1
|
Lee SH, Lee J, Kang NU, Cho YS, Heo SC, Park Y, Cho YS. PCL scaffold with well-defined hierarchical pores effectively controls cell migration and alignment of human mesenchymal stem cells. Sci Rep 2025; 15:11542. [PMID: 40185828 PMCID: PMC11971467 DOI: 10.1038/s41598-025-96027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
With an increasing incidence of orthopedic fractures due to the growing aging population, the demand for novel bone tissue engineering treatments is rising. Existing biopolymeric scaffolds have hierarchical structure, are biocompatible, and are biodegradable, but struggle to control pore size and interconnectivity, essential features to regulate cell alignment and mechanobiological signaling. This highlights the need to design a biopolymeric scaffold with well-defined hierarchical structure and optimized surface properties to improve bone regeneration. To accomplish this, we proposed a grid-in-grid manufacturing approach and fabricated a solvent-free 3D polycaprolactone (PCL) scaffold with hierarchical pores using precision extruding deposition (PED) 3D printing technology. The fabricated scaffolds exhibit both global pores and multi-scale local pores. Notably, using in vitro cultured human mesenchymal stem cells (hMSCs), controlled local pore size induced contact guidance and pore bridging, and the surface roughness of global strands effectively led to cell alignment. This study demonstrates that precision 3D printing technology can directly manipulate local pore structures to control cell migration and alignment. Furthermore, it could be applied for combined bone to connective tissue regeneration, where gradient pore structures and cell alignment are essential. Our scaffold has the potential to serve as a customizable platform for advanced tissue engineering applications.
Collapse
Affiliation(s)
- Se-Hwan Lee
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jaeyeon Lee
- Department of Biomedical Engineering, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Nae-Un Kang
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Yong Sang Cho
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, 41061, Republic of Korea
| | - Su Chin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Yongdoo Park
- Department of Biomedical Engineering, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Young-Sam Cho
- Division of Mechanical Engineering, College of Engineering, Wonkwang University, 460, Iksandae-ro, Ikasn, 54538, Jeonbuk, Republic of Korea.
- MECHABIO Group, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
2
|
Wang Y, Liu M, Zhang W, Liu H, Jin F, Mao S, Han C, Wang X. Mechanical strategies to promote vascularization for tissue engineering and regenerative medicine. BURNS & TRAUMA 2024; 12:tkae039. [PMID: 39350780 PMCID: PMC11441985 DOI: 10.1093/burnst/tkae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 10/04/2024]
Abstract
Vascularization is a major challenge in the field of tissue engineering and regenerative medicine. Mechanical factors have been demonstrated to play a fundamental role in vasculogenesis and angiogenesis and can affect the architecture of the generated vascular network. Through the regulation of mechanical factors in engineered tissues, various mechanical strategies can be used to optimize the preformed vascular network and promote its rapid integration with host vessels. Optimization of the mechanical properties of scaffolds, including controlling scaffold stiffness, increasing surface roughness and anisotropic structure, and designing interconnected, hierarchical pore structures, is beneficial for the in vitro formation of vascular networks and the ingrowth of host blood vessels. The incorporation of hollow channels into scaffolds promotes the formation of patterned vascular networks. Dynamic stretching and perfusion can facilitate the formation and maturation of preformed vascular networks in vitro. Several indirect mechanical strategies provide sustained mechanical stimulation to engineered tissues in vivo, which further promotes the vascularization of implants within the body. Additionally, stiffness gradients, anisotropic substrates and hollow channels in scaffolds, as well as external cyclic stretch, boundary constraints and dynamic flow culture, can effectively regulate the alignment of vascular networks, thereby promoting better integration of prevascularized engineered tissues with host blood vessels. This review summarizes the influence and contribution of both scaffold-based and external stimulus-based mechanical strategies for vascularization in tissue engineering and elucidates the underlying mechanisms involved.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Meixuan Liu
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Wei Zhang
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Huan Liu
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Fang Jin
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Shulei Mao
- Department of Burns and Plastic Surgery, Quhua Hospital of Zhejiang, 62 Wenchang Road, Quhua, Quzhou 324004, China
| | - Chunmao Han
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Xingang Wang
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| |
Collapse
|
3
|
Hooper R, Cummings C, Beck A, Vazquez-Armendariz J, Rodriguez C, Dean D. Sheet-based extrusion bioprinting: a new multi-material paradigm providing mid-extrusion micropatterning control for microvascular applications. Biofabrication 2024; 16:025032. [PMID: 38447217 PMCID: PMC10938191 DOI: 10.1088/1758-5090/ad30c8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
As bioprinting advances into clinical relevance with patient-specific tissue and organ constructs, it must be capable of multi-material fabrication at high resolutions to accurately mimick the complex tissue structures found in the body. One of the most fundamental structures to regenerative medicine is microvasculature. Its continuous hierarchical branching vessel networks bridge surgically manipulatable arteries (∼1-6 mm) to capillary beds (∼10µm). Microvascular perfusion must be established quickly for autologous, allogeneic, or tissue engineered grafts to survive implantation and heal in place. However, traditional syringe-based bioprinting techniques have struggled to produce perfusable constructs with hierarchical branching at the resolution of the arterioles (∼100-10µm) found in microvascular tissues. This study introduces the novel CEVIC bioprinting device (i.e.ContinuouslyExtrudedVariableInternalChanneling), a multi-material technology that breaks the current extrusion-based bioprinting paradigm of pushing cell-laden hydrogels through a nozzle as filaments, instead, in the version explored here, extruding thin, wide cell-laden hydrogel sheets. The CEVIC device adapts the chaotic printing approach to control the width and number of microchannels within the construct as it is extruded (i.e. on-the-fly). Utilizing novel flow valve designs, this strategy can produce continuous gradients varying geometry and materials across the construct and hierarchical branching channels with average widths ranging from 621.5 ± 42.92%µm to 11.67 ± 14.99%µm, respectively, encompassing the resolution range of microvascular vessels. These constructs can also include fugitive/sacrificial ink that vacates to leave demonstrably perfusable channels. In a proof-of-concept experiment, a co-culture of two microvascular cell types, endothelial cells and pericytes, sustained over 90% viability throughout 1 week in microchannels within CEVIC-produced gelatin methacryloyl-sodium alginate hydrogel constructs. These results justify further exploration of generating CEVIC-bioprinted microvasculature, such as pre-culturing and implantation studies.
Collapse
Affiliation(s)
- Ryan Hooper
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, United States of America
| | - Caleb Cummings
- Department of Biology, The Ohio State University, Columbus, OH 43210, United States of America
| | - Anna Beck
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, United States of America
| | - Javier Vazquez-Armendariz
- Department of Materials Science & Engineering, The Ohio State University, Columbus, OH 43210, United States of America
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, NL, Mexico
| | - Ciro Rodriguez
- Department of Materials Science & Engineering, The Ohio State University, Columbus, OH 43210, United States of America
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT), Apodaca 66629, NL, Mexico
- Departamento de Ingeniería Mecánica y Materiales Avanzados, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, NL, Mexico
| | - David Dean
- Department of Materials Science & Engineering, The Ohio State University, Columbus, OH 43210, United States of America
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, OH 43210, United States of America
| |
Collapse
|
4
|
He X, Wang R, Zhou F, Liu H. Recent advances in photo-crosslinkable methacrylated silk (Sil-MA)-based scaffolds for regenerative medicine: A review. Int J Biol Macromol 2024; 256:128031. [PMID: 37972833 DOI: 10.1016/j.ijbiomac.2023.128031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Silks fibroin can be chemically modified through amino acid side chains to obtain methacrylated silk (Sil-MA). Sil-MA could be processed into a variety of scaffold forms and combine synergistically with other biomaterials to form composites vehicle. The advent of Sil-MA material has enabled impressive progress in the development of various scaffolds based on Sil-MA type to imitate the structural and functional characteristics of natural tissues. This review highlights the reasonable design and bio-fabrication strategies of diverse Sil-MA-based tissue constructs for regenerative medicine. First, we elucidate modification methodology and characteristics of Sil-MA. Next, we describe characteristics of Sil-MA hydrogels, and focus on the design approaches and formation of different types of Sil-MA-based hydrogels. Thereafter, we present an overview of the recent advances in the application of Sil-MA based scaffolds for regenerative medicine, including detailed strategies for the engineering methods and materials used. Finally, we summarize the current research progress and future directions of Sil-MA in regenerative medicine. This review not only delineates the representative design strategies and their application in regenerative medicine, but also provides new direction in the fabrication of biomaterial constructs for the clinical translation in order to stimulate the future development of implants.
Collapse
Affiliation(s)
- Xi He
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, PR China
| | - RuiDeng Wang
- Peking University Third Hospital, Department of Orthopaedics, PR China; Peking University Third Hospital, Engineering Research Center of Bone and Joint Precision Medicine, PR China
| | - Fang Zhou
- Peking University Third Hospital, Department of Orthopaedics, PR China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, PR China.
| |
Collapse
|
5
|
Li X, Coates DE. Hollow channels scaffold in bone regenerative: a review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1702-1715. [PMID: 36794303 DOI: 10.1080/09205063.2023.2181066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
Bone substitute materials have been extensively used for bone regeneration over the past 50 years. The development of novel materials, fabrication technologies and the incorporation and release of regenerative cytokines, growth factors, cells and antimicrobials has been driven by the rapid development in the field of additive manufacturing technology. There are still however, significant challenges that need addressing, including ways to better mediate the rapid vascularization of bone scaffolds to enhance subsequent regeneration and osteogenesis. Increasing construct porosity can accelerate the development of blood vessels in the scaffold, but doing so also weakens the constructs mechanical properties. A novel design for promoting rapid vascularization is to fabricate custom-made hollow channels as bone scaffolds. Summarized here are the current developments in hollow channels scaffold, including their biological attributes, physio-chemical properties, and effects on regeneration. An overview of recent developments in scaffold fabrication as they relate to hollow channel constructs and their structural features will be introduced with an emphasis on attributes that enhance new bone and vessel formation. Furthermore, the potential to enhance angiogenesis and osteogenesis by replicating the structure of real bone will be highlighted.
