1
|
Tseng PL, Sun W, Salem A, Alaklobie M, Macfarlane SC, Gad AK, Collins MO, Erdmann KS. Mechanical control of the alternative splicing factor PTBP1 regulates extracellular matrix stiffness induced proliferation and cell spreading. iScience 2025; 28:112273. [PMID: 40241749 PMCID: PMC12002664 DOI: 10.1016/j.isci.2025.112273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/23/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Cells sense mechanical cues and convert them into biochemical responses to regulate biological processes such as embryonic development, aging, cellular homeostasis, and disease progression. In this study, we introduce a large-scale, systematic approach to identify proteins with mechanosensitive nuclear localization, highlighting their potential roles in mechanotransduction. Among the proteins identified, we focus here on the splicing factor PTBP1. We demonstrate that its nuclear abundance is regulated by mechanical cues such as cell density, size, and extracellular matrix (ECM) stiffness and that PTBP1 medicates the mechanosensitive alternative splicing of the endocytic adapter protein Numb. Furthermore, we show that PTBP1 and Numb alternative splicing is critical for ECM stiffness-induced epithelial cell spreading and proliferation as well as for mesenchymal stem cell differentiation into osteoblasts on a stiff matrix. Our results underscore the emerging role of alternative splicing in mechanotransduction and provide novel mechanistic insights into how matrix stiffness modulates cellular mechanoresponses.
Collapse
Affiliation(s)
- Pei-Li Tseng
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Weiwei Sun
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Ahmed Salem
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Department of Biomedical Laboratory Science, Sheba University, Sheba, Libya
| | - Mubarak Alaklobie
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 67714, Saudi Arabia
| | - Sarah C. Macfarlane
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield S10 2TN, UK
| | - Annica K.B. Gad
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield S10 2TN, UK
- Department of Oncology-Pathology, Karolinska Institutet, Anna Steckséns gata 30A, 171 64 Solna, Sweden
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Mark O. Collins
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- biOMICS Mass Spectrometry Facility, University of Sheffield, Sheffield S10 2TN, UK
| | - Kai S. Erdmann
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
2
|
Okamoto N, Taniura N, Nakayama T, Tanaka E, Kageyama Y, Noujima M, Kushima R, Mukaisho KI. Three-Dimensional Culture of Glioblastoma Cells Using a Tissueoid Cell Culture System. Acta Histochem Cytochem 2024; 57:149-155. [PMID: 39552931 PMCID: PMC11565224 DOI: 10.1267/ahc.24-00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 11/19/2024] Open
Abstract
In classical cell culture techniques, cancer cells typically proliferate in a single layer by adhering to the undersurface of laboratory vessels. Consequently, concerns have been raised regarding the fidelity of the morphological and functional characteristics of these cultured cancer cells compared to those of their in vivo counterparts. Our previous studies have investigated various epithelial malignant tumors utilizing the Tissueoid cell culture system, a three-dimensional (3D) cultivation method employing Cellbed-a nonwoven sheet composed of high-purity silica fibers as a scaffold. In this investigation, we have achieved successful 3D culturing of glioblastoma cells (A172 and T98G), which are non-epithelial in nature. As such our focus is to juxtapose their morphological features against that of those cultivated via conventional two-dimensional (2D) methods. Our findings will be elucidated using immunostaining, immunofluorescence staining, and scanning electron microscopy, substantiated with accompanying imaging. Notably, cells cultured in the 3D environment exhibited distinct morphological attributes compared to those of their 2D counterparts, notably featuring pronounced cellular protrusions. We envisage the continued utilization of the 3D culture platform to facilitate diverse avenues of research, encompassing the exploration of novel therapeutic modalities for glioblastoma cells and beyond.
Collapse
Affiliation(s)
- Natsume Okamoto
- Division of Human Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Naoko Taniura
- Division of Human Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
- Education Center for Medicine and Nursing, Shiga University of Medical Science, Otsu, Japan
| | - Takahisa Nakayama
- Division of Human Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Eri Tanaka
- Division of Human Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Yusuke Kageyama
- Division of Human Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Mai Noujima
- Division of Human Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Ryoji Kushima
- Division of Human Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Ken-ichi Mukaisho
- Education Center for Medicine and Nursing, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
3
|
Xu Y, Bai Z, Lan T, Fu C, Cheng P. CD44 and its implication in neoplastic diseases. MedComm (Beijing) 2024; 5:e554. [PMID: 38783892 PMCID: PMC11112461 DOI: 10.1002/mco2.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 05/25/2024] Open
Abstract
CD44, a nonkinase single span transmembrane glycoprotein, is a major cell surface receptor for many other extracellular matrix components as well as classic markers of cancer stem cells and immune cells. Through alternative splicing of CD44 gene, CD44 is divided into two isoforms, the standard isoform of CD44 (CD44s) and the variant isoform of CD44 (CD44v). Different isoforms of CD44 participate in regulating various signaling pathways, modulating cancer proliferation, invasion, metastasis, and drug resistance, with its aberrant expression and dysregulation contributing to tumor initiation and progression. However, CD44s and CD44v play overlapping or contradictory roles in tumor initiation and progression, which is not fully understood. Herein, we discuss the present understanding of the functional and structural roles of CD44 in the pathogenic mechanism of multiple cancers. The regulation functions of CD44 in cancers-associated signaling pathways is summarized. Moreover, we provide an overview of the anticancer therapeutic strategies that targeting CD44 and preclinical and clinical trials evaluating the pharmacokinetics, efficacy, and drug-related toxicity about CD44-targeted therapies. This review provides up-to-date information about the roles of CD44 in neoplastic diseases, which may open new perspectives in the field of cancer treatment through targeting CD44.
Collapse
Affiliation(s)
- Yiming Xu
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ziyi Bai
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Tianxia Lan
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Chenying Fu
- Laboratory of Aging and Geriatric Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ping Cheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
4
|
Shu J, Deng H, Zhang Y, Wu F, He J. Cancer cell response to extrinsic and intrinsic mechanical cue: opportunities for tumor apoptosis strategies. Regen Biomater 2024; 11:rbae016. [PMID: 38476678 PMCID: PMC10932484 DOI: 10.1093/rb/rbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Increasing studies have revealed the importance of mechanical cues in tumor progression, invasiveness and drug resistance. During malignant transformation, changes manifest in either the mechanical properties of the tissue or the cellular ability to sense and respond to mechanical signals. The major focus of the review is the subtle correlation between mechanical cues and apoptosis in tumor cells from a mechanobiology perspective. To begin, we focus on the intracellular force, examining the mechanical properties of the cell interior, and outlining the role that the cytoskeleton and intracellular organelle-mediated intracellular forces play in tumor cell apoptosis. This article also elucidates the mechanisms by which extracellular forces guide tumor cell mechanosensing, ultimately triggering the activation of the mechanotransduction pathway and impacting tumor cell apoptosis. Finally, a comprehensive examination of the present status of the design and development of anti-cancer materials targeting mechanotransduction is presented, emphasizing the underlying design principles. Furthermore, the article underscores the need to address several unresolved inquiries to enhance our comprehension of cancer therapeutics that target mechanotransduction.
