1
|
Hu X, Cheng S, Liu S, Zhou M, Liu J, Wei J, Lan Y, Zhai Y, Luo X, Dong M, Xiong Z, Huang W, Zhao C. Fast shape memory function and personalized PLTMC/SIM/MBG composite scaffold for bone regeneration. Mater Today Bio 2025; 32:101791. [PMID: 40416784 PMCID: PMC12098156 DOI: 10.1016/j.mtbio.2025.101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 05/27/2025] Open
Abstract
Orthopedic clinical practice faces significant challenges in treating critical-sized bone defects due to extensive tissue damage and prolonged healing. To address these limitations, this study integrated shape-memory polymers with 3D printing to engineer bioactive scaffolds composed of poly(l-lactide-co-trimethylene carbonate) (PLTMC), simvastatin (SIM), and mesoporous bioactive glass (MBG) via low-temperature rapid prototyping. The PLTMC/SIM/MBG composite scaffold exhibited exceptional porosity (78.5 % ± 1.5 %) and load-bearing compressive strength (66.33 ± 1.44 MPa at 30 % MBG). In addition, its thermoresponsive shape-memory behavior enabled intraoperative molding to precisely conform to defect geometries, while the sustained release of SIM and MBG ionic exchange together created a bioactive microenvironment. Mechanistically, the scaffold activated the Wnt pathway to enhance the osteogenic differentiation of mesenchymal stem cells, maintaining cytocompatibility. In vivo, directional bone regeneration occurred along the degradable scaffold, driven by synergistic topographical guidance from 3D-printed pores and biochemical cues from SIM and MBG. The shape-adaptive design preserved mechanical continuity with the host bone during remodeling. These results demonstrate a personalized solution for large defects, merging surgical adaptability through shape-memory functionality with bioactive efficacy via structural and biochemical synergy, overcoming the limitations of conventional implants in anatomical matching and regenerative performance.
Collapse
Affiliation(s)
- Xulin Hu
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610081, PR China
| | - Shengwen Cheng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, 400016, Chongqing, PR China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, PR China
| | - Senrui Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, 400016, Chongqing, PR China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, PR China
| | - Minchang Zhou
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610081, PR China
| | - Junyan Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, 400016, Chongqing, PR China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jiaying Wei
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, 400016, Chongqing, PR China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, PR China
| | - Yixuan Lan
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610081, PR China
| | - Yu Zhai
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, 400016, Chongqing, PR China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiaohong Luo
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610081, PR China
| | - Mingfei Dong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, 400016, Chongqing, PR China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, PR China
| | - Zu Xiong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, 400016, Chongqing, PR China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, PR China
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, 400016, Chongqing, PR China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, PR China
| | - Chen Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, 400016, Chongqing, PR China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, PR China
| |
Collapse
|
2
|
García-García P, Évora C, Delgado A, Diaz-Rodriguez P. Chitosan-aloe vera scaffolds with tuned extracellular vesicles and histatin-5 display osteogenic and anti-biofilm activities. Int J Pharm 2025; 676:125592. [PMID: 40228611 DOI: 10.1016/j.ijpharm.2025.125592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/05/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
The use of extracellular vesicles (EVs) has garnered significant attention as an alternative to cell-based therapies due to their stability and biocompatibility. In this study, we stimulated mesenchymal stem cells (MSCs) with therapeutic agents affecting the bone regenerative cascade, including bone morphogenetic protein 2 (BMP-2), stromal-derived factor (SDF-1), interleukin 4 (IL-4), alendronate (ALD) and osteogenic differentiation media to obtain osteogenic EVs. The tuned EVs were tested on MSCs and fibroblasts, selecting EVs-BMP-2 as suitable systems. Chitosan-aloe vera (AV) scaffolds were designed to allow for the loading and release of these EVs while leveraging the antibacterial and anti-inflammatory properties of AV. To enhance the dual effect on regeneration and antibacterial activity, poly(lactic-co-glycolic acid) (PLGA) microspheres encapsulating Histatin 5 (Hist-5) were incorporated to the scaffolds. Hist-5 encapsulation was successful, and effectively prevented Staphylococcus aureus biofilm formation on the scaffolds surface. The optimized chitosan-AV scaffolds loaded with EVs-BMP-2 promoted MSCs adhesion and proliferation and exhibited a 2-fold increase in osteogenic differentiation compared to chitosan scaffolds. This study demonstrates the successful combination of bioengineered EVs and Hist-5-loaded microspheres within a chitosan-AV scaffold, providing a promising dual approach for enhancing bone regeneration while reducing the risk of infection. These systems show potential as effective implants for bone fractures, offering both antibacterial and regenerative capabilities.
Collapse
Affiliation(s)
- Patricia García-García
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna 38206 La Laguna, Spain; Institute of Biomedical Technologies (ITB), Universidad de La Laguna 38320 La Laguna, Spain
| | - Carmen Évora
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna 38206 La Laguna, Spain; Institute of Biomedical Technologies (ITB), Universidad de La Laguna 38320 La Laguna, Spain
| | - Araceli Delgado
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna 38206 La Laguna, Spain; Institute of Biomedical Technologies (ITB), Universidad de La Laguna 38320 La Laguna, Spain.
| | - Patricia Diaz-Rodriguez
- Institute of Biomedical Technologies (ITB), Universidad de La Laguna 38320 La Laguna, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain.
| |
Collapse
|
3
|
Bronze-Uhle ES, Melo CCDSBD, da Silva ISP, Stuani VDT, Bueno VH, Rinaldo D, de Souza Costa CA, Lisboa Filho PN, Soares DG. Simvastatin-Loaded Chitosan Microspheres as a Biomaterial for Dentin Tissue Engineering. J Biomed Mater Res B Appl Biomater 2025; 113:e35536. [PMID: 39888107 DOI: 10.1002/jbm.b.35536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/17/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025]
Abstract
In the present study, chitosan microspheres (MSCH) loaded with different concentrations of simvastatin (2%, 5%, and 10%) were synthesized as a biomaterial for dentin tissue engineering. The microspheres were prepared by emulsion crosslinking method, and simvastatin was incorporated during the process. The microspheres were then physicochemically and morphologically characterized. Scanning electron microscopy and infrared spectroscopy confirmed the spherical morphology of synthesized microspheres and the chemical incorporation of simvastatin into MSCH, respectively. UV-visible absorption confirmed the controlled and continuous release pattern of the drug. To mimic the clinical application in vitro, the microspheres were applied onto three-dimensional (3D) cultures of human dental pulp cells (HDPCs). Cell viability, proliferation, and in situ-mineralized matrix deposition were evaluated. The results indicated no cytotoxic effects for all 3D cultures for all tested biomaterials, with cells being able to proliferate significantly over time. HDPCs showed a significant increase in the deposition of mineralization nodules when 3D cultures were in direct contact with chitosan microspheres in comparison to control; nevertheless, the highest expression was observed for MSCH encapsulated with 5% and 10% simvastatin, which was significantly higher than plain MSCH. Therefore, chitosan microsphere systems loaded with 5%-10% simvastatin provided the development of a controlled release system in bioactive dosages for dentin tissue engineering.
Collapse
Affiliation(s)
- Erika Soares Bronze-Uhle
- Department of Operative Dentistry, Endodontics, and Dental Materials, Bauru School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | | | - Isabela Sanches Pompeo da Silva
- Department of Operative Dentistry, Endodontics, and Dental Materials, Bauru School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | - Vitor de Toledo Stuani
- Department of Operative Dentistry, Endodontics, and Dental Materials, Bauru School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | - Victor Hugo Bueno
- Department of Chemistry, School of Science, São Paulo State University-UNESP, Bauru, Brazil
| | - Daniel Rinaldo
- Department of Chemistry, School of Science, São Paulo State University-UNESP, Bauru, Brazil
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, University Estadual Paulista-UNESP, Araraquara School of Dentistry, Araraquara, Brazil
| | | | - Diana Gabriela Soares
- Department of Operative Dentistry, Endodontics, and Dental Materials, Bauru School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| |
Collapse
|
4
|
Wang T, Guo S, Zhang Y. Effect of nHA/CS/PLGA delivering adipose stem cell-derived exosomes and bone marrow stem cells on bone healing-in vitro and in vivo studies. Sci Rep 2024; 14:27502. [PMID: 39528545 PMCID: PMC11555374 DOI: 10.1038/s41598-024-76672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Adipose stem cell-derived exosomes (ADSC-EXO) have been demonstrated to promote osteogenic differentiation of bone marrow stem cells (BMSCs) and facilitate bone regeneration. The present study aims to investigate the effect of ADSC-EXO-loaded nano-hydroxyapatite/chitosan/poly-lactide-co-glycolide (nHA/CS/PLGA) scaffolds on maxillofacial bone regeneration using tissue engineering. ADSC-EXO was isolated and co-cultured with BMSCs, and the osteogenic differentiation of BMSCs was assessed through the detection of mineralized nodule formation, alkaline phosphatase (ALP) activity, and mRNA expression of COL1A1 and runt-related transcription factor 2 (RUNX2). The nHA/CS/PLGA scaffolds were fabricated and loaded with ADSC-EXO and BMSCs, and these tissue engineering complexes were applied to the maxillofacial bone defect region of rabbits to elucidate their bone regeneration effect. The osteogenic differentiation of BMSCs was markedly enhanced when they were co-cultured with ADSC-EXO. This was evidenced by an increase in the formation of mineralized nodule formation, ALP activity, and mRNA expression of COL1A1 and runt-related transcription factor 2 (RUNX2). In vivo experiments demonstrated that the application of ADSC-EXO and BMSCs loaded nHA/CS/PLGA scaffolds effectively repaired maxillofacial bone defects in rabbits. ADSC-EXO has been demonstrated to promote the osteogenic differentiation of BMSCs. The ADSC-EXO and BMSCs loaded nHA/CS/PLGA scaffolds have been shown to facilitate the regeneration of maxillofacial bone defects. This may serve as a potential therapeutic strategy for large-scale bone defects.
Collapse
Affiliation(s)
- Ting Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China.
| | - Ye Zhang
- Department of General Surgery, The Forth Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110001, PR China
| |
Collapse
|
5
|
Tang X, Zhou F, Wang S, Wang G, Bai L, Su J. Bioinspired injectable hydrogels for bone regeneration. J Adv Res 2024:S2090-1232(24)00486-7. [PMID: 39505143 DOI: 10.1016/j.jare.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
The effective regeneration of bone/cartilage defects remains a significant clinical challenge, causing irreversible damage to millions annually.Conventional therapies such as autologous or artificial bone grafting often yield unsatisfactory outcomes, emphasizing the urgent need for innovative treatment methods. Biomaterial-based strategies, including hydrogels and active scaffolds, have shown potential in promoting bone/cartilage regeneration. Among them, injectable hydrogels have garnered substantial attention in recent years on account of their minimal invasiveness, shape adaptation, and controlled spatiotemporal release. This review systematically discusses the synthesis of injectable hydrogels, bioinspired approaches-covering microenvironment, structural, compositional, and bioactive component-inspired strategies-and their applications in various bone/cartilage disease models, highlighting bone/cartilage regeneration from an innovative perspective of bioinspired design. Taken together, bioinspired injectable hydrogels offer promising and feasible solutions for promoting bone/cartilage regeneration, ultimately laying the foundations for clinical applications. Furthermore, insights into further prospective directions for AI in injectable hydrogels screening and organoid construction are provided.