Collapse
Affiliation(s)
- Xiao Li
- University of Otago, Dunedin, New Zealand
| | - Dawn Elizabeth Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Ni B, Kaplan DL, Buehler MJ. Generative design of de novo proteins based on secondary structure constraints using an attention-based diffusion model. Chem 2023; 9:1828-1849. [PMID: 37614363 PMCID: PMC10443900 DOI: 10.1016/j.chempr.2023.03.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
We report two generative deep learning models that predict amino acid sequences and 3D protein structures based on secondary structure design objectives via either overall content or per-residue structure. Both models are robust regarding imperfect inputs and offer de novo design capacity as they can discover new protein sequences not yet discovered from natural mechanisms or systems. The residue-level secondary structure design model generally yields higher accuracy and more diverse sequences. These findings suggest unexplored opportunities for protein designs and functional outcomes within the vast amino acid sequences beyond known proteins. Our models, based on an attention-based diffusion model and trained on a dataset extracted from experimentally known 3D protein structures, offer numerous downstream applications in conditional generative design of various biological or engineering systems. Future work may include additional conditioning, and an exploration of other functional properties of the generated proteins for various properties beyond structural objectives.
Collapse
Affiliation(s)
- Bo Ni
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Center for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Lead contact
| |
Collapse
|
7
|
Atia GAN, Shalaby HK, Ali NG, Morsy SM, Ghobashy MM, Attia HAN, Barai P, Nady N, Kodous AS, Barai HR. New Challenges and Prospective Applications of Three-Dimensional Bioactive Polymeric Hydrogels in Oral and Craniofacial Tissue Engineering: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:702. [PMID: 37242485 PMCID: PMC10224377 DOI: 10.3390/ph16050702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Regenerative medicine, and dentistry offers enormous potential for enhancing treatment results and has been fueled by bioengineering breakthroughs over the previous few decades. Bioengineered tissues and constructing functional structures capable of healing, maintaining, and regenerating damaged tissues and organs have had a broad influence on medicine and dentistry. Approaches for combining bioinspired materials, cells, and therapeutic chemicals are critical in stimulating tissue regeneration or as medicinal systems. Because of its capacity to maintain an unique 3D form, offer physical stability for the cells in produced tissues, and replicate the native tissues, hydrogels have been utilized as one of the most frequent tissue engineering scaffolds during the last twenty years. Hydrogels' high water content can provide an excellent conditions for cell viability as well as an architecture that mimics real tissues, bone, and cartilage. Hydrogels have been used to enable cell immobilization and growth factor application. This paper summarizes the features, structure, synthesis and production methods, uses, new challenges, and future prospects of bioactive polymeric hydrogels in dental and osseous tissue engineering of clinical, exploring, systematical and scientific applications.
Collapse
Affiliation(s)
- Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Hany K. Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez P.O. Box 43512, Egypt
| | - Naema Goda Ali
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Shaimaa Mohammed Morsy
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo P.O. Box 13759, Egypt
| | - Hager Abdel Nasser Attia
- Department of Molecular Biology and Chemistry, Faculty of Science, Alexandria University, Alexandria P.O. Box 21526, Egypt
| | - Paritosh Barai
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka 1213, Bangladesh
| | - Norhan Nady
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Elarab, Alexandria P.O. Box 21934, Egypt
| | - Ahmad S. Kodous
- Department of Radiation Biology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo P.O. Box 13759, Egypt
| | - Hasi Rani Barai
- Department of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
8
|
Gao LL, Wei Y, Tan YS, Li RX, Zhang CQ, Gao H. Irrigating degradation properties of silk fibroin-collagen type II composite cartilage scaffold in vitro and in vivo. BIOMATERIALS ADVANCES 2023; 149:213389. [PMID: 36965402 DOI: 10.1016/j.bioadv.2023.213389] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Silk fibroin-collagen type II scaffolds are promising in cartilage tissue engineering due to their suitable biological functionality to promote proliferation of chondrocytes in vitro. However, their degradation properties, which are of crucial importance as scaffold degradation should consistent with the new tissue formation process, are still unknown. In this study, degradability of silk fibroin-collagen type II cartilage scaffolds was probed both in vitro and in vivo. In vitro degradation experiments show that the scaffolds decreased 32.25 % ± 0.62 %, 34.27 % ± 0.96 %, 36.27 % ± 2.39 % in weight after 8 weeks of degradation at the irrigation velocity of 0 mL/min, 7.89 mL/min and 15.79 mL/min. The degradation ratio, which increases with time and increasing irrigation velocity, is described by combining the built mathematic model and finite element modeling method. The scaffolds after 8 weeks of degradation in vitro keep their mechanical structural integrity to support new tissues. In vivo degradation experiments conducted in rabbits further show that the scaffolds degrade gradually, be absorbed with time and finally collapse in structure. The degradation process is accompanied by the growth of fibrous tissues and the scaffold is filled by fibrous tissues after 12 weeks of implantation. Immunohistology analysis shows that the inflammation caused by scaffolds is controllable and gradually alleviates with time. To sum up, silk fibroin-collagen type II cartilage scaffolds, which show suitable mechanical properties and biocompatibility during degradation in vitro and in vivo, have great potential in cartilage repair. The novelty of the study is that it not only introduces a mathematical model to predict the irrigation degradation ratio, but also provides experimental degradation data support for clinical application of silk fibroin-collagen type II cartilage scaffolds.
Collapse
Affiliation(s)
- Li-Lan Gao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Ying Wei
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Yan-Song Tan
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China.
| | - Rui-Xin Li
- Tianjin Stomatological Hospital, Tianjin, China.
| | - Chun-Qiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China.
| | - Hong Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Milazzo M, Fitzpatrick V, Owens CE, Carraretto IM, McKinley GH, Kaplan DL, Buehler MJ. 3D Printability of Silk/Hydroxyapatite Composites for Microprosthetic Applications. ACS Biomater Sci Eng 2023; 9:1285-1295. [PMID: 36857509 DOI: 10.1021/acsbiomaterials.2c01357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Micro-prosthetics requires the fabrication of mechanically robust and personalized components with sub-millimetric feature accuracy. Three-dimensional (3D) printing technologies have had a major impact on manufacturing such miniaturized devices for biomedical applications; however, biocompatibility requirements greatly constrain the choice of usable materials. Hydroxyapatite (HA) and its composites have been widely employed to fabricate bone-like structures, especially at the macroscale. In this work, we investigate the rheology, printability, and prosthetic mechanical properties of HA and HA-silk protein composites, focusing on the roles of composition and water content. We correlate key linear and nonlinear shear rheological parameters to geometric outcomes of printing and explain how silk compensates for the inherent brittleness of printed HA components. By increasing ink ductility, the inclusion of silk improves the quality of printed items through two mechanisms: (1) reducing underextrusion by lowering the required elastic modulus and, (2) reducing slumping by increasing the ink yield stress proportional to the modulus. We demonstrate that the elastic modulus and compressive strength of parts fabricated from silk-HA inks are higher than those for rheologically comparable pure-HA inks. We construct a printing map to guide the manufacturing of HA-based inks with excellent final properties, especially for use in biomedical applications for which sub-millimetric features are required.
Collapse
Affiliation(s)
- Mario Milazzo
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Massachusetts Avenue 77, Cambridge, Massachusetts 02139, United States
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Crystal E Owens
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Igor M Carraretto
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Energy, Politecnico di Milano, via Lambruschini 4a, 20156 Milano, MI, Italy
| | - Gareth H McKinley
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Massachusetts Avenue 77, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
3D bio-printed endometrial construct restores the full-thickness morphology and fertility of injured uterine endometrium. Acta Biomater 2023; 157:187-199. [PMID: 36521675 DOI: 10.1016/j.actbio.2022.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Severe damage to the uterine endometrium, which results in scar formation and endometrial dysfunction, eventually leads to infertility or pregnancy-related complications. No effective therapeutic treatment is currently available for such injuries owing to the structural complexity, internal environment, and function of the uterus. Three-dimensional (3D) bio-printing to engineer biomimetic structural constructs provides a unique opportunity for tissue regeneration. Herein, using 3D extrusion-based bioprinting (EBB), we constructed a bilayer endometrial construct (EC) based on a sodium alginate-hyaluronic acid (Alg-HA) hydrogel for functional regeneration of the endometrium. The upper layer of the 3D bio-printed EC is a monolayer of endometrial epithelial cells (EECs), while the lower layer has a grid-like microstructure loaded with endometrial stromal cells (ESCs). In a partial full-thickness uterine excision rat model, our bilayer EC not only restored the morphology and structure of the endometrial wall (including organized luminal/ glandular epithelium, stroma, vasculature and the smooth muscle layer), but also significantly improved the reproductive outcome in the surgical area after implantation (75%, 12/16, p < 0.01). Therefore, repair of the uterine endometrium using the developed 3D bio-printed bilayer EC may represent an effective regenerative treatment for severe endometrial injury. STATEMENT OF SIGNIFICANCE: Achieving structural and functional recovery of the endometrium following severe injury is still a challenge. Here, we designed a 3D bio-printed endometrial construct (EC) to mimic the native bilayer structure and cellular components of the endometrium. The bio-printed EC consists of a dense upper layer with endometrial epithelial cells and a lower layer with endometrial stromal cells. In particular, the 3D bio-printed EC significantly improved the reproductive outcome in the surgical area (75%, 12/16) compared to that of the cell-loaded non-printed group (12.5%, 2/16). This study demonstrates that a biomimetic bilayer construct can facilitate endometrial repair and regeneration. Therefore, an endometrial cells-loaded 3D-bioprinted EC is a promising therapeutic option for patients suffering from severe endometrial damage.
