1
|
Kötzsche M, Egger J, Dzierza A, Reichel LS, Nischang I, Traeger A, Fischer D, Peneva K. Making the negative positive - fluorination of indole as an efficient strategy to improve guanidinium-containing gene carriers. J Mater Chem B 2025. [PMID: 40200833 DOI: 10.1039/d4tb02529f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The balance between hydrophilic and hydrophobic components plays an important role in polymeric delivery of nucleic acids. Besides using hydrophobic moieties in the polymer design, fluorination is a promising method to increase the hydrophobicity of polymers. To systematically investigate this effect, N-(2-(1H-indol-3-yl)ethyl)methacrylamide and three fluorinated analogues have been synthesized and copolymerized with 3-guanidinopropyl methacrylamide and 2-hydroxypropyl methacrylamide via an aqueous reversible addition-fragmentation chain transfer (aRAFT) polymerization. A library of eight terpolymers with 5 to 23 mol% of an indole analogue and molar mass about 20 kg mol-1 showed comparably strong DNA binding starting at N/P 2 and formed polyplexes with hydrodynamic diameters around 100 nm. Additionally, no negative impact on biocompatibility was observed. Heparin release studies showed increased DNA binding strength with higher amounts of hydrophobic moieties, while fluorination exhibited similar effects as increasing the indole content. This was also important for pDNA transfection efficiency, where an optimum for DNA binding strength was unveiled. The rapid release and the excessive binding of DNA were identified as factors that negatively impacted transfection efficiency, both influenced by the amount of indole moieties and fluorination. On the other hand, the right degree of hydrophobicity was able to increase the transfection efficiency of the modified polymer by more than threefold. These findings highlight the role of hydrophobic moieties in nucleic acid delivery and provide valuable insights for future polymer design, suggesting that the strategic incorporation of fluorinated monomers can effectively fine-tune DNA interactions.
Collapse
Affiliation(s)
- Markus Kötzsche
- Friedrich Schiller University Jena, Institute of Organic and Macromolecular Chemistry (IOMC), Humboldtstr. 10, Jena, 07743, Germany.
| | - Jan Egger
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Pharmaceutical Technology and Biopharmacy, Cauerstr. 4, Erlangen, 91058, Germany
| | - Andreas Dzierza
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Pharmaceutical Technology and Biopharmacy, Cauerstr. 4, Erlangen, 91058, Germany
| | - Liên Sabrina Reichel
- Friedrich Schiller University Jena, Institute of Organic and Macromolecular Chemistry (IOMC), Humboldtstr. 10, Jena, 07743, Germany.
| | - Ivo Nischang
- Friedrich Schiller University Jena, Institute of Organic and Macromolecular Chemistry (IOMC), Humboldtstr. 10, Jena, 07743, Germany.
- Jena Center for Soft Matter (JCSM), Philosophenweg 7, Jena, 07743, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstr. 12-14, Jena, 07743, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Hahn-Meitner-Platz 1, Berlin, 14109, Germany
| | - Anja Traeger
- Friedrich Schiller University Jena, Institute of Organic and Macromolecular Chemistry (IOMC), Humboldtstr. 10, Jena, 07743, Germany.
- Jena Center for Soft Matter (JCSM), Philosophenweg 7, Jena, 07743, Germany
| | - Dagmar Fischer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Pharmaceutical Technology and Biopharmacy, Cauerstr. 4, Erlangen, 91058, Germany
- Jena Center for Soft Matter (JCSM), Philosophenweg 7, Jena, 07743, Germany
- FAU NeW - Research Center for New Bioactive Compounds, Nikolaus-Fiebiger-Str. 10, Erlangen, 91058, Germany.
| | - Kalina Peneva
- Friedrich Schiller University Jena, Institute of Organic and Macromolecular Chemistry (IOMC), Humboldtstr. 10, Jena, 07743, Germany.
- Jena Center for Soft Matter (JCSM), Philosophenweg 7, Jena, 07743, Germany
| |
Collapse
|
2
|
Jakka SR, Mugesh G. Emerging Role of Noncovalent Interactions and Disulfide Bond Formation in the Cellular Uptake of Small Molecules and Proteins. Chem Asian J 2025; 20:e202401734. [PMID: 39831847 DOI: 10.1002/asia.202401734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Intracellular delivery of proteins and small molecules is an important barrier in the development of strategies to deliver functional proteins and therapeutics into the cells to realize their full potential in biotechnology, biomedicine, cell-based therapies, and gene editing protein systems. Most of the intracellular protein delivery strategies involve the conjugation of cell penetrating peptides to enable the permeability of plasma membrane of mammalian cells to allow proteins to enter cytosol. The conjugations of small molecules such as (p-methylphenyl) glycine, pyrenebutyrate and cysteines are used for the same purpose. Molecular level interactions are governed mostly by ionic (cationic/anionic), covalent and noncovalent interactions with various molecular entities of glycocalyx matrix on plasma membrane lipid bilayer. Although the role of noncovalent interactions in cellular uptake is not fully understood, several recent advances have focused on the noncovalent interaction-based strategies of intracellular delivery of small molecules and proteins into mammalian cells. These are achieved by simple modification of protein surfaces with chemical moieties which can form noncovalent interactions other than hydrogen bonding. In this review, we describe the recent advances and the mechanistic aspects of intracellular delivery and role of noncovalent interactions in the cellular uptake of proteins and small molecules.
Collapse
Affiliation(s)
- Surendar R Jakka
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
3
|
Zhang W, Jin Y, Wang J, Gu M, Wang Y, Zhang X, Zhang Y, Yu W, Liu Y, Yuan WE, Su J. Co-delivery of PROTAC and siRNA via novel liposomes for the treatment of malignant tumors. J Colloid Interface Sci 2025; 678:896-907. [PMID: 39222609 DOI: 10.1016/j.jcis.2024.08.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Targeted elimination of damaged or overexpressed proteins within the tumor serves a pivotal role in regulating cellular function and restraining tumor cell growth. Researchers have been striving to identify safer and more effective methods for protein removal. Here, we propose the synergistic employment of a small molecule degrading agent (PROTAC) and siRNA to attain enhanced protein clearance efficiency and tumor therapeutic effects. Co-delivery liposomes were prepared to facilitate the efficient encapsulation of PROTAC and siRNA. Specifically, the cationic liposome significantly improved the solubility of the insoluble PROTAC (DT2216). The cationic polymer (F-PEI) achieved efficient encapsulation of the nucleic acid drug, thereby promoting endocytosis and enhancing the therapeutic impact of the drug. Both in vivo and in vitro experiments demonstrated remarkable degradation of target proteins and inhibition of tumor cells by the co-delivery system. In conclusion, the co-delivery liposomes furnished a nano-delivery system proficient in effectively encapsulating both hydrophilic and hydrophobic drugs, thereby presenting a novel strategy for targeted combination therapy in treating tumors.
