1
|
Moutaoukil ME, Lolli MG, D'Amone S, Khan M, Grillo R, Eyer J, Grieco M, Ursini O, Spadavecchia J, Cortese B. Doxorubicin and NFL-TBS.40-63 peptide loaded gold nanoparticles as a multimodal therapy of glioblastoma. DISCOVER NANO 2025; 20:72. [PMID: 40293574 PMCID: PMC12037963 DOI: 10.1186/s11671-025-04249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025]
Abstract
Conventional treatments for glioblastoma (GBM) are hindered by systemic toxicity, limited blood-brain barrier penetration, and therapeutic resistance. To address these challenges, we developed dual-functionalized gold nanoparticles (AuNPs) conjugated with a biotinylated NFL-TBS.40-63 peptide and the chemotherapeutic agent doxorubicin. This platform integrates targeted delivery and therapeutic action to enhance efficacy while minimising off-target effects. Our findings reveal superior cellular uptake, dose- and time-dependent cytotoxicity, and apoptosis induction in GBM cells compared to mono-functionalized counterparts. Furthermore, pH-sensitive drug release profiles underscore the system's potential to exploit the tumour microenvironment's acidic conditions for precise drug delivery. Comprehensive characterisation confirmed the stability, biocompatibility, and functional efficacy of the dual-functionalized AuNPs. This study highlights the promise of these nanoconjugates as a multimodal approach to GBM therapy, paving the way for further translational research in nanomedicine.
Collapse
Affiliation(s)
- Myriam El Moutaoukil
- CNRS, NBD-CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials and Therapeutic Agents University Paris13, Sorbonne Paris Nord, Bobigny, France
| | - Maria Grazia Lolli
- National Research Council - Institute of Nanotechnology (CNR Nanotec), c/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Stefania D'Amone
- National Research Council - Institute of Nanotechnology (CNR Nanotec), c/o Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Memona Khan
- CNRS, NBD-CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials and Therapeutic Agents University Paris13, Sorbonne Paris Nord, Bobigny, France
| | - Roberta Grillo
- National Research Council - Institute of Nanotechnology (CNR Nanotec), c/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Joel Eyer
- Laboratoire Micro et NanomedecinesTranslationnelles, Inserm 1066, CNRS 6021, Institut de Recherche enIngénierie de la Sante, Bâtiment IBS Institut de Biologie de La Sante, Université´ Angers, Centre Hospitalier Universitaire, 49100, Angers, France
| | - Maddalena Grieco
- National Research Council - Institute of Nanotechnology (CNR Nanotec), c/o Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Ornella Ursini
- National Research Council - Institute of Nanotechnology (CNR Nanotec), c/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, NBD-CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials and Therapeutic Agents University Paris13, Sorbonne Paris Nord, Bobigny, France
| | - Barbara Cortese
- National Research Council - Institute of Nanotechnology (CNR Nanotec), c/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
2
|
Aparicio-Blanco J, Pucci C, De Pasquale D, Marino A, Debellis D, Ciofani G. Development and characterization of lipid nanocapsules loaded with iron oxide nanoparticles for magnetic targeting to the blood-brain barrier. Drug Deliv Transl Res 2024; 14:3494-3511. [PMID: 38739319 PMCID: PMC11499457 DOI: 10.1007/s13346-024-01587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 05/14/2024]
Abstract
Brain drug delivery is severely hindered by the presence of the blood-brain barrier (BBB). Its functionality relies on the interactions of the brain endothelial cells with additional cellular constituents, including pericytes, astrocytes, neurons, or microglia. To boost brain drug delivery, nanomedicines have been designed to exploit distinct delivery strategies, including magnetically driven nanocarriers as a form of external physical targeting to the BBB. Herein, a lipid-based magnetic nanocarrier prepared by a low-energy method is first described. Magnetic nanocapsules with a hydrodynamic diameter of 256.7 ± 8.5 nm (polydispersity index: 0.089 ± 0.034) and a ξ-potential of -30.4 ± 0.3 mV were obtained. Transmission electron microscopy-energy dispersive X-ray spectroscopy analysis revealed efficient encapsulation of iron oxide nanoparticles within the oily core of the nanocapsules. Both thermogravimetric analysis and phenanthroline-based colorimetric assay showed that the iron oxide percentage in the final formulation was 12 wt.%, in agreement with vibrating sample magnetometry analysis, as the specific saturation magnetization of the magnetic nanocapsules was 12% that of the bare iron oxide nanoparticles. Magnetic nanocapsules were non-toxic in the range of 50-300 μg/mL over 72 h against both the human cerebral endothelial hCMEC/D3 and Human Brain Vascular Pericytes cell lines. Interestingly, higher uptake of magnetic nanocapsules in both cell types was evidenced in the presence of an external magnetic field than in the absence of it after 24 h. This increase in nanocapsules uptake was also evidenced in pericytes after only 3 h. Altogether, these results highlight the potential for magnetic targeting to the BBB of our formulation.
Collapse
Affiliation(s)
- Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, 28040, Madrid, Spain.
- Smart Bio- Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy.
- Institute of Industrial Pharmacy, Complutense University of Madrid, Madrid, Spain.
| | - Carlotta Pucci
- Smart Bio- Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Daniele De Pasquale
- Smart Bio- Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Attilio Marino
- Smart Bio- Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Doriana Debellis
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Gianni Ciofani
- Smart Bio- Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy.
| |
Collapse
|
3
|
Bayoumi M, Youshia J, Arafa MG, Nasr M, Sammour OA. Nanocarriers for the treatment of glioblastoma multiforme: A succinct review of conventional and repositioned drugs in the last decade. Arch Pharm (Weinheim) 2024; 357:e2400343. [PMID: 39074966 DOI: 10.1002/ardp.202400343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
Glioblastoma multiforme is a very combative and threatening type of cancer. The standard course of treatment involves excising the tumor surgically, then administering chemotherapy and radiation therapy. Because of the presence of the blood-brain barrier and the unique characteristics of the tumor microenvironment, chemotherapy is extremely difficult and has a high incidence of relapse. With their capacity to precisely target and transport therapeutic medications to the tumor while overcoming the challenges provided by invasive and infiltrative gliomas, nanocarriers offer a potentially beneficial treatment option for gliomas. Drug repositioning or, in other words, finding novel therapeutic uses for medications that have received approval for previous uses has also recently emerged to provide alternative treatments for many diseases, with glioblastoma being among them. In this article, our goal is to shed light on the pathogenesis of glioma and summarize the proposed treatment approaches in the last decade, highlighting how combining repositioned drugs and nanocarriers technology can reduce drug resistance and improve therapeutic efficacy in primary glioma.
Collapse
Affiliation(s)
- Mahitab Bayoumi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona G Arafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura, Egypt
- Nanotechnology Research Center, The British University in Egypt, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Giordano A, Provenza AC, Reverchon G, Baldino L, Reverchon E. Lipid-Based Nanocarriers: Bridging Diagnosis and Cancer Therapy. Pharmaceutics 2024; 16:1158. [PMID: 39339195 PMCID: PMC11434863 DOI: 10.3390/pharmaceutics16091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Theranostics is a growing field that matches diagnostics and therapeutics. In this approach, drugs and techniques are uniquely coupled to diagnose and treat medical conditions synergically or sequentially. By integrating diagnostic and treatment functions in a single platform, the aim of theranostics is to improve precision medicine by tailoring treatments based on real-time information. In this context, lipid-based nanocarriers have attracted great scientific attention due to their biodegradability, biocompatibility, and targeting capabilities. The present review highlights the latest research advances in the field of lipid-based nanocarriers for cancer theranostics, exploring several ways of improving in vivo performance and addressing associated challenges. These nanocarriers have significant potential to create new perspectives in the field of nanomedicine and offer promise for a significant step towards more personalized and precise medicine, reducing side effects and improving clinical outcomes for patients. This review also presents the actual barriers to and the possible challenges in the use of nanoparticles in the theranostic field, such as regulatory hurdles, high costs, and technological integration. Addressing these issues through a multidisciplinary and collaborative approach among institutions could be essential for advancing lipid nanocarriers in the theranostic field. Such collaborations can leverage diverse expertise and resources, fostering innovation and overcoming the complex challenges associated with clinical translation. This approach will be crucial for realizing the full potential of lipid-based nanocarriers in precision medicine.
Collapse
Affiliation(s)
- Alessandra Giordano
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| | - Anna Chiara Provenza
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| | - Giorgio Reverchon
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli, 1, 40136 Bologna, Italy;
| | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| |
Collapse
|
5
|
Na L, Fan F. Advances in nanobubbles for cancer theranostics: Delivery, imaging and therapy. Biochem Pharmacol 2024; 226:116341. [PMID: 38848778 DOI: 10.1016/j.bcp.2024.116341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Maximizing treatment efficacy and forecasting patient prognosis in cancer necessitates the strategic use of targeted therapy, coupled with the prompt precise detection of malignant tumors. Theutilizationof gaseous systems as an adaptable platform for creating nanobubbles (NBs) has garnered significant attention as theranostics, which involve combining contrast chemicals typically used for imaging with pharmaceuticals to diagnose and treattumorssynergistically in apersonalizedmanner for each patient. This review specifically examines the utilization of oxygen NBsplatforms as a theranostic weapon in the field of oncology. We thoroughly examine the key factors that impact the effectiveness of NBs preparations and the consequences of these treatment methods. This review extensively examines recent advancements in composition schemes, advanced developments in pre-clinical phases, and other groundbreaking inventions in the area of NBs. Moreover, this review offers a thorough examination of the optimistic future possibilities, addressing prospective methods for improvement and incorporation into widely accepted therapeutic practices. As we explore the ever-changing field of cancer theranostics, the incorporation of oxygen NBs appears as a promising development, providing new opportunities for precision medicine and marking a revolutionary age in cancer research and therapy.