Collapse
|
11
|
Abbott A, Gravina ME, Vandadi M, Rahbar N, Coburn JM. Influence of lyophilization primary drying time and temperature on porous silk scaffold fabrication for biomedical applications. J Biomed Mater Res A 2023; 111:118-131. [PMID: 36205385 DOI: 10.1002/jbm.a.37451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 05/20/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Lyophilization of protein solutions, such as silk fibroin (silk), produces porous scaffolds useful for tissue engineering (TE). The impact of modifying lyophilization primary drying parameters on scaffold properties has not yet been explored previously. In this work, changes to primary drying duration and temperature were investigated using 3%, 6%, 9%, and 12% (w/v) silk solutions, via protocols labeled as Long Hold, Slow Ramp, and Standard. The 9% and 12% scaffolds were not successfully fabricated using the Standard protocol, while the Long Hold and Slow Ramp protocols resulted in scaffolds from all silk solution concentrations. Scaffolds fabricated using the Long Hold protocol had higher Young's moduli, smaller pore Feret diameters, and faster degradation. To investigate the utility of the different lyophilized scaffolds for in vitro cell culturing, the HepaRG liver cell line was cultured in the 3% to 12% scaffolds fabricated using the Long Hold protocol. The HepaRG cells grown in 3% scaffolds initially had greater lipid accumulation and metabolic activity than the other groups, although these differences were no longer apparent by Day 28. The deoxyribonucleic acid content of the HepaRG cells grown in 3% scaffold group was also initially significantly higher than the other groups. Significant differences in gene expression by 9% scaffolded HepaRG cells (CK19, HNFα) were seen on Day 14 while significant differences by 12% scaffolded HepaRG cells (ALB, APOA4) were seen on Day 28. Overall, modifying the primary drying parameters and silk concentration resulted in lyophilized scaffolds with tunable properties useful for TE applications.
Collapse
Affiliation(s)
- Alycia Abbott
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Mattea E Gravina
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Mobin Vandadi
- Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Nima Rahbar
- Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
12
|
Zhang Z, Feng Y, Wang L, Liu D, Qin C, Shi Y. A review of preparation methods of porous skin tissue engineering scaffolds. MATERIALS TODAY COMMUNICATIONS 2022; 32:104109. [DOI: 10.1016/j.mtcomm.2022.104109] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Duan J, Lei D, Ling C, Wang Y, Cao Z, Zhang M, Zhang H, You Z, Yao Q. Three-dimensional-printed polycaprolactone scaffolds with interconnected hollow-pipe structures for enhanced bone regeneration. Regen Biomater 2022; 9:rbac033. [PMID: 35719204 PMCID: PMC9201971 DOI: 10.1093/rb/rbac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 11/14/2022] Open
Abstract
Three-dimensional (3D)-printed scaffolds are widely used in tissue engineering to help regenerate critical-sized bone defects. However, conventional scaffolds possess relatively simple porous structures that limit the delivery of oxygen and nutrients to cells, leading to insufficient bone regeneration. Accordingly, in the present study, perfusable and permeable polycaprolactone scaffolds with highly interconnected hollow-pipe structures that mimic natural micro-vascular networks are prepared by an indirect one-pot 3D-printing method. In vitro experiments demonstrate that hollow-pipe-structured (HPS) scaffolds promote cell attachment, proliferation, osteogenesis and angiogenesis compared to the normal non-hollow-pipe-structured scaffolds. Furthermore, in vivo studies reveal that HPS scaffolds enhance bone regeneration and vascularization in rabbit bone defects, as observed at 8 and 12 weeks, respectively. Thus, the fabricated HPS scaffolds are promising candidates for the repair of critical-sized bone defects.
Collapse
Affiliation(s)
- Jiahua Duan
- Nanjing First Hospital, Nanjing Medical University Department of Orthopaedic Surgery, , Nanjing, 210006, China
| | - Dong Lei
- Institute of Functional Materials,Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, , (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai, 201620, China
- Shanghai Key Laboratory of Tissue Engineering, School of Medicine, Shanghai Jiao Tong University Department of Cardiology, Shanghai 9th People's Hospital, , Shanghai, 200011, China
| | - Chen Ling
- Nanjing First Hospital, Nanjing Medical University Department of Orthopaedic Surgery, , Nanjing, 210006, China
| | - Yufeng Wang
- Nanjing First Hospital, Nanjing Medical University Department of Orthopaedic Surgery, , Nanjing, 210006, China
| | - Zhicheng Cao
- Nanjing First Hospital, Nanjing Medical University Department of Orthopaedic Surgery, , Nanjing, 210006, China
| | - Ming Zhang
- Nanjing First Hospital, Nanjing Medical University Department of Orthopaedic Surgery, , Nanjing, 210006, China
| | - Huikang Zhang
- Nanjing First Hospital, Nanjing Medical University Department of Orthopaedic Surgery, , Nanjing, 210006, China
| | - Zhengwei You
- Institute of Functional Materials,Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, , (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai, 201620, China
| | - Qingqiang Yao
- Nanjing First Hospital, Nanjing Medical University Department of Orthopaedic Surgery, , Nanjing, 210006, China
| |
Collapse
|
14
|
Sanchez Rezza A, Kulahci Y, Gorantla VS, Zor F, Drzeniek NM. Implantable Biomaterials for Peripheral Nerve Regeneration-Technology Trends and Translational Tribulations. Front Bioeng Biotechnol 2022; 10:863969. [PMID: 35573254 PMCID: PMC9092979 DOI: 10.3389/fbioe.2022.863969] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023] Open
Abstract
The use of autografted nerve in surgical repair of peripheral nerve injuries (PNI) is severely limited due to donor site morbidity and restricted tissue availability. As an alternative, synthetic nerve guidance channels (NGCs) are available on the market for surgical nerve repair, but they fail to promote nerve regeneration across larger critical gap nerve injuries. Therefore, such injuries remain unaddressed, result in poor healing outcomes and are a limiting factor in limb reconstruction and transplantation. On the other hand, a myriad of advanced biomaterial strategies to address critical nerve injuries are proposed in preclinical literature but only few of those have found their way into clinical practice. The design of synthetic nerve grafts should follow rational criteria and make use of a combination of bioinstructive cues to actively promote nerve regeneration. To identify the most promising NGC designs for translation into applicable products, thorough mode of action studies, standardized readouts and validation in large animals are needed. We identify design criteria for NGC fabrication according to the current state of research, give a broad overview of bioactive and functionalized biomaterials and highlight emerging composite implant strategies using therapeutic cells, soluble factors, structural features and intrinsically conductive substrates. Finally, we discuss translational progress in bioartificial conduits for nerve repair from the surgeon's perspective and give an outlook toward future challenges in the field.
Collapse
Affiliation(s)
- Angela Sanchez Rezza
- Charité— Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany
| | - Yalcin Kulahci
- Wake Forest School of Medicine, Department of Surgery, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Vijay S. Gorantla
- Wake Forest School of Medicine, Department of Surgery, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Fatih Zor
- Wake Forest School of Medicine, Department of Surgery, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Norman M. Drzeniek
- Charité— Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
| |
Collapse
|
15
|
Elimination of Induced Hypoxic Regions in Depth of 3D Porous Silk Scaffolds by the Introduction of Channel Configuration. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9767687. [PMID: 35342757 PMCID: PMC8942621 DOI: 10.1155/2022/9767687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 11/17/2022]
Abstract
Development of large, clinically sized tissue constructs with efficient mass transport is a tremendous need in tissue engineering. One major challenge in large tissue-engineered constructs is to support homogeneous delivery of oxygen and nutrients throughout the tissue scaffold while eliminating induced hypoxic regions in depth. To address this goal, we introduced an especial channeled architecture on porous silk-based tissue scaffolds to improve supplying of oxygen to the cells in central regions of the scaffolds. Oxygen gradients were measured and evaluated in three scaffold prototypes, namely, one unchanneled and two channeled scaffolds with different channel diameters (500 μm and 1000 μm). The channels were introduced into the constructs using stainless-steel rods arranged uniformly in stainless-steel mold, a fabrication method that enables precise control over channel diameter and the distance between channels. During 2-week culture of G292 cells, the 1000 μm channeled scaffolds demonstrated higher oxygen concentration at the center compared to 500 μm channeled prototype; however, the oxygen concentration approached the same level around the last days of culture. Nevertheless, homogenous oxygen distribution throughout the 1000 μm channeled constructs and the consequence of higher cell proliferation at day 14 postseeding corroborate the efficient elimination of induced hypoxic regions; and therefore, it holds promise for clinically relevant sized scaffold especially in bone tissue engineering.