Collapse
Affiliation(s)
- Xuan Tang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China
| | - Sicheng Wang
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai 201900, China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Wenzhou Institute of Shanghai University, Wenzhou 325000, China.
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
6
|
Liu X, Liu C, Lin Q, Shi T, Liu G. Exosome-loaded hydrogels for craniofacial bone tissue regeneration. Biomed Mater 2024; 19:052002. [PMID: 38815606 DOI: 10.1088/1748-605x/ad525c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
It is common for maladies and trauma to cause significant bone deterioration in the craniofacial bone, which can cause patients to experience complications with their appearance and their ability to function. Regarding grafting procedures' complications and disadvantages, the newly emerging field of tissue regeneration has shown promise. Tissue -engineered technologies and their applications in the craniofacial region are increasingly gaining prominence with limited postoperative risk and cost. MSCs-derived exosomes are widely applied in bone tissue engineering to provide cell-free therapies since they not only do not cause immunological rejection in the same way that cells do, but they can also perform a cell-like role. Additionally, the hydrogel system is a family of multipurpose platforms made of cross-linked polymers with considerable water content, outstanding biocompatibility, and tunable physiochemical properties for the efficient delivery of commodities. Therefore, the promising exosome-loaded hydrogels can be designed for craniofacial bone regeneration. This review lists the packaging techniques for exosomes and hydrogel and discusses the development of a biocompatible hydrogel system and its potential for exosome continuous delivery for craniofacial bone healing.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Plastic Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Chang Liu
- Department of Plastic Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Qingquan Lin
- Institute of Applied Catalysis, College of Chemistry and Chemical Engineering, Yantai University, Yantai, People's Republic of China
| | - Ting Shi
- Department of Plastic Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Guanying Liu
- Department of Hand and Foot Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| |
Collapse
|
7
|
Dong G, Wang J, Chen Z, Wang F, Xia B, Chen G. Regulatory effects of stress release from decellularized periosteum on proliferation, migration, and osteogenic differentiation of periosteum-derived cells. Biomater Sci 2024; 12:3360-3373. [PMID: 38771565 DOI: 10.1039/d4bm00358f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Bone injury is often associated with tears in the periosteum and changes in the internal stress microenvironment of the periosteum. In this study, we investigated the biological effects of periosteal prestress release on periosteum-derived cells (PDCs) and the potential mechanisms of endogenous stem cell recruitment. Decellularized periosteum with natural extracellular matrix (ECM) components was obtained by a combination of physical, chemical, and enzymatic decellularization. The decellularized periosteum removed immunogenicity while retaining the natural network structure and composition of the ECM. The Young's modulus has no significant difference between the periosteum before and after decellularization. The extracted PDCs were further composited with the decellularized periosteum and subjected to 20% stress release. It was found that the proliferative capacity of PDCs seeded on decellularized periosteum was significantly enhanced 6 h after stress release of the periosteum. The cell culture supernatant obtained after periosteal prestress release was able to significantly promote the migration ability of PDCs within 24 h. Enzyme-linked immunosorbnent assay (ELISA) experiments showed that the expression of stroma-derived factor-1α (SDF-1α) and vascular endothelial growth factor (VEGF) in the supernatant increased significantly after 3 h and 12 h of stress release, respectively. Furthermore, periosteal stress release promoted the high expression of osteogenic markers osteocalcin (OCN), osteopontin (OPN), and collagen type I of PDCs. The change in stress environment caused by the release of periosteal prestress was sensed by integrin β1, a mechanoreceptor on the membrane of PDCs, which further stimulated the expression of YAP in the nucleus. These investigations provided a novel method to evaluate the importance of mechanical stimulation in periosteum, which is also of great significance for the design and fabrication of artificial periosteum with mechanical regulation function.
Collapse
Affiliation(s)
- Gangli Dong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. China.
| | - Jinsong Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. China.
| | - Zhongmin Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. China.
| | - Fuping Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. China.
| | - Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, P. R. China.
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. China.
| |
Collapse
|
8
|
Qinyuan D, Zhuqing W, Qing L, Yunsong L, Ping Z, Xiao Z, Yuting N, Hao L, Yongsheng Z, Longwei L. 3D-printed near-infrared-light-responsive on-demand drug-delivery scaffold for bone regeneration. BIOMATERIALS ADVANCES 2024; 159:213804. [PMID: 38412627 DOI: 10.1016/j.bioadv.2024.213804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Although several bioactive 3D-printed bone scaffolds loaded with multiple kinds of biomolecules for enhanced bone regeneration have been recently developed, the manipulation of on-demand release profiles of different biomolecules during bone regeneration remains challenging. Herein, a 3D-printed dual-drug-loaded biomimetic scaffold to regulate the host stem cell recruitment and osteogenic differentiation in a two-stage process for bone regeneration was successfully fabricated. First, a chemotactic small-molecule drug, namely, simvastatin (SIM) was directly incorporated into the hydroxyapatite/collagen bioink for printing and could be rapidly released during the early stage of bone regeneration. Further, near-infrared (NIR)-light-responsive polydopamine-coated hydroxyapatite nanoparticles were designed to deliver the osteogenic drug, i.e., pargyline (PGL) in a controllable manner. Together, our scaffold displayed an on-demand sequential release of those two drugs and could optimize their therapeutic effects to align with the stem cell recruitment and osteoblastic differentiation, thereby promoting bone regeneration. The results confirmed the suitable mechanical strength, high photothermal conversion efficiency, good biocompatibility of our scaffold. The scaffold loaded with SIM could efficiently accelerate the migration of stem cells. In addition, the scaffold with on-demand sequential release promoted alkaline phosphatase (ALP) activity, significantly upregulated gene expression levels of osteogenesis-related markers, and enhanced new-bone-formation capabilities in rabbit cranial defect models. Altogether, this scaffold not only offers a promising strategy to control the behavior of stem cells during bone regeneration but also provides an efficient strategy for controllable sequential release of different biomolecule in bone tissue engineering.
Collapse
Affiliation(s)
- Dong Qinyuan
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Wan Zhuqing
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Li Qing
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Liu Yunsong
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Zhang Ping
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Zhang Xiao
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Niu Yuting
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Liu Hao
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Zhou Yongsheng
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China.
| | - Lv Longwei
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China.
| |
Collapse
|
9
|
Zhang S, Wang S, Chen J, Cui Y, Lu X, Xiong S, Yue C, Yang B. Human dental pulp stem cell-derived exosomes decorated titanium scaffolds for promoting bone regeneration. Colloids Surf B Biointerfaces 2024; 235:113775. [PMID: 38330688 DOI: 10.1016/j.colsurfb.2024.113775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Exosomes, nanoscale extracellular vesicles crucial for intercellular communication, hold great promise as a therapeutic avenue in cell-free tissue regeneration. In this study, we identified and utilized exosomes to adorn anodized titanium scaffolds, inducing osteogenic differentiation in human dental pulp stem cells (hDPSCs). The osteogenesis of hDPSCs was stimulated by exosomes derived from hDPSCs that underwent various periods of osteogenic differentiation. After purification, these exosomes were loaded onto anodized titanium scaffolds. Notably, the scaffolds loaded with exosomes deriving from osteogenic differentiated hDPSCs demonstrated superior bone tissue regeneration compared to those loaded with exosomes deriving from hDPSCs within 10-week. RNA-sequencing analysis shed light on the underlying mechanism, revealing that the osteogenic exosomes carried specific cargo, which is due to upregulated miRNAs (Hsa-miR-29c-5p, Hsa-miR-378a-5p, Hsa-miR-10b-5p and Hsa-miR-9-3p) associated with osteogenesis. And down-regulated anti-osteogenic miRNA (Hsa-miR-31-3p, Hsa-miR-221-3p, Hsa-miR-183-5p and Hsa-miR-503-5p). In conclusion, the identification and utilization of exosomes derived from osteogenic differentiated stem cells offer a novel and promising strategy for achieving cell-free bone regeneration.
Collapse
Affiliation(s)
- Siqi Zhang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Simeng Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jun Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yifan Cui
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Xugang Lu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Shibing Xiong
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Chongxia Yue
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Bangcheng Yang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China.
| |
Collapse
|
10
|
Al-Baadani MA, Xu L, Cai K, Yie KHR, Shen Y, Al-Bishari AM, Al-Shaaobi BA, Ma P, Shen X, Liu J. Preparation of co-electrospinning membrane loaded with simvastatin and substance P to accelerate bone regeneration by promoting cell homing, angiogenesis and osteogenesis. Mater Today Bio 2023; 21:100692. [PMID: 37455818 PMCID: PMC10338360 DOI: 10.1016/j.mtbio.2023.100692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Bone regeneration is a complex process that requires the coordination of various biological events. Developing a tissue regeneration membrane that can regulate this cascade of events is challenging. In this study, we aimed to fabricate a membrane that can enrich the damaged area with mesenchymal stem cells, improve angiogenesis, and continuously induce osteogenesis. Our approach involved creating a hierarchical polycaprolactone/gelatin (PCL/GEL) co-electrospinning membrane that incorporated substance P (SP)-loaded GEL fibers and simvastatin (SIM)-loaded PCL fibers. The membrane could initiate a burst release of SP and a slow/sustained release of SIM for over a month. In vitro experiments, including those related to angiogenesis and osteogenesis (e.g., migration, endothelial network formation, alkaline phosphatase activity, mineralization, and gene expression), clearly demonstrated the membrane's superior ability to improve cell homing, revascularization, and osteogenic differentiation. Furthermore, a series of in vivo studies, including immunofluorescence of CD29+/CD90+ double-positive cells and immunohistochemical staining for CD34 and vWF, confirmed the co-electrospinning membrane's ability to enhance MSC migration and revascularization response after five days of implantation. After one month, the Micro-CT and histological (Masson and H&E) results showed accelerated bone regeneration. Our findings suggest that a co-electrospinning membrane with time-tunable drug delivery could advance the development of tissue engineering therapeutic strategies and potentially improve patient outcomes.