Collapse
Affiliation(s)
- Liu Na
- Ultrasound Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Fan Fan
- School of Automation, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.
| |
Collapse
|
6
|
Branco F, Cunha J, Mendes M, Vitorino C, Sousa JJ. Peptide-Hitchhiking for the Development of Nanosystems in Glioblastoma. ACS NANO 2024; 18:16359-16394. [PMID: 38861272 PMCID: PMC11223498 DOI: 10.1021/acsnano.4c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024]
Abstract
Glioblastoma (GBM) remains the epitome of aggressiveness and lethality in the spectrum of brain tumors, primarily due to the blood-brain barrier (BBB) that hinders effective treatment delivery, tumor heterogeneity, and the presence of treatment-resistant stem cells that contribute to tumor recurrence. Nanoparticles (NPs) have been used to overcome these obstacles by attaching targeting ligands to enhance therapeutic efficacy. Among these ligands, peptides stand out due to their ease of synthesis and high selectivity. This article aims to review single and multiligand strategies critically. In addition, it highlights other strategies that integrate the effects of external stimuli, biomimetic approaches, and chemical approaches as nanocatalytic medicine, revealing their significant potential in treating GBM with peptide-functionalized NPs. Alternative routes of parenteral administration, specifically nose-to-brain delivery and local treatment within the resected tumor cavity, are also discussed. Finally, an overview of the significant obstacles and potential strategies to overcome them are discussed to provide a perspective on this promising field of GBM therapy.
Collapse
Affiliation(s)
- Francisco Branco
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Joana Cunha
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria Mendes
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - João J. Sousa
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
7
|
Jourdain MA, Dupont A, Lautram N, Eyer J. Investigating the functionalization of liposomes with NFL-TBS. 40-63 peptide as a promising drug delivery system. Int J Pharm 2024; 652:123805. [PMID: 38237710 DOI: 10.1016/j.ijpharm.2024.123805] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
The NFL-peptide was discovered almost 20 years ago, and its targeting properties were assessed alone or in combination with lipid nanocapsules (LNC), magnetic porous silicon nanorods, or gold nanoparticles. Results highlighted a better targeting of cancer cells, in particular glioblastoma and pancreas cancer. Considering the large use of liposomes (LPs) as an hydrophilic drug delivery system, this study explored the possibility to functionalize liposomes with three different sequences of NFL-peptides: native (NFL-peptide), biotinylated (BIOT-NFL) and coupled to fluorescein (FAM-NFL). Dynamic Light Scattering (DLS) complemented by cryo-electron microscopy (CEM) showed a peculiar ultrastructural arrangement between NFL-peptides and liposomes. Based on this architectural interaction, we investigated the biological contribution of these peptides in LPs-DiD glioblastoma cellular uptake. Flow cytometry complemented by confocal microscopy experiments demonstrated a consequent and systematic increased uptake of LPs-DiD into F98 cells when their surface was decorated with NFL-peptides. The intra-cellular distribution of these liposomes via an organelle tracker indicated the presence of LPs-DiD in lysosomes after 4 h. Based on the properties of this NFL-peptide, we showed in this work the crucial role of NFL peptide as an effective and promising actor to potentiate nanoparticles entry in glioblastoma cell lines.
Collapse
Affiliation(s)
- M-A Jourdain
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - A Dupont
- Univ Rennes, CNRS, Inserm, BIOSIT-UMS 3480, US_S 018, Rennes, France
| | - N Lautram
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - J Eyer
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
8
|
Kaushik M, Kumar S, Singh M, Sharma H, Bhowmick M, Bhowmick P, Ashique S, Khatoon H, Pal R, Ansari MA. Bio-inspired Nanomaterials in Cancer Theranostics. NANOTHERANOSTICS FOR DIAGNOSIS AND THERAPY 2024:95-123. [DOI: https:/doi.org/10.1007/978-981-97-3115-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
|
9
|
Gazaille C, Bozzato E, Madadian-Bozorg N, Mellinger A, Sicot M, Farooq U, Saulnier P, Eyer J, Préat V, Bertrand N, Bastiat G. Glioblastoma-targeted, local and sustained drug delivery system based on an unconventional lipid nanocapsule hydrogel. BIOMATERIALS ADVANCES 2023; 153:213549. [PMID: 37453243 DOI: 10.1016/j.bioadv.2023.213549] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
The objective of this work was to develop an implantable therapeutic hydrogel that will ensure continuity in treatment between surgery and radiochemotherapy for patients with glioblastoma (GBM). A hydrogel of self-associated gemcitabine-loaded lipid nanocapsules (LNC) has shown therapeutic efficacy in vivo in murine GBM resection models. To improve the targeting of GBM cells, the NFL-TBS.40-63 peptide (NFL), was associated with LNC. The LNC-based hydrogels were formulated with the NFL. The peptide was totally and instantaneously adsorbed at the LNC surface, without modifying the hydrogel mechanical properties, and remained adsorbed to the LNC surface after the hydrogel dissolution. In vitro studies on GBM cell lines showed a faster internalization of the LNC and enhanced cytotoxicity, in the presence of NFL. Finally, in vivo studies in the murine GBM resection model proved that the gemcitabine-loaded LNC with adsorbed NFL could target the non-resected GBM cells and significantly delay or even inhibit the apparition of recurrences.
Collapse
Affiliation(s)
- Claire Gazaille
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | | | | | - Adélie Mellinger
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Marion Sicot
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Umer Farooq
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Patrick Saulnier
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Joël Eyer
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | | | - Nicolas Bertrand
- Univ Laval, Faculty of Pharmacy, CHU Quebec Research Center, Québec, QC, Canada
| | | |
Collapse
|
10
|
Nhàn NTT, Yamada T, Yamada KH. Peptide-Based Agents for Cancer Treatment: Current Applications and Future Directions. Int J Mol Sci 2023; 24:12931. [PMID: 37629112 PMCID: PMC10454368 DOI: 10.3390/ijms241612931] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Peptide-based strategies have received an enormous amount of attention because of their specificity and applicability. Their specificity and tumor-targeting ability are applied to diagnosis and treatment for cancer patients. In this review, we will summarize recent advancements and future perspectives on peptide-based strategies for cancer treatment. The literature search was conducted to identify relevant articles for peptide-based strategies for cancer treatment. It was performed using PubMed for articles in English until June 2023. Information on clinical trials was also obtained from ClinicalTrial.gov. Given that peptide-based strategies have several advantages such as targeted delivery to the diseased area, personalized designs, relatively small sizes, and simple production process, bioactive peptides having anti-cancer activities (anti-cancer peptides or ACPs) have been tested in pre-clinical settings and clinical trials. The capability of peptides for tumor targeting is essentially useful for peptide-drug conjugates (PDCs), diagnosis, and image-guided surgery. Immunomodulation with peptide vaccines has been extensively tested in clinical trials. Despite such advantages, FDA-approved peptide agents for solid cancer are still limited. This review will provide a detailed overview of current approaches, design strategies, routes of administration, and new technological advancements. We will highlight the success and limitations of peptide-based therapies for cancer treatment.
Collapse
Affiliation(s)
- Nguyễn Thị Thanh Nhàn
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Richard & Loan Hill Department of Biomedical Engineering, University of Illinois College of Engineering, Chicago, IL 60607, USA
| | - Kaori H. Yamada
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Department of Ophthalmology & Visual Sciences, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
11
|
Liu Q, Liu H, Griveau A, Li X, Eyer J, Arib C, Spadavecchia J. NFL-TBS.40-63 Peptide Gold Complex Nanovector: A Novel Therapeutic Approach to Increase Anticancer Activity by Breakdown of Microtubules in Pancreatic Adenocarcinoma (PDAC). ACS Pharmacol Transl Sci 2022; 5:1267-1278. [PMID: 36524008 PMCID: PMC9745895 DOI: 10.1021/acsptsci.2c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 11/28/2022]
Abstract
The role of the NFL-TBS.40-63 peptide is to destroy the microtubule network of target glioma cancer cells. Recently, we have conceived a gold-complex biotinylated NFL-TBS.40-63 (BIOT-NFL) to form a hybrid gold nanovector (BIOT-NFL-PEG-AuNPs). This methodology showed, for the first time, the ability of the BIOT-NFL-PEG-AuNPs to target the destruction of pancreatic cancer cells (PDAC) under experimental conditions, as well as detoxification and preclinical therapeutic efficacy regulated by the steric and chemical configuration of the peptide. For this aim, a mouse transplantation tumor model induced by MIA-PACA-2 cells was applied to estimate the therapeutic efficacy of BIOT-NFL-PEG-AuNPs as a nanoformulation. Our relevant results display that BIOT-NFL-PEG-AuNPs slowed the tumor growth and decreased the tumor index without effects on the body weight of mice with an excellent antiangiogenic effect, mediated by the ability of BIOT-NFL-PEG-AuNPs to alter the metabolic profiles of these MIA-PACA-2 cells. The cytokine levels were detected to evaluate the behavior of serum inflammatory factors and the power of BIOT-NFL-PEG-AuNPs to boost the immune system.