Collapse
Affiliation(s)
- Jun Shu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Huan Deng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yu Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
5
|
Liu Y, Li C, Lu Y, Liu C, Yang W. Tumor microenvironment-mediated immune tolerance in development and treatment of gastric cancer. Front Immunol 2022; 13:1016817. [PMID: 36341377 PMCID: PMC9630479 DOI: 10.3389/fimmu.2022.1016817] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
Tumor microenvironment is the general term for all non-cancer components and their metabolites in tumor tissue. These components include the extracellular matrix, fibroblasts, immune cells, and endothelial cells. In the early stages of tumors, the tumor microenvironment has a tumor suppressor function. As the tumor progresses, tumor immune tolerance is induced under the action of various factors, such that the tumor suppressor microenvironment is continuously transformed into a tumor-promoting microenvironment, which promotes tumor immune escape. Eventually, tumor cells manifest the characteristics of malignant proliferation, invasion, metastasis, and drug resistance. In recent years, stress effects of the extracellular matrix, metabolic and phenotypic changes of innate immune cells (such as neutrophils, mast cells), and adaptive immune cells in the tumor microenvironment have been revealed to mediate the emerging mechanisms of immune tolerance, providing us with a large number of emerging therapeutic targets to relieve tumor immune tolerance. Gastric cancer is one of the most common digestive tract malignancies worldwide, whose mortality rate remains high. According to latest guidelines, the first-line chemotherapy of advanced gastric cancer is the traditional platinum and fluorouracil therapy, while immunotherapy for gastric cancer is extremely limited, including only Human epidermal growth factor receptor 2 (HER-2) and programmed death ligand 1 (PD-L1) targeted drugs, whose benefits are limited. Clinical experiments confirmed that cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), vascular endothelial growth factor receptor (VEGFR) and other targeted drugs alone or in combination with other drugs have limited efficacy in patients with advanced gastric cancer, far less than in lung cancer, colon cancer, and other tumors. The failure of immunotherapy is mainly related to the induction of immune tolerance in the tumor microenvironment of gastric cancer. Therefore, solving the immune tolerance of tumors is key to the success of gastric cancer immunotherapy. In this study, we summarize the latest mechanisms of various components of the tumor microenvironment in gastric cancer for inducing immune tolerance and promoting the formation of the malignant phenotype of gastric cancer, as well as the research progress of targeting the tumor microenvironment to overcome immune tolerance in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Changfeng Li, ; Wei Yang,
| | - Yaoping Lu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
- *Correspondence: Changfeng Li, ; Wei Yang,
| |
Collapse
|
6
|
Guo T, He C, Venado A, Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr Physiol 2022; 12:3523-3558. [PMID: 35766837 PMCID: PMC10088466 DOI: 10.1002/cphy.c210032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) provides structural support and imparts a wide variety of environmental cues to cells. In the past decade, a growing body of work revealed that the mechanical properties of the ECM, commonly known as matrix stiffness, regulate the fundamental cellular processes of the lung. There is growing appreciation that mechanical interplays between cells and associated ECM are essential to maintain lung homeostasis. Dysregulation of ECM-derived mechanical signaling via altered mechanosensing and mechanotransduction pathways is associated with many common lung diseases. Matrix stiffening is a hallmark of lung fibrosis. The stiffened ECM is not merely a sequelae of lung fibrosis but can actively drive the progression of fibrotic lung disease. In this article, we provide a comprehensive view on the role of matrix stiffness in lung health and disease. We begin by summarizing the effects of matrix stiffness on the function and behavior of various lung cell types and on regulation of biomolecule activity and key physiological processes, including host immune response and cellular metabolism. We discuss the potential mechanisms by which cells probe matrix stiffness and convert mechanical signals to regulate gene expression. We highlight the factors that govern matrix stiffness and outline the role of matrix stiffness in lung development and the pathogenesis of pulmonary fibrosis, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We envision targeting of deleterious matrix mechanical cues for treatment of fibrotic lung disease. Advances in technologies for matrix stiffness measurements and design of stiffness-tunable matrix substrates are also explored. © 2022 American Physiological Society. Compr Physiol 12:3523-3558, 2022.
Collapse
Affiliation(s)
- Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA.,Department of Respiratory Medicine, the Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Chao He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Aida Venado
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
7
|
Tian H, Shi H, Yu J, Ge S, Ruan J. Biophysics Role and Biomimetic Culture Systems of ECM Stiffness in Cancer EMT. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100094. [PMID: 35712024 PMCID: PMC9189138 DOI: 10.1002/gch2.202100094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/14/2022] [Indexed: 06/15/2023]
Abstract
Oncological diseases have become the second leading cause of death from noncommunicable diseases worldwide and a major threat to human health. With the continuous progress in cancer research, the mechanical cues from the tumor microenvironment environment (TME) have been found to play an irreplaceable role in the progression of many cancers. As the main extracellular mechanical signal carrier, extracellular matrix (ECM) stiffness may influence cancer progression through biomechanical transduction to modify downstream gene expression, promote epithelial-mesenchymal transition (EMT), and regulate the stemness of cancer cells. EMT is an important mechanism that induces cancer cell metastasis and is closely influenced by ECM stiffness, either independently or in conjunction with other molecules. In this review, the unique role of ECM stiffness in EMT in different kinds of cancers is first summarized. By continually examining the significance of ECM stiffness in cancer progression, a biomimetic culture system based on 3D manufacturing and novel material technologies is developed to mimic ECM stiffness. The authors then look back on the novel development of the ECM stiffness biomimetic culture systems and finally provide new insights into ECM stiffness in cancer progression which can broaden the fields' horizons with a view toward developing new cancer diagnosis methods and therapies.
Collapse
Affiliation(s)
- Hao Tian
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Hanhan Shi
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Jie Yu
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Shengfang Ge
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Jing Ruan
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| |
Collapse
|
8
|
Luo Z, Yao X, Li M, Fang D, Fei Y, Cheng Z, Xu Y, Zhu B. Modulating tumor physical microenvironment for fueling CAR-T cell therapy. Adv Drug Deliv Rev 2022; 185:114301. [PMID: 35439570 DOI: 10.1016/j.addr.2022.114301] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has achieved unprecedented clinical success against hematologic malignancies. However, the transition of CAR-T cell therapies for solid tumors is limited by heterogenous antigen expression, immunosuppressive microenvironment (TME), immune adaptation of tumor cells and impeded CAR-T-cell infiltration/transportation. Recent studies increasingly reveal that tumor physical microenvironment could affect various aspects of tumor biology and impose profound impacts on the antitumor efficacy of CAR-T therapy. In this review, we discuss the critical roles of four physical cues in solid tumors for regulating the immune responses of CAR-T cells, which include solid stress, interstitial fluid pressure, stiffness and microarchitecture. We highlight new strategies exploiting these features to enhance the therapeutic potency of CAR-T cells in solid tumors by correlating with the state-of-the-art technologies in this field. A perspective on the future directions for developing new CAR-T therapies for solid tumor treatment is also provided.
Collapse
|
9
|
Rekad Z, Izzi V, Lamba R, Ciais D, Van Obberghen-Schilling E. The Alternative Matrisome: alternative splicing of ECM proteins in development, homeostasis and tumor progression. Matrix Biol 2022; 111:26-52. [DOI: 10.1016/j.matbio.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
|
10
|
Sheth M, Esfandiari L. Bioelectric Dysregulation in Cancer Initiation, Promotion, and Progression. Front Oncol 2022; 12:846917. [PMID: 35359398 PMCID: PMC8964134 DOI: 10.3389/fonc.2022.846917] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is primarily a disease of dysregulation – both at the genetic level and at the tissue organization level. One way that tissue organization is dysregulated is by changes in the bioelectric regulation of cell signaling pathways. At the basis of bioelectricity lies the cellular membrane potential or Vmem, an intrinsic property associated with any cell. The bioelectric state of cancer cells is different from that of healthy cells, causing a disruption in the cellular signaling pathways. This disruption or dysregulation affects all three processes of carcinogenesis – initiation, promotion, and progression. Another mechanism that facilitates the homeostasis of cell signaling pathways is the production of extracellular vesicles (EVs) by cells. EVs also play a role in carcinogenesis by mediating cellular communication within the tumor microenvironment (TME). Furthermore, the production and release of EVs is altered in cancer. To this end, the change in cell electrical state and in EV production are responsible for the bioelectric dysregulation which occurs during cancer. This paper reviews the bioelectric dysregulation associated with carcinogenesis, including the TME and metastasis. We also look at the major ion channels associated with cancer and current technologies and tools used to detect and manipulate bioelectric properties of cells.