Collapse
Affiliation(s)
- Wenkai Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, China
| | - Yi Jin
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, China
| | - Jiayu Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, China
| | - Muge Gu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, China
| | - Yue Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, China
| | - Xiangqi Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, China
| | - Yihui Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, China
| | - Wei Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, China
| | - Yao Liu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, China
| | - Wei-En Yuan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, China.
| | - Jing Su
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, China.
| |
Collapse
|
4
|
Klabenkova K, Zakhryamina A, Burakova E, Bizyaev S, Fokina A, Stetsenko D. Synthesis of New Polyfluoro Oligonucleotides via Staudinger Reaction. Int J Mol Sci 2024; 26:300. [PMID: 39796153 PMCID: PMC11719919 DOI: 10.3390/ijms26010300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Nowadays, nucleic acid derivatives capable of modulating gene expression at the RNA level have gained widespread recognition as promising therapeutic agents. A suitable degree of biological stability of oligonucleotide therapeutics is required for in vivo application; this can be most expeditiously achieved by the chemical modification of the internucleotidic phosphate group, which may also affect their cellular uptake, tissue distribution and pharmacokinetics. Our group has previously developed a strategy for the chemical modification of the phosphate group via the Staudinger reaction on a solid phase of the intermediate dinucleoside phosphite triester and a range of, preferably, electron deficient organic azides such as sulfonyl azides during automated solid-phase DNA synthesis according to the conventional β-cyanoethyl phosphoramidite scheme. Polyfluoro compounds are characterized by unique properties that have prompted their extensive application both in industry and in scientific research. We report herein the synthesis and isolation of novel oligodeoxyribonucleotides incorporating internucleotidic perfluoro-1-octanesulfonyl phosphoramidate or 2,2,2-trifluoroethanesulfonyl phosphoramidate groups. In addition, novel oligonucleotide derivatives with fluorinated zwitterionic phosphate mimics were synthesized by a tandem methodology, which involved (a) the introduction of a carboxylic ester group at the internucleotidic position via the Staudinger reaction with methyl 2,2-difluoro-3-azidosulfonylacetate; and (b) treatment with an aliphatic diamine, e.g., 1,1-dimethylethylenediamine or 1,3-diaminopropane. It was further shown that the polyfluoro oligonucleotides obtained were able to form complementary duplexes with either DNA or RNA, which were not significantly differing in stability from the natural counterparts. Long-chain perfluoroalkyl oligonucleotides were taken up into cultured human cells in the absence of a transfection agent. It may be concluded that the polyfluoro oligonucleotides described here can represent a useful platform for designing oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Kristina Klabenkova
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alyona Zakhryamina
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia;
| | - Ekaterina Burakova
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Sergei Bizyaev
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alesya Fokina
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Dmitry Stetsenko
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia K, Javadzadeh Y. Current knowledge of hybrid nanoplatforms composed of exosomes and organic/inorganic nanoparticles for disease treatment and cell/tissue imaging. Biomed Pharmacother 2024; 178:117248. [PMID: 39098179 DOI: 10.1016/j.biopha.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Exosome-nanoparticle hybrid nanoplatforms, can be prepared by combining exosomes with different types of nanoparticles. The main purpose of combining exosomes with nanoparticles is to overcome the limitations of using each of them as drug delivery systems. Using nanoparticles for drug delivery has some limitations, such as high immunogenicity, poor cellular uptake, low biocompatibility, cytotoxicity, low stability, and rapid clearance by immune cells. However, using exosomes as drug delivery systems also has its own drawbacks, such as poor encapsulation efficiency, low production yield, and the inability to load large molecules. These limitations can be addressed by utilizing hybrid nanoplatforms. Additionally, the use of exosomes allows for targeted delivery within the hybrid system. Exosome-inorganic/organic hybrid nanoparticles may be used for both therapy and diagnosis in the future. This may lead to the development of personalized medicine using hybrid nanoparticles. However, there are a few challenges associated with this. Surface modifications, adding functional groups, surface charge adjustments, and preparing nanoparticles with the desired size are crucial to the possibility of preparing exosome-nanoparticle hybrids. Additional challenges for the successful implementation of hybrid platforms in medical treatments and diagnostics include scaling up the manufacturing process and ensuring consistent quality and reproducibility across various batches. This review focuses on various types of exosome-nanoparticle hybrid systems and also discusses the preparation and loading methods for these hybrid nanoplatforms. Furthermore, the potential applications of these hybrid nanocarriers in drug/gene delivery, disease treatment and diagnosis, and cell/tissue imaging are explained.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Deng Y, Zhang J, Sun X, Li L, Zhou M, Liu S, Chen F, Pan C, Yu Z, Li M, Zhong W, Zeng M. Potent gene delivery from fluorinated poly(β-amino ester) in adhesive and suspension difficult-to-transfect cells for apoptosis and ferroptosis. J Control Release 2023; 363:597-605. [PMID: 37793484 DOI: 10.1016/j.jconrel.2023.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/19/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Tremendous efforts have been made to improve polymeric property in gene delivery performances, especially when obstacle of transferring gene construct into difficult-to-transfect cells occurs. Innovations in the area of fluorination and fluorinated compounds with biomedical potential in medicinal chemistry are believed to assist in the development of new therapeutics. Fluorine modified polymers have shown to navigate the gene transfection cellular barriers and promoted the transfection outcomes. Gene transfer into some liver cancer cells and human leukemia cells has always been a challenge. Here, by facile incorporation of a fluorine containing amine monomer, 1H,1H-undecafluorohexylamine, fluorinated poly(β-amino ester) (FPAE) was synthesized to significantly improve the transfection performance, achieving high transfection efficiency of 87% and 55% in two representative difficult-to-transfect cells, HepG2 and Molt-4, which were cultured in adhesive and suspension condition, respectively. However, the potency of Lipofectamine 3000 was very limited. More importantly, functional studies revealed that FPAE can dramatically outperform Lipofectamine 3000 in delivering Bcl-xL and PKCβII to either provide the protection against apoptosis or promote the ferroptosis in HepG2 cells. This work facilitates gene therapies by overcoming biological barriers for targeting difficult-to-transfect cells and disease models when medically necessary.
Collapse
Affiliation(s)
- Yihui Deng
- Central Laboratory of the First Affiliated Hospital of Jinan University, Guangzhou Overseas Chinese Hospital, Jinan University, Guangzhou 510630, China
| | - Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ximeng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liangtao Li
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou Overseas Chinese Hospital, Jinan University, Guangzhou 510630, China
| | - Mandi Zhou
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou Overseas Chinese Hospital, Jinan University, Guangzhou 510630, China
| | - Shuang Liu
- Ministry of Education (MOE) Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Fuying Chen
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Chaolan Pan
- Dermatology Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ming Li
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Wenbin Zhong
- Ministry of Education (MOE) Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Ming Zeng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou Overseas Chinese Hospital, Jinan University, Guangzhou 510630, China; Department of Dermatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China.
| |
Collapse
|
7
|
Ding L, Rong G, Cheng Y. Fluorous Tagged Peptides for Intracellular Delivery and Biomedical Imaging. Macromol Biosci 2023; 23:e2300048. [PMID: 36918279 DOI: 10.1002/mabi.202300048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Indexed: 03/16/2023]
Abstract
Fluorous tagged peptides have shown promising features for biomedical applications such as drug delivery and multimodal imaging. The bioconjugation of fluoroalkyl ligands onto cargo peptides greatly enhances their proteolytic stability and membrane penetration via a proposed "fluorine effect". The tagged peptides also efficiently deliver other biomolecules such as DNA and siRNA into cells via a co-assembly strategy. The fluoroalkyl chains on peptides with antifouling properties enable efficient gene delivery in the presence of serum proteins. Besides intracellular biomolecule delivery, the amphiphilic peptides can be used to stabilized perfluorocarbon-filled microbubbles for ultrasound imaging. The fluorine nucleus on fluoroalkyls provides intrinsic probes for background-free magnetic resonance imaging. Labeling of fluorous tags with radionuclide 18 F also allows tracing the biodistribution of peptides via positron emission tomography imaging. This mini-review will discuss properties and mechanism of the fluorous tagged peptides in these applications.