Collapse
Affiliation(s)
- Qiqian Liu
- CNRS,
UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et
d′Agents Thérapeutiques Université Paris 13, Sorbonne Paris Nord, Bobigny93000, France
| | - Hui Liu
- Department
of Hepatobiliary Surgery, Guangdong Provincial Key Laboratory of Regional
Immunity and Diseases & Carson International Cancer Center, Shenzhen
University General Hospital & Shenzhen University Clinical Medical
Academy Center, Shenzhen University, Shenzhen518083China
| | - Audrey Griveau
- Laboratoire
Micro et Nanomedecines Translationnelles, Inserm 1066, CNRS 6021,
Institut de Recherche en Ingénierie de la Sante, Bâtiment
IBS Institut de Biologie de la Sante, Université′
Angers, Centre Hospitalier Universitaire, Angers49100France
| | - Xiaowu Li
- Department
of Hepatobiliary Surgery, Guangdong Provincial Key Laboratory of Regional
Immunity and Diseases & Carson International Cancer Center, Shenzhen
University General Hospital & Shenzhen University Clinical Medical
Academy Center, Shenzhen University, Shenzhen518083China
| | - Joel Eyer
- Laboratoire
Micro et Nanomedecines Translationnelles, Inserm 1066, CNRS 6021,
Institut de Recherche en Ingénierie de la Sante, Bâtiment
IBS Institut de Biologie de la Sante, Université′
Angers, Centre Hospitalier Universitaire, Angers49100France
| | - Celia Arib
- CNRS,
UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et
d′Agents Thérapeutiques Université Paris 13, Sorbonne Paris Nord, Bobigny93000, France
| | - Jolanda Spadavecchia
- CNRS,
UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et
d′Agents Thérapeutiques Université Paris 13, Sorbonne Paris Nord, Bobigny93000, France
| |
Collapse
|
12
|
Griveau A, Alnemeh-Al Ali H, Jourdain M, Dupont A, Eyer J. Characterization and quantification of the interaction between the NFL-TBS.40-63 peptide and lipid nanocapsules. Int J Pharm X 2022; 4:100127. [PMID: 36177093 PMCID: PMC9513630 DOI: 10.1016/j.ijpx.2022.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
Several studies previously showed that the NFL-TBS.40-63 peptide (NFL-peptide) is capable to specifically penetrating several glioblastoma cell lines (rat, mouse, human) and inhibiting their cell division in vitro and their tumor development in vivo. When lipid nanocapsules (LNCs) are functionalized with the NFL-peptide, their absorption is targeted in glioblastoma cells both in vitro and in vivo. In the present study, we investigated the molecular architecture of these nanovectors (LNC-NFL) by using several microscopy techniques (transmission electron microscopy, cryo-electron microscopy, and cryo-electron tomography). We also used high-performance liquid chromatography (UPLC) technique to evaluate the interaction between LNCs and peptides. The work shows that the NFL-peptide forms stable long filaments along which the lipid nanocapsules interact strongly to form some sort of nanomolecular bracelets. This new construction composed of the NFL-peptide and lipid nanocapsules shows a better internalization in rat glioblastoma cells (F98 cells) than lipid nanocapsules alone.
Collapse
Key Words
- BIOT-NFL, Biotinylated NFL-peptide
- BIOT-NFL-SCR, Biotinylated-NFL-scrambled-peptides
- CEM, Cryo-electron microscopy
- Cryo-ET, Cryo-electron tomography
- FAM-NFL, NFL-peptide coupled to 5-carboxyfluorescein
- FAM-NFL-SCR, 5-carboxyfluorescein-NFL-scrambled-peptides
- GBM, Glioblastoma
- Glioblastoma
- Interaction
- Internalization
- LNC-(DiD), Lipid nanocapsule loaded with DiD
- LNC-(DiD)-BIOT-NFL, Lipid nanocapsule loaded with DiD functionalized with Biotinylated NFL-peptide
- LNC-(DiD)-BIOT-SCR-NFL, Lipid nanocapsule loaded with DiD functionalized with Biotinylated NFL-scrambled-peptide
- LNC-(DiD)-FAM-NFL, Lipid nanocapsule loaded with DiD functionalized with FAM-NFL-peptide
- LNC-(DiD)-FAM-SCR-NFL, Lipid nanocapsule loaded with DiD functionalized with FAM-NFL-scrambled-peptide
- LNCs, Lipid nanocapsules
- Lipid nanocapsules
- NFL-SCR-peptides, NFL-scrambled peptides
- NFL-TBS.40–63 peptide
- NFL-peptide, NFL-TBS.40-63, or Neuro Filament Low subunit Tubulin Binding Site 40-63
- Nanofilaments
- SEC/UPLC, Size-Exclusion Chromatography/Ultra-Performance Liquid Chromatography system
- TEM, Transmission electron microscopy
Collapse
Affiliation(s)
- A. Griveau
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | | | - M.A. Jourdain
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - A. Dupont
- Univ Rennes, CNRS, Inserm, BIOSIT-UMS 3480, US_S 018, Rennes, France
| | - J. Eyer
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| |
Collapse
|
13
|
Griveau A, Arib C, Spadavecchia J, Eyer J. Biological activity of gold nanoparticles combined with the NFL-TBS.40-63 peptide, or with other cell penetrating peptides, on rat glioblastoma cells. Int J Pharm X 2022; 4:100129. [PMID: 36164551 PMCID: PMC9508353 DOI: 10.1016/j.ijpx.2022.100129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- A. Griveau
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - C. Arib
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux Et D'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - J. Spadavecchia
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux Et D'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - J. Eyer
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
- Corresponding author.
| |
Collapse
|
14
|
Alnemeh-Al Ali H, Griveau A, Artzner F, Dupont A, Lautram N, Jourdain M, Eyer J. Investigation on the self-assembly of the NFL-TBS.40-63 peptide and its interaction with gold nanoparticles as a delivery agent for glioblastoma. Int J Pharm X 2022; 4:100128. [PMID: 36204592 PMCID: PMC9529584 DOI: 10.1016/j.ijpx.2022.100128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
| | - A. Griveau
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - F. Artzner
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, F-35000 Rennes, France
| | - A. Dupont
- Univ Rennes, CNRS, Inserm, BIOSIT-UMS 3480, US_S 018, Rennes, France
| | - N. Lautram
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - M.A. Jourdain
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - J. Eyer
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
- Corresponding author.
| |
Collapse
|
15
|
Arib C, Griveau A, Eyer J, Spadavecchia J. Cell penetrating peptide (CPP) gold(iii) - complex - bioconjugates: from chemical design to interaction with cancer cells for nanomedicine applications. NANOSCALE ADVANCES 2022; 4:3010-3022. [PMID: 36133522 PMCID: PMC9417459 DOI: 10.1039/d2na00096b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/11/2022] [Indexed: 05/14/2023]
Abstract
This study promotes an innovative synthesis of a nanotheragnostic scaffold capable of targeting and destroying pancreatic cancer cells (PDAC) using the Biotinylated NFL-TBS.40-63 peptide (BIOT-NFL), known to enter various glioblastoma cancer cells (GBM) where it specifically destroys their microtubule network. This recently proposed methodology (P7391FR00-50481 LIV) applied to other peptides VIM (Vimentin) and TAT (Twin-Arginine Translocation) (CPP peptides) has many advantages, such as targeted selective internalization and high stability under experimental conditions, modulated by steric and chemical configurations of peptides. The successful interaction of peptides on gold surfaces has been confirmed by UV-visible, dynamic light scattering (DLS), Zeta potential (ZP) and Raman spectroscopy analyses. The cellular internalization in pancreatic ductal adenocarcinoma (PDAC; MIA PACA-2) and GBM (F98) cells was monitored by transmission electron microscopy (TEM) and showed a better cellular internalization in the presence of peptides with gold nanoparticles. In this work, we also evaluated the power of these hybrid peptide-nanoparticles as photothermal agents after cancer cell internalization. These findings envisage novel perspectives for the development of high peptide-nanotheragnostics.
Collapse
Affiliation(s)
- Celia Arib
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13 Sorbonne Paris Cité Bobigny France
| | - Audrey Griveau
- Laboratoire Micro et Nanomedecines Translationnelles, Inserm 1066, CNRS 6021, Institut de Recherche en Ingénierie de la Sante, Bâtiment IBS Institut de Biologie de la Sante, Université, Angers, Centre Hospitalier Universitaire Angers France
| | - Joel Eyer
- Laboratoire Micro et Nanomedecines Translationnelles, Inserm 1066, CNRS 6021, Institut de Recherche en Ingénierie de la Sante, Bâtiment IBS Institut de Biologie de la Sante, Université, Angers, Centre Hospitalier Universitaire Angers France
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13 Sorbonne Paris Cité Bobigny France
| |
Collapse
|
16
|
Rolley N, Bonnin M, Lefebvre G, Verron S, Bargiel S, Robert L, Riou J, Simonsson C, Bizien T, Gimel JC, Benoit JP, Brotons G, Calvignac B. Galenic Lab-on-a-Chip concept for lipid nanocapsules production. NANOSCALE 2021; 13:11899-11912. [PMID: 34190298 DOI: 10.1039/d1nr00879j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The continuous production of drug delivery systems assisted by microfluidics has drawn a growing interest because of the high reproducibility, low batch-to-batch variations, narrow and controlled particle size distributions and scale-up ease induced by this kind of processes. Besides, microfluidics offers opportunities for high throughput screening of process parameters and the implementation of process characterization techniques as close to the product as possible. In this context, we propose to spotlight the GALECHIP concept through the development of an instrumented microfluidic pilot considered as a Galenic Lab-on-a-Chip to formulate nanomedicines, such as lipid nanocapsules (LNCs), under controlled process conditions. In this paper we suggest an optimal rational development in terms of chip costs and designs. First, by using two common additive manufacturing techniques, namely fused deposition modelling and multi-jet modelling to prototype customized 3D microfluidic devices (chips and connectors). Secondly, by manufacturing transparent Silicon (Si)/Glass chips with similar channel geometries but obtained by a new approach of deep reactive ion etching (DRIE) technology suitable with in situ small angle X-ray scattering characterizations. LNCs were successfully produced by a phase inversion composition (PIC) process with highly monodispersed sizes from 25 nm to 100 nm and formulated using chips manufactured by 3D printing and DRIE technologies. The transparent Si/Glass chip was also used for the small angle X-ray scattering (SAXS) analysis of the LNC formulation with the PIC process. The 3D printing and DRIE technologies and their respective advantages are discussed in terms of cost, easiness to deploy and process developments in a GALECHIP point of view.