Collapse
Affiliation(s)
- Maulee Sheth
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Leyla Esfandiari,
| |
Collapse
|
11
|
Chen B, Xu X, Lin DD, Chen X, Xu YT, Liu X, Dong WG. KRT18 Modulates Alternative Splicing of Genes Involved in Proliferation and Apoptosis Processes in Both Gastric Cancer Cells and Clinical Samples. Front Genet 2021; 12:635429. [PMID: 34290732 PMCID: PMC8287183 DOI: 10.3389/fgene.2021.635429] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Keratin 18 (KRT18), one of the most abundant keratins in epithelial and endothelial cells, has been reported to be aberrantly expressed in many malignancies and extensively regarded as a biomarker and important regulator in multiple cancers, including gastric cancer (GC). But the molecular regulatory mechanisms of KRT18 in GC patients and cells are largely unknown. In the present study, we analyzed the expression level of KRT18 in 450 stomach adenocarcinoma tissue samples from TCGA database and found a significantly higher expression level in tumor tissues. We then explored the potential functions of KRT18 in AGS cells (human gastric adenocarcinoma cell line) by KRT18 knockdown using siRNA and whole transcriptome RNA-seq analysis. Notably, KRT18 selectively regulates expression of cell proliferation and apoptotic genes. Beyond this, KRT18 affects the alternative splicing of genes enriched in apoptosis, cell cycle, and other cancer-related pathways, which were then validated by reverse transcription-quantitative polymerase chain reaction approach. We validated KRT18-KD promoted apoptosis and inhibited proliferation in AGS cells. We then used RNA-seq data of GC samples to further demonstrate the modulation of KRT18 on alternative splicing regulation. These results together support the conclusion that KRT18 extensively modulates diverse alternative splicing events of genes enriched in proliferation and apoptosis processes. And the dysregulated splicing factors at transcriptional or posttranscriptional level by KRT18 may contribute to the alternative splicing change of many genes, which expands the functional importance of keratins in apoptotic and cell cycle pathways at the posttranscriptional level in GC.
Collapse
Affiliation(s)
- Biao Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dan-dan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang-tao Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei-guo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Bannerman D, Pascual-Gil S, Floryan M, Radisic M. Bioengineering strategies to control epithelial-to-mesenchymal transition for studies of cardiac development and disease. APL Bioeng 2021; 5:021504. [PMID: 33948525 PMCID: PMC8068500 DOI: 10.1063/5.0033710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process that occurs in a wide range of tissues and environments, in response to numerous factors and conditions, and plays a critical role in development, disease, and regeneration. The process involves epithelia transitioning into a mobile state and becoming mesenchymal cells. The investigation of EMT processes has been important for understanding developmental biology and disease progression, enabling the advancement of treatment approaches for a variety of disorders such as cancer and myocardial infarction. More recently, tissue engineering efforts have also recognized the importance of controlling the EMT process. In this review, we provide an overview of the EMT process and the signaling pathways and factors that control it, followed by a discussion of bioengineering strategies to control EMT. Important biological, biomaterial, biochemical, and physical factors and properties that have been utilized to control EMT are described, as well as the studies that have investigated the modulation of EMT in tissue engineering and regenerative approaches in vivo, with a specific focus on the heart. Novel tools that can be used to characterize and assess EMT are discussed and finally, we close with a perspective on new bioengineering methods that have the potential to transform our ability to control EMT, ultimately leading to new therapies.
Collapse
|
13
|
Zhao J, Wang R, Zhang J, Zhao Y, Qiao S, Crouzier T, Yan H, Tian W. A novel 4D cell culture mimicking stomach peristalsis altered gastric cancer spheroids growth and malignance. Biofabrication 2021; 13. [PMID: 33836517 DOI: 10.1088/1758-5090/abf6bf] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/09/2021] [Indexed: 11/12/2022]
Abstract
In vitrocancer models that can largely mimic thein vivomicroenvironment are crucial for conducting more accurate research. Models of three-dimensional (3D) culture that can mimic some aspects of cancer microenvironment or cancer biopsies that can adequately represent tumor heterogeneity are intensely used currently. Those models still lack the dynamic stress stimuli in gastric carcinoma exposed to stomach peristalsisin vivo. This study leveraged a lab-developed four-dimensional (4D) culture model by a magnetic responsive alginate-based hydrogel to rotating magnets that can mimic stress stimuli in gastric cancer (GC). We used the 4D model to culture human GC cell line AGS and SGC7901, cells at the primary and metastasis stage. We revealed the 4D model altered the cancer cell growth kinetics mechanistically by alteringPCNAandp53expression compared to the 3D culture that lacks stress stimuli. We found the 4D model altered the cancer spheroids stemness as evidenced by enhanced cancer stem cells (CD44) marker expression in AGS spheroids but the expression was dampened in SGC7901 cells. We examined the multi-drug resistance (MDR1) marker expression and found the 4D model dampened the MDR1 expression in SGC7901 cell spheroids, but not in spheroids of AGS cells. Such a model provides the stomach peristalsis mimic and is promising for conducting basic or translational GC-associated research, drug screening, and culturing patient gastric biopsies to tailor the therapeutic strategies in precision medicine.
Collapse
Affiliation(s)
- Juzhi Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Ruiqi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Jinyu Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Yufang Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Shupei Qiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Thomas Crouzier
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden.,AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Hongji Yan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden.,AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| |
Collapse
|
14
|
Kim J, Jang J, Cho DW. Controlling Cancer Cell Behavior by Improving the Stiffness of Gastric Tissue-Decellularized ECM Bioink With Cellulose Nanoparticles. Front Bioeng Biotechnol 2021; 9:605819. [PMID: 33816446 PMCID: PMC8009980 DOI: 10.3389/fbioe.2021.605819] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
A physiologically relevant tumor microenvironment is favorable for the progression and growth of gastric cancer cells. To simulate the tumor-specific conditions of in vivo environments, several biomaterials engineering studies have investigated three-dimensional (3D) cultures. However, the implementation of such cultures remains limited because of challenges in outlining the biochemical and biophysical characteristics of the gastric cancer microenvironment. In this study, we developed a 3D cell printing-based gastric cancer model, using a combination of gastric tissue-specific bioinks and cellulose nanoparticles (CN) to provide adequate stiffness to gastric cancer cells. To create a 3D gastric tissue-specific microenvironment, we developed a decellularization process for a gastric tissue-derived decellularized extracellular matrix (g-dECM) bioink, and investigated the effect of the g-dECM bioink on promoting the aggressiveness of gastric cancer cells using histological and genetic validation methods. We found that incorporating CN in the matrix improves its mechanical properties, which supports the progression of gastric cancer. These mechanical properties are distinguishing characteristics that can facilitate the development of an in vitro gastric cancer model. Further, the CN-supplemented g-dECM bioink was used to print a variety of free-standing 3D shapes, including gastric rugae. These results indicate that the proposed model can be used to develop a physiologically relevant gastric cancer system that can be used in future preclinical trials.
Collapse
Affiliation(s)
- Jisoo Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, South Korea
- Institute of Convergence Science, Yonsei University, Seoul, South Korea
| | - Dong-Woo Cho
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
- Institute of Convergence Science, Yonsei University, Seoul, South Korea
| |
Collapse
|
15
|
The Role of Biomimetic Hypoxia on Cancer Cell Behaviour in 3D Models: A Systematic Review. Cancers (Basel) 2021; 13:cancers13061334. [PMID: 33809554 PMCID: PMC7999912 DOI: 10.3390/cancers13061334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer remains one of the leading causes of death worldwide. The advancements in 3D tumour models provide in vitro test-beds to study cancer growth, metastasis and response to therapy. We conducted this systematic review on existing experimental studies in order to identify and summarize key biomimetic tumour microenvironmental features which affect aspects of cancer biology. The review noted the significance of in vitro hypoxia and 3D tumour models on epithelial to mesenchymal transition, drug resistance, invasion and migration of cancer cells. We highlight the importance of various experimental parameters used in these studies and their subsequent effects on cancer cell behaviour. Abstract The development of biomimetic, human tissue models is recognized as being an important step for transitioning in vitro research findings to the native in vivo response. Oftentimes, 2D models lack the necessary complexity to truly recapitulate cellular responses. The introduction of physiological features into 3D models informs us of how each component feature alters specific cellular response. We conducted a systematic review of research papers where the focus was the introduction of key biomimetic features into in vitro models of cancer, including 3D culture and hypoxia. We analysed outcomes from these and compiled our findings into distinct groupings to ascertain which biomimetic parameters correlated with specific responses. We found a number of biomimetic features which primed cancer cells to respond in a manner which matched in vivo response.