Collapse
Affiliation(s)
- Mohammed A. Al-Baadani
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Lihua Xu
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325016, People's Republic of China
| | - Kexin Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Kendrick Hii Ru Yie
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Yiding Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Abdullrahman M. Al-Bishari
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Bilal A. Al-Shaaobi
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Pingping Ma
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Xinkun Shen
- Science and Education Division, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou, 325016, People's Republic of China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| |
Collapse
|
11
|
Yang T, Dong Y, Wan J, Liu X, Liu Y, Huang J, Zhou J, Xiao H, Tang L, Wang Y, Wang S, Cai H. Sustained Release of BMSC-EVs from 3D Printing Gel/HA/nHAP Scaffolds for Promoting Bone Regeneration in Diabetic Rats. Adv Healthc Mater 2023; 12:e2203131. [PMID: 36854163 DOI: 10.1002/adhm.202203131] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/09/2023] [Indexed: 03/02/2023]
Abstract
Extracellular vesicles (EVs) play an important role in intercellular communication, and the function of EVs mainly depends on the state of source cells. To determine the effect of diabetic microenvironment on EVs secreted by bone marrow mesenchymal stem cells (BMSCs), this work explores the effect of normal glucose (5.5 mm) cultured BMSCs derived EVs (NG-EVs) and high glucose (30 mm) cultured BMSCs derived EVs (HG-EVs) in regulating the migration, proliferation and osteoblastic differentiation of BMSCs in vitro. In order to improve the bioavailability of EVs, this work constructs a sustained release system of polydopamine (PDA) functionalized 3D printing gelatin/hyaluronic acid/nano-hydroxyapatite (Gel/HA/nHAP) scaffolds (S/PDA) and verifies its function in the calvarial defect model of diabetic rats. This work confirms that both NG-EVs and HG-EVs can promote proliferation and migration, inhibit apoptosis and promote osteogenic differentiation, but the function of HG-EVs is weaker than that of NG-EVs. Therefore, EVs secreted by autologous cells of diabetic patients are not suitable for self-repair. This work hopes that the 3D printing scaffold designed for sustained-release EVs will provide a new strategy for acellular tissue engineering bone repair in diabetic patients.
Collapse
Affiliation(s)
- Tingting Yang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yunsheng Dong
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jinpeng Wan
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Xiangsheng Liu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yufei Liu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jiaxing Huang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jie Zhou
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Hui Xiao
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Lizong Tang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yanying Wang
- Department of Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, P. R. China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Hong Cai
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, P. R. China
| |
Collapse
|
12
|
He Y, Li F, Jiang P, Cai F, Lin Q, Zhou M, Liu H, Yan F. Remote control of the recruitment and capture of endogenous stem cells by ultrasound for in situ repair of bone defects. Bioact Mater 2023; 21:223-238. [PMID: 36157244 PMCID: PMC9465026 DOI: 10.1016/j.bioactmat.2022.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Stem cell-based tissue engineering has provided a promising platform for repairing of bone defects. However, the use of exogenous bone marrow mesenchymal stem cells (BMSCs) still faces many challenges such as limited sources and potential risks. It is important to develop new approach to effectively recruit endogenous BMSCs and capture them for in situ bone regeneration. Here, we designed an acoustically responsive scaffold (ARS) and embedded it into SDF-1/BMP-2 loaded hydrogel to obtain biomimetic hydrogel scaffold complexes (BSC). The SDF-1/BMP-2 cytokines can be released on demand from the BSC implanted into the defected bone via pulsed ultrasound (p-US) irradiation at optimized acoustic parameters, recruiting the endogenous BMSCs to the bone defected or BSC site. Accompanied by the daily p-US irradiation for 14 days, the alginate hydrogel was degraded, resulting in the exposure of ARS to these recruited host stem cells. Then another set of sinusoidal continuous wave ultrasound (s-US) irradiation was applied to excite the ARS intrinsic resonance, forming highly localized acoustic field around its surface and generating enhanced acoustic trapping force, by which these recruited endogenous stem cells would be captured on the scaffold, greatly promoting them to adhesively grow for in situ bone tissue regeneration. Our study provides a novel and effective strategy for in situ bone defect repairing through acoustically manipulating endogenous BMSCs. We designed ARS and embedded it into SDF-1/BMP-2 loaded hydrogel to form BSC. The BSC can release SDF-1/BMP-2 by p-US irradiation for recruitment of endogenous BMSCs and capture them by s-US irradiation. The in situ repair of bone defects were successfully realized by US-mediated control of the recruitment and capture of BMSCs.
Collapse
Affiliation(s)
- Yanni He
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, PR China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Peng Jiang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Feiyan Cai
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Qin Lin
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Meijun Zhou
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, PR China
| | - Hongmei Liu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, PR China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- Corresponding author. Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, PR China.
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- Corresponding author. Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
13
|
Li G, Li Y, Zhang X, Gao P, Xia X, Xiao S, Wen J, Guo T, Yang W, Li J. Strontium and simvastatin dual loaded hydroxyapatite microsphere reinforced poly(ε-caprolactone) scaffolds promote vascularized bone regeneration. J Mater Chem B 2023; 11:1115-1130. [PMID: 36636931 DOI: 10.1039/d2tb02309a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The promotion of vascular network formation in the early stages of implantation is considered a prerequisite for successful functional bone regeneration. In this study, we successfully constructed 3D printed scaffolds with strong mechanical strength and a controllable pore structure that can sustainably release strontium (Sr) ions and simvastatin (SIM) for up to 28 days by incorporation of Sr2+ and SIM-loaded hydroxyapatite microspheres (MHA) into a poly(ε-caprolactone) (PCL) matrix. In vitro cell experiments showed that Sr-doped scaffolds were beneficial to the proliferation and osteogenic differentiation of bone mesenchymal stem cells (BMSCs), an appropriate dose of SIM was beneficial to cell proliferation and angiogenesis, and a high dose of SIM was cytotoxic. The Sr- and SIM-dual-loaded scaffolds with an appropriate dose significantly induced osteogenic differentiation of BMSCs and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro and promoted vascular network and functional bone formation in vivo. Ribose nucleic acid (RNA) sequencing analysis suggested that the mechanism of promotion of vascularized bone regeneration by fabricated scaffolds is that dual-loaded Sr2+ and SIM can upregulate osteogenic and vasculogenic-related genes and downregulate osteoclast-related genes, which is beneficial for vascular and new bone regeneration. The 3D printed composite scaffolds loaded with high-stability and low-cost inorganic Sr2+ ions and SIM small-molecule drugs hold great promise in the field of promoting vascularized bone regeneration.
Collapse
Affiliation(s)
- Gen Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Xianhui Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Pengfei Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Xue Xia
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Shiqi Xiao
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Jing Wen
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Tao Guo
- Department of Orthopaedics, Guizhou Provincial People's hospital, Guiyang 550002, China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
14
|
Wu H, Shang Y, Sun W, Ouyang X, Zhou W, Lu J, Yang S, Wei W, Yao X, Wang X, Zhang X, Chen Y, He Q, Yang Z, Ouyang H. Seamless and early gap healing of osteochondral defects by autologous mosaicplasty combined with bioactive supramolecular nanofiber-enabled gelatin methacryloyl (BSN-GelMA) hydrogel. Bioact Mater 2023; 19:88-102. [PMID: 35441114 PMCID: PMC9005961 DOI: 10.1016/j.bioactmat.2022.03.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/04/2022] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
Autologous mosaicplasty is a common approach used to treat osteochondral defects in clinical practice. Gap integration between host and transplanted plugs requires bone tissue reservation and hyaline cartilage regeneration without uneven surface, graft necrosis and sclerosis. However, poor gap integration is a serious concern, which eventually leads to deterioration of joint function. To deal with such complications, this study has developed a strategy to effectively enhance integration of the gap region following mosaicplasty by applying injectable bioactive supramolecular nanofiber-enabled gelatin methacryloyl (GelMA) hydrogel (BSN-GelMA). A rabbit osteochondral defect model demonstrated that BSN-GelMA achieved seamless osteochondral healing in the gap region between plugs of osteochondral defects following mosaicplasty, as early as six weeks. Moreover, the International Cartilage Repair Society score, histology score, glycosaminoglycan content, subchondral bone volume, and collagen II expression were observed to be the highest in the gap region of BSN-GelMA treated group. This improved outcome was due to bio-interactive materials, which acted as tissue fillers to bridge the gap, prevent cartilage degeneration, and promote graft survival and migration of bone marrow mesenchymal stem cells by releasing bioactive supramolecular nanofibers from the GelMA hydrogel. This study provides a powerful and applicable approach to improve gap integration after autologous mosaicplasty. It is also a promising off-the-shelf bioactive material for cell-free in situ tissue regeneration. A novel strategy that can effectively enhance post-mosaicplasty interstitial integration was developed. The bioactive supramolecular nanofibers (BSN) exhibited comparable bioactivity to insulin-like growth factor-1 (IGF-1). The BSN-GelMA hydrogel is a promising off-the-shelf bioactive material for cell-free in situ tissue regeneration.
Collapse
|
15
|
Mao L, Bai L, Wang X, Chen X, Zhang D, Chen F, Liu C. Enhanced Cell Osteogenesis and Osteoimmunology Regulated by Piezoelectric Biomaterials with Controllable Surface Potential and Charges. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44111-44124. [PMID: 36137506 DOI: 10.1021/acsami.2c11131] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bone regeneration is a well-orchestrated process involving electrical, biochemical, and mechanical multiple physiological cues. Electrical signals play a vital role in the process of bone repair. The endogenous potential will spontaneously form on defect sites, guide the cell behaviors, and mediate bone healing when the bone fracture occurs. However, the mechanism on how the surface charges of implant potentially guides osteogenesis and osteoimmunology has not been clearly revealed yet. In this study, piezoelectric BaTiO3/β-TCP (BTCP) ceramics are prepared by two-step sintering, and different surface charges are established by polarization. In addition, the cell osteogenesis and osteoimmunology of BMSCs and RAW264.7 on different surface charges were explored. The results showed that the piezoelectric constant d33 of BTCP was controllable by adjusting the sintering temperature and rate. The polarized BTCP with a negative surface charge (BTCP-) promoted protein adsorption and BMSC extracellular Ca2+ influx. The attachment, spreading, migration, and osteogenic differentiation of BMSCs were enhanced on BTCP-. Additionally, the polarized BTCP ceramics with a positive surface charge (BTCP+) significantly inhibited M1 polarization of macrophages, affecting the expression of the M1 marker in macrophages and changing secretion of proinflammatory cytokines. It in turn enhanced osteogenic differentiation of BMSCs, suggesting that positive surface charges could modulate the bone immunoregulatory properties and shift the immune microenvironment to one that favored osteogenesis. The result provides an alternative method of synergistically modulating cellular immunity and the osteogenesis function and enhancing the bone regeneration by fabricating piezoelectric biomaterials with electrical signals.