Collapse
Affiliation(s)
- Nicolas Rolley
- MINT Lab, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li L, Chen J, Ming Y, Li B, Fu R, Duan D, Li Z, Ni R, Wang X, Zhou Y, Zhang L. The Application of Peptides in Glioma: a Novel Tool for Therapy. Curr Pharm Biotechnol 2021; 23:620-633. [PMID: 34182908 DOI: 10.2174/1389201022666210628114042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glioma is the most aggressive and lethal tumor of the central nervous system. Owing to the cellular heterogeneity, the invasiveness, and blood-brain barrier (BBB), current therapeutic approaches, such as chemotherapy and radiotherapy, are poorly to obtain great anti-tumor efficacy. However, peptides, a novel type of therapeutic agent, displayed excellent ability in the tumor, which becomes a new molecule for glioma treatment. METHOD We review the current knowledge on peptides for the treatment of glioma through a PubMed-based literature search. RESULTS In the treatment of glioma, peptides can be used as (i) decoration on the surface of the delivery system, facilitating the distribution and accumulation of the anti-tumor drug in the target site;(ii) anti-tumor active molecules, inhibiting the growth of glioma and reducing solid tumor volume; (iii) immune-stimulating factor, and activating immune cells in the tumor microenvironment or recruiting immune cells to the tumor for breaking out the immunosuppression by glioma cells. CONCLUSION The application of peptides has revolutionized the treatment of glioma, which is based on targeting, penetrating, anti-tumor activities, and immunostimulatory. Moreover, better outcomes have been discovered in combining different kinds of peptides rather than a single one. Until now, more and more preclinical studies have been developed with multifarious peptides, which show promising results in vitro or vivo with the model of glioma.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianhong Chen
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Ming
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Ruoqiu Fu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dongyu Duan
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Ziwei Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Rui Ni
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianfeng Wang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yueling Zhou
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Zhang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
18
|
Audrey G, Claire LC, Joel E. Effect of the NFL-TBS.40-63 peptide on canine glioblastoma cells. Int J Pharm 2021; 605:120811. [PMID: 34144141 DOI: 10.1016/j.ijpharm.2021.120811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/17/2021] [Accepted: 06/12/2021] [Indexed: 12/21/2022]
Abstract
Glioblastomas are the most frequent and aggressive cancer of the nervous system. The standard treatment is composed of neurosurgery followed by radiotherapy and chemotherapy, but the median survival remains very low. The NFL-TBS.40-63 peptide, also known as NFL-peptide, is capable to specifically penetrating all glioblastoma cell lines tested so far (rat, mouse and human), where it alters their microtubule network. Consequently, the peptide inhibits selectively the in vitro cell division of glioblastoma cells and their tumor development in vivo. When lipid nanocapsules are functionalized with the NFL-peptide, their uptake is targeted into glioblastoma cells both in vitro and in vivo. Here, we evaluated the impact of the NFL-peptide on J3T cells derived from a canine spontaneous glioblastoma, and its activity when functionalized to nanocapsules. Both flow cytometry and confocal microscopy experiments indicate that the NFL-peptide interacts with these cells and affects their biology, but it cannot enter in cells. By functionalizing lipid nanoparticles with the NFL-peptide, their uptake is also increased, while the peptide stays outside. This investigation reveals similarities and major differences between these canine cells and other glioblastoma cells, which are important aspects to consider when using this type of drug delivery system or performing pre-clinical studies with this animal model.
Collapse
Affiliation(s)
- Griveau Audrey
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Lépinoux-Chambaud Claire
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; GlioCure, F-49000 Angers, France
| | - Eyer Joel
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
19
|
Idlas P, Lepeltier E, Jaouen G, Passirani C. Ferrocifen Loaded Lipid Nanocapsules: A Promising Anticancer Medication against Multidrug Resistant Tumors. Cancers (Basel) 2021; 13:2291. [PMID: 34064748 PMCID: PMC8151583 DOI: 10.3390/cancers13102291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance of cancer cells to current chemotherapeutic drugs has obliged the scientific community to seek innovative compounds. Ferrocifens, lipophilic organometallic compounds composed of a tamoxifen scaffold covalently bound to a ferrocene moiety, have shown very interesting antiproliferative, cytotoxic and immunologic effects. The formation of ferrocenyl quinone methide plays a crucial role in the multifaceted activity of ferrocifens. Lipid nanocapsules (LNCs), meanwhile, are nanoparticles obtained by a free organic solvent process. LNCs consist of an oily core surrounded by amphiphilic surfactants and are perfectly adapted to encapsulate these hydrophobic compounds. The different in vitro and in vivo experiments performed with this ferrocifen-loaded nanocarrier have revealed promising results in several multidrug-resistant cancer cell lines such as glioblastoma, breast cancer and metastatic melanoma, alone or in combination with other therapies. This review provides an exhaustive summary of the use of ferrocifen-loaded LNCs as a promising nanomedicine, outlining the ferrocifen mechanisms of action on cancer cells, the nanocarrier formulation process and the in vivo results obtained over the last two decades.
Collapse
Affiliation(s)
- Pierre Idlas
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, 49000 Angers, France; (P.I.); (E.L.)
| | - Elise Lepeltier
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, 49000 Angers, France; (P.I.); (E.L.)
| | - Gérard Jaouen
- Sorbonne Universités, Université IPCM, Paris 6, UMR 8232, IPCM, 4 place Jussieu, 75005 Paris, France;
- PSL University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - Catherine Passirani
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, 49000 Angers, France; (P.I.); (E.L.)
| |
Collapse
|
20
|
Characterization of Biological Material Adsorption to the Surface of Nanoparticles without a Prior Separation Step: a Case Study of Glioblastoma-Targeting Peptide and Lipid Nanocapsules. Pharm Res 2021; 38:681-691. [PMID: 33829340 PMCID: PMC8026175 DOI: 10.1007/s11095-021-03034-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/23/2021] [Indexed: 11/04/2022]
Abstract
Purpose Current preclinical therapeutic strategies involving nanomedicine require increasingly sophisticated nanosystems and the characterization of the complexity of such nanoassemblies is becoming a major issue. Accurate characterization is often the factor that can accelerate the translational approaches of nanomedicines and their pharmaceutical development to reach the clinic faster. We conducted a case study involving the adsorption of the NFL-TBS.40–63 (NFL) peptide (derived from neurofilaments) to the surface of lipid nanocapsules (LNCs) (a combined nanosystem used to target glioblastoma cells) to develop an analytical approach combining the separation and the quantification in a single step, leading to the characterization of the proportion of free peptide and thus the proportion of peptide adsorbed to the lipid nanocapsule surface. Methods LNC suspensions, NFL peptide solution and LNC/NFL peptide mixtures were characterized using a Size-Exclusion Chromatography method (with a chromatographic apparatus). In addition, this method was compared to centrifugal-filtration devices, currently used in literature for this case study. Results Combining the steps for separation and characterization in one single sequence improved the accuracy and robustness of the data and led to reproducible results. Moreover the data deviation observed for the centrifugal-filtration devices demonstrated the limits for this increasingly used characterization approach, explained by the poor separation quality and highlighting the importance for the method optimization. The high potential of the technique was shown, proving that H-bond and/or electrostatic interactions mediate adsorption of the NFL peptide to the surface of LNCs. Conclusions Used only as a characterization tool, the process using chromatographic apparatus is less time and solvent consuming than classical Size-Exclusion Chromatography columns only used for separation. It could be a promising tool for the scientific community for characterizing the interactions of other combinations of nanosystems and active biological agents. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s11095-021-03034-8.
Collapse
|
21
|
Paliwal SR, Kenwat R, Maiti S, Paliwal R. Nanotheranostics for Cancer Therapy and Detection: State of the Art. Curr Pharm Des 2020; 26:5503-5517. [PMID: 33200696 DOI: 10.2174/1381612826666201116120422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Nanotheranostics, an approach of combining both diagnosis and therapy, is one of the latest advances in cancer therapy particularly. Nanocarriers designed and derived from inorganic materials such as like gold nanoparticles, silica nanoparticles, magnetic nanoparticles and carbon nanotubes have been explored for tremendous applications in this area. Similarly, nanoparticles composed of some organic material alone or in combination with inorganic nano-cargos have been developed pre-clinically and possess excellent features desired. Photothermal therapy, MRI, simultaneous imaging and delivery, and combination chemotherapy with a diagnosis are a few of the known methods exploring cancer therapy and detection at organ/tissue/molecular/sub-cellular level. This review comprises an overview of the recent reports meant for nano theranostics purposes. Targeted cancer nanotheranostics have been included for understating tumor micro-environment or cell-specific targeting approach employed. A brief account of various strategies is also included for the readers highlighting the mechanism of cancer therapy.
Collapse
Affiliation(s)
- Shivani Rai Paliwal
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilapsur, CG, India
| | - Rameshroo Kenwat
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| | - Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| |
Collapse
|
22
|
Fressinaud C, Thomas O, Umerska AM, Saulnier P. Lipid Nanoparticles Vectorized with NFL-TBS.40-63 Peptide Target Oligodendrocytes and Promote Neurotrophin-3 Effects After Demyelination In Vitro. Neurochem Res 2020; 45:2732-2748. [PMID: 32910302 DOI: 10.1007/s11064-020-03122-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/01/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022]
Abstract
Promoting remyelination in multiple sclerosis is important to prevent axon degeneration, given the lack of curative treatment. Although some growth factors improve this repair, unspecific delivery to cells and potential side effects limit their therapeutic use. Thus, NFL-TBS.40-63 peptide (NFL)-known to enter specifically myelinating oligodendrocytes (OL)-was used to vectorize 100 nm diameter lipid nanoparticles (LNC), and the ability of NFL-LNC to specifically target OL from newborn rat brain was assessed in vitro. Specific uptake of DiD-labeled NFL-LNC by OL characterized by CNP and myelin basic protein was observed by confocal microscopy, as well as DiD colocalization with NFL and with Rab5-a marker of early endosomes. Unvectorized LNC did not significantly penetrate OL and there was no uptake of NFL-LNC by astrocytes. Canonical maturation of OL which extended compacted myelin-like membranes was observed by transmission electron microscopy in cells grown up to 9 days with NFL-LNC. Endocytosis of NFL-LNC appeared to depend on several pathways, as demonstrated by inhibitors. In addition, vectorized NFL-LNC adsorbed on neurotrophin-3 (NT-3) potentiated the proremyelinating effects of NT-3 after demyelination by lysophosphatidyl choline, allowing noticeably decreasing NT-3 concentration. Our results if they were confirmed in vivo suggest that NFL-vectorized LNC appear safe and could be considered as putative carriers for specific drug delivery to OL in order to increase remyelination.