Collapse
|
16
|
Liu L, He F, Yu Y, Wang Y. Application of FRET Biosensors in Mechanobiology and Mechanopharmacological Screening. Front Bioeng Biotechnol 2020; 8:595497. [PMID: 33240867 PMCID: PMC7680962 DOI: 10.3389/fbioe.2020.595497] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Extensive studies have shown that cells can sense and modulate the biomechanical properties of the ECM within their resident microenvironment. Thus, targeting the mechanotransduction signaling pathways provides a promising way for disease intervention. However, how cells perceive these mechanical cues of the microenvironment and transduce them into biochemical signals remains to be answered. Förster or fluorescence resonance energy transfer (FRET) based biosensors are a powerful tool that can be used in live-cell mechanotransduction imaging and mechanopharmacological drug screening. In this review, we will first introduce FRET principle and FRET biosensors, and then, recent advances on the integration of FRET biosensors and mechanobiology in normal and pathophysiological conditions will be discussed. Furthermore, we will summarize the current applications and limitations of FRET biosensors in high-throughput drug screening and the future improvement of FRET biosensors. In summary, FRET biosensors have provided a powerful tool for mechanobiology studies to advance our understanding of how cells and matrices interact, and the mechanopharmacological screening for disease intervention.
Collapse
Affiliation(s)
| | | | | | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
17
|
Multilayer platform to model the bioactivity of hyaluronic acid in gastric cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111616. [PMID: 33321659 DOI: 10.1016/j.msec.2020.111616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/10/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Hyaluronic acid (HA) has a key role in cancer progression. The HA's molecular weight (Mw) is altered in this pathological state: increased concentration of shorter fragments due to the overexpressed hyaluronidases and ROS. Aiming to mimic this microenvironment, we developed a Layer-by-Layer (LbL) platform presenting HA of different Mws, namely 6.4, 752 and 1500 kDa, to study the influence of HA Mw on the formation of focal adhesion sites (FAs), and the involvement of paxillin and CD44 in this process. High paxillin expression and formation of FAs, via CD44, is observed for MKN45 cells seeded on LbLs presenting HA 6.4 kDa, with the activation of the ERK1/2 pathway, responsible for cell motility and tumour progression. In contrast, activation of p38 pathway, usually related with cancer latency, is observed for cells seeded on LbLs with high Mw HA, i.e. 1500 kDa. Overall, we demonstrate the suitability of the developed platform to study cancer invasiveness.
Collapse
|
18
|
Alzeeb G, Metges JP, Corcos L, Le Jossic-Corcos C. Three-Dimensional Culture Systems in Gastric Cancer Research. Cancers (Basel) 2020; 12:E2800. [PMID: 33003476 PMCID: PMC7601358 DOI: 10.3390/cancers12102800] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC), which includes cancer of the esophagus, the oesophagogastric junction, and the stomach fundus, is highly deadly with strong regional influence, Asia being the most affected. GC is often detected at late stages, with 30% of metastatic cases at diagnosis. Many authors have devised models to both unravel the mechanisms of GC development and to evaluate candidate therapeutics. Among these models, 2D-cell cultures are progressively replaced by 3D-cell cultures that recapitulate, much more comprehensively, tumor cellular and genetic heterogeneity, as well as responsiveness to environmental changes, such as exposure to drugs or irradiation. With respect to the specifics of GC, there are high hopes from such model systems, especially with the aim of identifying prognostic markers and novel drug targets.
Collapse
Affiliation(s)
- George Alzeeb
- Inserm, University Brest, EFS, UMR 1078, GGB, F-29200 Brest, France; (G.A.); (L.C.)
| | - Jean-Philippe Metges
- CHU de Brest, Inserm, University Brest, EFS, UMR 1078, GGB, F-29200 Brest, France;
| | - Laurent Corcos
- Inserm, University Brest, EFS, UMR 1078, GGB, F-29200 Brest, France; (G.A.); (L.C.)
- CHU de Brest, Inserm, University Brest, EFS, UMR 1078, GGB, F-29200 Brest, France;
| | | |
Collapse
|
19
|
Murakami S, Mukaisho KI, Iwasa T, Kawabe M, Yoshida S, Taniura N, Nakayama T, Noi M, Yamamoto G, Sugihara H. Application of "Tissueoid Cell Culture System" Using a Silicate Fiber Scaffold for Cancer Research. Pathobiology 2020; 87:291-301. [PMID: 32966983 DOI: 10.1159/000509133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/03/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND We developed a 3-dimensional (3D) culture system using a high-purity silica fiber scaffold of unwoven sheets called CellbedTM. METHODS We used adherent colon and esophagogastric junction adenocarcinoma cells, tongue squamous cell carcinoma (SqCC) cells, and nonadherent gastric cancer cells. These cells were subjected to staining with various substances and observed by electron microscopy. To evaluate the effects of extracellular matrix in carcinoma tissues, SqCC cells were cultured in Cellbed coated with collagens I, III, and IV. RESULTS Especially well-differentiated carcinoma cells cultured in this 3D system showed their own unique characteristics: luminal formation in adenocarcinoma cells and cell stratification and keratinization in SqCC cells. Scanning electron microscopy revealed the proliferation of cancer cells with cytoplasm entwined in Cellbed. Intercellular desmosomes in squamous epithelia were detected by transmission electron microscopy of vertical cross sections. SqCC cells cultured in Cellbed coated with collagen IV showed enhanced invasive and proliferative abilities. CONCLUSION Because the morphology of cancer cells cultured in this 3D culture system is similar to that in living organisms, we called the system a "tissueoid cell culture system." Coating with collagen IV enables the modification of cell-matrix interactions as well as recapitulation of the in vivo microenvironment.
Collapse
Affiliation(s)
- Shoko Murakami
- Division of Molecular and Diagnostic Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan.,Department of Oral and Maxillofacial Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Ken-Ichi Mukaisho
- Division of Molecular and Diagnostic Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan,
| | - Takuya Iwasa
- Central Research Laboratory, Japan Vilene Company, Ltd, Koga, Japan
| | - Masaaki Kawabe
- Central Research Laboratory, Japan Vilene Company, Ltd, Koga, Japan
| | - Saori Yoshida
- Division of Molecular and Diagnostic Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Naoko Taniura
- Division of Molecular and Diagnostic Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Takahisa Nakayama
- Division of Molecular and Diagnostic Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Masaharu Noi
- Division of Molecular and Diagnostic Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan.,Department of Oral and Maxillofacial Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Gaku Yamamoto
- Department of Oral and Maxillofacial Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Hiroyuki Sugihara
- Division of Molecular and Diagnostic Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
20
|
Song LN, Qiao GL, Yu J, Yang CM, Chen Y, Deng ZF, Song LH, Ma LJ, Yan HL. Hsa_circ_0003998 promotes epithelial to mesenchymal transition of hepatocellular carcinoma by sponging miR-143-3p and PCBP1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:114. [PMID: 32552766 PMCID: PMC7302140 DOI: 10.1186/s13046-020-01576-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) play a critical regulatory role in cancer progression. However, the underlying mechanisms of circRNAs in hepatocellular carcinoma (HCC) metastasis remain mostly unknown. METHODS Has_circ_0003998 (circ0003998) was identified by RNAs sequencing in HCC patients with /without portal vein tumor thrombus (PVTT) metastasis. The expression level of circ0003998 was further detected by in situ hybridization on tissues microarray (ISH-TMA) and qRT-PCR in 25 HCC patients with PVTT metastasis. Moreover, the 25 HCC patients with PVTT metastasis and 50 HCC patients without PVTT metastasis were recruited together to analyze the correlation between circ0003998 expression and HCC clinical characteristics. Transwell, migration and CCK8 assays, as well as nude mice model of lung or liver metastasis were used to evaluate the role of circ0003998 in epithelial to mesenchymal transition (EMT) in HCC. The regulatory mechanisms of circ0003998 in miR-143-3p and PCBP1 were determined by dual-luciferase reporter assay, nuclear-cytoplasmic fractionation, fluorescent in situ hybridization, RNA pull- down, microRNA sequence, western blot and RNA immunoprecipitation. RESULTS Compared with adjacent normal liver tissues (ANL), circ0003998 expression was significantly upregulated in PVTT tissues and HCC tissues, and its expression correlates with the aggressive characteristics of HCC patients. Further assays suggested that circ0003998 promoted EMT of HCC both in vitro and in vivo. Mechanistically, our data indicated that circ0003998 may act as a ceRNA (competing endogenous RNA) of microRNA-143-3p to relieve the repressive effect on EMT-related stimulator, FOSL2; meanwhile, circ0003998 could bind with PCBP1-poly(rC) binding protein 1 (PCBP1) to increase the expression level of EMT-related genes, CD44v6. CONCLUSION Circ0003998 promotes EMT of HCC by circ0003998/miR-143-3p/FOSL2 axis and circ0003998 /PCBP1/CD44v6 axis.