Collapse
|
16
|
Li P, Cao L, Sang F, Zhang B, Meng Z, Pan L, Hao J, Yang X, Ma Z, Shi C. Polyvinyl alcohol/sodium alginate composite sponge with 3D ordered/disordered porous structure for rapidly controlling noncompressible hemorrhage. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112698. [DOI: 10.1016/j.msec.2022.112698] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
|
17
|
Generation of hybrid tissue engineered construct through embedding autologous chondrocyte loaded platelet rich plasma/alginate based hydrogel in porous scaffold for cartilage regeneration. Int J Biol Macromol 2022; 203:389-405. [PMID: 35063489 DOI: 10.1016/j.ijbiomac.2022.01.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 12/27/2022]
Abstract
Over the past decades, various attempts have been made to develop suitable tissue-engineered constructs to repair or regenerate the damaged or diseased articular cartilage. In the present study, we embedded Platelet rich plasma (PRP)/Sodium Alginate (SA) based hydrogel in porous 3D scaffold of chitosan (CH)/chondroitin sulfate (CS)/silk fibroin (SF) to develop hybrid scaffold for cartilage tissue construct generation with abilities to support shape recovery potential, facilitate uniform cells distribution and mimic gel like cartilage tissue extracellular matrix.The developed hybrid matrix shows suitable pore size (55-261 μm), porosity (77 ± 4.3%) and compressive strength (0.13 ± 0.04 MPa) for cartilage tissue construct generation and its applications. The developed SA/PRP-based cartilage construct exhibits higher metabolic activity, glycosaminoglycan deposition, expression of collagen type II, and aggrecan in comparison to SA based cell-scaffold construct. In-vivo animal study was also performed to investigate the biocompatibility and cartilage tissue regeneration potential of the developed construct. The obtained gross analysis of knee sample, micro-computed tomography, and histological analysis suggest that implanted tissue construct possess the superior potential to regenerate hyaline cartilage defect of thickness around 1.10 ± 0.36 mm and integrate with surrounding tissue at the defect site. Thus, the proposed strategy for the development of cartilage tissue constructs might be beneficial for the repair of full-thickness knee articular cartilage defects.
Collapse
|
18
|
Gupta P, Mandal BB. Silk biomaterials for vascular tissue engineering applications. Acta Biomater 2021; 134:79-106. [PMID: 34384912 DOI: 10.1016/j.actbio.2021.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Vascular tissue engineering is a rapidly growing field of regenerative medicine, which strives to find innovative solutions for vascular reconstruction. Considering the limited success of synthetic grafts, research impetus in the field is now shifted towards finding biologically active vascular substitutes bestowing in situ growth potential. In this regard, silk biomaterials have shown remarkable potential owing to their favorable inherent biological and mechanical properties. This review provides a comprehensive overview of the progressive development of silk-based small diameter (<6 mm) tissue-engineered vascular grafts (TEVGs), emphasizing their pre-clinical implications. Herein, we first discuss the molecular structure of various mulberry and non-mulberry silkworm silk and identify their favorable properties at the onset of vascular regeneration. The emergence of various state-of-the-art fabrication methodologies for the advancement of silk TEVGs is rationally appraised in terms of their in vivo performance considering the following parameters: ease of handling, long-term patency, resistance to acute thrombosis, stenosis and aneurysm formation, immune reaction, neo-tissue formation, and overall remodeling. Finally, we provide an update on the pre-clinical status of silk-based TEVGs, followed by current challenges and future prospects. STATEMENT OF SIGNIFICANCE: Limited availability of healthy autologous blood vessels to replace their diseased counterpart is concerning and demands other artificial substitutes. Currently available synthetic grafts are not suitable for small diameter blood vessels owing to frequent blockage. Tissue-engineered biological grafts tend to integrate well with the native tissue via remodeling and have lately witnessed remarkable success. Silk fibroin is a natural biomaterial, which has long been used as medical sutures. This review aims to identify several favorable properties of silk enabling vascular regeneration. Furthermore, various methodologies to fabricate tubular grafts are discussed and highlight their performance in animal models. An overview of our understanding to rationally improve the biological activity fostering the clinical success of silk-based grafts is finally discussed.
Collapse
|
19
|
Fitzpatrick V, Martín-Moldes Z, Deck A, Torres-Sanchez R, Valat A, Cairns D, Li C, Kaplan DL. Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials 2021; 276:120995. [PMID: 34256231 PMCID: PMC8408341 DOI: 10.1016/j.biomaterials.2021.120995] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Our goal was to generate functionalized 3D-printed scaffolds for bone regeneration using silk-hydroxyapatite bone cements and osteoinductive, proangiogenic and neurotrophic growth factors or morphogens for accelerated bone formation. 3D printing was utilized to generate macroporous scaffolds with controlled geometries and architectures that promote osseointegration. We build on the knowledge that the osteoinductive factor Bone Morphogenetic Protein-2 (BMP2) can also positively impact vascularization, Vascular Endothelial Growth Factor (VEGF) can impact osteoblastic differentiation, and that Neural Growth Factor (NGF)-mediated signaling can influence bone regeneration. We assessed functions on the 3D printed construct via the osteogenic differentiation of human mesenchymal stem cells; migration and proliferation of human umbilical vein endothelial cells; and proliferation of human induced neural stem cells. The scaffolds provided mechanical properties suitable for bone and the materials were cytocompatible, osteoconductive and maintained the activity of the morphogens and cytokines. Synergistic outcomes between BMP-2, VEGF and NGF in terms of osteoblastic differentiation in vitro were identified, based on the upregulation of genes associated with osteoblastic differentiation (Runt-related transcription factor-2, Osteopontin, Bone Sialoprotein). Additional studies will be required to assess these scaffold designs in vivo. These results are expected to have a strong impact in bone regeneration in dental, oral and maxillofacial surgery.
Collapse
Affiliation(s)
- Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Zaira Martín-Moldes
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Anna Deck
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | - Anne Valat
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Dana Cairns
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
20
|
Jameson JF, Pacheco MO, Butler JE, Stoppel WL. Estimating Kinetic Rate Parameters for Enzymatic Degradation of Lyophilized Silk Fibroin Sponges. Front Bioeng Biotechnol 2021; 9:664306. [PMID: 34295878 PMCID: PMC8290342 DOI: 10.3389/fbioe.2021.664306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/31/2021] [Indexed: 11/25/2022] Open
Abstract
Sponge-like biomaterials formed from silk fibroin are promising as degradable materials in clinical applications due to their controllable breakdown into simple amino acids or small peptides in vivo. Silk fibroin, isolated from Bombyx mori silkworm cocoons, can be used to form sponge-like materials with a variety of tunable parameters including the elastic modulus, porosity and pore size, and level of nanocrystalline domains. These parameters can be independently tuned during formulation resulting in a wide parameter space and set of final materials. Determining the mechanism and rate constants for biomaterial degradation of these tunable silk materials would allow scientists to evaluate and predict the biomaterial performance for the large array of tissue engineering applications and patient ailments a priori. We first measured in vitro degradation rates of silk sponges using common protein-degrading enzymes such as Proteinase K and Protease XIV. The concentration of the enzyme in solution was varied (1, 0.1, 0.01 U/mL) along with one silk sponge formulation parameter: the level of crystallinity within the sponge. Additionally, two experimental degradation methods were evaluated, termed continuous and discrete degradation methods. Silk concentration, polymer chain length and scaffold pore size were held constant during experimentation and kinetic parameter estimation. Experimentally, we observed that the enzyme itself, enzyme concentration within the bulk solution, and the sponge fabrication water annealing time were the major experimental parameters dictating silk sponge degradation in our experimental design. We fit the experimental data to two models, a Michaelis-Menten kinetic model and a modified first order kinetic model. Weighted, non-linear least squares analysis was used to determine the parameters from the data sets and Monte-Carlo simulations were utilized to obtain estimates of the error. We found that modified first order reaction kinetics fit the time-dependent degradation of lyophilized silk sponges and we obtained first order-like rate constants. These results represent the first investigations into determining kinetic parameters to predict lyophilized silk sponge degradation rates and can be a tool for future mathematical representations of silk biomaterial degradation.
Collapse
Affiliation(s)
- Julie F Jameson
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, United States
| | - Marisa O Pacheco
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, United States
| | - Jason E Butler
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, United States
| | - Whitney L Stoppel
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
21
|
Development of a mechanically matched silk scaffolded 3D clear cell renal cell carcinoma model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112141. [PMID: 34082952 DOI: 10.1016/j.msec.2021.112141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/14/2021] [Accepted: 04/24/2021] [Indexed: 11/21/2022]
Abstract
Development of a 3D, biomaterials-based model for clear cell renal cell carcinoma (ccRCC) would be advantageous for understanding disease progression in vitro. This study demonstrated the development of lyophilized silk scaffolds that mechanically match the experimentally determined Young's modulus for ex vivo ccRCC samples and normal kidney tissue. Scaffolds fabricated from silk solutions ranging from 3 to 12% (w/v) were evaluated through mechanical testing. Following mechanical characterization of ccRCC samples, it was demonstrated that 6% silk scaffolds mechanically matched ccRCC samples. No impact of pathological grade and stage on the calculated ccRCC modulus was observed and all tumors evaluated mechanically matched the 6% silk scaffold formulation. Stratifying tissue specimens based upon histological observations (e.g. evidence of high levels of collagen deposition) resulted in no significant differences between groups. To investigate the impact of a mechanically matched culturing environment on in vitro ccRCC disease characteristics a model ccRCC cell line, 786-O, was utilized. Scaffolded 786-O cells demonstrated increased lipid droplet accumulation, a hallmark of ccRCC, compared to standard two-dimensional (2D) culture conditions. Additionally, scaffolded 786-O cells demonstrated increased expression of genes associated with ccRCC aggressiveness (ex. VEGFA, TNF, and IL-6) or immune markers under investigation as therapeutic targets (ex. PDL1, CTLA4). Comparison with 786-O cells grown on non-mechanically matched scaffolds demonstrated that these improved ccRCC characteristics were driven by scaffold modulus. Overall, our findings support the use of silk scaffolds in replicating physiologic tumor behavior for clear cell renal cell carcinoma and provide a platform for investigating disease progression.