Collapse
Affiliation(s)
- Catherine Fressinaud
- Neurology Department, University Hospital, 4 rue Larrey, 49933, Angers Cedex 9, France. .,MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France.
| | - Olivier Thomas
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France
| | - Anita Monika Umerska
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France
| | - Patrick Saulnier
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France
| |
Collapse
|
23
|
Madamsetty VS, Mukherjee A, Mukherjee S. Recent Trends of the Bio-Inspired Nanoparticles in Cancer Theranostics. Front Pharmacol 2019; 10:1264. [PMID: 31708785 PMCID: PMC6823240 DOI: 10.3389/fphar.2019.01264] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022] Open
Abstract
In recent years, various nanomaterials have emerged as an exciting tool in cancer theranostic applications due to their multifunctional property and intrinsic molecular property aiding effective diagnosis, imaging, and successful therapy. However, chemically synthesized nanoparticles have several issues related to the cost, toxicity and effectiveness. In this context, bio-inspired nanoparticles (NPs) held edges over conventionally synthesized nanoparticles due to their low cost, easy synthesis and low toxicity. In this present review article, a detailed overview of the cancer theranostics applications of various bio-inspired has been provided. This includes the recent examples of liposomes, lipid nanoparticles, protein nanoparticles, inorganic nanoparticles, and viral nanoparticles. Finally, challenges and the future scopes of these NPs in cancer therapy and diagnostics applications are highlighted.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Anubhab Mukherjee
- Department of Formulation, Sealink Pharmaceuticals, Hyderabad, India
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX, United States
| |
Collapse
|
24
|
Clavreul A, Roger E, Pourbaghi-Masouleh M, Lemaire L, Tétaud C, Menei P. Development and characterization of sorafenib-loaded lipid nanocapsules for the treatment of glioblastoma. Drug Deliv 2019; 25:1756-1765. [PMID: 30338715 PMCID: PMC6225440 DOI: 10.1080/10717544.2018.1507061] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Anticancer agents that target both tumor cells and angiogenesis are of potential interest for glioblastoma (GB) therapy. One such agent is sorafenib (SFN), a tyrosine kinase inhibitor. However, poor aqueous solubility and undesirable side effects limit its clinical application, including local treatment. We encapsulated SFN in lipid nanocapsules (LNCs) to overcome these drawbacks. LNCs are nanocarriers formulated according to a solvent-free process, using only components that have received regulatory approval. SFN-LNCs had a diameter of 54 ± 1 nm, high encapsulation efficiency (>90%), and a drug payload of 2.11 ± 0.03 mg/g of LNC dispersion. They inhibited in vitro angiogenesis and decreased human U87MG GB cell viability similarly to free SFN. In vivo studies showed that the intratumoral administration of SFN-LNCs or free SFN in nude mice bearing an orthotopic U87MG human GB xenograft decreased the proportion of proliferating cells in the tumor relative to control groups. SFN-LNCs were more effective than free SFN for inducing early tumor vascular normalization, characterized by increases in tumor blood flow and decreases in tumor vessel area. These results highlight the potential of LNCs as delivery systems for SFN. The vascular normalization induced by SFN-LNCs could be used to improve the efficacy of chemotherapy or radiotherapy for treating GB.
Collapse
Affiliation(s)
- Anne Clavreul
- a Département de Neurochirurgie , CHU , Angers , France.,b CRCINA, INSERM , Université de Nantes, Université d'Angers , Angers , France
| | - Emilie Roger
- c MINT, INSERM 1066, CNRS 6021 , Université d'Angers, UNIV Angers , Angers , France
| | - Milad Pourbaghi-Masouleh
- b CRCINA, INSERM , Université de Nantes, Université d'Angers , Angers , France.,d Division of Drug Delivery and Tissue Engineering, School of Pharmacy , University of Nottingham , Nottingham , UK
| | - Laurent Lemaire
- c MINT, INSERM 1066, CNRS 6021 , Université d'Angers, UNIV Angers , Angers , France.,e PRISM-IRM , UNIV Angers , Angers , France
| | - Clément Tétaud
- b CRCINA, INSERM , Université de Nantes, Université d'Angers , Angers , France
| | - Philippe Menei
- a Département de Neurochirurgie , CHU , Angers , France.,b CRCINA, INSERM , Université de Nantes, Université d'Angers , Angers , France
| |
Collapse
|
25
|
Hamdi H, Abid-Essefi S, Eyer J. Cytotoxic and genotoxic effects of epoxiconazole on F98 glioma cells. CHEMOSPHERE 2019; 229:314-323. [PMID: 31078888 DOI: 10.1016/j.chemosphere.2019.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Epoxiconazole (EPX) is a very effective fungicide of the triazole family. Given its wide spectrum of use, the increased application of this pesticide may represent a serious risk on human health. Previous studies have found that EPX is cytotoxic to cells, although the exact mechanism remains elusive. In particular, the effect on the nervous system is poorly elucidated. Here we evaluated the implication of oxidative stress in the neurotoxicity and studied its apoptotic mechanism of action. We demonstrated that the treatment by EPX reduces the viability of cells in a dose dependent manner with an IC50 of 50 μM. It also provokes the reduction of cell proliferation. EPX could trigger arrest in G1/S phase of cell cycle with low doses, however with IC50, it induced an accumulation of F98 cells in G2/M phase. Moreover, EPX induced cytoskeleton disruption as evidenced by immunocytochemical analysis. It provoked also DNA fragmentation in a concentration dependent manner. The EPX induced apoptosis, which was observed by morphological changes and by positive Annexin V FITC-PI staining concurrent with a depolarization of mitochondria. Furthermore, the cell mortality provoked by EPX was significantly reduced by pretreatment with Z-VAD-FMK, a caspase inhibitor. Moreover, N-acetylcysteine (NAC) strongly restores cell viability that has been inhibited by EPX. The results of these findings highlight the implication of ROS generation in the neurotoxicity induced by EPX, indicating that the production of ROS is the main cause of the induction of apoptosis probably via the mitochondrial pathway.
Collapse
Affiliation(s)
- Hiba Hamdi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Avicenne Street, Monastir, 5019, Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Avicenne Street, Monastir, 5019, Tunisia
| | - Joel Eyer
- Laboratoire Micro et Nanomédecines Translationnelles (MINT), Inserm 1066, CNRS 6021, Institut de Biologie de la Santé, Centre Hospitalier Universitaire, Angers, 49033, France.
| |
Collapse
|
26
|
Lépinoux-Chambaud C, Eyer J. The NFL-TBS.40–63 peptide targets and kills glioblastoma stem cells derived from human patients and also targets nanocapsules into these cells. Int J Pharm 2019; 566:218-228. [DOI: 10.1016/j.ijpharm.2019.05.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/10/2019] [Accepted: 05/23/2019] [Indexed: 02/08/2023]
|
27
|
Silva CO, Pinho JO, Lopes JM, Almeida AJ, Gaspar MM, Reis C. Current Trends in Cancer Nanotheranostics: Metallic, Polymeric, and Lipid-Based Systems. Pharmaceutics 2019; 11:E22. [PMID: 30625999 PMCID: PMC6359642 DOI: 10.3390/pharmaceutics11010022] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/28/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023] Open
Abstract
Theranostics has emerged in recent years to provide an efficient and safer alternative in cancer management. This review presents an updated description of nanotheranostic formulations under development for skin cancer (including melanoma), head and neck, thyroid, breast, gynecologic, prostate, and colon cancers, brain-related cancer, and hepatocellular carcinoma. With this focus, we appraised the clinical advantages and drawbacks of metallic, polymeric, and lipid-based nanosystems, such as low invasiveness, low toxicity to the surrounding healthy tissues, high precision, deeper tissue penetration, and dosage adjustment in a real-time setting. Particularly recognizing the increased complexity and multimodality in this area, multifunctional hybrid nanoparticles, comprising different nanomaterials and functionalized with targeting moieties and/or anticancer drugs, present the best characteristics for theranostics. Several examples, focusing on their design, composition, imaging and treatment modalities, and in vitro and in vivo characterization, are detailed herein. Briefly, all studies followed a common trend in the design of these theranostics modalities, such as the use of materials and/or drugs that share both inherent imaging (e.g., contrast agents) and therapeutic properties (e.g., heating or production reactive oxygen species). This rationale allows one to apparently overcome the heterogeneity, complexity, and harsh conditions of tumor microenvironments, leading to the development of successful targeted therapies.