Collapse
Affiliation(s)
- Li-Na Song
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China
| | - Guang-Lei Qiao
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China
| | - Jian Yu
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval military Medical University, Shanghai, China
| | - Chun-Mei Yang
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China
| | - Ying Chen
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China
| | - Zhou-Feng Deng
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China
| | - Li-Hua Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800, Dongchuan road, Shanghai, 201109, China.
| | - Li-Jun Ma
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China.
| | - Hong-Li Yan
- Department of Laboratory Diagnosis and Reproductive Medical Center, Changhai Hospital, Naval military Medical University, 168, Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
21
|
Astudillo P. Wnt5a Signaling in Gastric Cancer. Front Cell Dev Biol 2020; 8:110. [PMID: 32195251 PMCID: PMC7064718 DOI: 10.3389/fcell.2020.00110] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer remains an important health challenge, accounting for a significant number of cancer-related deaths worldwide. Therefore, a deeper understanding of the molecular mechanisms involved in gastric cancer establishment and progression is highly desirable. The Wnt pathway plays a fundamental role in development, homeostasis, and disease, and abnormal Wnt signaling is commonly observed in several cancer types. Wnt5a, a ligand that activates the non-canonical branch of the Wnt pathway, can play a role as a tumor suppressor or by promoting cancer cell invasion and migration, although the molecular mechanisms explaining these roles have not been fully elucidated. Wnt5a is increased in gastric cancer samples; however, most gastric cancer cell lines seem to exhibit little expression of this ligand, thus raising the question about the source of this ligand in vivo. This review summarizes available research about Wnt5a expression and signaling in gastric cancer. In gastric cancer, Wnt5a promotes invasion and migration by modulating integrin adhesion turnover. Disheveled, a scaffolding protein with crucial roles in Wnt signaling, mediates the adhesion-related effects of Wnt5a in gastric cancer cells, and several studies provide growing support for a model whereby Disheveled-interacting proteins mediates Wnt5a signaling to modulate cytoskeleton dynamics. However, Wnt5a might induce other effects in gastric cancer cells, such as cell survival and induction of gene expression. On the other hand, the available evidence suggests that Wnt5a might be expressed by cells residing in the tumor microenvironment, where feedback mechanisms sustaining Wnt5a secretion and signaling might be established. This review analyzes the possible functions of Wnt5a in this pathological context and discusses potential links to mechanosensing and YAP/TAZ signaling.
Collapse
Affiliation(s)
- Pablo Astudillo
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
22
|
Mokhtarian R, Tabatabaeian H, Saadatmand P, Azadeh M, Balmeh N, Yakhchali B, Ghaedi K. CD44 Gene rs8193 C Allele Is Significantly Enriched in Gastric Cancer Patients. CELL JOURNAL 2020; 21:451-458. [PMID: 31376327 PMCID: PMC6722445 DOI: 10.22074/cellj.2020.6389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/23/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Gastric cancer is a multifactorial disease. In addition to environmental factors, many genes are involved in this malignancy. One of the genes associated with gastric cancer is CD44 gene and its polymorphisms. CD44 gene plays role in regulating cell survival, growth and mobility. The single nucleotide polymorphism (SNP) rs8193, located in the CD44 gene, has not been studied in gastric cancer patients of the Iranian population. The present study aims to study this polymorphism in 86 gastric cancer patients and 96 healthy individuals. MATERIALS AND METHODS In this cross-sectional case-control study, rs8193 polymorphism was genotyped by allele specific primer polymerase chain reaction (ASP-PCR) technique. The obtained data were statistically analyzed. To find the potential mechanism of action, rs8193 was bioinformatically investigated. RESULTS rs8193 C allele played a risk factor role for gastric cancer. Patients carrying this allele were more susceptible to have gastric cancer, with lymph node spread. On the other hand, rs8193 T allele, a protective factor, was associated with a higher chance of accumulation in the lower stages of cancer. C allele might impose its effect via destabilizing CD44 and miR-570 interaction. CONCLUSION rs8193 is statistically associated with the risk of malignancy, lymph node spread and stage of gastric cancer in Iranian population.
Collapse
Affiliation(s)
- Roya Mokhtarian
- Division of Cellular and Molecular Biology, Department of Biology, NourDanesh Institute of Higher Education, Meymeh, Iran
| | - Hossein Tabatabaeian
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | | | | | - Negar Balmeh
- Division of Cellular and Molecular Biology, Department of Biology, NourDanesh Institute of Higher Education, Meymeh, Iran
| | - Bagher Yakhchali
- Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology Institute, Tehran, Iran
| | - Kamran Ghaedi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. Electronic Address:
| |
Collapse
|
23
|
Peng WZ, Liu JX, Li CF, Ma R, Jie JZ. hnRNPK promotes gastric tumorigenesis through regulating CD44E alternative splicing. Cancer Cell Int 2019; 19:335. [PMID: 31857793 PMCID: PMC6909542 DOI: 10.1186/s12935-019-1020-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/08/2019] [Indexed: 11/10/2022] Open
Abstract
Background The high prevalence of alternative splicing among genes implies the importance of genomic complexity in regulating normal physiological processes and diseases such as gastric cancer (GC). The standard form of stem cell marker CD44 (CD44S) and its alternatives with additional exons are reported to play important roles in multiple types of tumors, but the regulation mechanism of CD44 alternative splicing is not fully understood. Methods Here the expression of hnRNPK was analyzed among the Cancer Genome Atlas (TCGA) cohort of GC. The function of hnRNPK in GC cells was analyzed and its downstream targeted gene was identified by chromatin immunoprecipitation and dual luciferase report assay. Finally, effect of hnRNPK and its downstream splicing regulator on CD44 alternative splicing was investigated. Results The expression of hnRNPK was significantly increased in GC and its upregulation was associated with tumor stage and metastasis. Loss-of-function studies found that hnRNPK could promote GC cell proliferation, migration, and invasion. The upregulation of hnRNPK activates the expression of the splicing regulator SRSF1 by binding to the first motif upstream the start codon (- 65 to - 77 site), thereby increasing splicing activity and expression of an oncogenic CD44 isoform, CD44E (has additional variant exons 8 to 10, CD44v8-v10). Conclusion These findings revealed the importance of the hnRNPK-SRSF1-CD44E axis in promoting gastric tumorigenesis.
Collapse
Affiliation(s)
- Wei-Zhao Peng
- 1Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Ji-Xi Liu
- 2Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Chao-Feng Li
- 1Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Ren Ma
- 1Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Jian-Zheng Jie
- 1Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029 China
| |
Collapse
|
24
|
Gao C, Yao M, Li S, Feng P, Peng S, Shuai C. Highly biodegradable and bioactive Fe-Pd-bredigite biocomposites prepared by selective laser melting. J Adv Res 2019; 20:91-104. [PMID: 31304046 PMCID: PMC6603336 DOI: 10.1016/j.jare.2019.06.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/06/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
Iron (Fe) has been highly anticipated as a bone implant material owing to the biodegradability and excellent mechanical properties, but limited by the slow degradation and poor bioactivity. In this study, novel Fe-palladium (Pd)-bredigite biocomposites were developed by selective laser melting aiming to improve both the degradation behavior and bioactivity of Fe. The results showed that most Pd formed Pd-rich intermetallic phases (IMPs) with a nearly continuous network while the bredigite phase was distributed at the grain boundaries. In addition, a large amount of much nobler IMPs formed micro-galvanic pairs with the Fe matrix, inducing tremendous micro-galvanic corrosion. The IMPs contained a high amount of Pd2+ with a high reduction potential, which further promoted the efficiency of micro-galvanic corrosion. Moreover, the rapid degradation of bredigite also facilitated the penetration of the corrosion medium. As a result, the Fe-4Pd-5bredigite biocomposite showed a uniform degradation with a rate that is 6 times that of Fe. Furthermore, the developed Fe-Pd-bredigite biocomposites also featured excellent bioactivity, cytocompatibility, and suitable mechanical properties as characterized by the rapid apatite deposition, normal proliferation of human osteoblast-like cells (MG-63), and comparable strength and microhardness with the native bone. Overall, this study opens a new avenue for improving both the degradation and bioactivity of Fe-based composites and may facilitate their applications as biodegradable implants for tissue/organ repair.