Collapse
Affiliation(s)
- Lei Ding
- Department of Ultrasound Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, P. R. China
| | - Guangyu Rong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, P. R. China
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
- Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Fengxian District Central Hospital, Shanghai, 200241, P. R. China
| |
Collapse
|
8
|
He X, Xiong S, Sun Y, Zhong M, Xiao N, Zhou Z, Wang T, Tang Y, Xie J. Recent Progress of Rational Modified Nanocarriers for Cytosolic Protein Delivery. Pharmaceutics 2023; 15:1610. [PMID: 37376059 DOI: 10.3390/pharmaceutics15061610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Therapeutic proteins garnered significant attention in the field of disease treatment. In comparison to small molecule drugs, protein therapies offer distinct advantages, including high potency, specificity, low toxicity, and reduced carcinogenicity, even at minimal concentrations. However, the full potential of protein therapy is limited by inherent challenges such as large molecular size, delicate tertiary structure, and poor membrane penetration, resulting in inefficient intracellular delivery into target cells. To address these challenges and enhance the clinical applications of protein therapies, various protein-loaded nanocarriers with tailored modifications were developed, including liposomes, exosomes, polymeric nanoparticles, and nanomotors. Despite these advancements, many of these strategies encounter significant issues such as entrapment within endosomes, leading to low therapeutic efficiency. In this review, we extensively discussed diverse strategies for the rational design of nanocarriers, aiming to overcome these limitations. Additionally, we presented a forward-looking viewpoint on the innovative generation of delivery systems specifically tailored for protein-based therapies. Our intention was to offer theoretical and technical support for the development and enhancement of nanocarriers capable of facilitating cytosolic protein delivery.
Collapse
Affiliation(s)
- Xiao He
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen 518036, China
| | - Su Xiong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yansun Sun
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen 518036, China
| | - Min Zhong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Nianting Xiao
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Ziwei Zhou
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Ting Wang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yaqin Tang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Xie
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
9
|
Jin Y, Yu W, Zhang W, Wang C, Liu Y, Yuan WE, Feng Y. A novel fluorinated polyethyleneimine with microRNA-942-5p-sponges polyplex gene delivery system for non-small-cell lung cancer therapy. J Colloid Interface Sci 2023; 648:287-298. [PMID: 37301153 DOI: 10.1016/j.jcis.2023.05.153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Gene delivery for non-small-cell lung cancer treatment has been a challenge due to low nucleic acid binding ability, cell-wall barrier, and high cytotoxicity. Cationic polymers, such as the traditional "golden standard" polyethyleneimine (PEI) 25 kDa have emerged as a promising carrier for non-coding RNA delivery. However, the high cytotoxicity associated with its high molecular weight has limited its application in gene delivery. To address this limitation, herein, we designed a novel delivery system using fluorine-modified polyethyleneimine (PEI) 1.8 kDa for microRNA-942-5p-sponges non-coding RNA delivery. Compared to PEI 25 kDa, this novel gene delivery system demonstrated an approximately six-fold enhancement in endocytosis capability and maintain a higher cell viability. In vivo studies also showed good biosafety and anti-tumor effects, attribute to the positive charge of PEI and the hydrophobic and oleophobic properties of the fluorine-modified group. This study provides an effective gene delivery system for non-small-cell lung cancer treatment.
Collapse
Affiliation(s)
- Yi Jin
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China., National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China., National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenkai Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China., National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen Wang
- Department of Respiration, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Kunming University of Science and Technology, Kunming, China
| | - Yao Liu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China., National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-En Yuan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China., National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yun Feng
- Department of Respiration, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
10
|
Wong KH, Guo Z, Law MK, Chen M. Functionalized PAMAM constructed nanosystems for biomacromolecule delivery. Biomater Sci 2023; 11:1589-1606. [PMID: 36692071 DOI: 10.1039/d2bm01677j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyamidoamines (PAMAMs) are a class of dendrimer with monodispersity and controlled topology, which can deliver biologically active macromolecules (e.g., genes and proteins) to specific regions with high efficiency and minimum side effects. In detail, PAMAMs can be functionalized easily by core modification or surface amendment to encapsulate a wide range of biomacromolecules. Besides, self-assembled, cross-linked and hybrid PAMAMs with customized therapeutic purposes are developed as delivery vehicles, which makes PAMAMs promising for biomacromolecule therapy. In this review, we comprehensively summarize the application of PAMAMs in biomacromolecule delivery from the synthesis of functionalized PAMAM carriers to the development of PAMAM-based drug delivery systems. The underlying strategies for PAMAM functionalization and assembly are first systematically discussed, and then the current applications of PAMAMs for biomacromolecule delivery are reviewed. Finally, a brief perspective on the further applications of PAMAMs concludes, aiming to provide insights into developing PAMAM-based biomacromolecule delivery systems.
Collapse
Affiliation(s)
- Ka Hong Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| | - Zhaopei Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| | - Man-Kay Law
- State Key Laboratory of Analog and Mixed-Signal VLSI, IME and FST-ECE, University of Macau, Macau SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
11
|
Han H, Xing J, Chen W, Jia J, Li Q. Fluorinated polyamidoamine dendrimer-mediated miR-23b delivery for the treatment of experimental rheumatoid arthritis in rats. Nat Commun 2023; 14:944. [PMID: 36805456 PMCID: PMC9941585 DOI: 10.1038/s41467-023-36625-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
In rheumatoid arthritis (RA), insufficient apoptosis of macrophages and excessive generation of pro-inflammatory cytokines are intimately connected, accelerating the development of disease. Here, a fluorinated polyamidoamine dendrimer (FP) is used to deliver miR-23b to reduce inflammation by triggering the apoptosis of as well as inhibiting the inflammatory response in macrophages. Following the intravenous injection of FP/miR-23b nanoparticles in experimental RA models, the nanoparticles show therapeutic efficacy with inhibition of inflammatory response, reduced bone and cartilage erosion, suppression of synoviocyte infiltration and the recovery of mobility. Moreover, the nanoparticles accumulate in the inflamed joint and are non-specifically captured by synoviocytes, leading to the restoration of miR-23b expression in the synovium. The miR-23b nanoparticles target Tab2, Tab3 and Ikka to regulate the activation of NF-κB pathway in the hyperplastic synovium, thereby promoting anti-inflammatory and anti-proliferative responses. Additionally, the intravenous administration of FP/miR-23b nanoparticles do not induce obvious systemic toxicity. Overall, our work demonstrates that the combination of apoptosis induction and inflammatory inhibition could be a promising approach in the treatment of RA and possibly other autoimmune diseases.
Collapse
Affiliation(s)
- Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Jiakai Xing
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Wenqi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Jiaxin Jia
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China.
| |
Collapse
|
12
|
Abstract
INTRODUCTION Gene delivery vectors are a crucial determinant for gene therapeutic efficacy. Usually, it is necessary to use an excess of cationic vectors to achieve better transfection efficiency. However, it will cause severe cytotoxicity. In addition, cationic vectors are not resistant to serum, suffering from reduced transfection efficiency by forming large aggregates. Therefore, there is an urgent need to develop optimized gene delivery vectors. Recently, fluorination of vectors has been extensively applied to increase the gene delivery performance because of the unique properties of both hydrophobicity and lipophobicity, and chemical and biological inertness. AREAS COVERED This review will discuss the fluorophilic effects that impact gene delivery efficiency, and chemical modification approaches for fluorination. Next, recent advances and applications of fluorinated polymeric and lipidic vectors in gene therapy and gene editing are summarized. EXPERT OPINION Fluorinated vectors are a promising candidate for gene delivery. However, it still needs further studies to obtain pure and well-defined fluorinated polymers, guarantee the biosafety, and clarify the detailed mechanism. Apart from the improvements in gene delivery, exploiting other versatility of fluorinated vectors, such as oxygen-carrying ability, high affinity with fluorine-containing drugs, and imaging property upon introducing 19F, will further facilitate their applications in gene therapy.