Collapse
Affiliation(s)
- Catarina Oliveira Silva
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Jacinta Oliveira Pinho
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Joana Margarida Lopes
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - António J Almeida
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Manuela Gaspar
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Catarina Reis
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
- IBEB, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
28
|
Aparicio-Blanco J, Sebastián V, Benoit JP, Torres-Suárez AI. Lipid nanocapsules decorated and loaded with cannabidiol as targeted prolonged release carriers for glioma therapy: In vitro screening of critical parameters. Eur J Pharm Biopharm 2019; 134:126-137. [DOI: 10.1016/j.ejpb.2018.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/17/2018] [Accepted: 11/21/2018] [Indexed: 10/27/2022]
|
29
|
Carradori D, dos Santos AG, Masquelier J, Paquot A, Saulnier P, Eyer J, Préat V, Muccioli GG, Mingeot-Leclercq MP, des Rieux A. The origin of neural stem cells impacts their interactions with targeted-lipid nanocapsules: Potential role of plasma membrane lipid composition and fluidity. J Control Release 2018; 292:248-255. [DOI: 10.1016/j.jconrel.2018.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/01/2018] [Accepted: 11/04/2018] [Indexed: 02/06/2023]
|
30
|
Mendes M, Sousa JJ, Pais A, Vitorino C. Targeted Theranostic Nanoparticles for Brain Tumor Treatment. Pharmaceutics 2018; 10:E181. [PMID: 30304861 PMCID: PMC6321593 DOI: 10.3390/pharmaceutics10040181] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
The poor prognosis and rapid recurrence of glioblastoma (GB) are associated to its fast-growing process and invasive nature, which make difficult the complete removal of the cancer infiltrated tissues. Additionally, GB heterogeneity within and between patients demands a patient-focused method of treatment. Thus, the implementation of nanotechnology is an attractive approach considering all anatomic issues of GB, since it will potentially improve brain drug distribution, due to the interaction between the blood⁻brain barrier and nanoparticles (NPs). In recent years, theranostic techniques have also been proposed and regarded as promising. NPs are advantageous for this application, due to their respective size, easy surface modification and versatility to integrate multiple functional components in one system. The design of nanoparticles focused on therapeutic and diagnostic applications has increased exponentially for the treatment of cancer. This dual approach helps to understand the location of the tumor tissue, the biodistribution of nanoparticles, the progress and efficacy of the treatment, and is highly useful for personalized medicine-based therapeutic interventions. To improve theranostic approaches, different active strategies can be used to modulate the surface of the nanotheranostic particle, including surface markers, proteins, drugs or genes, and take advantage of the characteristics of the microenvironment using stimuli responsive triggers. This review focuses on the different strategies to improve the GB treatment, describing some cell surface markers and their ligands, and reports some strategies, and their efficacy, used in the current research.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| | - Alberto Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| |
Collapse
|
31
|
Barreau K, Montero-Menei C, Eyer J. The neurofilament derived-peptide NFL-TBS.40-63 enters in-vitro in human neural stem cells and increases their differentiation. PLoS One 2018; 13:e0201578. [PMID: 30092042 PMCID: PMC6084907 DOI: 10.1371/journal.pone.0201578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/18/2018] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine is a promising approach to treat neurodegenerative diseases by replacing degenerating cells like neurons or oligodendrocytes. Targeting human neural stem cells directly in the brain is a big challenge in such a strategy. The neurofilament derived NFL-TBS.40-63 peptide has recently been introduced as a novel tool to target neural stem cells. Previous studies showed that this peptide can be internalized by rat neural stem cells in vitro and in vivo, which coincided with lower proliferation and self-renewal capacity and increase of differentiation. In this study, we analyzed the uptake and potential effects of the NFL-TBS.40-63 peptide on human neural stem cells isolated from human fetuses. We showed that the peptide inhibits proliferation and the ability to produce neurospheres in vitro, which is consistent with an increase in cell adhesion and differentiation. These results confirm that the peptide could be a promising molecule to target and manipulate human neural stem cells and thus could serve as a strategic tool for regenerative medicine.
Collapse
Affiliation(s)
- Kristell Barreau
- Laboratoire Micro et Nanomédecines Translationnelles, Inserm 1066, CNRS 6021, Institut de Recherche en Ingénierie de la Santé, Bâtiment IBS Institut de Biologie de la Santé, Université Angers, Centre Hospitalier Universitaire, Angers, France
| | - Claudia Montero-Menei
- Centre de Recherche en Cancérologie et Immunologie, INSERM, Université de Nantes, Université Angers, Angers, France
| | - Joël Eyer
- Laboratoire Micro et Nanomédecines Translationnelles, Inserm 1066, CNRS 6021, Institut de Recherche en Ingénierie de la Santé, Bâtiment IBS Institut de Biologie de la Santé, Université Angers, Centre Hospitalier Universitaire, Angers, France
- * E-mail:
| |
Collapse
|
32
|
Karim R, Lepeltier E, Esnault L, Pigeon P, Lemaire L, Lépinoux-Chambaud C, Clere N, Jaouen G, Eyer J, Piel G, Passirani C. Enhanced and preferential internalization of lipid nanocapsules into human glioblastoma cells: effect of a surface-functionalizing NFL peptide. NANOSCALE 2018; 10:13485-13501. [PMID: 29972178 DOI: 10.1039/c8nr02132e] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Increasing intracellular drug concentration using nanocarriers can be a potential strategy to improve efficacy against glioblastoma (GBM). Here, the fluorescent-labelled NFL-TBS·40-63 peptide (fluoNFL) concentration on a lipid nanocapsule (LNC) was studied to enhance nanovector internalization into human GBM cells. LNC surface-functionalization with various fluoNFL concentrations was performed by adsorption. LNC size and surface charge altered gradually with increasing peptide concentration, but their complement protein consumption remained low. Desorption of fluoNFL from the LNC surface was found to be slow. Furthermore, it was observed that the rate and extent of LNC internalization in the U87MG human glioblastoma cells were dependent on the surface-functionalizing fluoNFL concentration. In addition, we showed that the uptake of fluoNFL-functionalized LNCs was preferential towards U87MG cells compared to healthy human astrocytes. The fluoNFL-functionalized LNC internalization into the U87MG cells was energy-dependent and occurred possibly by macropinocytosis and clathrin-mediated and caveolin-mediated endocytosis. A new ferrocifen-type molecule (FcTriOH), as a potent anticancer candidate, was then encapsulated in the LNCs and the functionalization improved its in vitro efficacy compared to other tested formulations against U87MG cells. In the preliminary study, on subcutaneous human GBM tumor model in nude mice, a significant reduction of relative tumor volume was observed at one week after the second intravenous injection with FcTriOH-loaded LNCs. These results showed that enhancing NFL peptide concentration on the LNC surface is a promising approach for increased and preferential nanocarrier internalization into human GBM cells, and the FcTriOH-loaded LNCs are a promising therapy approach for GBM.
Collapse
Affiliation(s)
- Reatul Karim
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Angers, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rapid Serum-Free Isolation of Oligodendrocyte Progenitor Cells from Adult Rat Spinal Cord. Stem Cell Rev Rep 2018; 13:499-512. [PMID: 28509260 DOI: 10.1007/s12015-017-9742-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oligodendrocyte progenitor cells (OPCs) play a pivotal role in both health and disease within the central nervous system, with oligodendrocytes, arising from resident OPCs, being the main myelinating cell type. Disruption in OPC numbers can lead to various deleterious health defects. Numerous studies have described techniques for isolating OPCs to obtain a better understanding of this cell type and to open doors for potential treatments of injury and disease. However, the techniques used in the majority of these studies involve several steps and are time consuming, with current culture protocols using serum and embryonic or postnatal cortical tissue as a source of isolation. We present a primary culture method for the direct isolation of functional adult rat OPCs, identified by neuron-glial antigen 2 (NG2) and platelet derived growth factor receptor alpha (PDGFrα) expression, which can be obtained from the adult spinal cord. Our method uses a simple serum-free cocktail of 3 growth factors - FGF2, PDGFAA, and IGF-I, to expand adult rat OPCs in vitro to 96% purity. Cultured cells can be expanded for at least 10 passages with very little manipulation and without losing their phenotypic progenitor cell properties, as shown by immunocytochemistry and RT-PCR. Cultured adult rat OPCs also maintain their ability to differentiate into GalC positive cells when incubated with factors known to stimulate their differentiation. This new isolation method provides a new source of easily accessible adult stem cells and a powerful tool for their expansion in vitro for studies aimed at central nervous system repair.
Collapse
|
34
|
Castro-Gamero AM, Pezuk JA, Brassesco MS, Tone LG. G2/M inhibitors as pharmacotherapeutic opportunities for glioblastoma: the old, the new, and the future. Cancer Biol Med 2018; 15:354-374. [PMID: 30766748 PMCID: PMC6372908 DOI: 10.20892/j.issn.2095-3941.2018.0030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is one of the deadliest tumors and has a median survival of 3 months if left untreated. Despite advances in rationally targeted pharmacological approaches, the clinical care of GBM remains palliative in intent. Since the majority of altered signaling cascades involved in cancer establishment and progression eventually affect cell cycle progression, an alternative approach for cancer therapy is to develop innovative compounds that block the activity of crucial molecules needed by tumor cells to complete cell division. In this context, we review promising ongoing and future strategies for GBM therapeutics aimed towards G2/M inhibition such as anti-microtubule agents and targeted therapy against G2/M regulators like cyclin-dependent kinases, Aurora inhibitors, PLK1, BUB, 1, and BUBR1, and survivin. Moreover, we also include investigational agents in the preclinical and early clinical settings. Although several drugs were shown to be gliotoxic, most of them have not yet entered therapeutic trials. The use of either single exposure or a combination with novel compounds may lead to treatment alternatives for GBM patients in the near future.