Collapse
|
22
|
Maintaining Inducibility of Dermal Follicle Cells on Silk Fibroin/Sodium Alginate Scaffold for Enhanced Hair Follicle Regeneration. BIOLOGY 2021; 10:biology10040269. [PMID: 33810528 PMCID: PMC8066588 DOI: 10.3390/biology10040269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
The extracellular matrix (ECM) is important for maintaining cell phenotype and promoting cell proliferation and differentiation. In order to better solve the problem of skin appendage regeneration, a combination of mechanical/enzymatic digestion methods was used to self-extract dermal papilla cells (DPCs), which were seeded on silk fibroin/sodium alginate scaffolds as seed cells to evaluate the possibility of skin regeneration/regeneration of accessory organs. Scanning electron microscopy (SEM) graphs showed that the interconnected pores inside the scaffold had a pore diameter in the range of 153-311 μm and a porosity of 41-82%. Immunofluorescence (IF) staining and cell morphological staining proved that the extracted cells were DPCs. The results of a Cell Counting Kit-8 (CCK-8) and Calcein-AM/PI live-dead cell staining showed that the DPCs grew well in the composite scaffold extract. Normal cell morphology and characteristics of aggregation growth were maintained during the 3-day culture, which showed that the silk fibroin/sodium alginate (SF/SA) composite scaffold had good cell-compatibility. Hematoxylin-eosin (H&E) staining of tissue sections further proved that the cells adhered closely and aggregated to the pore wall of the scaffold, and retained the ability to induce differentiation of hair follicles. All these results indicate that, compared with a pure scaffold, the composite scaffold promotes the adhesion and growth of DPCs. We transplanted the SF/SA scaffolds into the back wounds of SD rats, and evaluated the damage model constructed in vivo. The results showed that the scaffold inoculated with DPCs could accelerate the repair of the skin and promote the regeneration of the hair follicle structure.
Collapse
|
23
|
Ornell KJ, Mistretta KS, Ralston CQ, Coburn JM. Development of a stacked, porous silk scaffold neuroblastoma model for investigating spatial differences in cell and drug responsiveness. Biomater Sci 2021; 9:1272-1290. [PMID: 33336667 DOI: 10.1039/d0bm01153c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of in vitro, preclinical cancer models that contain cell-driven microenvironments remains a challenge. Engineering of millimeter-scale, in vitro tumor models with spatially distinct regions that can be independently assessed to study tumor microenvironments has been limited. Here, we report the use of porous silk scaffolds to generate a high cell density neuroblastoma (NB) model that can spatially recapitulate changes resulting from cell and diffusion driven changes. Using COMSOL modeling, a scaffold holder design that facilitates stacking of thin, 200 μm silk scaffolds into a thick, bulk millimeter-scale tumor model (2, 4, 6, and 8 stacked scaffolds) and supports cell-driven oxygen gradients was developed. Cell-driven oxygen gradients were confirmed through pimonidazole staining. Post-culture, the stacked scaffolds were separated for analysis on a layer-by-layer basis. The analysis of each scaffold layer demonstrated decreasing DNA and increasing expression of hypoxia related genes (VEGF, CAIX, and GLUT1) from the exterior scaffolds to the interior scaffolds. Furthermore, the expression of hypoxia related genes at the interior of the stacks was comparable to that of a single scaffold cultured under 1% O2 and at the exterior of the stacks was comparable to that of a single scaffold cultured under 21% O2. The four-stack scaffold model underwent further evaluation to determine if a hypoxia activated drug, tirapazamine, induced reduced cell viability within the internal stacks (region of reduced oxygen) as compared with the external stacks. Decreased DNA content was observed in the internal stacks as compared to the external stacks when treated with tirapazamine, which suggests the internal scaffold stacks had higher levels of hypoxia than the external scaffolds. This stacked silk scaffold system presents a method for creating a single culture model capable of generating controllable cell-driven microenvironments through different stacks that can be individually assessed and used for drug screening.
Collapse
Affiliation(s)
- Kimberly J Ornell
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
| | - Katelyn S Mistretta
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
| | - Coulter Q Ralston
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
24
|
Phua QH, Han HA, Soh BS. Translational stem cell therapy: vascularized skin grafts in skin repair and regeneration. J Transl Med 2021; 19:83. [PMID: 33602284 PMCID: PMC7891016 DOI: 10.1186/s12967-021-02752-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
The skin is made up of a plethora of cells arranged in multiple layers with complex and intricate vascular networks, creating a dynamic microenvironment of cells-to-matrix interactions. With limited donor sites, engineered skin substitute has been in high demand for many therapeutic purposes. Over the years, remarkable progress has occurred in the skin tissue-engineering field to develop skin grafts highly similar to native tissue. However, the major hurdle to successful engraftment is the incorporation of functional vasculature to provide essential nutrients and oxygen supply to the embedded cells. Limitations of traditional tissue engineering have driven the rapid development of vascularized skin tissue production, leading to new technologies such as 3D bioprinting, nano-fabrication and micro-patterning using hydrogel based-scaffold. In particular, the key hope to bioprinting would be the generation of interconnected functional vessels, coupled with the addition of specific cell types to mimic the biological and architectural complexity of the native skin environment. Additionally, stem cells have been gaining interest due to their highly regenerative potential and participation in wound healing. This review briefly summarizes the current cell therapies used in skin regeneration with a focus on the importance of vascularization and recent progress in 3D fabrication approaches to generate vascularized network in the skin tissue graft.
Collapse
Affiliation(s)
- Qian Hua Phua
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Hua Alexander Han
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
25
|
McNamara SL, McCarthy EM, Schmidt DF, Johnston SP, Kaplan DL. Rheological characterization, compression, and injection molding of hydroxyapatite-silk fibroin composites. Biomaterials 2021; 269:120643. [PMID: 33434713 DOI: 10.1016/j.biomaterials.2020.120643] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 01/28/2023]
Abstract
Traditional bone fixation devices made from inert metal alloys provide structural strength for bone repair but are limited in their ability to actively promote bone healing. Although several naturally derived bioactive materials have been developed to promote ossification in bone defects, it is difficult to translate small-scale benchtop fabrication of these materials to high-output manufacturing. Standard industrial molding processes, such as injection and compression molding, have typically been limited to use with synthetic polymers since most biopolymers cannot withstand the harsh processing conditions involved in these techniques. Here we demonstrate injection and compression molding of a bioceramic composite comprised of hydroxyapatite (HA) and silk fibroin (SF) from Bombyx mori silkworm cocoons. Both the molding behavior of the HA-SF slurry and final scaffold mechanics can be controlled by modulating SF protein molecular weight, SF content, and powder-to-liquid ratio. HA-SF composites with up to 20 weight percent SF were successfully molded into stable three-dimensional structures using high pressure molding techniques. The unique durability of silk fibroin enables application of common molding techniques to fabricate composite silk-ceramic scaffolds. This work demonstrates the potential to move bone tissue engineering one step closer to large-scale manufacturing of natural protein-based resorbable bone grafts and fixation devices.
Collapse
Affiliation(s)
- Stephanie L McNamara
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| | - Ethan M McCarthy
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA, USA.
| | - Daniel F Schmidt
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA, USA.
| | - Stephen P Johnston
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
26
|
Yin S, Zhang W, Tang Y, Yang G, Wu X, Lin S, Liu X, Cao H, Jiang X. Preservation of alveolar ridge height through mechanical memory: A novel dental implant design. Bioact Mater 2021; 6:75-83. [PMID: 32817915 PMCID: PMC7419257 DOI: 10.1016/j.bioactmat.2020.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 11/26/2022] Open
Abstract
Irreversible marginal bone loss can hinder recovery around dental implants. Insufficient alveolar osteogenesis and stress concentration during chewing contribute to marginal bone resorption and can result in implant failure. A biomaterial with a micropore-channel structure was developed using 3D printing technology. This design facilitated bony ingrowth and provided similar mechanical stimulation at the implant neck during mastication to a natural tooth. The micropore channels provided a guiding structure for bone mesenchymal stem cell proliferation and differentiation without the need for growth factors. Specifically, this was achieved through mechanical transduction by F-actin remodeling and the activation of Yes-associated protein (YAP). The implants were verified in a canine dental implant surgery model, which demonstrated the promising use of biomaterial-based dental implants in future clinical applications.
Collapse
Affiliation(s)
- Shi Yin
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yanmei Tang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Guangzheng Yang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xiaolin Wu
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Sihan Lin
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, Beijing, 100049, China
| | - Huiliang Cao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| |
Collapse
|
27
|
Zhou F, Hong Y, Liang R, Zhang X, Liao Y, Jiang D, Zhang J, Sheng Z, Xie C, Peng Z, Zhuang X, Bunpetch V, Zou Y, Huang W, Zhang Q, Alakpa EV, Zhang S, Ouyang H. Rapid printing of bio-inspired 3D tissue constructs for skin regeneration. Biomaterials 2020; 258:120287. [DOI: 10.1016/j.biomaterials.2020.120287] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/14/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
28
|
Role of biomechanics in vascularization of tissue-engineered bones. J Biomech 2020; 110:109920. [PMID: 32827778 DOI: 10.1016/j.jbiomech.2020.109920] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/23/2022]
Abstract
Biomaterial based reconstruction is still the most commonly employed method of small bone defect reconstruction. Bone tissue-engineered techniques are improving, and adjuncts such as vascularization technologies allow re-evaluation of traditional reconstructive methods for healingofcritical-sized bone defect. Slow infiltration rate of vasculogenesis after cell-seeded scaffold implantation limits the use of clinically relevant large-sized scaffolds. Hence, in vitro vascularization within the tissue-engineered bone before implantation is required to overcome the serious challenge of low cell survival rate after implantation which affects bone tissue regeneration and osseointegration. Mechanobiological interactions between cells and microvascular mechanics regulate biological processes regarding cell behavior. In addition, load-bearing scaffolds demand mechanical stability properties after vascularization to have adequate strength while implanted. With the advent of bioreactors, vascularization has been greatly improved by biomechanical regulation of stem cell differentiation through fluid-induced shear stress and synergizing osteogenic and angiogenic differentiation in multispecies coculture cells. The benefits of vascularization are clear: avoidance of mass transfer limitation and oxygen deprivation, a significant decrease in cell necrosis, and consequently bone development, regeneration and remodeling. Here, we discuss specific techniques to avoid pitfalls and optimize vascularization results of tissue-engineered bone. Cell source, scaffold modifications and bioreactor design, and technique specifics all play a critical role in this new, and rapidly growing method for bone defect reconstruction. Given the crucial importance of long-term survival of vascular network in physiological function of 3D engineered-bone constructs, greater knowledge of vascularization approaches may lead to the development of new strategies towards stabilization of formed vascular structure.