Collapse
Affiliation(s)
- Yu Wan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuhan Yang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Mingyu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
13
|
Lv J, Wang H, Rong G, Cheng Y. Fluorination Promotes the Cytosolic Delivery of Genes, Proteins, and Peptides. Acc Chem Res 2022; 55:722-733. [PMID: 35175741 DOI: 10.1021/acs.accounts.1c00766] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cytosolic delivery of biomolecules such as genes, proteins, and peptides is of great importance for biotherapy but usually limited by multiple barriers during the process. Cell membrane with high hydrophobic character is one of the representative biological barriers for cytosolic delivery. The introduction of hydrophobic ligands such as aliphatic lipids onto materials or biomolecules could improve their membrane permeability. However, these ligands are lipophilic and tend to interact with the phospholipids in the membrane as well as serum proteins, which may hinder efficient intracellular delivery. To solve this issue, our research group proposed the use of fluorous ligands with both hydrophobicity and lipophobicity as ideal alternatives to aliphatic lipids to promote cytosolic delivery.In our first attempt, fluorous ligands were conjugated onto cationic polymers to increase their gene delivery efficacy. The fluorination dramatically increased the gene delivery performance at low polymer doses. In addition, the strategy greatly improved the serum tolerance of cationic polymers, which is critical for efficient gene delivery in vivo. Besides serum tolerance, mechanism studies revealed that fluorination increases multiple steps such as cellular uptake and endosomal escape. Fluorination also allowed the assembly of low-molecular-weight polymers and achieved highly efficient gene delivery with minimal material toxicity. The method showed robust efficiency for polymers, including linear polymers, branched polymers, dendrimers, bola amphiphilies, and dendronized polymers.Besides gene delivery, fluorinated polymers were also used for intracellular protein delivery via a coassembly strategy. For this purpose, two lead fluoropolymers were screened from a library of amphiphilic materials. The fluoropolymers are greatly superior to their nonfluorinated analogues conjugated with aliphatic lipids. The fluorous lipids are beneficial for polymer assembly and protein encapsulation, reduced protein denaturation, facilitated endocytosis, and decreased polymer toxicity compared to nonfluorinated lipids. The materials exhibited potent efficacy in therapeutic protein and peptide delivery to achieve cancer therapy and were able to fabricate a personalized nanovaccine for cancer immunotherapy. Finally, the fluorous lipids were directly conjugated to peptides via a disulfide bond for cytosolic peptide delivery. Fluorous lipids drive the assembly of cargo peptides into uniform nanoparticles with much improved proteolytic stability and promote their delivery into various types of cells. The delivery efficacy of this strategy is greatly superior to traditional techniques such as cell-penetrating peptides both in vitro and in vivo. Overall, the fluorination techniques provide efficient and promising strategies for the cytosolic delivery of biomolecules.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangyu Rong
- South China Advanced Institute for Soft Matter Science and Technology, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
14
|
Huang Z, Xiao YP, Guo Y, Yang HZ, Zhao RM, Zhang J, Yu XQ. A cyclen-based fluoropolymer as a versatile vector for gene and protein delivery. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
|
16
|
Baoum AA. The fluorination effect on the transfection efficacy of cell penetrating peptide complexes. Plasmid 2022; 119-120:102619. [DOI: 10.1016/j.plasmid.2022.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
|
17
|
Song T, Gao Y, Song M, Qian J, Zhang H, Zhou J, Ding Y. Fluoropolymers-mediated efficient biomacromolecule drug delivery. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Zhang Y, Yuan Z, Jin Y, Zhang W, Yuan WE. Novel Fluorinated Spermine and Small Molecule PEI to Deliver Anti-PD-L1 and Anti-VEGF siRNA for Highly Efficient Tumor Therapy. Pharmaceutics 2021; 13:2058. [PMID: 34959340 PMCID: PMC8708240 DOI: 10.3390/pharmaceutics13122058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Small interfering RNA (siRNA) can specifically silence disease gene expression. This project investigated the overexpression of programmed death receptor ligand 1 (PD-L1) and vascular endothelial growth factor (VEGF) on the surface of tumor cells. However, the main obstacle to the development of gene therapy drugs is the lack of an efficient delivery vector, which should be able to overcome multiple delivery barriers and protect siRNA to enter the target cells. Therefore, a novel fluorine-modified endogenous molecular carrier TFSPEI was constructed by linking fluorinated groups with hydrophobic and hydrophilic characteristics on the surface of PEI and spermine. The results showed that lower toxicity, higher endocytosis, and silencing efficiency were achieved. We found that the inhibition of VEGF targets can indirectly activate the immune response to promote the tumor-killing and invasion effects of T cells. The combined delivery of anti-VEGF siRNA and anti-PD-L1 siRNA could inhibit the expression of corresponding proteins, restore the anti-tumor function of T cells and inhibit the growth of neovascularization, and obtained significant anti-tumor effects. Therefore, this safe and efficient fluorinated spermine and small molecule PEI-based anti-PD-L1 and anti-VEGF siRNA delivery system is expected to provide a new strategy for gene therapy of tumors.
Collapse
Affiliation(s)
| | | | | | | | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Y.); (Y.J.); (W.Z.)
| |
Collapse
|
19
|
Chis AA, Dobrea CM, Rus LL, Frum A, Morgovan C, Butuca A, Totan M, Juncan AM, Gligor FG, Arseniu AM. Dendrimers as Non-Viral Vectors in Gene-Directed Enzyme Prodrug Therapy. Molecules 2021; 26:5976. [PMID: 34641519 PMCID: PMC8512881 DOI: 10.3390/molecules26195976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023] Open
Abstract
Gene-directed enzyme prodrug therapy (GDEPT) has been intensively studied as a promising new strategy of prodrug delivery, with its main advantages being represented by an enhanced efficacy and a reduced off-target toxicity of the active drug. In recent years, numerous therapeutic systems based on GDEPT strategy have entered clinical trials. In order to deliver the desired gene at a specific site of action, this therapeutic approach uses vectors divided in two major categories, viral vectors and non-viral vectors, with the latter being represented by chemical delivery agents. There is considerable interest in the development of non-viral vectors due to their decreased immunogenicity, higher specificity, ease of synthesis and greater flexibility for subsequent modulations. Dendrimers used as delivery vehicles offer many advantages, such as: nanoscale size, precise molecular weight, increased solubility, high load capacity, high bioavailability and low immunogenicity. The aim of the present work was to provide a comprehensive overview of the recent advances regarding the use of dendrimers as non-viral carriers in the GDEPT therapy.
Collapse
Affiliation(s)
| | | | | | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.A.C.); (C.M.D.); (L.-L.R.); (A.B.); (M.T.); (A.M.J.); (F.G.G.); (A.M.A.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.A.C.); (C.M.D.); (L.-L.R.); (A.B.); (M.T.); (A.M.J.); (F.G.G.); (A.M.A.)
| | | | | | | | | | | |
Collapse
|
20
|
Application of Non-Viral Vectors in Drug Delivery and Gene Therapy. Polymers (Basel) 2021; 13:polym13193307. [PMID: 34641123 PMCID: PMC8512075 DOI: 10.3390/polym13193307] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022] Open
Abstract
Vectors and carriers play an indispensable role in gene therapy and drug delivery. Non-viral vectors are widely developed and applied in clinical practice due to their low immunogenicity, good biocompatibility, easy synthesis and modification, and low cost of production. This review summarized a variety of non-viral vectors and carriers including polymers, liposomes, gold nanoparticles, mesoporous silica nanoparticles and carbon nanotubes from the aspects of physicochemical characteristics, synthesis methods, functional modifications, and research applications. Notably, non-viral vectors can enhance the absorption of cargos, prolong the circulation time, improve therapeutic effects, and provide targeted delivery. Additional studies focused on recent innovation of novel synthesis techniques for vector materials. We also elaborated on the problems and future research directions in the development of non-viral vectors, which provided a theoretical basis for their broad applications.