Collapse
Affiliation(s)
- Lijie Mao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Long Bai
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xinqing Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaolei Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Dong Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Fangping Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
16
|
Malaquias DP, Dourado LFN, Lana ÂMQ, Souza F, Vilela J, Andrade M, Roa JPB, Carvalho-Junior ÁDD, Leite EA. Development and optimization by factorial design of polymeric nanoparticles for simvastatin delivery. POLIMEROS 2022. [DOI: 10.1590/0104-1428.20220016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Wani TU, Khan RS, Rather AH, Beigh MA, Sheikh FA. Local dual delivery therapeutic strategies: Using biomaterials for advanced bone tissue regeneration. J Control Release 2021; 339:143-155. [PMID: 34563589 DOI: 10.1016/j.jconrel.2021.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023]
Abstract
Bone development is a complex process involving a vast number of growth factors and chemical substances. These factors include transforming growth factor-beta, platelet-derived growth factor, insulin-like growth factor, and most importantly, the bone morphogenetic protein, which exhibits excellent therapeutic value in bone repair. However, the spatial-temporal relationship in the expression of these factors during bone formation makes the bone repair a more complicated process to address. Thus, using a single therapeutic agent to address bone formation does not seem to provide a clinically effective option. Conversely, a dual delivery approach facilitating the co-delivery of agents has proved to be a dynamic alternative since such a strategy can provide more efficient spatial-temporal action. Such delivery systems can smartly target more than one pathway or differentiation lineage and thus offer more efficient bone regeneration. This review discusses various dual delivery strategies reported in the literature employed to achieve improved bone regeneration. These include concurrent use of different therapeutic agents (including growth factors and drugs), enhancing bone formation and cell recruitment, and improving the efficiency of bone healing.
Collapse
Affiliation(s)
- Taha Umair Wani
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Rumysa Saleem Khan
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Anjum Hamid Rather
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Mushtaq A Beigh
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Faheem A Sheikh
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| |
Collapse
|
18
|
Zhang X, Fan J, Chen C, Aghaloo T, Lee M. Co-delivery of simvastatin and demineralized bone matrix hierarchically from nanosheet-based supramolecular hydrogels for osteogenesis. J Mater Chem B 2021; 9:7741-7750. [PMID: 34586142 DOI: 10.1039/d1tb01256h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supramolecular hydrogels are widely used as 3D scaffolds and delivery platforms in tissue engineering applications. However, hydrophobic therapeutic agents exhibit weak compatibility in hydrogel scaffolds along with aggregation and precipitation. Herein, simvastatin drugs used as BMP-2 stimulators are encapsulated into the layer space of LAPONITE® via electrostatic interactions and ion exchange efficiently, and supramolecular hydrogels could be fabricated with a self-healing, injectable and sustained drug release nature. Hydrogels encapsulated with 10 μg mL-1 simvastatin drug show good osteogenic differentiation in vitro. Moreover, the loading of demineralized bone matrix particles could enhance the capacity for osteogenesis via improving the expression of BMP-2 synergistically. The integrated hydrogels could be implanted into cranial defect sites for bone regeneration in vivo. This work provides the first demonstration of molecular and supramolecular engineering of hydrogels to load osteoinductive agents hierarchically for bone regeneration, contributing to the development of a brand-new strategy for dealing with compatibility between scaffolds and osteogenic agents.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Pharmacy, Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P. R. China. .,Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, USA.
| | - Jiabing Fan
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, USA.
| | - Chen Chen
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, USA.
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, USA
| | - Min Lee
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, USA. .,Department of Bioengineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, USA
| |
Collapse
|
19
|
Gorabi AM, Kiaie N, Pirro M, Bianconi V, Jamialahmadi T, Sahebkar A. Effects of statins on the biological features of mesenchymal stem cells and therapeutic implications. Heart Fail Rev 2021; 26:1259-1272. [PMID: 32008148 DOI: 10.1007/s10741-020-09929-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Statins are well-known lipid-lowering drugs. The pleiotropic effects of statins have brought about some beneficial effects on improving the therapeutic outcomes of cell therapy and tissue engineering approaches. In this review, the impact of statins on mesenchymal stem cell behaviors including differentiation, apoptosis, proliferation, migration, and angiogenesis, as well as molecular pathways which are responsible for such phenomena, are discussed. A better understanding of pathways and mechanisms of statin-mediated effects on mesenchymal stem cells will pave the way for the expansion of statin applications. Furthermore, since designing a suitable carrier for statins is required to maintain a sufficient dose of active statins at the desired site of the body, different systems for local delivery of statins are also reviewed.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
SDF-1 α/OPF/BP Composites Enhance the Migrating and Osteogenic Abilities of Mesenchymal Stem Cells. Stem Cells Int 2021; 2021:1938819. [PMID: 34434236 PMCID: PMC8380507 DOI: 10.1155/2021/1938819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/02/2021] [Accepted: 07/29/2021] [Indexed: 01/07/2023] Open
Abstract
In situ cell recruitment is a promising regenerative medicine strategy with the purpose of tissue regeneration without stem cell transplantation. This chemotaxis-based strategy is aimed at ensuring a restorative environment through the release of chemokines that promote site-specific migration of healing cell populations. Stromal cell-derived factor-1α (SDF-1α) is a critical chemokine that can regulate the migration of mesenchymal stem cells (MSCs). Accordingly, here, SDF-1α-loaded microporous oligo[poly(ethylene glycol) fumarate]/bis[2-(methacryloyloxy)ethyl] phosphate composites (SDF-1α/OPF/BP) were engineered and probed. SDF-1α/OPF/BP composites were loaded with escalating SDF-1α concentrations, namely, 0 ng/ml, 50 ng/ml, 100 ng/ml, and 200 ng/ml, and were cocultured with MSC. Scratching assay, Transwell assay, and three-dimensional migration model were utilized to assess the migration response of MSCs. Immunofluorescence staining of Runx2 and osteopontin (OPN), ELISA assay of osteocalcin (OCN) and alkaline phosphatase (ALP), and Alizarin Red S staining were conducted to assess the osteogenesis of MSCs. All SDF-1α/OPF/BP composites engendered a release of SDF-1α (>80%) during the first four days. SDF-1α released from the composites significantly promoted migration and osteogenic differentiation of MSCs documented by upregulated expression of osteogenic-related proteins, ALP, Runx2, OCN, and OPN. SDF-1α at 100 ng/ml was optimal for enhanced migration and osteogenic proficiency. Thus, designed SDF-1α/OPF/BP composites were competent in promoting the homing and osteogenesis of MSCs and thus offer a promising bioactive scaffold candidate for on-demand bone tissue regeneration.
Collapse
|
21
|
Sevari SP, Ansari S, Moshaverinia A. A narrative overview of utilizing biomaterials to recapitulate the salient regenerative features of dental-derived mesenchymal stem cells. Int J Oral Sci 2021; 13:22. [PMID: 34193832 PMCID: PMC8245503 DOI: 10.1038/s41368-021-00126-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering approaches have emerged recently to circumvent many limitations associated with current clinical practices. This elegant approach utilizes a natural/synthetic biomaterial with optimized physiomechanical properties to serve as a vehicle for delivery of exogenous stem cells and bioactive factors or induce local recruitment of endogenous cells for in situ tissue regeneration. Inspired by the natural microenvironment, biomaterials could act as a biomimetic three-dimensional (3D) structure to help the cells establish their natural interactions. Such a strategy should not only employ a biocompatible biomaterial to induce new tissue formation but also benefit from an easily accessible and abundant source of stem cells with potent tissue regenerative potential. The human teeth and oral cavity harbor various populations of mesenchymal stem cells (MSCs) with self-renewing and multilineage differentiation capabilities. In the current review article, we seek to highlight recent progress and future opportunities in dental MSC-mediated therapeutic strategies for tissue regeneration using two possible approaches, cell transplantation and cell homing. Altogether, this paper develops a general picture of current innovative strategies to employ dental-derived MSCs combined with biomaterials and bioactive factors for regenerating the lost or defective tissues and offers information regarding the available scientific data and possible applications.
Collapse
Affiliation(s)
- Sevda Pouraghaei Sevari
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sahar Ansari
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Sordi MB, da Cruz ACC, Aragones Á, Cordeiro MMR, de Souza Magini R. PLGA+HA/βTCP Scaffold Incorporating Simvastatin: A Promising Biomaterial for Bone Tissue Engineering. J ORAL IMPLANTOL 2021; 47:93-101. [PMID: 32699891 DOI: 10.1563/aaid-joi-d-19-00148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to synthesize, characterize, and evaluate degradation and biocompatibility of poly(lactic-co-glycolic acid) + hydroxyapatite/β-tricalcium phosphate (PLGA+HA/βTCP) scaffolds incorporating simvastatin (SIM) to verify if this biomaterial might be promising for bone tissue engineering. Samples were obtained by the solvent evaporation technique. Biphasic ceramic particles (70% HA, 30% βTCP) were added to PLGA in a ratio of 1:1. Samples with SIM received 1% (m/m) of this medication. Scaffolds were synthesized in a cylindric shape and sterilized by ethylene oxide. For degradation analysis, samples were immersed in phosphate-buffered saline at 37°C under constant stirring for 7, 14, 21, and 28 days. Nondegraded samples were taken as reference. Mass variation, scanning electron microscopy, porosity analysis, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetry were performed to evaluate physico-chemical properties. Wettability and cytotoxicity tests were conducted to evaluate the biocompatibility. Microscopic images revealed the presence of macro-, meso-, and micropores in the polymer structure with HA/βTCP particles homogeneously dispersed. Chemical and thermal analyses presented similar results for both PLGA+HA/βTCP and PLGA+HA/βTCP+SIM. The incorporation of simvastatin improved the hydrophilicity of scaffolds. Additionally, PLGA+HA/βTCP and PLGA+HA/βTCP+SIM scaffolds were biocompatible for osteoblasts and mesenchymal stem cells. In summary, PLGA+HA/βTCP scaffolds incorporating simvastatin presented adequate structural, chemical, thermal, and biological properties for bone tissue engineering.
Collapse
Affiliation(s)
- Mariane Beatriz Sordi
- Center for Research on Dental Implants, Department of Dentistry, Federal University of Santa Catarina, Santa Catarina, Brazil
| | | | - Águedo Aragones
- Ceramic & Composite Materials Research Laboratories, Department of Mechanical Engineering, Federal University of Santa Catarina, Santa Catarina, Brazil
| | | | | |
Collapse
|
23
|
Niu LN, Jiao K, Fang M, Chen JH. [Application of biomimetic restoration in oral-maxillofacial hard tissue repair]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:129-135. [PMID: 33834666 DOI: 10.7518/hxkq.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oral-maxillofacial hard tissue is the support of maxillofacial structure and appearance, and lays the foundation for functions of oral and maxillofacial system. Once the defect occurs, it will not only affect the physiological functions such as chewing and pronunciation, but also have a significant impact on the psychological and social life of patients. However, the self-repairing capability of the oral-maxillofacial hard tissue is pretty limited, in which case, substitute materials are required for tissue repair. A huge gap exists between the physical, chemical, structural characteristics of conventional substitute materials and those of human hard tissues, resulting in poor repair effect. Based on this, scholars simulated the process of biomineralization in the development of hard tissues, to improve the structure and function of materials through biomimetic mineralization technology and enhance the repair performance of materials. The current understanding of biomineralization theory and the construction of biomimetic repair technology is still in the stage of rapid development. In recent years, a mass of innovative studies are keeping emerging. In this review, the representative advances in the repair of oral-maxillofacial hard tissues of the past five years are reviewed.
