Collapse
Affiliation(s)
- Wouter J Geelhoed
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Eindhoven Laboratory of Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, Maastricht, The Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands. .,Eindhoven Laboratory of Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|