Collapse
|
21
|
Jia J, Gao Y, Dang K, Guo X, Ding A. Naphthalimide‐modified dendrimers as efficient and low cytotoxic nucleic acid delivery vectors. POLYM INT 2021. [DOI: 10.1002/pi.6252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jingxian Jia
- Department of Chemistry Tangshan Normal University Tangshan China
| | - Yongguang Gao
- Department of Chemistry Tangshan Normal University Tangshan China
- School of Life Sciences Northwestern Polytechnical University Xi'an China
| | - Kai Dang
- School of Life Sciences Northwestern Polytechnical University Xi'an China
| | - Xiaosong Guo
- Department of Chemistry Tangshan Normal University Tangshan China
| | - Aixiang Ding
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang China
| |
Collapse
|
22
|
Affiliation(s)
- Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences East China Normal University Shanghai 200241 China
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| |
Collapse
|
23
|
Abstract
The development of molecular nanostructures with well-defined particle size and shape is of eminent interest in biomedicine. Among many studied nanostructures, dendrimers represent the group of those most thoroughly characterized ones. Due to their unique structure and properties, dendrimers are very attractive for medical and pharmaceutical applications. Owing to the controllable cavities inside the dendrimer, guest molecules may be encapsulated, and highly reactive terminal groups are susceptible to further modifications, e.g., to facilitate target delivery. To understand the potential of these nanoparticles and to predict and avoid any adverse cellular reactions, it is necessary to know the mechanisms responsible for an efficient dendrimer uptake and the destination of their intracellular journey. In this article, we summarize the results of studies describing the dendrimer uptake, traffic, and efflux mechanisms depending on features of specific nanoparticles and cell types. We also present mechanisms of dendrimers responsible for toxicity and alteration in signal transduction pathways at the cellular level.
Collapse
Affiliation(s)
- Barbara Ziemba
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| | - Maciej Borowiec
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| | - Ida Franiak-Pietryga
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland.,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
24
|
Wang H, Zhang S, Lv J, Cheng Y. Design of polymers for siRNA delivery: Recent progress and challenges. VIEW 2021. [DOI: 10.1002/viw.20200026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Jia Lv
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
- Shanghai Key Laboratory of Regulatory Biology School of Life Sciences East China Normal University Shanghai China
| |
Collapse
|
25
|
Guo Y, Chen JJ, Yang HZ, Zhang J, Zhao RM, Huang Z, Yu XQ. Liposomes Derived from Macrocyclic Polyamine as a Versatile Macromolecule Delivery System. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yu Guo
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jia-Jia Chen
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Hui-Zhen Yang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Rui-Mo Zhao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
26
|
Lv J, Cheng Y. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chem Soc Rev 2021; 50:5435-5467. [DOI: 10.1039/d0cs00258e] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomedical applications of fluoropolymers in gene delivery, protein delivery, drug delivery, 19F MRI, PDT, anti-fouling, anti-bacterial, cell culture, and tissue engineering.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| |
Collapse
|
27
|
Wang X, Rong G, Yan J, Pan D, Wang L, Xu Y, Yang M, Cheng Y. In Vivo Tracking of Fluorinated Polypeptide Gene Carriers by Positron Emission Tomography Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45763-45771. [PMID: 32940028 DOI: 10.1021/acsami.0c11967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluorinated polymers have attracted increasing attention in gene delivery and cytosolic protein delivery in recent years. In vivo tracking of fluorinated polymers will be of great importance to evaluate their biodistribution, clearance, and safety. However, tracking of polymeric carriers without changing their chemical structures remains a huge challenge. Herein, we reported a series of fluorinated poly-l-(lysine) (F-PLL) with high gene transfection efficiency and excellent biodegradation. Radionuclide 18F was radiolabeled on F-PLL by halogen replacement without chemical modification. The radiolabeling of F-PLL offers positron emission tomography (PET) imaging for in vivo tracking of the polymers. The biodistribution of F-PLL and the DNA complexes revealed by micro-PET imaging illustrated the rapid clearance of fluorinated polymers from liver and intestine after intravenous administration. The results demonstrated that the polymer F-PLL will not be accumulated in the liver and spleen when administrated as a gene carrier. This work presents a new strategy for in vivo tracking fluorinated polymers via PET imaging.
Collapse
Affiliation(s)
- Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Guangyu Rong
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Lizhen Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
28
|
Gao X, Li L, Cai X, Huang Q, Xiao J, Cheng Y. Targeting nanoparticles for diagnosis and therapy of bone tumors: Opportunities and challenges. Biomaterials 2020; 265:120404. [PMID: 32987273 DOI: 10.1016/j.biomaterials.2020.120404] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022]
Abstract
A variety of targeted nanoparticles were developed for the diagnosis and therapy of orthotopic and metastatic bone tumors during the past decade. This critical review will focus on principles and methods in the design of these bone-targeted nanoparticles. Ligands including bisphosphonates, aspartic acid-rich peptides and synthetic polymers were grafted on nanoparticles such as PLGA nanoparticles, liposomes, dendrimers and inorganic nanoparticles for bone targeting. Besides, other ligands such as monoclonal antibodies, peptides and aptamers targeting biomarkers on tumor/bone cells were identified for targeted diagnosis and therapy. Examples of targeted nanoparticles for the early detection of bone metastatic tumors and the ablation of cancer via chemotherapy, photothermal therapy, gene therapy and combination therapy will be intensively reviewed. The development of multifunctional nanoparticles to break down the "vicious" cycle between tumor cell proliferation and bone resorption, and the challenges and perspectives in this area will be discussed.
Collapse
Affiliation(s)
- Xin Gao
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Lin Li
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Xiaopan Cai
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Quan Huang
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China.
| | - Jianru Xiao
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China.
| | - Yiyun Cheng
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
29
|
Chen G, Wang Y, Ullah A, Huai Y, Xu Y. The effects of fluoroalkyl chain length and density on siRNA delivery of bioreducible poly(amido amine)s. Eur J Pharm Sci 2020; 152:105433. [PMID: 32590121 DOI: 10.1016/j.ejps.2020.105433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/22/2020] [Indexed: 02/05/2023]
Abstract
Fluorination is an attractive strategy for the improvement of transfection efficiency of nucleic acid delivery vectors. Bioreducible poly(amido amine)s (bPAAs) are an important class of biomaterials exhibited to effectively deliver multiple nucleic acids. However, still, the effects of fluoroalkyl chain length and density of bPAA on siRNA delivery are unveiled. Here, we synthesized bPAAs and grafted with different chain lengths and densities of fluorocarbon compounds. Furthermore, we prepared a library of complexes of fluorinated bPAA and siRNA, and investigated the effects of fluorination on the siRNA delivery in vitro and in vivo. We found that all the synthesized bPAAs readily formed complexes with siRNA and the fluorinated complexes considerably achieved improved gene silencing efficacies both in vitro and in vivo. Dramatically, the gene silencing efficacy was increased with increasing fluorine contents. Heptafluorobutyric anhydride (HF) modified bPAAs achieved better gene silencing efficacy when compared with bPAAs fluorinated by trifluoroacetic anhydride (TF) and pentafluoropropionic anhydride (PF) providing the evidence for choosing of best one among fluorocarbon compounds. In addition, a combination of fluorination with bioreducibility enables efficient and safe siRNA delivery.