Collapse
Affiliation(s)
- Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Meng Yao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Sheng Li
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410013, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
- Jiangxi University of Science and Technology, Ganzhou 341000, China
- Shenzhen Institute of Information Technology, Shenzhen 518172, China
| |
Collapse
|
25
|
Li S, Li C, Zhang Y, He X, Chen X, Zeng X, Liu F, Chen Y, Chen J. Targeting Mechanics-Induced Fibroblast Activation through CD44-RhoA-YAP Pathway Ameliorates Crystalline Silica-Induced Silicosis. Theranostics 2019; 9:4993-5008. [PMID: 31410197 PMCID: PMC6691376 DOI: 10.7150/thno.35665] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/07/2019] [Indexed: 12/21/2022] Open
Abstract
Silicosis is pneumoconiosis of the lung, usually resulting from prolonged exposure to crystalline silica (CS). The hallmark of silicosis is excessive extracellular matrix (ECM) deposition produced by activated fibroblasts. Recent work demonstrated that excessive ECM-forming mechanical cues play an essential role in promoting fibroblast activation and perpetuating fibrotic pathologies. However, the detailed molecular mechanism still needs to be uncovered. Methods: NIH-3T3 fibroblasts were cultured on either 1 kappa (soft) or 60 kappa (stiff) gel-coated coverslips. A series of knockdown and reverse experiments in vitro were performed to establish the signaling for mechanics-induced fibroblast activation. An experimental model of silicosis was established by one-time intratracheal instillation of CS suspension. The cluster of differentiation 44 (CD44) antibody (IM7), dihydrotanshinone I (DHI) and verteporfin (VP) were used to explore the effect of CD44-RhoA-YAP signaling blockade on mechanics-induced fibroblast activation and CS-induced pulmonary fibrosis. Results: Matrix stiffness could induce nuclear translocation of the Yes-associated protein (YAP) through CD44 in fibroblasts. This effect required RhoA activity and F-actin cytoskeleton polymerization but was independent of Hippo pathway kinases, Mst 1 and Lats 1, forming CD44-RhoA-YAP signaling pathway. Pharmacological upstream blocking by CD44 antibody or downstream blockade of YAP by DHI or VP could attenuate fibroblast migration, invasion, proliferation, and collagen deposition. Furthermore, CD44-RhoA-YAP signaling blockade could alleviate CS-induced fibrosis and improve pulmonary function in vivo. Conclusion: CD44-RhoA-YAP signaling mediates mechanics-induced fibroblast activation. Targeting this pathway could ameliorate crystalline silica-induced silicosis and provide a potential therapeutic strategy to mitigate fibrosis.
Collapse
|
26
|
Mereiter S, Martins ÁM, Gomes C, Balmaña M, Macedo JA, Polom K, Roviello F, Magalhães A, Reis CA. O‐glycan truncation enhances cancer‐related functions of
CD
44 in gastric cancer. FEBS Lett 2019; 593:1675-1689. [DOI: 10.1002/1873-3468.13432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Stefan Mereiter
- I3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology University of Porto Portugal
| | - Álvaro M. Martins
- I3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology University of Porto Portugal
| | - Catarina Gomes
- I3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology University of Porto Portugal
| | - Meritxell Balmaña
- I3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology University of Porto Portugal
| | - Joana A. Macedo
- I3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology University of Porto Portugal
| | - Karol Polom
- Department of Surgical Oncology Medical University of Gdansk Poland
- General Surgery and Surgical Oncology Department University of Siena Italy
| | - Franco Roviello
- General Surgery and Surgical Oncology Department University of Siena Italy
| | - Ana Magalhães
- I3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology University of Porto Portugal
| | - Celso A. Reis
- I3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology University of Porto Portugal
- Faculty of Medicine University of Porto Portugal
- Instituto de Ciências Biomédicas Abel Salazar University of Porto Portugal
| |
Collapse
|
27
|
Jang M, Koh I, Lee JE, Lim JY, Cheong JH, Kim P. Increased extracellular matrix density disrupts E-cadherin/β-catenin complex in gastric cancer cells. Biomater Sci 2018; 6:2704-2713. [PMID: 30151505 DOI: 10.1039/c8bm00843d] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During gastric cancer (GC) progression, increased extracellular matrix (ECM) deposition, notably collagen type I, correlates with an overall increase in expression of the mesenchymal phenotype. In GC tissue, the intestinal epithelium exhibits impaired cell-cell adhesion and enhanced cell-ECM adhesion. The alteration of intercellular integrity is one of tumorigenesis feature including tumor invasion and metastasis. Using a density-varying ECM, we studied the effect of ECM density on both intercellular- and ECM-interactions according to alterations of ECM-mediated signaling. A dense collagen matrix increases integrin-mediated cell-ECM interactions with phosphorylated FAK and ERK signaling in human gastric adenocarcinoma cells (AGS, MKN74), which regulates GC proliferation and the chemotherapeutic response. In addition, GC cells exhibited a disrupted membranous E-cadherin/β-catenin complex and, remarkably, showed cytoplasmic or nucleic localization of β-catenin in response to collagen density. Furthermore, we found that membranous E-cadherin/β-catenin complex could be recovered by inhibiting the phosphorylation of FAK, which in turn influences the chemotherapeutic effect. These results provide insight into how matrix density differentially regulates cancer cell phenotype and may have significant implications for the design of biomaterials with appropriate physical properties for in vitro tumor models.
Collapse
Affiliation(s)
- Minjeong Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | | | | | | | | | | |
Collapse
|
28
|
Noi M, Mukaisho KI, Yoshida S, Murakami S, Koshinuma S, Adachi T, Machida Y, Yamori M, Nakayama T, Yamamoto G, Sugihara H. ERK phosphorylation functions in invadopodia formation in tongue cancer cells in a novel silicate fibre-based 3D cell culture system. Int J Oral Sci 2018; 10:30. [PMID: 30344309 PMCID: PMC6196225 DOI: 10.1038/s41368-018-0033-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 01/03/2023] Open
Abstract
To screen for additional treatment targets against tongue cancer, we evaluated the contributions of extracellular signal-related kinase (ERK), AKT and ezrin in cancer development. Immunohistochemical staining showed that ERK and ezrin expressions were significantly higher in invasive squamous cell carcinoma than in carcinoma in situ. To investigate the roles of ERK and ezrin in cancer development, we used the non-woven silica fibre sheet CellbedTM with a structure resembling the loose connective tissue morphology in a novel 3D culture system. We confirmed that the 3D system using CellbedTM accurately mimicked cancer cell morphology in vivo. Furthermore, cell projections were much more apparent in 3D-cultured tongue cancer cell lines than in 2D cultures. Typically, under conventional 2D culture conditions, F-actin and cortactin are colocalized in the form of puncta within cells. However, in the 3D-cultured cells, colocalization was mainly observed at the cell margins, including the projections. Projections containing F-actin and cortactin colocalization were predicted to be invadopodia. Although suppressing ezrin expression with small interfering RNA transfection caused no marked changes in morphology, cell projection formation was decreased, and the tumour thickness in vertical sections after 3D culture was markedly decreased after suppressing ERK activity because both the invasion ability and proliferation were inhibited. An association between cortactin activation as well as ERK activity and invadopodia formation was detected. Our novel 3D culture systems using Cellbed™ are simple and useful for in vitro studies before conducting animal experiments. ERK contributes to tongue cancer development by increasing both cancer cell proliferation and migration via cortactin activation. Extracellular signal-regulated kinases (ERKs) are enzymes that are involved in a variety of cell functions, and one in vitro study suggests that ERKs play a role in tongue cancer development by increasing cancer cell proliferation and migration. Using a novel 3-D cell culture system called Cellbed to mimic cancer cell morphology, a team headed by Ken-ichi Mukaisho at Shiga University of Medical Science, Japan found that ERKs activate cortactin (a protein located in the cell cytoplasm) and contribute to the formation of invadopodia (invasive cell protrusions associated with cancer cells) in tongue cancer cells and tumor development. The authors conclude that experimental 3-D cell culture systems employing Cellbed are easily implemented and useful for in vitro studies before conducting animal experiments and that they can be widely applied in cancer research.