Collapse
|
29
|
Cordelle J, Mantero S. Insight on the endothelialization of small silk-based tissue-engineered vascular grafts. Int J Artif Organs 2020; 43:631-644. [DOI: 10.1177/0391398820906547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Along with an increased incidence of cardiovascular diseases, there is a strong need for small-diameter vascular grafts. Silk has been investigated as a biomaterial to develop such grafts thanks to different processing options. Endothelialization was shown to be extremely important to ensure graft patency and there is ongoing research on the development and behavior of endothelial cells on vascular tissue-engineered scaffolds. This article reviews the endothelialization of silk-based scaffolds processed throughout the years as silk non-woven nets, films, gel spun, electrospun, or woven scaffolds. Encouraging results were reported with these scaffolds both in vitro and in vivo when implanted in small- to middle-sized animals. The use of coatings and heparin or sulfur to enhance, respectively, cell adhesion and scaffold hemocompatibility is further presented. Bioreactors also showed their interest to improve cell adhesion and thus promoting in vitro pre-endothelialization of grafts even though they are still not systematically used. Finally, the importance of the animal models used to study the right mechanism of endothelialization is discussed.
Collapse
Affiliation(s)
| | - Sara Mantero
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| |
Collapse
|
30
|
Tang F, Manz XD, Bongers A, Odell RA, Joukhdar H, Whitelock JM, Lord MS, Rnjak-Kovacina J. Microchannels Are an Architectural Cue That Promotes Integration and Vascularization of Silk Biomaterials in Vivo. ACS Biomater Sci Eng 2020; 6:1476-1486. [DOI: 10.1021/acsbiomaterials.9b01624] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fengying Tang
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xue D. Manz
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Department of Pulmonary Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam Cardiovascular Sciences (ACS), Amsterdam 1081 HV, The Netherlands
| | - Andre Bongers
- Biological Resources Imaging Laboratory, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ross A. Odell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Habib Joukhdar
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Megan S. Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
31
|
Umuhoza D, Yang F, Long D, Hao Z, Dai J, Zhao A. Strategies for Tuning the Biodegradation of Silk Fibroin-Based Materials for Tissue Engineering Applications. ACS Biomater Sci Eng 2020; 6:1290-1310. [DOI: 10.1021/acsbiomaterials.9b01781] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Diane Umuhoza
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
- Commercial Insect Program, Sericulture, Rwanda Agricultural Board, 5016 Kigali, Rwanda
| | - Fang Yang
- Department of Biomaterials, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Dingpei Long
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| | - Zhanzhang Hao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| | - Jing Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| |
Collapse
|
32
|
Liu J, Chen H, Wang Y, Li G, Zheng Z, Kaplan DL, Wang X, Wang X. Flexible Water-Absorbing Silk-Fibroin Biomaterial Sponges with Unique Pore Structure for Tissue Engineering. ACS Biomater Sci Eng 2020; 6:1641-1649. [DOI: 10.1021/acsbiomaterials.9b01721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jian Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Huijuan Chen
- College of Basic Medical Science, Dalian Medical University, Dalian 116044, People’s Republic of China
| | - Yongfeng Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Xiuli Wang
- College of Basic Medical Science, Dalian Medical University, Dalian 116044, People’s Republic of China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
33
|
Baptista M, Joukhdar H, Alcala-Orozco CR, Lau K, Jiang S, Cui X, He S, Tang F, Heu C, Woodfield TBF, Lim KS, Rnjak-Kovacina J. Silk fibroin photo-lyogels containing microchannels as a biomaterial platform for in situ tissue engineering. Biomater Sci 2020; 8:7093-7105. [DOI: 10.1039/d0bm01010c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Silk photo-lyogels fabricated by di-tyrosine photo-crosslinking and ice-templating silk fibroin on 3D printed templates toward in situ tissue engineering applications.
Collapse
|
34
|
Rnjak‐Kovacina J, Gerrand Y, Wray LS, Tan B, Joukhdar H, Kaplan DL, Morrison WA, Mitchell GM. Vascular Pedicle and Microchannels: Simple Methods Toward Effective In Vivo Vascularization of 3D Scaffolds. Adv Healthc Mater 2019; 8:e1901106. [PMID: 31714024 DOI: 10.1002/adhm.201901106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/03/2019] [Indexed: 12/28/2022]
Abstract
Poor vascularization remains a key limiting factor in translating advances in tissue engineering to clinical applications. Vascular pedicles (large arteries and veins) isolated in plastic chambers are known to sprout an extensive capillary network. This study examined the effect vascular pedicles and scaffold architecture have on vascularization and tissue integration of implanted silk scaffolds. Porous silk scaffolds with or without microchannels are manufactured to support implantation of a central vascular pedicle, without a chamber, implanted in the groin of Sprague Dawley rats, and assessed morphologically and morphometrically at 2 and 6 weeks. At both time points, blood vessels, connective tissue, and an inflammatory response infiltrate all scaffold pores externally, and centrally when a vascular pedicle is implanted. At week 2, vascular pedicles significantly increase the degree of scaffold tissue infiltration, and both the pedicle and the scaffold microchannels significantly increase vascular volume and vascular density. Interestingly, microchannels contribute to increased scaffold vascularity without affecting overall tissue infiltration, suggesting a direct effect of biomaterial architecture on vascularization. The inclusion of pedicles and microchannels are simple and effective proangiogenic techniques for engineering thick tissue constructs as both increase the speed of construct vascularization in the early weeks post in vivo implantation.
Collapse
Affiliation(s)
- Jelena Rnjak‐Kovacina
- Department of Biomedical EngineeringTufts University Medford MA 02155 USA
- Graduate School of Biomedical EngineeringUniversity of New South Wales Sydney NSW 2052 Australia
| | - Yi‐wen Gerrand
- O'Brien Institute DepartmentSt Vincent's Institute for Medical Research Melbourne VIC 3065 Australia
| | - Lindsay S. Wray
- Department of Biomedical EngineeringTufts University Medford MA 02155 USA
| | - Beryl Tan
- O'Brien Institute DepartmentSt Vincent's Institute for Medical Research Melbourne VIC 3065 Australia
| | - Habib Joukhdar
- Graduate School of Biomedical EngineeringUniversity of New South Wales Sydney NSW 2052 Australia
| | - David L. Kaplan
- Department of Biomedical EngineeringTufts University Medford MA 02155 USA
| | - Wayne A. Morrison
- O'Brien Institute DepartmentSt Vincent's Institute for Medical Research Melbourne VIC 3065 Australia
- Department of Surgery at St Vincent's HospitalUniversity of Melbourne Melbourne VIC 3065 Australia
- Health Sciences FacultyAustralian Catholic University Melbourne VIC 3065 Australia
| | - Geraldine M. Mitchell
- O'Brien Institute DepartmentSt Vincent's Institute for Medical Research Melbourne VIC 3065 Australia
- Department of Surgery at St Vincent's HospitalUniversity of Melbourne Melbourne VIC 3065 Australia
- Health Sciences FacultyAustralian Catholic University Melbourne VIC 3065 Australia
| |
Collapse
|
35
|
Ornell KJ, Mistretta KS, Newman E, Ralston CQ, Coburn JM. Three-Dimensional, Scaffolded Tumor Model to Study Cell-Driven Microenvironment Effects and Therapeutic Responses. ACS Biomater Sci Eng 2019; 5:6742-6754. [DOI: 10.1021/acsbiomaterials.9b01267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kimberly J. Ornell
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester 01609-2280, Massachusetts, United States
| | - Katelyn S. Mistretta
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester 01609-2280, Massachusetts, United States
| | - Emily Newman
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester 01609-2280, Massachusetts, United States
| | - Coulter Q. Ralston
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester 01609-2280, Massachusetts, United States
| | - Jeannine M. Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester 01609-2280, Massachusetts, United States
| |
Collapse
|
36
|
Lim KS, Baptista M, Moon S, Woodfield TB, Rnjak-Kovacina J. Microchannels in Development, Survival, and Vascularisation of Tissue Analogues for Regenerative Medicine. Trends Biotechnol 2019; 37:1189-1201. [DOI: 10.1016/j.tibtech.2019.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
|
37
|
Brif A, Laity P, Claeyssens F, Holland C. Dynamic Photo-cross-linking of Native Silk Enables Macroscale Patterning at a Microscale Resolution. ACS Biomater Sci Eng 2019; 6:705-714. [DOI: 10.1021/acsbiomaterials.9b00993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Anastasia Brif
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, U.K
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield S3 7HQ, U.K
| | - Peter Laity
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, U.K
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield S3 7HQ, U.K
| | - Chris Holland
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, U.K
| |
Collapse
|
38
|
Cidonio G, Alcala-Orozco CR, Lim KS, Glinka M, Mutreja I, Kim YH, Dawson JI, Woodfield TBF, Oreffo ROC. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Biofabrication 2019; 11:035027. [PMID: 30991370 DOI: 10.1088/1758-5090/ab19fd] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Mehrotra S, Chouhan D, Konwarh R, Kumar M, Jadi PK, Mandal BB. Comprehensive Review on Silk at Nanoscale for Regenerative Medicine and Allied Applications. ACS Biomater Sci Eng 2019; 5:2054-2078. [PMID: 33405710 DOI: 10.1021/acsbiomaterials.8b01560] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Materials at the nanoscale offer numerous avenues to be explored and exploited in diverse realms. Among others, proteinaceous biomaterials such as silk hold immense prospects in the domain of nanoengineering. Silk offers a unique combination of desirable facets like biocompatibility; extraordinary mechanical properties, such as elongation, elasticity, toughness, and modulus; and tunable biodegradability which are far better than most naturally occurring and engineered materials. Much of these properties are due to the molecular structure of the silk protein and it is self-assembly into hierarchical structures. Taking advantage of the hierarchical assembly, a large number of fabrication strategies have now emerged that allow the tailoring of silk structure of at the nanoscale. Harnessing the favorable properties of silk, such methods offer a promising direction toward producing structurally and functionally optimized silk nanomaterials. This review discusses the critical structure-property relationship in silk that occurs at the nanoscale and also aims to bring out the recent status in the approaches for fabrication, characterization, and the gamut of applications of various silk-based nanomaterials (nanoparticles, nanofibers, and nanocomposites) in the niche of translational research. Harnessing the favorable nanostructure of silk, the review also takes into account the impetus of silk in avant-garde applications such as chemo-biosensing, energy harvesting, microfluidics, and environmental applications.