Collapse
Affiliation(s)
- Gang Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| | - Yixin Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Aftab Ullah
- Shantou University Medical College, Shantou 515041, China
| | - Yuying Huai
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuehua Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
30
|
New Ionic Carbosilane Dendrons Possessing Fluorinated Tails at Different Locations on the Skeleton. Molecules 2020; 25:molecules25040807. [PMID: 32069852 PMCID: PMC7070408 DOI: 10.3390/molecules25040807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 02/03/2023] Open
Abstract
The fluorination of dendritic structures has attracted special attention in terms of self-assembly processes and biological applications. The presence of fluorine increases the hydrophobicity of the molecule, resulting in a better interaction with biological membranes and viability. In addition, the development of 19F magnetic resonance imaging (19F-MRI) has greatly increased interest in the design of new fluorinated structures with specific properties. Here, we present the synthesis of new water-soluble fluorinated carbosilane dendrons containing fluorinated chains in different positions on the skeleton, focal point or surface, and their preliminary supramolecular aggregation studies. These new dendritic systems could be considered as potential systems to be employed in drug delivery or gene therapy and monitored by 19F-MRI.
Collapse
|
31
|
Zhang JH, Wang WJ, Zhang J, Xiao YP, Liu YH, Yu XQ. ROS-responsive fluorinated polycations as non-viral gene vectors. Eur J Med Chem 2019; 182:111666. [DOI: 10.1016/j.ejmech.2019.111666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
|
32
|
Lv J, Fan Q, Wang H, Cheng Y. Polymers for cytosolic protein delivery. Biomaterials 2019; 218:119358. [DOI: 10.1016/j.biomaterials.2019.119358] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 12/31/2022]
|
33
|
Saluja V, Mankoo A, Saraogi GK, Tambuwala MM, Mishra V. Smart dendrimers: Synergizing the targeting of anticancer bioactives. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Wang H, Ding S, Zhang Z, Wang L, You Y. Cationic micelle: A promising nanocarrier for gene delivery with high transfection efficiency. J Gene Med 2019; 21:e3101. [PMID: 31170324 DOI: 10.1002/jgm.3101] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Micelles have demonstrated an excellent ability to deliver several different types of therapeutic agents, including chemotherapy drugs, proteins, small-interfering RNA and DNA, into tumor cells. Cationic micelles, comprising self-assemblies of amphiphilic cationic polymers, have exhibited tremendous promise with respect to the delivery of therapy genes and gene transfection. To date, research in the field has focused on achieving an enhanced stability of the micellar assembly, prolonged circulation times and controlled release of the gene. This review focuses on the micelles as a nanosized carrier system for gene delivery, the system-related modifications for cytoplasm release, stability and biocompatibility, and clinic trials. In accordance with the development of synthetic chemistry and self-assembly technology, the structures and functionalities of micelles can be precisely controlled, and hence the synthetic micelles not only efficiently condense DNA, but also facilitate DNA endocytosis, endosomal escape, DNA uptake and nuclear transport, resulting in a comparable gene transfection of virus.
Collapse
Affiliation(s)
- Haili Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Longhai Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Yezi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
35
|
Lee GJ, Kim TI. Fluorination effect to intermediate molecular weight polyethylenimine for gene delivery systems. J Biomed Mater Res A 2019; 107:2468-2478. [PMID: 31276293 DOI: 10.1002/jbm.a.36753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 07/01/2019] [Indexed: 01/02/2023]
Abstract
Fluorinated intermediate molecular weight polyethylenimine (FP2ks) with various fluorination degrees was synthesized by conjugation with heptafluorobutyric anhydride and the fluorination effect for gene delivery systems was examined. FP2ks could condense pDNA, forming compact, positively charged, and nano-sized spherical particles. It was thought that their decreased electrostatic interaction with pDNA would be compensated by hydrophobic interaction. The cytotoxicity of FP2ks was increased with the increase of fluorination degree, probably due to the cellular membrane disruption via hydrophobic interaction with FP2ks. The transfection efficiency of highly fluorinated FP2ks was not severely affected in serum condition, assuming their good serum-compatibility. Discrepancy between their higher cellular uptake efficiency and lower transfection efficiency than PEI25k was thought to arise from the formation of compact polyplexes followed by the decreased dissociation of pDNA. It was also suggested that multiple energy-dependent cellular uptake mechanisms and endosome buffering would mediate the transfection of FP2ks.
Collapse
Affiliation(s)
- Gyeong Jin Lee
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Tae-Il Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| |
Collapse
|
36
|
Guo X, Yuan Z, Xu Y, Zhao X, Fang Z, Yuan WE. A Low-Molecular-Weight Polyethylenimine/pDNA-VEGF Polyplex System Constructed in a One-Pot Manner for Hindlimb Ischemia Therapy. Pharmaceutics 2019; 11:E171. [PMID: 30965617 PMCID: PMC6523750 DOI: 10.3390/pharmaceutics11040171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/14/2022] Open
Abstract
Peripheral arterial disease (PAD) is often characterized by continued reduction in blood flow supply to limbs. Advanced therapeutic strategies like gene therapy could potentially be applied to limb ischemia therapy. However, developing a gene delivery system with low toxicity and high efficiency remains a great challenge. In this study, a one-pot construction was used to integrate vector synthesis and polyplex fabrication simultaneously in a simple and robust manner. We fabricated an interpenetrating gene delivery network through the physical interaction between low-molecular-weight polyethylenimine (PEI 1.8 kDa) and plasmid DNA (pDNA) and the chemical bonding between PEI and glutaraldehyde (GA), which was named the glutaraldehydelinked-branched PEI (GPEI) polyplex. The final GPEI polyplex system was pH-responsive and biodegradable due to the imine linkage and it could successfully deliver desired vascular endothelial growth factor (VEGF) pDNA. Compared with PEI (25 kDa)/pDNA polyplexes, GPEI polyplexes showed lower cytotoxicity and higher transfection efficiency both in vitro and in vivo. In addition, we demonstrated that GPEI polyplexes could efficiently promote the formation of new capillaries in vivo, which may provide a practicable strategy for clinical hindlimb ischemia therapy in the future.
Collapse
Affiliation(s)
- Xiaoshuang Guo
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zihan Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yang Xu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaotian Zhao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhiwei Fang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
37
|
Wang M, Xue H, Gao M, Wang Q, Yang H. Synthetic fluorinated polyamides as efficient gene vectors. J Biomed Mater Res B Appl Biomater 2019; 107:2132-2139. [DOI: 10.1002/jbm.b.34307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/27/2018] [Accepted: 12/19/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Mian Wang
- Xinxiang Medical University; Jinsui Avenue 601, Xinxiang 453003 China
| | - Han Xue
- Xinxiang Medical University; Jinsui Avenue 601, Xinxiang 453003 China
| | - Min Gao
- Lianyungang Technical College; Chenguang Road 2, Lianyungang 222000 China
| | - Qingli Wang
- Jinyuan Mineral Co. Ltd; Lingbao 472500 China
| | - Haijie Yang
- Xinxiang Medical University; Jinsui Avenue 601, Xinxiang 453003 China
| |
Collapse
|
38
|
Song Y, Wang M, Li S, Jin H, Cai X, Du D, Li H, Chen CL, Lin Y. Efficient Cytosolic Delivery Using Crystalline Nanoflowers Assembled from Fluorinated Peptoids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803544. [PMID: 30565848 DOI: 10.1002/smll.201803544] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/15/2018] [Indexed: 06/09/2023]
Abstract
The design and synthesis of biocompatible nanomaterials as cargoes for the intracellular delivery of therapeutic proteins or genes have attracted intense attention because of their potential for use in therapeutics. Despite the advances in this area, very few nanomaterials can be efficiently delivered to the cytosol. To address these challenges, crystalline nanoflower-like particles are designed and synthesized from fluorinated sequence-defined peptoids; the crystallinity and fluorination of these particles enable highly efficient cytosolic delivery with minimal cytotoxicity. A cytosol delivery rate of 80% has been achieved for the fluorinated peptoid nanoflowers. Furthermore, these nanocrystals can carry therapeutic genes, such as mRNA and effectively deliver the payload into the cytosol, demonstrating the universal delivery capability of the nanocrystals. The results indicate that self-assembly of crystalline nanomaterials from fluorinated peptoids paves a new way toward development of nanocargoes with efficient cytosolic gene delivery capability.