Collapse
Affiliation(s)
- Angel Mauricio Castro-Gamero
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas 37130-001, Brazil
| | - Julia Alejandra Pezuk
- Biotechnology and Innovation in Health Program and Pharmacy Program, Anhanguera University São Paulo (UNIAN-SP), São Paulo 05145-200, Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Luiz Gonzaga Tone
- Department of Pediatrics.,Department of Genetics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
35
|
Tivnan A, Heilinger T, Ramsey JM, O'Connor G, Pokorny JL, Sarkaria JN, Stringer BW, Day BW, Boyd AW, Kim EL, Lode HN, Cryan SA, Prehn JHM. Anti-GD2-ch14.18/CHO coated nanoparticles mediate glioblastoma (GBM)-specific delivery of the aromatase inhibitor, Letrozole, reducing proliferation, migration and chemoresistance in patient-derived GBM tumor cells. Oncotarget 2017; 8:16605-16620. [PMID: 28178667 PMCID: PMC5369988 DOI: 10.18632/oncotarget.15073] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022] Open
Abstract
Aromatase is a critical enzyme in the irreversible conversion of androgens to oestrogens, with inhibition used clinically in hormone-dependent malignancies. We tested the hypothesis that targeted aromatase inhibition in an aggressive brain cancer called glioblastoma (GBM) may represent a new treatment strategy. In this study, aromatase inhibition was achieved using third generation inhibitor, Letrozole, encapsulated within the core of biodegradable poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs). PLGA-NPs were conjugated to human/mouse chimeric anti-GD2 antibody ch14.18/CHO, enabling specific targeting of GD2-positive GBM cells. Treatment of primary and recurrent patient-derived GBM cells with free-Letrozole (0.1 μM) led to significant decrease in cell proliferation and migration; in addition to reduced spheroid formation. Anti-GD2-ch14.18/CHO-NPs displayed specific targeting of GBM cells in colorectal-glioblastoma co-culture, with subsequent reduction in GBM cell numbers when treated with anti-GD2-ch14.18-PLGA-Let-NPs in combination with temozolomide. As miR-191 is an estrogen responsive microRNA, its expression, fluctuation and role in Letrozole treated GBM cells was evaluated, where treatment with premiR-191 was capable of rescuing the reduced proliferative phenotype induced by aromatase inhibitor. The repurposing and targeted delivery of Letrozole for the treatment of GBM, with the potential role of miR-191 identified, provides novel avenues for target assessment in this aggressive brain cancer.
Collapse
Affiliation(s)
- Amanda Tivnan
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York House, Dublin 2, Ireland
| | - Tatjana Heilinger
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York House, Dublin 2, Ireland.,IMC Fachhochschule Krems, University of Applied Sciences, Krems, Austria
| | - Joanne M Ramsey
- School of Pharmacy, Royal College of Surgeons in Ireland, York House, Dublin 2, Ireland & Tissue Engineering Research Group, Department of Anatomy, RCSI and Centre for Research in Medical Devices (CURAM), NUIG, Ireland
| | - Gemma O'Connor
- School of Pharmacy, Royal College of Surgeons in Ireland, York House, Dublin 2, Ireland & Tissue Engineering Research Group, Department of Anatomy, RCSI and Centre for Research in Medical Devices (CURAM), NUIG, Ireland
| | - Jenny L Pokorny
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States of America.,Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States of America
| | - Brett W Stringer
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Bryan W Day
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andrew W Boyd
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ella L Kim
- Laboratory of Neurooncology, Department of Neurosurgery, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Holger N Lode
- Department of Paediatrics and Paediatric Haematology/Oncology, University of Greifswald, Greifswald, Germany
| | - Sally-Ann Cryan
- School of Pharmacy, Royal College of Surgeons in Ireland, York House, Dublin 2, Ireland & Tissue Engineering Research Group, Department of Anatomy, RCSI and Centre for Research in Medical Devices (CURAM), NUIG, Ireland
| | - Jochen H M Prehn
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York House, Dublin 2, Ireland
| |
Collapse
|
36
|
Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett 2017; 190:64-83. [PMID: 28760499 DOI: 10.1016/j.imlet.2017.07.015] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/04/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
Abstract
Surgery, chemotherapy, radiotherapy, and hormone therapy are the main common anti-tumor therapeutic approaches. However, the non-specific targeting of cancer cells has made these approaches non-effective in the significant number of patients. Non-specific targeting of malignant cells also makes indispensable the application of the higher doses of drugs to reach the tumor region. Therefore, there are two main barriers in the way to reach the tumor area with maximum efficacy. The first, inhibition of drug delivery to healthy non-cancer cells and the second, the direct conduction of drugs into tumor site. Nanoparticles (NPs) are the new identified tools by which we can deliver drugs into tumor cells with minimum drug leakage into normal cells. Conjugation of NPs with ligands of cancer specific tumor biomarkers is a potent therapeutic approach to treat cancer diseases with the high efficacy. It has been shown that conjugation of nanocarriers with molecules such as antibodies and their variable fragments, peptides, nucleic aptamers, vitamins, and carbohydrates can lead to effective targeted drug delivery to cancer cells and thereby cancer attenuation. In this review, we will discuss on the efficacy of the different targeting approaches used for targeted drug delivery to malignant cells by NPs.
Collapse
|
37
|
NFL-lipid nanocapsules for brain neural stem cell targeting in vitro and in vivo. J Control Release 2016; 238:253-262. [DOI: 10.1016/j.jconrel.2016.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022]
|
38
|
Carradori D, Gaudin A, Brambilla D, Andrieux K. Application of Nanomedicine to the CNS Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 130:73-113. [PMID: 27678175 DOI: 10.1016/bs.irn.2016.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Drug delivery to the brain is a challenge because of the many mechanisms that protect the brain from the entry of foreign substances. Numerous molecules which could be active against brain disorders are not clinically useful due to the presence of the blood-brain barrier. Nanoparticles can be used to deliver these drugs to the brain. Encapsulation within colloidal systems can allow the passage of nontransportable drugs across this barrier by masking their physicochemical properties. It should be noted that the status of the blood-brain barrier is different depending on the brain disease. In fact, in some pathological situations such as tumors or inflammatory disorders, its permeability is increased allowing very easy translocation of carriers. This chapter gathers the promising results obtained by using nanoparticles as drug delivery systems with the aim to improve the therapy of some CNS diseases such as brain tumor, Alzheimer's disease, and stroke. The data show that several approaches can be investigated: (1) carrying drug through a permeabilized barrier, (2) crossing the barrier thanks to receptor-mediated transcytosis pathway in order to deliver drug into the brain parenchyma, and also (3) targeting and treating the endothelial cells themselves to preserve locally the brain tissue. The examples given in this chapter contribute to demonstrate that delivering drugs into the brain is one of the most promising applications of nanotechnology in clinical neuroscience.
Collapse
Affiliation(s)
- D Carradori
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, Bruxelles, Belgium
| | - A Gaudin
- Yale University, New Haven, CT, United States
| | - D Brambilla
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - K Andrieux
- Université Paris Descartes, Université Paris-Sorbonne, UTCBS, UMR CNRS 8258, UE1022 INSERM, Paris, France.
| |
Collapse
|
39
|
Lépinoux-Chambaud C, Barreau K, Eyer J. The Neurofilament-Derived Peptide NFL-TBS.40-63 Targets Neural Stem Cells and Affects Their Properties. Stem Cells Transl Med 2016; 5:901-13. [PMID: 27177578 DOI: 10.5966/sctm.2015-0221] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/23/2016] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED Targeting neural stem cells (NSCs) in the adult brain represents a promising approach for developing new regenerative strategies, because these cells can proliferate, self-renew, and differentiate into new neurons, astrocytes, and oligodendrocytes. Previous work showed that the NFL-TBS.40-63 peptide, corresponding to the sequence of a tubulin-binding site on neurofilaments, can target glioblastoma cells, where it disrupts their microtubules and inhibits their proliferation. We show that this peptide targets NSCs in vitro and in vivo when injected into the cerebrospinal fluid. Although neurosphere formation was not altered by the peptide, the NSC self-renewal capacity and proliferation were reduced and were associated with increased adhesion and differentiation. These results indicate that the NFL-TBS.40-63 peptide represents a new molecular tool to target NSCs to develop new strategies for regenerative medicine and the treatment of brain tumors. SIGNIFICANCE In the present study, the NFL-TBS.40-63 peptide targeted neural stem cells in vitro when isolated from the subventricular zone and in vivo when injected into the cerebrospinal fluid present in the lateral ventricle. The in vitro formation of neurospheres was not altered by the peptide; however, at a high concentration of the peptide, the neural stem cell (NSC) self-renewal capacity and proliferation were reduced and associated with increased adhesion and differentiation. These results indicate that the NFL-TBS.40-63 peptide represents a new molecular tool to target NSCs to develop new strategies for regenerative medicine and the treatment of brain tumors.
Collapse
Affiliation(s)
- Claire Lépinoux-Chambaud
- Laboratoire Neurobiologie et Transgenese, Université Nantes, Angers, Le Mans, Unité Propre de Recherche de l'Enseignement Supérieur EA-3143, Institut de Biologie en Santé, L'Université d'Angers, Centre Hospitalier Universitaire, Angers, France
| | - Kristell Barreau
- Laboratoire Neurobiologie et Transgenese, Université Nantes, Angers, Le Mans, Unité Propre de Recherche de l'Enseignement Supérieur EA-3143, Institut de Biologie en Santé, L'Université d'Angers, Centre Hospitalier Universitaire, Angers, France
| | - Joël Eyer
- Laboratoire Neurobiologie et Transgenese, Université Nantes, Angers, Le Mans, Unité Propre de Recherche de l'Enseignement Supérieur EA-3143, Institut de Biologie en Santé, L'Université d'Angers, Centre Hospitalier Universitaire, Angers, France
| |
Collapse
|
40
|
Simonsson C, Bastiat G, Pitorre M, Klymchenko AS, Béjaud J, Mély Y, Benoit JP. Inter-nanocarrier and nanocarrier-to-cell transfer assays demonstrate the risk of an immediate unloading of dye from labeled lipid nanocapsules. Eur J Pharm Biopharm 2016; 98:47-56. [DOI: 10.1016/j.ejpb.2015.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/10/2015] [Accepted: 10/21/2015] [Indexed: 01/22/2023]
|
41
|
Lollo G, Vincent M, Ullio-Gamboa G, Lemaire L, Franconi F, Couez D, Benoit JP. Development of multifunctional lipid nanocapsules for the co-delivery of paclitaxel and CpG-ODN in the treatment of glioblastoma. Int J Pharm 2015; 495:972-80. [PMID: 26428632 DOI: 10.1016/j.ijpharm.2015.09.062] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 12/18/2022]
Abstract
In this work, multifunctional lipid nanocapsules (M-LNC) were designed to combine the activity of the cytotoxic drug paclitaxel (PTX) with the immunostimulant CpG. This nanosystem, consisting of modified lipid nanocapsules coated with a cationic polymeric shell composed of chitosan (CS), was able to allocate the hydrophobic drug PTX in the inner oily core, and to associate onto the surface the genetic material CpG. The CS-coated LNC (CS-LNC), showed a narrow size distribution with an average size of 70 nm and a positive zeta potential (+25 mV). They encapsulated PTX in a high amount (98%), and, due to the cationic surface charge, were able to adsorb CpG without losing stability. As a preliminary in vitro study, the apoptotic effect on GL261 glioma cells was investigated. The drug-loaded CS-LNC exhibited the ability to interact with glioma cells and induce an important apoptotic effect in comparison with blank systems. Finally, the M-LNC made of CS-LNC loaded with both CpG and PTX were tested in vivo, injected via convention enhanced delivery (CED) in GL261-glioma-bearing mice. The results showed that the overall survival of mice treated with the M-LNC was significantly increased in comparison with the control, Taxol(®), or the separated injection of PTX-loaded LNC and CpG. This effect was also confirmed by magnetic resonance imaging (MRI) which revealed the reduction of tumor growth in the animals treated with CpG and PTX-loaded M-LNC. All these findings suggested that the developed M-LNC could potentiate both CpG immunopotency and PTX antitumor activity by enhancing its delivery into the tumor microenvironment.