Collapse
Affiliation(s)
- Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology, School of Stomatology, Air Force Medical University, Xi,an 710032, China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology, School of Stomatology, Air Force Medical University, Xi,an 710032, China
| | - Ming Fang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology, School of Stomatology, Air Force Medical University, Xi,an 710032, China
| | - Ji-Hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology, School of Stomatology, Air Force Medical University, Xi,an 710032, China
| |
Collapse
|
24
|
Hao L, Chen J, Shang X, Chen S. Surface modification of the simvastatin factor-loaded silk fibroin promotes the healing of rotator cuff injury through β-catenin signaling. J Biomater Appl 2021; 36:210-218. [PMID: 33779364 DOI: 10.1177/0885328221995926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Rupture of the rotator cuff is a common injury of the shoulder joint in sports professionals. In addition, research on repair of the rotator cuff has gained popularity over the recent years. Given the high rate of re-tear after surgery, it is necessary to design and prepare biodegradable materials with good mechanical properties, for the management of the condition. Consequently, the present study conducted surface modification of the simvastatin factor-loaded silk fibroin for the repair of chronic rotator cuff injury in SD rats. The in vitro experiments were analyzed through scanning electron microscopy and the water contact angle. Additionally, the CCK-8 assay was used to observe the effect of the intervention on the proliferation of BMSCs. Moreover, the osteogenic differentiation of BMSCs was detected through the ALP and ARS assays while the expression of osteogenic genes was examined using qRT-PCR and Western blot analysis. Furthermore, a model for repairing chronic rotator cuff tears in SD rats was established in vivo. Thereafter, rotator cuff repair and healing were evaluated through HE staining while Masson and Sirius staining was used to detect the collagen formation ratio. Additionally, the study analyzed the mechanism underlying the effect of simvastatin-loaded silk fibroin. The results showed that the simvastatin-loaded silk fibroin membrane had better biocompatibility and the in vitro experiments confirmed that it could promote the proliferation and osteogenic differentiation of BMSCs. In addition, the in vivo HE staining experiments similarly confirmed that it could enhance tendon bone healing and alleviate inflammation in chronic rotator cuff injuries. On the other hand, Masson and Sirius staining showed that the simvastatin-loaded silk fibroin could promote the formation of collagen. Further analysis also revealed that it could promote the osteogenic differentiation of BMSCs by activating the β-catenin signaling pathway. In general, these findings suggested that surface modification of the simvastatin factor-loaded silk fibroin was a potential means of improving the healing of rotator cuff injuries and can be implemented in clinical practice in future.
Collapse
Affiliation(s)
- Liang Hao
- 159397Huashan Hospital Fudan University, Shanghai, China
| | - Jun Chen
- 159397Huashan Hospital Fudan University, Shanghai, China
| | - Xiliang Shang
- 159397Huashan Hospital Fudan University, Shanghai, China
| | - Shiyi Chen
- 159397Huashan Hospital Fudan University, Shanghai, China
| |
Collapse
|
25
|
Ni Z, Yu H, Wang L, Shen D, Elshaarani T, Fahad S, Khan A, Haq F, Teng L. Recent research progress on polyphosphazene-based drug delivery systems. J Mater Chem B 2021; 8:1555-1575. [PMID: 32025683 DOI: 10.1039/c9tb02517k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent years, synthetic polymer materials have become a research hotspot in the field of drug delivery. Compared with natural polymer materials, synthetic polymer materials have more flexible structural adjustability, and can be designed to obtain clinically required delivery vehicles. Polyphosphazenes are one of the most promising biomedical materials in the future due to their controllable degradation properties and structural flexibility. These materials can be designed by controlling the hydrophilic and hydrophobic balance, introducing functional groups or drugs to form different forms of administration, such as nanoparticles, polyphosphazene-drug conjugates, injectable hydrogels, coatings, etc. In addition, the flexible backbone of polyphosphazenes and the flexibility of substitution enable them to meet researchers' design requirements in terms of stereochemistry, nanostructures, and topologies. At present, researchers have achieved a lot of successful practices in the field of targeted delivery of anticancer drugs/proteins/genes, bone tissue engineering repair, cell imaging tracking, photothermal therapy, and immunologic preparations. This review provides a summary of the progress of the recent 10 years of polyphosphazene-based drug delivery systems in terms of of chemical structure and functions.
Collapse
Affiliation(s)
- Zhipeng Ni
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Di Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Tarig Elshaarani
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Shah Fahad
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Amin Khan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Fazal Haq
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Lison Teng
- Biological Surgery and Cancer Center, The First Affiliated Hospital, Zhejiang University, 310003, P. R. China
| |
Collapse
|
26
|
Xia B, Deng Y, Lv Y, Chen G. Stem cell recruitment based on scaffold features for bone tissue engineering. Biomater Sci 2020; 9:1189-1203. [PMID: 33355545 DOI: 10.1039/d0bm01591a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stem-cell based therapy strategies are promising approaches for the treatment of bone defects. However, extensive cell expansion steps, the low rate of cell survival and uncontrolled differentiation of stem cells transplanted into the body currently remain key challenges in advancing stem cell therapeutics. An alternative strategy is to use specifically designed bone scaffolds to recruit endogenous stem cells upon implantation and to stimulate new bone formation and remodeling. Stem cell recruitment based on scaffold features for bone tissue engineering relies on the development of scaffolds that can effectively mobilize and recruit endogenous stem cells to the implantation site. This article addresses the recent advances in the recruitment of endogenous stem cells in applications of bone scaffolds, particularly focusing on chemical modification and physical characteristic modification of the scaffold for endogenous stem cell homing and recruitment. Finally, the continuing challenges and future directions of scaffold-based stem cell recruitment are discussed.
Collapse
Affiliation(s)
- Bin Xia
- Chongqing Technology and Business University, Chongqing 400067, P. R. China
| | | | | | | |
Collapse
|
27
|
Ordikhani F, Zandi N, Mazaheri M, Luther GA, Ghovvati M, Akbarzadeh A, Annabi N. Targeted nanomedicines for the treatment of bone disease and regeneration. Med Res Rev 2020; 41:1221-1254. [PMID: 33347711 DOI: 10.1002/med.21759] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Targeted delivery by either passive or active targeting of therapeutics to the bone is an attractive treatment for various bone related diseases such as osteoporosis, osteosarcoma, multiple myeloma, and metastatic bone tumors. Engineering novel drug delivery carriers can increase therapeutic efficacy and minimize the risk of side effects. Developmnet of nanocarrier delivery systems is an interesting field of ongoing studies with opportunities to provide more effective therapies. In addition, preclinical nanomedicine research can open new opportunities for preclinical bone-targeted drug delivery; nevertheless, further research is needed to progress these therapies towards clinical applications. In the present review, the latest advancements in targeting moieties and nanocarrier drug delivery systems for the treatment of bone diseases are summarized. We also review the regeneration capability and effective delivery of nanomedicines for orthopedic applications.
Collapse
Affiliation(s)
- Farideh Ordikhani
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nooshin Zandi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran.,Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Mozhdeh Mazaheri
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Gaurav A Luther
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, California, Los Angeles, USA
| | - Abolfazl Akbarzadeh
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA.,Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, California, Los Angeles, USA
| |
Collapse
|
28
|
Cassiano FB, Soares DG, Bordini EAF, Anovazzi G, Hebling J, Costa CADS. Simvastatin-Enriched Macro-Porous Chitosan-Calcium-Aluminate Scaffold for Mineralized Tissue Regeneration. Braz Dent J 2020; 31:385-391. [PMID: 32901714 DOI: 10.1590/0103-6440202003252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/28/2020] [Indexed: 01/20/2023] Open
Abstract
The present study evaluated the odontogenic potential of human dental pulp cells (HDPCs) exposed to chitosan scaffolds containing calcium aluminate (CHAlCa) associated or not with low doses of simvastatin (SV). Chitosan scaffolds received a suspension of calcium aluminate (AlCa) and were then immersed into solutions containing SV. The following groups were established: chitosan-calcium-aluminate scaffolds (CHAlCa - Control), chitosan calcium-aluminate with 0.5 µM SV (CHAlCa-SV0.5), and chitosan calcium-aluminate with 1.0 µM SV (CHAlCa-SV1.0). The morphology and composition of the scaffolds were evaluated by SEM and EDS, respectively. After 14 days of HDPCs culture on scaffolds, cell viability, adhesion and spread, mineralized matrix deposition as well as gene expression of odontogenic markers were assessed. Calcium aluminate particles were incorporated into the chitosan matrix, which exhibited regular pores homogeneously distributed throughout its structure. The selected SV dosages were biocompatible with HDPCs. Chitosan-calcium-aluminate scaffolds with 1 µM SV induced the odontoblastic phenotype in the HDPCs, which showed enhanced mineralized matrix deposition and up-regulated ALP, Col1A1, and DMP-1 expression. Therefore, one can conclude that the incorporation of calcium aluminate and simvastatin in chitosan scaffolds had a synergistic effect on HDPCs, favoring odontogenic cell differentiation and mineralized matrix deposition.
Collapse
Affiliation(s)
- Fernanda Balestrero Cassiano
- Department of Physiology and Pathology, Araraquara School of Dentistry, UNESP - Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Diana Gabriela Soares
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, USP - Universidade de São Paulo, Bauru, SP, Brazil
| | - Ester Alves Ferreira Bordini
- Department of Physiology and Pathology, Araraquara School of Dentistry, UNESP - Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Giovana Anovazzi
- Department of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, UNESP - Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Josimeri Hebling
- Department of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, UNESP - Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, Araraquara School of Dentistry, UNESP - Universidade Estadual Paulista, Araraquara, SP, Brazil
| |
Collapse
|
29
|
Deng Z, Chen J, Lin B, Li J, Wang H, Wang D, Pang L, Zeng X, Wang H, Zhang Y. A novel 3D printed bioactive scaffolds with enhanced osteogenic inspired by ancient Chinese medicine HYSA for bone repair. Exp Cell Res 2020; 394:112139. [DOI: 10.1016/j.yexcr.2020.112139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/13/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022]
|
30
|
Murali VP, Fujiwara T, Gallop C, Wang Y, Wilson JA, Atwill MT, Kurakula M, Bumgardner JD. Modified electrospun chitosan membranes for controlled release of simvastatin. Int J Pharm 2020; 584:119438. [PMID: 32433935 PMCID: PMC7501838 DOI: 10.1016/j.ijpharm.2020.119438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 01/28/2023]
Abstract
Chitosan nanofibrous membranes have immense potential in tissue engineering and drug delivery applications because of their increased surface area, high degree of biocompatibility, and their ability to mimic the extracellular matrix. However, their use is often limited due to their extreme hydrophilic nature causing them to lose their nanofibrous structure in vivo. In the present study, chitosan membranes were modified either by acylation reactions using fatty acids of different chain lengths or tert-butyloxycarbonyl (tBOC) protecting groups to increase the hydrophobicity of the membranes and protect the nanofibrous structure. The modified membranes were characterized using scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, water contact angle and elemental analysis to confirm the addition of the modification groups. These membranes were then evaluated to control the release of a hydrophobic osteogenic drug-simvastatin (SMV). The interaction between SMV and the polymer was determined using molecular modeling. Pure SMV and SMV loaded membranes were examined for their in vitro cytotoxicity and osteogenic potential using preosteoblast mouse bone marrow stromal cells. From results, it was evident that as the fatty acid chain length increased from two to six methylene groups, the hydrophobicity of the membranes increased (59.2 ± 8.2° to 94.3 ± 8.5° water contact angle). The amount of drug released from the membranes could be controlled by changing the amount of initial drug loaded and/or the type of modifications. After 4 weeks, for a 500 μg loading, the short chain fatty acid modified membranes released 17.8 ± 3.2% of the drug whereas a long chain fatty acid released only 4.8 ± 0.8%. Similarly, for a 50 μg loading, short chain modified membranes released more (73.3 ± 33.3%) of the loaded drug as compared to the long chain membranes (43.0 ± 3.5%). The long chain fatty acid membranes released SMV for extended time periods of up to 90 days. This data was further supported by molecular modeling, which revealed that SMV was more compatible with more hydrophobic membranes. Cell studies showed that pure SMV from 75 to 600 ng/ml range possessed osteogenic potential in a dose dependent manner and the amount of SMV released from the most hydrophobic FA treated membranes was not cytotoxic and supported osteogenic differentiation. Therefore, this study demonstrates our ability to control the release of a hydrophobic drug from modified chitosan membranes as per the clinical need.