Collapse
Affiliation(s)
- Shreya Mehrotra
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Dimple Chouhan
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Rocktotpal Konwarh
- Biotechnology Department, Addis Ababa Science and Technology University, Addis Ababa-16417, Ethiopia
| | - Manishekhar Kumar
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Praveen Kumar Jadi
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
40
|
Teuschl AH, Tangl S, Heimel P, Schwarze UY, Monforte X, Redl H, Nau T. Osteointegration of a Novel Silk Fiber-Based ACL Scaffold by Formation of a Ligament-Bone Interface. Am J Sports Med 2019; 47:620-627. [PMID: 30653344 DOI: 10.1177/0363546518818792] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Given the unsatisfactory results and reported drawbacks of anterior cruciate ligament (ACL) reconstruction, such as donor site morbidity and the limited choice of grafts in revision surgery, new regenerative approaches based on tissue-engineering strategies are currently under investigation. PURPOSES To determine (1) if a novel silk fiber-based ACL scaffold is able to initiate osteointegration in the femoral and tibial bone tunnels under in vivo conditions and (2) if the osteointegration process will be improved by intraoperatively seeding the scaffolds with the autologous stromal vascular fraction, an adipose-derived, stem cell-rich isolate from knee fat pads. STUDY DESIGN Controlled laboratory study. METHODS A total of 33 sheep underwent ACL resection and were then randomly assigned to 2 experimental groups: ACL reconstruction with a scaffold alone and ACL reconstruction with a cell-seeded scaffold. Half of the sheep in each group were randomly chosen and euthanized 6 months after surgery and the other half at 12 months. To analyze the integration of the silk-based scaffold in the femoral and tibial bone tunnels, hard tissue histology and micro-computed tomography measurements were performed. RESULTS Hard tissue histological workup showed that in all treatment groups, with or without the application of the autologous stromal vascular fraction, an interzone of collagen fibers had formed between bone and silk-based graft. This collagen-fiber continuity partly consisted of Sharpey fibers, comparable with tendon-bone healing known for autografts and allografts. Insertion sites were more broad based at 6 months and more concentrated on the slightly protruding, bony knoblike structures at 12 months. Histologically, no differences between the treatment groups were detectable. Analysis of micro-computed tomography measurements revealed a significantly higher tissue density for the cell-seeded scaffold group as compared with the scaffold-alone group in the tibial but not femoral bone tunnel after 12 months of implantation. CONCLUSION The novel silk fiber-based scaffold for ACL regeneration demonstrated integration into the bone tunnels via the formation of a fibrous interzone similar to allografts and autografts. Histologically, additional cell seeding did not enhance osteointegration. No significant differences between 6 and 12 months could be detected. After 12 months, there was still a considerable amount of silk present, and a longer observation period is necessary to see if a true ligament-bone enthesis will be formed. CLINICAL RELEVANCE ACL regeneration with a silk fiber-based scaffold with and without additional cell seeding may provide an alternative treatment option to current techniques of surgical reconstruction.
Collapse
Affiliation(s)
- Andreas Herbert Teuschl
- Department of Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Stefan Tangl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Patrick Heimel
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
| | - Uwe Yacine Schwarze
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Xavier Monforte
- Department of Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
| | - Thomas Nau
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
| |
Collapse
|
41
|
Wen S, Hu Y, Zhang Y, Huang S, Zuo Y, Min Y. Dual-functional core-shell electrospun mats with precisely controlled release of anti-inflammatory and anti-bacterial agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:514-522. [PMID: 30948088 DOI: 10.1016/j.msec.2019.02.076] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 01/11/2023]
Abstract
Acute wounds are worldwide problems affecting millions of people and causing heavy economic burden to national healthcare systems. Herein, we describe novel wound dressing materials relying on core/shell electrospun mats incorporated with flurbiprofen and vancomycin for achieving programmable release of anti-inflammatory and anti-bacterial agents. The shell matrix of nanofibers consisted of polyethylene oxide while the core matrix was made from a blend of silk and collagen. Several optimal mat architectures were engineered with distinct configurations, of which release profiles displayed an exponential trend, which indicates a first-order process following Fickian diffusion behavior. The flurbiprofen release lasted from 2 to 6 days, which was much faster compared to the one of vancomycin prolonged up to about 20 days. Mechanical data indicated tensile modulus, tensile strength, elongation before break of core/shell electrospun mats became enhanced or comparable to those for human skin after methanol vapor treatment. Desirable release kinetics and mechanical characteristics achieved by novel core/shell electrospun mats were attributable to induced enrichment of β-sheet phase in silk via methanol vapor treatment as well as water annealing process with time and judicious selections for matrix materials and mat configurations. The design principles considered in this study successfully addressed a range of inflammation and infection requirements in wound healing, potentially guiding construction of other biomedical coatings and devices.
Collapse
Affiliation(s)
- Shihao Wen
- Department of Polymer Engineering, University of Akron, Akron, OH 44325, USA
| | - Yupeng Hu
- Department of Polymer Engineering, University of Akron, Akron, OH 44325, USA
| | - Yuanzhong Zhang
- Department of Polymer Engineering, University of Akron, Akron, OH 44325, USA
| | - Shifeng Huang
- Department of Polymer Engineering, University of Akron, Akron, OH 44325, USA
| | - Yuchen Zuo
- Department of Polymer Engineering, University of Akron, Akron, OH 44325, USA
| | - Younjin Min
- Department of Polymer Engineering, University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
42
|
Pal P, Srivas PK, Dadhich P, Moulik D, Dhara S. Hybrid scaffold comprising of nanofibers and extrusion printed PCL for tissue engineering. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.matpr.2019.03.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
43
|
Fazal N, Latief N. Bombyx mori derived scaffolds and their use in cartilage regeneration: a systematic review. Osteoarthritis Cartilage 2018; 26:1583-1594. [PMID: 30059787 DOI: 10.1016/j.joca.2018.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 02/02/2023]
Abstract
For the last two decades, silk has been extensively used as scaffolds in tissue engineering because of its remarkable properties. Unfortunately, the aneural property of cartilage limits its regenerative potential which can be achieved using tissue engineering approach. A lot of research has been published searching for the optimization of silk fibroin (SF) and its blends in order to get the best cartilage mimicking properties. However, according to our best knowledge, there is no systematic review available regarding the use of Bombyx mori derived biomaterials limited to cartilage related studies. This systematic review highlights the in vitro and in vivo work done for the past 7 years on structural and functional properties of B. mori derived biomaterials together with different parameters for cartilage regeneration. PubMed database was searched focusing on in vitro and in vivo studies using the search thread "silk fibroin" and "cartilage". A total of 40 articles met the inclusion criteria. All the articles were deeply studied for cell types, scaffold types and animal models used along with study design and results. Five types of cells were used for in vitro while seven types of cells were used for in vivo studies. Three types of animal models were used for scaffold implantation purpose. Moreover, different types of scaffolds either seeded with cells or supplemented with various factors were explored and discussed in detail. Results suggest the suitability of silk as a better biomaterial because of its cartilage mimicking properties.
Collapse
Affiliation(s)
- N Fazal
- Centre of Excellence in Molecular Biology, University of the Punjab, Pakistan
| | - N Latief
- Centre of Excellence in Molecular Biology, University of the Punjab, Pakistan.
| |
Collapse
|
44
|
Sarker M, Naghieh S, Sharma N, Chen X. 3D biofabrication of vascular networks for tissue regeneration: A report on recent advances. J Pharm Anal 2018; 8:277-296. [PMID: 30345141 PMCID: PMC6190507 DOI: 10.1016/j.jpha.2018.08.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 12/19/2022] Open
Abstract
Rapid progress in tissue engineering research in past decades has opened up vast possibilities to tackle the challenges of generating tissues or organs that mimic native structures. The success of tissue engineered constructs largely depends on the incorporation of a stable vascular network that eventually anastomoses with the host vasculature to support the various biological functions of embedded cells. In recent years, significant progress has been achieved with respect to extrusion, laser, micro-molding, and electrospinning-based techniques that allow the fabrication of any geometry in a layer-by-layer fashion. Moreover, decellularized matrix, self-assembled structures, and cell sheets have been explored to replace the biopolymers needed for scaffold fabrication. While the techniques have evolved to create specific tissues or organs with outstanding geometric precision, formation of interconnected, functional, and perfused vascular networks remains a challenge. This article briefly reviews recent progress in 3D fabrication approaches used to fabricate vascular networks with incorporated cells, angiogenic factors, proteins, and/or peptides. The influence of the fabricated network on blood vessel formation, and the various features, merits, and shortcomings of the various fabrication techniques are discussed and summarized.