Collapse
Affiliation(s)
- Yang Song
- Department of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Mingming Wang
- Division of Physical Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Suiqiong Li
- Department of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Haibao Jin
- Division of Physical Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Xiaoli Cai
- Department of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Dan Du
- Department of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - He Li
- Department of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Chun-Long Chen
- Division of Physical Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yuehe Lin
- Department of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
39
|
Xiao YP, Zhang J, Liu YH, Zhang JH, Yu QY, Huang Z, Yu XQ. Low molecular weight PEI-based fluorinated polymers for efficient gene delivery. Eur J Med Chem 2018; 162:602-611. [PMID: 30472606 DOI: 10.1016/j.ejmech.2018.11.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 02/02/2023]
Abstract
Fluorinated biomaterials have been reported to have promising features as non-viral gene carriers. In this study, a series of fluorinated polymeric gene carriers were synthesized via Michael addition from low molecular weight polyethyleneimine (PEI) and fluorobenzoic acids (FBAs)-based linking compounds with different numbers of fluorine atoms. The structure-activity relationship (SAR) of these materials was systematically investigated. SAR studies showed that fluorine could screen the positive charge of these polymers. However, this shielding effect of fluorine would endow fluorinated polymers with good balance between DNA condensation and release. In vitro transfection results suggested that these fluorinated polymers could mediate efficient gene delivery. Flow cytometry and confocal microscopy studies demonstrated that more efficient cell uptake could be achieved by fluorinated materials with more fluorine atoms. Cytotoxicity assays showed that these fluorinated materials exhibited very low cytotoxicity even at high mass ratios. This study demonstrates that FBA-based fluorinated biopolymers have the potential for practical application.
Collapse
Affiliation(s)
- Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China.
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Ju-Hui Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Qing-Ying Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
40
|
Lv J, He B, Yu J, Wang Y, Wang C, Zhang S, Wang H, Hu J, Zhang Q, Cheng Y. Fluoropolymers for intracellular and in vivo protein delivery. Biomaterials 2018; 182:167-175. [DOI: 10.1016/j.biomaterials.2018.08.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 01/31/2023]
|
41
|
Zhang T, Huang Y, Ma X, Gong N, Liu X, Liu L, Ye X, Hu B, Li C, Tian JH, Magrini A, Zhang J, Guo W, Xing JF, Bottini M, Liang XJ. Fluorinated Oligoethylenimine Nanoassemblies for Efficient siRNA-Mediated Gene Silencing in Serum-Containing Media by Effective Endosomal Escape. NANO LETTERS 2018; 18:6301-6311. [PMID: 30240228 DOI: 10.1021/acs.nanolett.8b02553] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Efficient small interfering RNA (siRNA) delivery in the presence of serum is of crucial importance for effective gene therapy. Fluorinated vectors are considered to be attractive candidates for siRNA-mediated gene therapy because of their delivery efficacy in serum-containing media. However, the mechanisms driving the superior gene transfection behavior of fluorinated vectors are still not well-understood, and comprehensive investigations are warranted. Herein, we fabricated a library of perfluorooctanoyl fluoride-fluorinated (PFF-fluorinated) oligoethylenimines (f xOEIs, x is the PFF:OEI feeding ratio), which can readily form nanoassemblies (f xOEI NAs) capable of efficient siRNA delivery in cells cultured in medium both devoid of and supplemented with fetal bovine serum (FBS). The gene silencing test in serum-containing medium revealed that the f0.7OEI/siRNA NAs achieved a luciferase silencing of ∼88.4% in Luc-HeLa cells cultured in FBS-containing medium, which was almost 2-fold greater than the silencing efficacy of siRNA delivered by the commercially available vector Lipo 2000 (∼48.8%). High levels of apolipoprotein B silencing were also achieved by f0.7OEI/siRNA NAs in vivo. For an assessment of the underlying mechanisms of the efficacy of gene silencing of fluorinated vectors, two alkylated OEIs, aOEI-C8 and aOEI-C12, were fabricated as controls with similar molecular structure and hydrophobicity to that of f0.7OEI, respectively. In vitro investigations showed that the superior gene delivery exhibited by f0.7OEI NAs derived from the potent endosomal disruption capability of fluorinated vectors in the presence of serum, which was essentially attributed to the serum protein adsorption resistance of the f0.7OEI NAs. Therefore, this work provides an innovative approach to siRNA delivery as well as insights into fluorine-associated serum resistance.
Collapse
Affiliation(s)
- Tingbin Zhang
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P. R. China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Xiaowei Ma
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P. R. China
| | - Ningqiang Gong
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P. R. China
| | - Xiaoli Liu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P. R. China
| | - Lu Liu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P. R. China
- Department of Experimental Medicine and Surgery , University of Rome Tor Vergata , Via Montpellier 1 , 00133 Rome , Italy
| | - Xiaoxia Ye
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P. R. China
| | - Bo Hu
- Advanced Research Institute of Multidisciplinary Science, School of Life Science , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Chunhui Li
- Advanced Research Institute of Multidisciplinary Science, School of Life Science , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Jian-Hua Tian
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Andrea Magrini
- Department of Biomedicine and Prevention , University of Rome Tor Vergata , Via Montpellier 1 , 00133 Rome , Italy
| | - Jinchao Zhang
- Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science , Hebei University , Baoding 071002 , P. R. China
| | - Weisheng Guo
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital , Guangzhou Medical University , Guangzhou 510260 , P. R. China
| | - Jin-Feng Xing
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Massimo Bottini
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P. R. China
- Department of Experimental Medicine and Surgery , University of Rome Tor Vergata , Via Montpellier 1 , 00133 Rome , Italy
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P. R. China
| |
Collapse
|
42
|
Zuo G, Xie A, Pan X, Su T, Li J, Dong W. Fluorine-Doped Cationic Carbon Dots for Efficient Gene Delivery. ACS APPLIED NANO MATERIALS 2018; 1:2376-2385. [DOI: 10.1021/acsanm.8b00521] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
43
|
The fluorination effect of fluoroamphiphiles in cytosolic protein delivery. Nat Commun 2018; 9:1377. [PMID: 29636457 PMCID: PMC5893556 DOI: 10.1038/s41467-018-03779-8] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 03/08/2018] [Indexed: 11/18/2022] Open
Abstract
Direct delivery of proteins into cells avoids many drawbacks of gene delivery, and thus has emerging applications in biotherapy. However, it remains a challenging task owing to limited charges and relatively large size of proteins. Here, we report an efficient protein delivery system via the co-assembly of fluoroamphiphiles and proteins into nanoparticles. Fluorous substituents on the amphiphiles play essential roles in the formation of uniform nanoparticles, avoiding protein denaturation, efficient endocytosis, and maintaining low cytotoxicity. Structure-activity relationship studies reveal that longer fluorous chain length and higher fluorination degree contribute to more efficient protein delivery, but excess fluorophilicity on the polymer leads to the pre-assembly of fluoroamphiphiles into stable vesicles, and thus failed protein encapsulation and cytosolic delivery. This study highlights the advantage of fluoroamphiphiles over other existing strategies for intracellular protein delivery. Proteins can serve as means of medical treatment, but their efficient delivery to cells is difficult. Here, the authors present a type of polymers, fluoroamphiphiles, acting as chemical chaperones that can facilitate the import of proteins into the inner compartment, i.e. cytosol, of cells.