Collapse
Affiliation(s)
- Vishnu Priya Murali
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA.
| | - Tomoko Fujiwara
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA
| | - Caleb Gallop
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA
| | - Yongmei Wang
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA
| | - Jack A Wilson
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA
| | | | - Mallesh Kurakula
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA
| | - Joel D Bumgardner
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
31
|
Rothe R, Hauser S, Neuber C, Laube M, Schulze S, Rammelt S, Pietzsch J. Adjuvant Drug-Assisted Bone Healing: Advances and Challenges in Drug Delivery Approaches. Pharmaceutics 2020; 12:E428. [PMID: 32384753 PMCID: PMC7284517 DOI: 10.3390/pharmaceutics12050428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Bone defects of critical size after compound fractures, infections, or tumor resections are a challenge in treatment. Particularly, this applies to bone defects in patients with impaired bone healing due to frequently occurring metabolic diseases (above all diabetes mellitus and osteoporosis), chronic inflammation, and cancer. Adjuvant therapeutic agents such as recombinant growth factors, lipid mediators, antibiotics, antiphlogistics, and proangiogenics as well as other promising anti-resorptive and anabolic molecules contribute to improving bone healing in these disorders, especially when they are released in a targeted and controlled manner during crucial bone healing phases. In this regard, the development of smart biocompatible and biostable polymers such as implant coatings, scaffolds, or particle-based materials for drug release is crucial. Innovative chemical, physico- and biochemical approaches for controlled tailor-made degradation or the stimulus-responsive release of substances from these materials, and more, are advantageous. In this review, we discuss current developments, progress, but also pitfalls and setbacks of such approaches in supporting or controlling bone healing. The focus is on the critical evaluation of recent preclinical studies investigating different carrier systems, dual- or co-delivery systems as well as triggered- or targeted delivery systems for release of a panoply of drugs.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (S.S.); (S.R.)
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (S.S.); (S.R.)
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, 01307 Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
32
|
Liu H, Gu R, Zhu Y, Lian X, Wang S, Liu X, Ping Z, Liu Y, Zhou Y. D-mannose attenuates bone loss in mice via Treg cell proliferation and gut microbiota-dependent anti-inflammatory effects. Ther Adv Chronic Dis 2020; 11:2040622320912661. [PMID: 32341776 PMCID: PMC7169364 DOI: 10.1177/2040622320912661] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Background: D-mannose exhibits strong anti-inflammatory properties, but whether it has beneficial effects on preventing and treating osteoporosis remains unknown. Methods: Female, 12-month-old senile C57BL6/J mice (s-Man group) and 8-week-old ovariectomized C57BL6/J mice (OVX-Man group) were treated with D-mannose in drinking water for 2 months (six mice/group). Microcomputed tomography analysis and hematoxylin and eosin staining were performed to investigate the effect of D-mannose on attenuation of bone loss. Tartrate-resistant acid phosphatase staining of tissue sections, flow cytometry, enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, and gut microbiome biodiversity tests were used to explore the underlying mechanisms. Results: D-mannose-induced marked increases in cortical bone volume and trabecular bone microarchitecture in the s-Man and OVX-Man group compared with that in the s-CTRL (senile control) and OVX group, respectively. Moreover, D-mannose downregulated osteoclastogenesis-related cytokines in the bone marrow and expanded regulatory T cells in the spleen of mice. Furthermore, D-mannose reconstructed the gut microbiota and changed the metabolite composition. Conclusion: D-mannose attenuated bone loss induced by senility and estrogen deficiency in mice, and this effect may be mediated by D-mannose-induced proliferation of regulatory T cells and gut microbiota-dependent anti-inflammatory effects.
Collapse
Affiliation(s)
- Hao Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xiaomin Lian
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Siyi Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xuenan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Zhang Ping
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
33
|
Effect of resveratrol combined with atorvastatin on re-endothelialization after drug-eluting stents implantation and the underlying mechanism. Life Sci 2020; 245:117349. [PMID: 31981632 DOI: 10.1016/j.lfs.2020.117349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/20/2022]
Abstract
AIMS To explore whether the combination of atorvastatins and resveratrol is superior to each individual drug alone regarding re-endothelialization after drug-eluting stents (DESs) implantation. MATERIALS AND METHODS Ninety-four rabbits were randomized into control, atorvastatin, resveratrol, and combined medication groups. Abdominal aorta injury was induced via ballooning, followed by DES implantation. Neointimal formation and re-endothelialization after stent implantation were assessed via optical coherence tomography and scanning electron microscopy. The effects of resveratrol and atorvastatin on bone marrow-derived mesenchymal derived stem cells (BMSCs) were assessed. KEY FINDINGS Compared with the findings in the resveratrol and atorvastatin groups, the neointimal area and mean neointimal thickness were greater in the combined medication group, which also exhibited improved re-endothelialization. Compared with the effects of monotherapy, combined treatment further protected BMSCs against rapamycin-induced apoptosis and improved cell migration. Combined medication significantly upregulated Akt, p-Akt, eNOS, p-eNOS, and CXCR4 expression in BMSCs compared with the effects of monotherapy, and these effects were abolished by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. SIGNIFICANCE The combination of atorvastatin and resveratrol has the potential of accelerating re-endothelialization after stent implantation, reducing the risk of thrombosis and improving the safety of DESs.
Collapse
|
34
|
Yang S, Zhu B, Yin P, Zhao L, Wang Y, Fu Z, Dang R, Xu J, Zhang J, Wen N. Integration of Human Umbilical Cord Mesenchymal Stem Cells-Derived Exosomes with Hydroxyapatite-Embedded Hyaluronic Acid-Alginate Hydrogel for Bone Regeneration. ACS Biomater Sci Eng 2020; 6:1590-1602. [PMID: 33455380 DOI: 10.1021/acsbiomaterials.9b01363] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The treatment of bone defects has plagued clinicians. Exosomes, the naturally secreted nanovesicles by cells, exhibit great potential in bone defect regeneration to realize cell-free therapy. In this work, we successfully revealed that human umbilical cord mesenchymal stem cells-derived exosomes could effectively promote the proliferation, migration, and osteogenic differentiation of a murine calvariae preosteoblast cell line in vitro. Considering the long period of bone regeneration, to effectively exert the reparative effect of exosomes, we synthesized an injectable hydroxyapatite (HAP)-embedded in situ cross-linked hyaluronic acid-alginate (HA-ALG) hydrogel system to durably retain exosomes at the defect sites. Then, we combined the exosomes with the HAP-embedded in situ cross-linked HA-ALG hydrogel system to repair bone defects in rats in vivo. The results showed that the combination of exosomes and composite hydrogel could significantly enhance bone regeneration. Our experiment provides a new strategy for exosome-based therapy, which shows great potential in future tissue and organ repair.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Biao Zhu
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Peng Yin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lisheng Zhao
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yizhu Wang
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhiguang Fu
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Ruijie Dang
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Juan Xu
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Jianjun Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ning Wen
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
35
|
Xu J, Xiong Y, Li Q, Hu M, Huang P, Xu J, Tian X, Jin C, Liu J, Qian L, Yang Y. Optimization of Timing and Times for Administration of Atorvastatin-Pretreated Mesenchymal Stem Cells in a Preclinical Model of Acute Myocardial Infarction. Stem Cells Transl Med 2019; 8:1068-1083. [PMID: 31245934 PMCID: PMC6766601 DOI: 10.1002/sctm.19-0013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/25/2019] [Indexed: 12/14/2022] Open
Abstract
Our previous studies showed that the combination of atorvastatin (ATV) and single injection of ATV-pretreated mesenchymal stem cells (MSCs) (ATV -MSCs) at 1 week post-acute myocardial infarction (AMI) promoted MSC recruitment and survival. This study aimed to investigate whether the combinatorial therapy of intensive ATV with multiple injections of ATV -MSCs has greater efficacy at different stages to better define the optimal strategy for MSC therapy in AMI. In order to determine the optimal time window for MSC treatment, we first assessed stromal cell-derived factor-1 (SDF-1) dynamic expression and inflammation. Next, we compared MSC recruitment and differentiation, cardiac function, infarct size, and angiogenesis among animal groups with single, dual, and triple injections of ATV -MSCs at early (Early1, Early2, Early3), mid-term (Mid1, Mid2, Mid3), and late (Late1, Late2, Late3) stages. Compared with AMI control, intensive ATV significantly augmented SDF-1 expression 1.5∼2.6-fold in peri-infarcted region with inhibited inflammation. ATV -MSCs implantation with ATV administration further enhanced MSC recruitment rate by 3.9%∼24.0%, improved left ventricular ejection fraction (LVEF) by 2.0%∼16.2%, and reduced infarct size in all groups 6 weeks post-AMI with most prominent improvement in mid groups and still effective in late groups. Mechanistically, ATV -MSCs remarkably suppressed inflammation and apoptosis while increasing angiogenesis. Furthermore, triple injections of ATV -MSCs were much more effective than single administration during early and mid-term stages of AMI with the best effects in Mid3 group. We conclude that the optimal strategy is multiple injections of ATV -MSCs combined with intensive ATV administration at mid-term stage of AMI. The translational potential of this strategy is clinically promising. Stem Cells Translational Medicine 2019;8:1068-1083.