Collapse
Affiliation(s)
- Masaharu Noi
- Department of Oral and Maxillofacial Surgery, Shiga University of Medical Science, Ōtsu, Shiga, Japan.,Department of Pathology, Division of Molecular Diagnostic Pathology, Shiga University of Medical Science, Ōtsu, Shiga, Japan
| | - Ken-Ichi Mukaisho
- Department of Pathology, Division of Molecular Diagnostic Pathology, Shiga University of Medical Science, Ōtsu, Shiga, Japan.
| | - Saori Yoshida
- Department of Pathology, Division of Molecular Diagnostic Pathology, Shiga University of Medical Science, Ōtsu, Shiga, Japan
| | - Shoko Murakami
- Department of Oral and Maxillofacial Surgery, Shiga University of Medical Science, Ōtsu, Shiga, Japan.,Department of Pathology, Division of Molecular Diagnostic Pathology, Shiga University of Medical Science, Ōtsu, Shiga, Japan
| | - Shinya Koshinuma
- Department of Oral and Maxillofacial Surgery, Shiga University of Medical Science, Ōtsu, Shiga, Japan
| | - Takeshi Adachi
- Dental Oral Surgery, Nagahama Red Cross Hospital, Nagahama, Shiga, Japan
| | - Yoshisato Machida
- Department of Oral and Maxillofacial Surgery, Shiga University of Medical Science, Ōtsu, Shiga, Japan
| | - Masashi Yamori
- Department of Oral and Maxillofacial Surgery, Shiga University of Medical Science, Ōtsu, Shiga, Japan
| | - Takahisa Nakayama
- Department of Pathology, Division of Molecular Diagnostic Pathology, Shiga University of Medical Science, Ōtsu, Shiga, Japan
| | - Gaku Yamamoto
- Department of Oral and Maxillofacial Surgery, Shiga University of Medical Science, Ōtsu, Shiga, Japan
| | - Hiroyuki Sugihara
- Department of Pathology, Division of Molecular Diagnostic Pathology, Shiga University of Medical Science, Ōtsu, Shiga, Japan
| |
Collapse
|
29
|
Silver BB, Nelson CM. The Bioelectric Code: Reprogramming Cancer and Aging From the Interface of Mechanical and Chemical Microenvironments. Front Cell Dev Biol 2018; 6:21. [PMID: 29560350 PMCID: PMC5845671 DOI: 10.3389/fcell.2018.00021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/15/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer is a complex, heterogeneous group of diseases that can develop through many routes. Broad treatments such as chemotherapy destroy healthy cells in addition to cancerous ones, but more refined strategies that target specific pathways are usually only effective for a limited number of cancer types. This is largely due to the multitude of physiological variables that differ between cells and their surroundings. It is therefore important to understand how nature coordinates these variables into concerted regulation of growth at the tissue scale. The cellular microenvironment might then be manipulated to drive cells toward a desired outcome at the tissue level. One unexpected parameter, cellular membrane voltage (Vm), has been documented to exert control over cellular behavior both in culture and in vivo. Manipulating this fundamental cellular property influences a remarkable array of organism-wide patterning events, producing striking outcomes in both tumorigenesis as well as regeneration. These studies suggest that Vm is not only a key intrinsic cellular property, but also an integral part of the microenvironment that acts in both space and time to guide cellular behavior. As a result, there is considerable interest in manipulating Vm both to treat cancer as well as to regenerate organs damaged or deteriorated during aging. However, such manipulations have produced conflicting outcomes experimentally, which poses a substantial barrier to understanding the fundamentals of bioelectrical reprogramming. Here, we summarize these inconsistencies and discuss how the mechanical microenvironment may impact bioelectric regulation.
Collapse
Affiliation(s)
- Brian B. Silver
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Celeste M. Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States
| |
Collapse
|
30
|
Lourenço BN, Springer NL, Ferreira D, Oliveira C, Granja PL, Fischbach C. CD44v6 increases gastric cancer malignant phenotype by modulating adipose stromal cell-mediated ECM remodeling. Integr Biol (Camb) 2018; 10:145-158. [PMID: 29450424 PMCID: PMC5988203 DOI: 10.1039/c7ib00179g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CD44, an abundantly expressed adhesion molecule, and its alternative splice variants have been associated with tumorigenesis and metastasis. In the context of gastric cancer (GC), de novo expression of CD44 variant 6 (CD44v6) is found in more than 60% of GCs, but its role in the pathogenesis and progression of this type of cancer remains unclear. Using a combination of media conditioning experiments and decellularized extracellular matrices (ECMs), this study investigates the hypothesis that CD44v6 overexpression enhances tumor cell malignant behavior by modulating stromal cell-mediated ECM remodeling. Our findings indicate that soluble factors secreted by CD44v6 expressing GC cells particularly increase proliferation and myofibroblastic differentiation of adipose stromal cells (ASCs). These changes in ASC phenotype mediate the deposition of fibrotic/desmoplastic ECM that, in turn, stimulates GC proliferation and inhibits GC clustering. Pharmacological inhibition of matrix metalloproteinase (MMP) activity in tumor cells abrogated matrix-induced changes in tumor cell malignant behavior. Additionally, studies in mice confirmed the pathological relevance of CD44v6 expression and consequential changes in ECM remodeling to gastric tumorigenesis in vivo. Collectively, these results indicate a direct link between CD44v6, ECM remodeling, and GC malignant behavior opening new insights into potential CD44v6-targeted therapies.
Collapse
Affiliation(s)
- Bianca N Lourenço
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 157 Weill Hall, Ithaca, NY 14853, USA. and i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal and INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal and IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Portugal and Faculdade de Engenharia, Universidade do Porto, Portugal
| | - Nora L Springer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 157 Weill Hall, Ithaca, NY 14853, USA. and Biological and Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Daniel Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal and INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal and IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Portugal and Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Carla Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal and IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Portugal and Departamento de Patologia e Oncologia, Faculdade de Medicina, Universidade do Porto, Portugal
| | - Pedro L Granja
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal and INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal and Faculdade de Engenharia, Universidade do Porto, Portugal and Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 157 Weill Hall, Ithaca, NY 14853, USA. and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
31
|
Sapudom J, Pompe T. Biomimetic tumor microenvironments based on collagen matrices. Biomater Sci 2018; 6:2009-2024. [DOI: 10.1039/c8bm00303c] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review provides an overview of the current approaches to engineer defined 3D matrices for the investigation of tumor cell behaviorin vitro, with a focus on collagen-based fibrillar systems.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Biophysical Chemistry Group
- Institute of Biochemistry
- Faculty of Life Sciences
- Leipzig University
- Leipzig 04103
| | - Tilo Pompe
- Biophysical Chemistry Group
- Institute of Biochemistry
- Faculty of Life Sciences
- Leipzig University
- Leipzig 04103
| |
Collapse
|
32
|
Lintz M, Muñoz A, Reinhart-King CA. The Mechanics of Single Cell and Collective Migration of Tumor Cells. J Biomech Eng 2017; 139:2580907. [PMID: 27814431 DOI: 10.1115/1.4035121] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Indexed: 12/20/2022]
Abstract
Metastasis is a dynamic process in which cancer cells navigate the tumor microenvironment, largely guided by external chemical and mechanical cues. Our current understanding of metastatic cell migration has relied primarily on studies of single cell migration, most of which have been performed using two-dimensional (2D) cell culture techniques and, more recently, using three-dimensional (3D) scaffolds. However, the current paradigm focused on single cell movements is shifting toward the idea that collective migration is likely one of the primary modes of migration during metastasis of many solid tumors. Not surprisingly, the mechanics of collective migration differ significantly from single cell movements. As such, techniques must be developed that enable in-depth analysis of collective migration, and those for examining single cell migration should be adopted and modified to study collective migration to allow for accurate comparison of the two. In this review, we will describe engineering approaches for studying metastatic migration, both single cell and collective, and how these approaches have yielded significant insight into the mechanics governing each process.