Collapse
|
44
|
Han H, Chen W, Yang J, Liang X, Wang Y, Li Q, Yang Y, Li K. Inhibition of cell proliferation and migration through nucleobase-modified polyamidoamine-mediated p53 delivery. Int J Nanomedicine 2018; 13:1297-1311. [PMID: 29563788 PMCID: PMC5846749 DOI: 10.2147/ijn.s146917] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction The nucleobase 2-amino-6-chloropurine-modified polyamidoamine (AP-PAMAM) was used as a carrier for p53 gene delivery to achieve the antitumor effects. Methods and materials The condensation of p53 plasmid was studied through gel retardation assay, and the transfection efficiency was evaluated through the transfection assay of pEGFP-N3 and pGL-3 plasmids. Using human cervical carcinoma cell line HeLa as a model, the inhibition of cell proliferation and migration was studied through flow cytometry, wound healing and Transwell migration assays, respectively. The p53 expression level was detected through quantitative polymerase chain reaction and Western blotting analyses. Results The carrier could condense p53 plasmid into stable nanoparticles at N/P ratios of 2.0, and higher transfection efficiency than polyamidoamine (PAMAM) could be obtained at all the N/P ratios studied. AP-PAMAM-mediated p53 delivery could achieve stronger antiproliferative effect than PAMAM/p53. The antiproliferative effect was identified to be triggered by the induction of cell apoptosis (apoptotic ratio of 26.17%) and cell cycle arrest at S phase. Additionally, AP-PAMAM/p53 transfection has been found to suppress the cell migration and invasion of cancer cells. Finally, the enhanced p53 expression level could be detected after p53 transfection at mRNA and protein levels. Conclusion The PAMAM derivative-mediated p53 delivery could be a promising strategy for achieving tumor gene therapy.
Collapse
Affiliation(s)
- Haobo Han
- School of Nursing.,Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Wenqi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Yudi Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Yan Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | | |
Collapse
|
45
|
Zhi D, Bai Y, Yang J, Cui S, Zhao Y, Chen H, Zhang S. A review on cationic lipids with different linkers for gene delivery. Adv Colloid Interface Sci 2018; 253:117-140. [PMID: 29454463 DOI: 10.1016/j.cis.2017.12.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023]
Abstract
Cationic lipids have become known as one of the most versatile tools for the delivery of DNA, RNA and many other therapeutic molecules, and are especially attractive because they can be easily designed, synthesized and characterized. Most of cationic lipids share the common structure of cationic head groups and hydrophobic portions with linker bonds between both domains. The linker bond is an important determinant of the chemical stability and biodegradability of cationic lipid, and further governs its transfection efficiency and cytotoxicity. Based on the structures of linker bonds, they can be grouped into many types, such as ether, ester, amide, carbamate, disulfide, urea, acylhydrazone, phosphate, and other unusual types (carnitine, vinyl ether, ketal, glutamic acid, aspartic acid, malonic acid diamide and dihydroxybenzene). This review summarizes some research results concerning the nature (such as the structure and orientation of linker groups) and density (such as the spacing and the number of linker groups) of linker bond for improving the chemical stability, biodegradability, transfection efficiency and cytotoxicity of cationic lipid to overcome the critical barriers of in vitro and in vivo transfection.
Collapse
|
46
|
Tan E, Lv J, Hu J, Shen W, Wang H, Cheng Y. Statistical versus block fluoropolymers in gene delivery. J Mater Chem B 2018; 6:7230-7238. [DOI: 10.1039/c8tb01470a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A statistical fluorocopolymer shows dramatically higher transfection efficiency in gene delivery than a block one.
Collapse
Affiliation(s)
- Echuan Tan
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Jia Lv
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Jingjing Hu
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Wanwan Shen
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Hui Wang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|
47
|
Gong JH, Wang Y, Xing L, Cui PF, Qiao JB, He YJ, Jiang HL. Biocompatible fluorinated poly(β-amino ester)s for safe and efficient gene therapy. Int J Pharm 2018; 535:180-193. [DOI: 10.1016/j.ijpharm.2017.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/22/2017] [Accepted: 11/08/2017] [Indexed: 01/01/2023]
|
48
|
Han H, Chen W, Yang J, Zhang J, Li Q, Yang Y. 2-Amino-6-chloropurine-modified polyamidoamine-mediated p53 gene transfection to achieve anti-tumor efficacy. NEW J CHEM 2018. [DOI: 10.1039/c8nj01870g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modification of 2-amino-6-chloropurine on polyamidoamine was performed to synthesize a derivative, AP-PAMAM, which was then employed as a carrier for p53 gene delivery to achieve anti-tumor efficacy.
Collapse
Affiliation(s)
- Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Wenqi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Jiayuan Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Yan Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
49
|
Wang J, Hu X, Wang D, Xie C, Lu W, Song J, Wang R, Gao C, Liu M. 2-Aminoimidazole facilitates efficient gene delivery in a low molecular weight poly(amidoamine) dendrimer. Org Biomol Chem 2018; 16:4464-4470. [DOI: 10.1039/c8ob00953h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Aminoimidazole greatly improved the transfection efficiency of G2. It contributes to condensing DNA into small, monodisperse nanostructures, enhancing cellular penetration and endosome/lysosome escape.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- Shanghai
| | - Xuefeng Hu
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- Shanghai
| | - Dongli Wang
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- Shanghai
| | - Cao Xie
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- Shanghai
| | - Weiyue Lu
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- Shanghai
| | - Jie Song
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- Shanghai
| | - Ruifeng Wang
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- Shanghai
| | - Chunli Gao
- Department of Otolaryngology-Head and Neck Surgery
- Eye and ENT Hospital
- Fudan University
- P.R. China
| | - Min Liu
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- Shanghai
| |
Collapse
|
50
|
Zha Z, Hu Y, Mukerabigwi JF, Chen W, Wang Y, He C, Ge Z. Thiolactone Chemistry-Based Combinatorial Methodology to Construct Multifunctional Polymers for Efficacious Gene Delivery. Bioconjug Chem 2017; 29:23-28. [DOI: 10.1021/acs.bioconjchem.7b00672] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zengshi Zha
- CAS
Key Laboratory of Soft Matter Chemistry, Department of Polymer Science
and Engineering, University of Science and Technology of China, Hefei 230026, Anhui China
| | - Yongyi Hu
- CAS
Key Laboratory of Soft Matter Chemistry, Department of Polymer Science
and Engineering, University of Science and Technology of China, Hefei 230026, Anhui China
| | - Jean Felix Mukerabigwi
- CAS
Key Laboratory of Soft Matter Chemistry, Department of Polymer Science
and Engineering, University of Science and Technology of China, Hefei 230026, Anhui China
| | - Weijian Chen
- CAS
Key Laboratory of Soft Matter Chemistry, Department of Polymer Science
and Engineering, University of Science and Technology of China, Hefei 230026, Anhui China
| | - Yuheng Wang
- CAS
Key Laboratory of Soft Matter Chemistry, Department of Polymer Science
and Engineering, University of Science and Technology of China, Hefei 230026, Anhui China
| | - Chuanxin He
- College
of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong China
| | - Zhishen Ge
- CAS
Key Laboratory of Soft Matter Chemistry, Department of Polymer Science
and Engineering, University of Science and Technology of China, Hefei 230026, Anhui China
| |
Collapse
|