Collapse
Affiliation(s)
- M.D. Sarker
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Saman Naghieh
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - N.K. Sharma
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
45
|
Abstract
Vascularization is essential for tissue regeneration. Despite extensive efforts in the past decades, sufficient and rapid vascularization remains a major challenge in tissue engineering. Many studies have shown that the addition of channels in a porous scaffold can provide the ability to promote cell growth and rapid vascularization, thus leading to better outcomes in new tissue formation. Large size scaffolds lack perfusable channel networks and negatively impair the survival of transplanted cells and tissue function development, leading to necrotic core formation and the failure of functional tissue formation. Presently, there are many methods to produce channels in porous scaffolds for vascularization. Here, we review the function of channels in porous scaffolds and the approaches to produce those channels.
Collapse
Affiliation(s)
- Yunqing Kang
- Department of Ocean & Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA.,Department of Biomedical Science, College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Jia Chang
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| |
Collapse
|
46
|
Jin Z, Wu R, Shen J, Yang X, Shen M, Xu W, Huang R, Zhang L, Yang G, Gao C, Gou Z, Xu S. Nonstoichiometric wollastonite bioceramic scaffolds with core-shell pore struts and adjustable mechanical and biodegradable properties. J Mech Behav Biomed Mater 2018; 88:140-149. [PMID: 30170193 DOI: 10.1016/j.jmbbm.2018.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/14/2018] [Accepted: 08/19/2018] [Indexed: 02/06/2023]
Abstract
Controllable mechanical strength and biodegradation of bioceramic scaffolds is a great challenge to treat the load-bearing bone defects. Herein a new strategy has been developed to fabricate porous bioceramic scaffolds with adjustable component distributions based on varying the core-shell-structured nozzles in three-dimensional (3D) direct ink writing platform. The porous bioceramic scaffolds composed of different nonstoichiometic calcium silicate (nCSi) with 0%, 4% or 10% of magnesium-substituting-calcium ratio (CSi, CSi-Mg4, CSi-Mg10) was fabricated. Beyond the mechanically mixed composite scaffolds, varying the different nCSi slurries through the coaxially aligned bilayer nozzle makes it easy to create core-shell bilayer bioceramic filaments and better control of the different nCSi distribution in pore strut after sintering. It was evident that the magnesium substitution in CSi contributed to the increase of compressive strength for the single-phasic scaffolds from 11.2 MPa (CSi), to 39.4 MPa (CSi-Mg4) and 80 MPa (CSi-Mg10). The nCSi distribution in pore struts in the series of core-shell-strut scaffolds could significantly adjust the strength [e.g. CSi@CSi-Mg10 (58.9 MPa) vs CSi-Mg10@CSi (30.4 MPa)] and biodegradation ratio in Tris buffer for a long time stage (6 weeks). These findings demonstrate that the nCSi components with different distributions in core or shell layer of pore struts lead to tunable strength and biodegradation inside their interconnected macropore architectures of the scaffolds. It is possibly helpful to develop new bioactive scaffolds for time-dependent tailoring mechanical and biological performances to significantly enhance bone regeneration and repair applications, especially in some load-bearing bone defects.
Collapse
Affiliation(s)
- Zhouwen Jin
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Ronghuan Wu
- Department of Orthopedics, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Jianhua Shen
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Miaoda Shen
- Department of Orthopedics, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Wangqiong Xu
- Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200062, China
| | - Rong Huang
- Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200062, China
| | - Lei Zhang
- Department of Orthopdedic Surgery, The 3rd Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China
| | - Guojing Yang
- Department of Orthopdedic Surgery, The 3rd Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China
| | - Changyou Gao
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China.
| | - Sanzhong Xu
- Department of Orthopedics, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
47
|
Ding Y, Liu W, Yu W, Lu S, Liu M, Kaplan DL, Wang X. Three-dimensional tissue culture model of human breast cancer for the evaluation of multidrug resistance. J Tissue Eng Regen Med 2018; 12:1959-1971. [PMID: 30055109 DOI: 10.1002/term.2729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/11/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) is one of the major obstacles to improving outcomes of chemotherapy in tumour patients. However, progress has been slow to overcome this phenomenon due to the limitations of current cell/tissue models in recapitulating MDR behaviour of tumour cells in vitro. To address this issue, a more pathologically relevant, three-dimensional (3D) culture of human breast cancer cells was developed by seeding the adriamycin-resistant cells MCF-7R in silk-collagen scaffolds. The cultures of the parental cell line MCF-7 served as controls. Distinct growth profiles of MCF-7R and MCF-7 cells were observed when they were cultured in the scaffolds in comparison with those in the monolayer culture, including cell proliferation, cellular aggregate formation, and expression of drug resistance-related genes/proteins. Moreover, the 3D cultures of these cell lines especially the cultures of MCF-7R exhibited a significantly enhanced drug resistance evidenced by their increased IC50 values to the anticancer drugs and improved drug efflux capability. An altered cell cycle distribution and improved percentage of breast cancer stem cell (BCSC)-like cells was also found in the present study. This might play an important role in promoting the drug-resistance production in those 3D cultures. Thus, we established improved 3D cultures of MDR human breast cancer. It would provide a robust tissue model for use to evaluate the efficacy of anticancer drugs, explore mechanisms of MDR, and enrich BCSCs in vitro.
Collapse
Affiliation(s)
- Yanfang Ding
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Wei Liu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Weiting Yu
- Dalian Zhongshan Hospital Affiliated Dalian University, Dalian, China
| | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China
| | - Ming Liu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Xiuli Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| |
Collapse
|
48
|
Abbott A, Oxburgh L, Kaplan DL, Coburn JM. Avidin Adsorption to Silk Fibroin Films as a Facile Method for Functionalization. Biomacromolecules 2018; 19:3705-3713. [PMID: 30041518 DOI: 10.1021/acs.biomac.8b00824] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Silk fibroin biomaterials are highly versatile in terms of materials formation and functionalization, with applications in tissue engineering and drug delivery, but necessitate modifications for optimized biological activity. Herein, a facile, avidin-based technique is developed to noncovalently functionalize silk materials with bioactive molecules. The ability to adsorb avidin to silk surfaces and subsequently couple biotinylated macromolecules via avidin-biotin interaction is described. This method better preserved functionality than standard covalent coupling techniques using carbodiimide cross-linking chemistry. The controlled release of avidin from the silk surface was demonstrated by altering the adsorption parameters. Application of this technique to culturing human foreskin fibroblasts (hFFs) and human mesenchymal stem cells (hMSCs) on arginine-glycine-aspartic-acid-modified (RGD-modified) silk showed increased cell growth over a seven-day period. This technique provides a facile method for the versatile functionalization of silk materials for biomedical applications including tissue engineering, drug delivery, and biological sensing.
Collapse
Affiliation(s)
- Alycia Abbott
- Worcester Polytechnic Institute , Worcester , Massachusetts 01605 , United States
| | - Leif Oxburgh
- Maine Medical Center Research Institute , Scarborough , Maine 04074 , United States
| | - David L Kaplan
- Tufts University , Medford , Massachusetts 02155 , United States
| | - Jeannine M Coburn
- Worcester Polytechnic Institute , Worcester , Massachusetts 01605 , United States.,Tufts University , Medford , Massachusetts 02155 , United States
| |
Collapse
|
49
|
Lee J, Lee SH, Lee BK, Park SH, Cho YS, Park Y. Fabrication of Microchannels and Evaluation of Guided Vascularization in Biomimetic Hydrogels. Tissue Eng Regen Med 2018; 15:403-413. [PMID: 30603564 PMCID: PMC6171653 DOI: 10.1007/s13770-018-0130-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/09/2018] [Accepted: 05/29/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The fabrication of microchannels in hydrogel can facilitate the perfusion of nutrients and oxygen, which leads to guidance cues for vasculogenesis. Microchannel patterning in biomimetic hydrogels is a challenging issue for tissue regeneration because of the inherent low formability of hydrogels in a complex configuration. We fabricated microchannels using wire network molding and immobilized the angiogenic factors in the hydrogel and evaluated the vasculogenesis in vitro and in vivo. METHODS Microchannels were fabricated in a hyaluronic acid-based biomimetic hydrogel by using "wire network molding" technology. Substance P was immobilized in acrylated hyaluronic acid for angiogenic cues using Michael type addition reaction. In vitro and in vivo angiogenic activities of hydrogel with microchannels were evaluated. RESULTS In vitro cell culture experiment shows that cell viability in two experimental biomimetic hydrogels (with microchannels and microchannels + SP) was higher than that of a biomimetic hydrogel without microchannels (bulk group). Evaluation on differentiation of human mesenchymal stem cells (hMSCs) in biomimetic hydrogels with fabricated microchannels shows that the differentiation of hMSC into endothelial cells was significantly increased compared with that of the bulk group. In vivo angiogenesis analysis shows that thin blood vessels of approximately 25-30 μm in diameter were observed in the microchannel group and microchannel + SP group, whereas not seen in the bulk group. CONCLUSION The strategy of fabricating microchannels in a biomimetic hydrogel and simultaneously providing a chemical cue for angiogenesis is a promising formula for large-scale tissue regeneration.
Collapse
Affiliation(s)
- Jaeyeon Lee
- Department of Biomedical Engineering, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Se-Hwan Lee
- Department of Mechanical Design Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538 Republic of Korea
| | - Bu-Kyu Lee
- Department of Biomedical Engineering, Asan Medical Center, College of Medicine, Ulsan University, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Republic of Korea
- Department of Oral and Maxillofacial Surgery, Asan Medical Center, College of Medicine, Ulsan University, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Republic of Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513 Republic of Korea
| | - Young-Sam Cho
- Department of Mechanical Design Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538 Republic of Korea
| | - Yongdoo Park
- Department of Biomedical Engineering, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| |
Collapse
|
50
|
Fabrication of porous three-dimensional fibroin structures through a freezing process. J Appl Polym Sci 2018. [DOI: 10.1002/app.46537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|