Collapse
Affiliation(s)
- Marianne Lintz
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 309 Weill Hall, Ithaca, NY 14853
| | - Adam Muñoz
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 309 Weill Hall, Ithaca, NY 14853
| | - Cynthia A Reinhart-King
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 302 Weill Hall, Ithaca, NY 14853 e-mail:
| |
Collapse
|
33
|
Deng J, Zhao C, Spatz JP, Wei Q. Nanopatterned Adhesive, Stretchable Hydrogel to Control Ligand Spacing and Regulate Cell Spreading and Migration. ACS NANO 2017; 11:8282-8291. [PMID: 28696653 DOI: 10.1021/acsnano.7b03449] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spatial molecular patterning enables the regulation of adhesion receptor clustering and can thus play a pivotal role in multiple biological activities such as cell adhesion, viability, proliferation, and differentiation. A wide range of nanopatterned, adhesive interfaces have been designed to decipher the essence of molecular-scale interactions between cells and the adhesive interface. Although an interligand spacing of less than 70 nm is a proven prerequisite for the formation of stable focal adhesions, there is a paucity of data concerning how cells behave on substrates featuring heterogeneous adhesiveness. In this study, a stretchable hydrogel functionalized with a quasi-hexagonally arranged nanoarray was stretched along one direction, resulting in ligands periodically arranged in a pattern resembling a centered rectangular lattice with an interligand spacing smaller than 70 nm in one direction and greater than 70 nm in the orthogonal direction. This substrate was utilized to modulate interligand spacing and investigate cell adhesion and migration. An interligand spacing larger than 70 nm-even in just one direction-prevented the establishment of stable focal adhesions. The stretched interface promoted dynamic remodeling at cell contacts, resulting in higher cellular mobility. Our nanopatterned stretchable hydrogel permits reversible control over cell adhesion and migration on nanopatterned ligand interfaces.
Collapse
Affiliation(s)
- Jie Deng
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, and Laboratory of Biophysical Chemistry, University of Heidelberg , Jahnstraße 29, 69120 Heidelberg, Germany
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University , Chengdu 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University , Chengdu 610065, China
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, and Laboratory of Biophysical Chemistry, University of Heidelberg , Jahnstraße 29, 69120 Heidelberg, Germany
| | - Qiang Wei
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, and Laboratory of Biophysical Chemistry, University of Heidelberg , Jahnstraße 29, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Wang Y, Gong T, Zhang ZR, Fu Y. Matrix Stiffness Differentially Regulates Cellular Uptake Behavior of Nanoparticles in Two Breast Cancer Cell Lines. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25915-25928. [PMID: 28718278 DOI: 10.1021/acsami.7b08751] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Matrix stiffness regulates cell behavior in various biological contexts. In breast tumors, the deposition of extracellular matrix correlates with increasing matrix stiffness and poor survival. Nanoparticulate carriers represent a promising therapeutic vehicle for disease diagnosis and efficient anticancer drug delivery. However, how matrix stiffness influences cellular uptake of nanoparticles remains largely unexplored. Here, we selected photopolymerized polyacrylamide gels with varying stiffnesses as model substrates and studied the impact of matrix stiffness on cell morphology and nanoparticle uptake efficiency in two representative breast cancer cell lines with varying invasiveness, that is, MCF-7 with low invasiveness and MDA-MB-231 with high invasiveness. In our study, both cell lines showed similar morphological changes with changing stiffness. MCF-7 cells adhered on compliant substrates (1 kPa) showed a roundlike morphology with the lowest cell uptake efficiency among four stiffnesses under investigation at each given time point, whereas for MDA-MB-231 cells, the uptake efficiency showed no significant differences across varying stiffnesses. The percentages of MCF-7 cell proliferation on a 1 kPa substrate were significantly decreased at 48 and 72 h as compared to those on stiff substrates and coverslips. When treated with pluronic/d-α-tocopheryl polyethylene glycol 1000 succinate mixed micelle-loaded paclitaxel, cells on stiff substrates of 7, 20, and 25 kPa showed higher cell apoptosis rates as compared to those of cells on 1 kPa substrates. To sum up, our work presents an example of how physical cues impact specific cellular behavior and function, which may further contribute to engineering nanoparticulate delivery systems for more efficient delivery in vivo.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
- Department of Pharmacy, Southwest Hospital, Third Military Medical University , Chongqing 400038, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| |
Collapse
|
35
|
Xia T, Liu W, Yang L. A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine. J Biomed Mater Res A 2017; 105:1799-1812. [DOI: 10.1002/jbm.a.36034] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/30/2017] [Accepted: 02/08/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Tingting Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College; Chongqing University; Chongqing 400044 China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College; Chongqing University; Chongqing 400044 China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College; Chongqing University; Chongqing 400044 China
| |
Collapse
|
36
|
Sapudom J, Ullm F, Martin S, Kalbitzer L, Naab J, Möller S, Schnabelrauch M, Anderegg U, Schmidt S, Pompe T. Molecular weight specific impact of soluble and immobilized hyaluronan on CD44 expressing melanoma cells in 3D collagen matrices. Acta Biomater 2017; 50:259-270. [PMID: 27965172 DOI: 10.1016/j.actbio.2016.12.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 01/09/2023]
Abstract
Hyaluronan (HA) and its principal receptor CD44 are known to be involved in regulating tumor cell dissemination and metastasis. The direct correlation of CD44-HA interaction on proliferation and invasion of tumor cells in dependence on the molecular weight and the presentation form of HA is not fully understood because of lack of appropriate matrix models. To address this issue, we reconstituted 3D collagen (Coll I) matrices and functionalized them with HA of molecular weight of 30-50kDa (low molecular weight; LMW-HA) and 500-750kDa (high molecular weight; HMW-HA). A post-modification strategy was applied to covalently immobilize HA to reconstituted fibrillar Coll I matrices, resulting in a non-altered Coll I network microstructure and stable immobilization over days. Functionalized Coll I matrices were characterized regarding topological and mechanical characteristics as well as HA amount using confocal laser scanning microscopy, colloidal probe force spectroscopy and quantitative Alcian blue assay, respectively. To elucidate HA dependent tumor cell behavior, BRO melanoma cell lines with and without CD44 receptor expression were used for in vitro cell experiments. We demonstrated that only soluble LMW-HA promoted cell proliferation in a CD44 dependent manner, while HMW-HA and immobilized LMW-HA did not. Furthermore, an enhanced cell invasion was found only for immobilized LMW-HA. Both findings correlated with a very strong and specific adhesive interaction of LMW-HA and CD44+ cells quantified in single cell adhesion measurements using soft colloidal force spectroscopy. Overall, our results introduce an in vitro biomaterials model allowing to test presentation mode and molecular weight specificity of HA in a 3D fibrillar matrix thus mimicking important in vivo features of tumor microenvironments. STATEMENT OF SIGNIFICANCE Molecular weight and presentation form (bound vs. soluble) of hyaluronan (HA) are intensively discussed as key regulators in tumor progression and inflammation. We introduce 3D fibrillar collagen matrices with defined microstructure and stiffness allowing the presentation of specific molecular weight forms of HA in soluble and bound manner. Mimicking in that way important in vivo features of tumor microenvironments, we found that only low molecular weight HA (LMW-HA) in soluble form promoted proliferation of a melanoma cell line (BRO), while it enhanced cell invasion in bound form. The molecular weight specificity of LMW-HA was verified to be CD44 receptor dependent and was correlated to adhesive ligand-receptor interactions in quantitative colloidal force spectroscopy at single cell level.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig, Leipzig 04103, Germany
| | - Franziska Ullm
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig, Leipzig 04103, Germany
| | - Steve Martin
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig, Leipzig 04103, Germany
| | - Liv Kalbitzer
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig, Leipzig 04103, Germany
| | - Johanna Naab
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig, Leipzig 04103, Germany
| | - Stephanie Möller
- INNOVENT e. V., Biomaterials Department, Prüssingstraße 27B, 07745 Jena, Germany
| | | | - Ulf Anderegg
- Department of Dermatology, Venerology and Allergology, Universitätsklinikum Leipzig, Leipzig 04103, Germany
| | - Stephan Schmidt
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig, Leipzig 04103, Germany; Heinrich-Heine-Universität, Institute for Organic and Macromolecular Chemistry, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig, Leipzig 04103, Germany.
| |
Collapse
|