Collapse
Affiliation(s)
- Giovanna Lollo
- LUNAM Université-Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 rue Larrey, F-49933 Angers Cedex 9, France
| | - Marie Vincent
- INSERM, UMR892, F-49933 Angers, France; CNRS, UMR 6299, F-49933 Angers, France
| | - Gabriela Ullio-Gamboa
- LUNAM Université-Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 rue Larrey, F-49933 Angers Cedex 9, France
| | - Laurent Lemaire
- LUNAM Université-Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 rue Larrey, F-49933 Angers Cedex 9, France
| | - Florence Franconi
- PRIMEX-CIFAB, Université d'Angers, LUNAM Université, IRIS-IBS, CHU Angers F-49933 Angers, France
| | - Dominique Couez
- INSERM, UMR892, F-49933 Angers, France; CNRS, UMR 6299, F-49933 Angers, France
| | - Jean-Pierre Benoit
- LUNAM Université-Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 rue Larrey, F-49933 Angers Cedex 9, France.
| |
Collapse
|
42
|
Zhang F, Xu CL, Liu CM. Drug delivery strategies to enhance the permeability of the blood-brain barrier for treatment of glioma. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2089-100. [PMID: 25926719 PMCID: PMC4403597 DOI: 10.2147/dddt.s79592] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gliomas are amongst the most insidious and destructive types of brain cancer and are associated with a poor prognosis, frequent recurrences, and extremely high lethality despite combination treatment of surgery, radiotherapy, and chemotherapy. The existence of the blood–brain barrier (BBB) restricts the delivery of therapeutic molecules into the brain and offers the clinical efficacy of many pharmaceuticals that have been demonstrated to be effective for other kinds of tumors. This challenge emphasizes the need to be able to deliver drugs effectively across the BBB to reach the brain parenchyma. Enhancement of the permeability of the BBB and being able to transport drugs across it has been shown to be a promising strategy to improve drug absorption and treatment efficacy. This review highlights the innovative technologies that have been introduced to enhance the permeability of the BBB and to obtain an optimal distribution and concentration of drugs in the brain to treat gliomas, such as nanotechniques, hyperthermia techniques, receptor-mediated transport, cell-penetrating peptides, and cell-mediated delivery.
Collapse
Affiliation(s)
- Fang Zhang
- School of Pharmacy, National First-Class Key Discipline for Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Chun-Lei Xu
- School of Pharmacy, National First-Class Key Discipline for Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Chun-Mei Liu
- School of Pharmacy, National First-Class Key Discipline for Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
43
|
Rivalin R, Lepinoux-Chambaud C, Eyer J, Savagner F. The NFL-TBS.40-63 anti-glioblastoma peptide disrupts microtubule and mitochondrial networks in the T98G glioma cell line. PLoS One 2014; 9:e98473. [PMID: 24896268 PMCID: PMC4045719 DOI: 10.1371/journal.pone.0098473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/02/2014] [Indexed: 11/18/2022] Open
Abstract
Despite aggressive therapies, including combinations of surgery, radiotherapy and chemotherapy, glioblastoma remains a highly aggressive brain cancer with the worst prognosis of any central nervous system disease. We have previously identified a neurofilament-derived cell-penetrating peptide, NFL-TBS.40-63, that specifically enters by endocytosis in glioblastoma cells, where it induces microtubule destruction and inhibits cell proliferation. Here, we explore the impact of NFL-TBS.40-63 peptide on the mitochondrial network and its functions by using global cell respiration, quantitative PCR analysis of the main actors directing mitochondrial biogenesis, western blot analysis of the oxidative phosphorylation (OXPHOS) subunits and confocal microscopy. We show that the internalized peptide disturbs mitochondrial and microtubule networks, interferes with mitochondrial dynamics and induces a rapid depletion of global cell respiration. This effect may be related to reduced expression of the NRF-1 transcription factor and of specific miRNAs, which may impact mitochondrial biogenesis, in regard to default mitochondrial mobility.
Collapse
Affiliation(s)
- Romain Rivalin
- Université d'Angers, Angers, France
- Laboratoire Neurobiologie & Transgenese, LNBT, UPRES EA-3143, Université d'Angers, Bâtiment IBS-IRIS, Angers, France
| | - Claire Lepinoux-Chambaud
- Université d'Angers, Angers, France
- Laboratoire Neurobiologie & Transgenese, LNBT, UPRES EA-3143, Université d'Angers, Bâtiment IBS-IRIS, Angers, France
| | - Joël Eyer
- Université d'Angers, Angers, France
- Laboratoire Neurobiologie & Transgenese, LNBT, UPRES EA-3143, Université d'Angers, Bâtiment IBS-IRIS, Angers, France
| | - Frédérique Savagner
- Université d'Angers, Angers, France
- Laboratoire Neurobiologie & Transgenese, LNBT, UPRES EA-3143, Université d'Angers, Bâtiment IBS-IRIS, Angers, France
- CHU Angers, Laboratoire de Biochimie, Angers, France
- * E-mail:
| |
Collapse
|
44
|
Shin MC, Zhang J, Min KA, Lee K, Byun Y, David AE, He H, Yang VC. Cell-penetrating peptides: achievements and challenges in application for cancer treatment. J Biomed Mater Res A 2013; 102:575-87. [PMID: 23852939 DOI: 10.1002/jbm.a.34859] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 11/12/2022]
Abstract
One of the major hurdles to cure cancer lies in the low potency of currently available drugs, which could eventually be solved by using more potent therapeutic macromolecules, such as proteins or genes. However, although these macromolecules possess greater potency inside the cancer cells, the barely permeable cell membrane remains a formidable barrier to exert their efficacy. A widely used strategy is to use cell penetrating peptides (CPPs) to improve their intracellular uptake. Since the discovery of the first CPP, numerous CPPs have been derived from natural or synthesized products. Both in vitro and in vivo studies have demonstrated that those CPPs are highly efficient in transducing cargoes into almost all cell types. Therefore, to date, CPPs have been widely used for intracellular delivery of various cargoes, including peptides, proteins, genes, and even nanoparticles. In addition, recently, based on the successes of CPPs in cellular studies, their applications in vivo have been actively pursued. This review will focus on the advanced applications of CPP-based in vivo delivery of therapeutics (e.g., small molecule drugs, proteins, and genes). In addition, we will highlight certain updated applications of CPPs for intracellular delivery of nanoparticulate drug carriers, as well as several "smart" strategies for tumor targeted delivery of CPP-cargoes.
Collapse
Affiliation(s)
- Meong Cheol Shin
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109-1065
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Lépinoux-Chambaud C, Eyer J. The NFL-TBS.40-63 anti-glioblastoma peptide enters selectively in glioma cells by endocytosis. Int J Pharm 2013; 454:738-47. [PMID: 23603097 DOI: 10.1016/j.ijpharm.2013.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/29/2013] [Accepted: 04/02/2013] [Indexed: 12/12/2022]
Abstract
Glioblastoma are the most frequent and aggressive tumour of the nervous system despite surgical resection associated with chemotherapy and radiotherapy. Recently, we showed that the NFL-TBS.40-63 peptide corresponding to the sequence of a tubulin-binding site of neurofilaments, enters selectively in glioblastoma cells where it blocks microtubule polymerization, inhibits their proliferation, and reduces tumour development in rats bearing glioblastoma (Bocquet et al., 2009; Berges et al., 2012a). Here, we characterized the molecular mechanism responsible for the uptake of NFL-TBS.40-63 peptide by glioblastoma cells. Unlike other cell penetrating peptides (CPPs), which use a balance between endocytosis and direct translocation, the NFL-TBS.40-63 peptide is unable to translocate directly through the membrane when incubated with giant plasma membrane vesicles. Then, using a panel of markers and inhibitors, flow cytometry and confocal microscopy investigations showed that the uptake occurs mainly through endocytosis. Moreover, glycosaminoglycans and αVβ3 integrins are not involved in the NFL-TBS.40-63 peptide recognition and internalization by glioblastoma cells. Finally, the signalling of tyrosine kinase receptors is involved in the peptide uptake, especially via EGFR overexpressed in tumour cells, indicating that the uptake of NFL-TBS.40-63 peptide by glioblastoma cells is related to their abnormally high proliferative activity.
Collapse
Affiliation(s)
- Claire Lépinoux-Chambaud
- Laboratoire Neurobiologie & Transgenese, LUNAM, UPRES EA-3143, Université d'Angers, Centre Hospitalier Universitaire, Bâtiment IBS-IRIS, 49033 Angers, France
| | | |
Collapse
|