Collapse
Affiliation(s)
- Jun Xu
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
- McAllister Heart Institute, University of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
| | - Yu‐Yan Xiong
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Qing Li
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Meng‐Jin Hu
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Pei‐Sen Huang
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
- McAllister Heart Institute, University of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
| | - Jun‐Yan Xu
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Xia‐Qiu Tian
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Chen Jin
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Jian‐Dong Liu
- McAllister Heart Institute, University of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
| | - Li Qian
- McAllister Heart Institute, University of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
| | - Yue‐Jin Yang
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| |
Collapse
|
36
|
Xiao M, Yao B, Zhang BD, Bai Y, Sui W, Wang W, Yu Q. Stromal-derived Factor-1α signaling is involved in bone morphogenetic protein-2-induced odontogenic differentiation of stem cells from apical papilla via the Smad and Erk signaling pathways. Exp Cell Res 2019; 381:39-49. [DOI: 10.1016/j.yexcr.2019.04.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022]
|
37
|
Liu H, Gu R, Li W, Zhou W, Cong Z, Xue J, Liu Y, Wei Q, Zhou Y. Lactobacillus rhamnosus GG attenuates tenofovir disoproxil fumarate-induced bone loss in male mice via gut-microbiota-dependent anti-inflammation. Ther Adv Chronic Dis 2019; 10:2040622319860653. [PMID: 31321013 PMCID: PMC6610433 DOI: 10.1177/2040622319860653] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Although antiretroviral agents trigger bone loss in human immunodeficiency
virus patients, tenofovir disoproxil fumarate (TDF) induces more severe bone
damage, such as osteoporosis. While, the mechanisms are unclear, probiotic
supplements may be effective against osteoporosis. Methods: C57BL6/J mice were administered with Lactobacillus rhamnosus
GG (LGG)+TDF, TDF, and zoledronic acid+TDF, respectively. Bone morphometry
and biomechanics were evaluated using microcomputed tomography, bone
slicing, and flexural tests. The lymphocyte, proinflammatory cytokines, and
intestinal permeability levels were detected using enzyme-linked
immunosorbent assays, quantitative real-time polymerase chain reaction, and
flow cytometry. The gut microbiota composition and metabolomics were
analyzed using 16S recombinant deoxyribonucleic acid pyrosequencing and
ultra-performance liquid-chromatography–quadrupole time-of-flight mass
spectrometry. Results: LGG administered orally induced marked increases in trabecular bone
microarchitecture, cortical bone volume, and biomechanical properties in the
LGG+TDF group compared with that in the TDF-only group. Moreover, LGG
treatment increased intestinal barrier integrity, expanded regulatory T
cells, decreased Th17 cells, and downregulated osteoclastogenesis-related
cytokines in the bone marrow, spleen, and gut. Furthermore, LGG
reconstructed the gut microbiota and changed the metabolite composition,
especially lysophosphatidylcholine levels. However, the amount of
N-acetyl-leukotriene E4 was the highest in the TDF-only group. Conclusion: LGG reconstructed the community structure of the gut microbiota, promoted the
expression of lysophosphatidylcholines, and improved intestinal integrity to
suppress the TDF-induced inflammatory response, which resulted in
attenuation of TDF-induced bone loss in mice. LGG probiotics may be a safe
and effective strategy to prevent and treat TDF-induced osteoporosis.
Collapse
Affiliation(s)
- Hao Liu
- The Central Laboratory, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Wei Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Wen Zhou
- The Central Laboratory, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Zhe Cong
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jing Xue
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, People's Republic of China
| | - Qiang Wei
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5, Panjiayuan, Nanli, Chaoyang District, Beijing 100021, People's Republic of China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, People's Republic of China
| |
Collapse
|
38
|
Huang Z, Yang L, Hu X, Huang Y, Cai Q, Ao Y, Yang X. Molecular Mechanism Study on Effect of Biodegradable Amino Acid Ester–Substituted Polyphosphazenes in Stimulating Osteogenic Differentiation. Macromol Biosci 2019; 19:e1800464. [DOI: 10.1002/mabi.201800464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/12/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Zhaohui Huang
- State Key Laboratory of Organic–Inorganic CompositesBeijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Lika Yang
- State Key Laboratory of Organic–Inorganic CompositesBeijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xiaoqing Hu
- Institute of Sports MedicineBeijing Key Laboratory of Sports InjuryPeking University Third Hospital Beijing 100191 P. R. China
| | - Yiqian Huang
- State Key Laboratory of Organic–Inorganic CompositesBeijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Qing Cai
- State Key Laboratory of Organic–Inorganic CompositesBeijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Yingfang Ao
- Institute of Sports MedicineBeijing Key Laboratory of Sports InjuryPeking University Third Hospital Beijing 100191 P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic–Inorganic CompositesBeijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
39
|
Xue Y, Wu M, Liu Z, Song J, Luo S, Li H, Li Y, Jin L, Guan B, Lin M, Chen F, Jin C, Liu D, Li Y, Zhang X. In vitro and in vivo evaluation of chitosan scaffolds combined with simvastatin-loaded nanoparticles for guided bone regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:47. [PMID: 30980130 DOI: 10.1007/s10856-019-6249-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
The objective of this study was to fabricate and characterize chitosan combined with different amounts of simvastatin-loaded nanoparticles and to investigate their potential for guided bone regeneration in vitro and in vivo. Different SIM-CSN formulations were combined into a chitosan scaffold (SIM-CSNs-S), and the morphology, simvastatin release profile, and effect on cell proliferation and differentiation were investigated. For in vivo experiments, ectopic osteogenesis and the critical-size cranial defect model in SD rats were chosen to evaluate bone regeneration potential. All three SIM-CSNs-S formulations had a porous structure and exhibited sustained simvastatin release. CSNs-S showed excellent degradation and biocompatibility characteristics. The 4 mg SIM-CSNs-S formulation stimulated higher BMSC ALP activity levels, demonstrated significantly earlier collagen enhancement, and led to faster bone regeneration than the other formulations. SIM-CSNs-S should have a significant effect on bone regeneration.
Collapse
Affiliation(s)
- Yan Xue
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, 300070, Tianjin, China
| | - Mingyao Wu
- LangFang Health Vocational College, South Siguang Road, 065001, Langfang, China
| | - Zongren Liu
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, 300070, Tianjin, China
- Department of Stomatology of Tianjin Medical University General Hospital, Binhai Hospital, No. 28, Hangu hospital road, Binhai new district, 300480, Tianjin, China
| | - Jinhua Song
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, 300070, Tianjin, China
| | - Shuyu Luo
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, 300070, Tianjin, China
| | - Hongjie Li
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, 300070, Tianjin, China
| | - Yuan Li
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, 300070, Tianjin, China
| | - Lichun Jin
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, 300070, Tianjin, China
| | - Binbin Guan
- Department of Stomatology of Tianjin Medical University General Hospital, No.154, FeiLong road, 300052, Tianjin, China
| | - Mingli Lin
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, 300070, Tianjin, China
| | - Fuyu Chen
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, 300070, Tianjin, China
| | - Chenxin Jin
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, 300070, Tianjin, China
| | - Deping Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, 100730, Beijing, China.
| | - Yanqiu Li
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, 300070, Tianjin, China.
| | - Xu Zhang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, 300070, Tianjin, China.
| |
Collapse
|
40
|
Cui J, Liu X, Zhang Z, Xuan Y, Liu X, Zhang F. EPO protects mesenchymal stem cells from hyperglycaemic injury via activation of the Akt/FoxO3a pathway. Life Sci 2019; 222:158-167. [PMID: 30597174 DOI: 10.1016/j.lfs.2018.12.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/11/2018] [Accepted: 12/27/2018] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Mesenchymal stem cell (MSC)-based therapies have demonstrated positive outcomes for treating cardiovascular disease. However, the proliferative ability of MSCs decreases during chronic exposure to hyperglycaemia; their ability to contribute to endogenous injury repair is thus reduced. Erythropoietin (EPO) was recently reported to protect against hyperglycaemia-related injury in various cells and may be a good candidate for enhancing MSC functions under hyperglycaemic conditions. METHODS Bone marrow-derived MSCs were isolated from male donor rats weighing 60-80 g. The roles of EPO in regulating cell viability, senescence, angiogenesis and inflammation were investigated using the Cell Counting Kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine (EdU) assays; senescence-associated β-galactosidase (SA-β-gal) staining; VEGF, HGF, IGF, bFGF ELISAs and TNF-α ELISA, respectively. ROS production was measured by flow cytometry. The expression levels of Akt, forkhead box class O3a (FoxO3a) and VEGF proteins in MSCs were analysed by western blotting. Matrigel was used for tube formation assays. RESULTS The results of the current study showed that EPO has beneficial effects on MSCs exposed to hyperglycaemia by promoting proliferation, inhibiting senescence and the release of pro-inflammatory factors, increasing the secretion of proangiogenic cytokines, and enhancing the ability of MSCs to stimulate tube formation among human umbilical vein endothelial cells (HUVECs). In addition, the beneficial effects of EPO may result from the activation of the Akt/FoxO3a signalling pathway. CONCLUSIONS Our study demonstrates for the first time that EPO protects MSCs from hyperglycaemia-induced damage by targeting the Akt/FoxO3a signalling pathway.
Collapse
Affiliation(s)
- Jinjin Cui
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, PR China
| | - Xiaohong Liu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, PR China
| | - Zhuoqi Zhang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, PR China
| | - Yongli Xuan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, PR China
| | - Xinxin Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, PR China
| | - Fengyun Zhang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, PR China.
| |
Collapse
|
41
|
EVALUATION OF CENTRIFUGING REGIMES FOR THE PURPOSE OF OPTIMIZING THE PLATELET RICH PLASMA HARVESTING PROTOCOL. EUREKA: HEALTH SCIENCES 2019. [DOI: 10.21303/2504-5679.2019.00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aim: Based on the classical principles, to determine the optimal conditions for centrifugation, PRP harvesing (platelet-rich plasma). To conduct a quantitative assessment of the substrate obtained under different conditions of centrifugation.
Materials and methods. Based on the basic principles of obtaining platelet-rich plasma (PRP) by centrifuging in containers with an anticoagulant followed by phase separation to obtain the final substrate, the efficiency of the technique under the conditions of single and double centrifugation as well as under different conditions of acceleration and centrifugation was evaluated.
Blood for follow-up was collected from 20 healthy volunteers (11 men, 9 women) average 25.3±4.1 in syringes of LuerLock design with ACD-A anticoagulant solution, and centrifuged. Centrifugation was carried out under controlled conditions using a centrifuge with rotating bowls of the rotor. Centrifugation was performed at an acceleration of 100-400g in time intervals up to 20 minutes. Activation of the substrate was performed with calcium chloride solution.
Quantitative evaluation of platelets of whole blood and the final substrate of PRP was carried out with a semi-automatic analyzer.
Results. The obtained results demonstrate the maximum level of harvesting efficiency when performing double centrifugation in the 150g×15 min+250g×10 min mode. Subject to this centrifugation protocol, it is possible to obtain a substrate that complies with the standardized requirements for PRP.
The maximum level of an increase in the number of platelets in the substrate in comparison with whole blood is determined at the level of ×4.36 with concentration (volume reduction) x5 in comparison with the volume of whole blood.
Conclusions. This study demonstrated the advantage of double centrifuging modes over single modes.
According to the results of the study, it was possible to determine the conditions for an optimal double-centrifugation mode (acceleration and duration), which allows us to achieve the most efficient concentration of the substrate.
Collapse
|
42
|
Rapid initiation of guided bone regeneration driven by spatiotemporal delivery of IL-8 and BMP-2 from hierarchical MBG-based scaffold. Biomaterials 2019; 196:122-137. [PMID: 29449015 DOI: 10.1016/j.biomaterials.2017.11.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/28/2017] [Accepted: 11/11/2017] [Indexed: 01/22/2023]
|
43
|
Contribution of Statins towards Periodontal Treatment: A Review. Mediators Inflamm 2019; 2019:6367402. [PMID: 30936777 PMCID: PMC6415285 DOI: 10.1155/2019/6367402] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 12/23/2018] [Indexed: 01/09/2023] Open
Abstract
The pleiotropic effects of statins have been evaluated to assess their potential benefit in the treatment of various inflammatory and immune-mediated diseases including periodontitis. Herein, the adjunctive use of statins in periodontal therapy in vitro, in vivo, and in clinical trials was reviewed. Statins act through several pathways to modulate inflammation, immune response, bone metabolism, and bacterial clearance. They control periodontal inflammation through inhibition of proinflammatory cytokines and promotion of anti-inflammatory and/or proresolution molecule release, mainly, through the ERK, MAPK, PI3-Akt, and NF-κB pathways. Moreover, they are able to modulate the host response activated by bacterial challenge, to prevent inflammation-mediated bone resorption and to promote bone formation. Furthermore, they reduce bacterial growth, disrupt bacterial membrane stability, and increase bacterial clearance, thus averting the exacerbation of infection. Local statin delivery as adjunct to both nonsurgical and surgical periodontal therapies results in better periodontal treatment outcomes compared to systemic delivery. Moreover, combination of statin therapy with other regenerative agents improves periodontal healing response. Therefore, statins could be proposed as a potential adjuvant to periodontal therapy. However, optimization of the combination of their dose, type, and carrier could be instrumental in achieving the best treatment response.
Collapse
|
44
|
Zhang B, Li H, He L, Han Z, Zhou T, Zhi W, Lu X, Lu X, Weng J. Surface-decorated hydroxyapatite scaffold with on-demand delivery of dexamethasone and stromal cell derived factor-1 for enhanced osteogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:355-370. [DOI: 10.1016/j.msec.2018.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/17/2018] [Accepted: 04/09/2018] [Indexed: 12/17/2022]
|
45
|
Ruan H, Yu Y, Guo X, Jiang Q, Luo Y. The possibility of healing alveolar bone defects with simvastatin thermosensitive gel: in vitro/in vivo evaluation. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1997-2003. [PMID: 30013319 PMCID: PMC6037404 DOI: 10.2147/dddt.s163986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background In this study, simvastatin (SVT) in situ gels were successfully produced by our group. Methods The preparations were characterized in the following aspects: in vitro gelation, drug release, stability and pharmacodynamics. Results In this study, drug content of prepared gels was found to be in the range between 89 and 92%. The pH value was in the range between 6.5 and 7.0. The gelation temperature of the prepared thermogelling solutions was 37°C. In vitro release showed that the release of SVT from in situ gels was slow with burst effects at an early stage. Researches indicated that intraorally slow release SVT in situ gels could effectively promote bone regeneration repair of alveolar bone defect. Conclusion This drug delivery system could prove to be a novel form able to prolong the residence time and to control the release of drug when administered into the oral cavity.
Collapse
Affiliation(s)
- Hong Ruan
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China,
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China,
| | - Xuehua Guo
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China,
| | - Qian Jiang
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China,
| | - Ying Luo
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China,
| |
Collapse
|
46
|
Soares DG, Anovazzi G, Bordini EAF, Zuta UO, Silva Leite MLA, Basso FG, Hebling J, de Souza Costa CA. Biological Analysis of Simvastatin-releasing Chitosan Scaffold as a Cell-free System for Pulp-dentin Regeneration. J Endod 2018; 44:971-976.e1. [DOI: 10.1016/j.joen.2018.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/28/2017] [Accepted: 02/10/2018] [Indexed: 10/17/2022]
|
47
|
Gu M, Lv L, Du F, Niu T, Chen T, Xia D, Wang S, Zhao X, Liu J, Liu Y, Xiong C, Zhou Y. Effects of thermal treatment on the adhesion strength and osteoinductive activity of single-layer graphene sheets on titanium substrates. Sci Rep 2018; 8:8141. [PMID: 29802306 PMCID: PMC5970187 DOI: 10.1038/s41598-018-26551-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/09/2018] [Indexed: 01/22/2023] Open
Abstract
In recent years, dental implants have become the preferred approach for the restoration of missing teeth. At present, most dental implants are made of pure titanium, and are affected by peri-implantitis and bone resorption, which usually start from the implant neck, due to the complex environment in this region. To address these issues, in this study we modified the surface of titanium (Ti) implants to exploit the antibacterial and osteoinductive effects of single-layer graphene sheets. Chemical vapor deposition (CVD)-grown single-layer graphene sheets were transferred to titanium discs, and a method for improving the adhesion strength of graphene on Ti was developed due to compromised adhesion strength between graphene and titanium surface. A thermal treatment of 2 h at 160 °C was found to enhance the adhesion strength of graphene on Ti to facilitate clinical transformation. Graphene coatings of Ti enhanced cell adhesion and osteogenic differentiation, and imparted antibacterial activity to Ti substrate; these favorable effects were not affected by the thermal treatment. In summary, the present study elucidated the effects of a thermal treatment on the adhesion strength and osteoinductive activity of single-layer graphene sheets on titanium substrates.
Collapse
Affiliation(s)
- Ming Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Beijing, 100081, PR China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Beijing, 100081, PR China
| | - Feng Du
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, PR China
| | - Tianxiao Niu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, PR China
| | - Tong Chen
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Beijing, 100081, PR China
| | - Dandan Xia
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Beijing, 100081, PR China
| | - Siyi Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Beijing, 100081, PR China
| | - Xiao Zhao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Beijing, 100081, PR China
| | - Jianzhang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Beijing, 100081, PR China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Beijing, 100081, PR China. .,National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Disease, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, PR China.
| | - Chunyang Xiong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, PR China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Beijing, 100081, PR China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Disease, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, PR China
| |
Collapse
|
48
|
Li W, Liu Y, Zhang P, Tang Y, Zhou M, Jiang W, Zhang X, Wu G, Zhou Y. Tissue-Engineered Bone Immobilized with Human Adipose Stem Cells-Derived Exosomes Promotes Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5240-5254. [PMID: 29359912 DOI: 10.1021/acsami.7b17620] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Exosomes, nanoscale extracellular vesicles functioning as cell-to-cell communicators, are an emerging promising therapeutic in the field of bone tissue engineering. Here, we report the construction and evaluation of a novel cell-free tissue-engineered bone that successfully accelerated the restoration of critical-sized mouse calvarial defects through combining exosomes derived from human adipose-derived stem cells (hASCs) with poly(lactic-co-glycolic acid) (PLGA) scaffolds. The exosomes were immobilized on the polydopamine-coating PLGA (PLGA/pDA) scaffolds under mild chemical conditions. Specifically, we investigated the effects of hASC-derived exosomes on the osteogenic, proliferation, and migration capabilities of human bone marrow-derived mesenchymal stem cells in vitro and optimized their osteoinductive effects through osteogenic induction. Furthermore, an in vitro assay showed exosomes could release from PLGA/pDA scaffold slowly and consistently and in vivo results showed this cell-free system enhanced bone regeneration significantly, at least partially through its osteoinductive effects and capacities of promoting mesenchymal stem cells migration and homing in the newly formed bone tissue. Therefore, overall results demonstrated that our novel cell-free system comprised of hASC-derived exosomes and PLGA/pDA scaffold provides a new therapeutic paradigm for bone tissue engineering and showed promising potential in repairing bone defects.
Collapse
Affiliation(s)
| | | | | | | | - Miao Zhou
- Key laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University , Guangzhou 510140, China
| | | | | | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit Amsterdam , Amsterdam 1081 LA, The Netherlands
| | | |
Collapse
|
49
|
Chen G, Fang T, Qi Y, Yin X, Di T, Feng G, Lei Z, Zhang Y, Huang Z. Combined Use of Mesenchymal Stromal Cell Sheet Transplantation and Local Injection of SDF-1 for Bone Repair in a Rat Nonunion Model. Cell Transplant 2018; 25:1801-1817. [PMID: 26883892 DOI: 10.3727/096368916x690980] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bone nonunion treatments pose a challenge in orthopedics. This study investigated the joint effects of using mesenchymal stem cell (MSC) sheets with local injection of stromal cell-derived factor-1 (SDF-1) on bone formation. In vitro, we found that migration of MSCs was mediated by SDF-1 in a dose-dependent manner. Moreover, stimulation with SDF-1 had no direct effect on the proliferation or osteogenic differentiation of MSCs. Furthermore, the results indicated elevated expression levels of bone morphogenetic protein 2, alkaline phosphatase, osteocalcin, and vascular endothelial growth factor in MSC sheets compared with MSCs cultured in medium. New bone formation in fractures was evaluated by X-ray, micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, Safranin-O staining, and immunohistochemistry in vivo. In the rat bone fracture model, the MSC sheets transplanted into the injured site along with injection of SDF-1 showed significantly more new bone formation within the gap. Moreover, at 8 weeks, complete bone union was obtained in this group. In contrast, the control group showed nonunion of the bone. Our study suggests a new strategy involving the use of MSC sheets with a local injection of SDF-1 for hard tissue reconstruction, such as the healing of nonunions and bone defects.
Collapse
Affiliation(s)
- Guangnan Chen
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai, P.R. China.,Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Tingting Fang
- Liver Cancer Institute, Zhongshan Hospital, Shanghai Medical School of Fudan University, Shanghai, P.R. China
| | - Yiying Qi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Xiaofan Yin
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Tuoyu Di
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Gang Feng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Zhong Lei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Yuxiang Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Zhongming Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China.,Department of Orthopaedic Surgery, Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, P.R. China.,Department of Orthopaedic Surgery, Xiaoshan Chinese Medical Hospital, Hangzhou, P.R. China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, P.R. China
| |
Collapse
|
50
|
Zhang X, Jiang W, Liu Y, Zhang P, Wang L, Li W, Wu G, Ge Y, Zhou Y. Human adipose-derived stem cells and simvastatin-functionalized biomimetic calcium phosphate to construct a novel tissue-engineered bone. Biochem Biophys Res Commun 2018; 495:1264-1270. [DOI: 10.1016/j.bbrc.2017.11.150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 11/17/2017] [Indexed: 01/11/2023]
|