1
|
Xu Y, Shi X, Lin H, Li S, Zhang Z, Wei F, Chen Y. GelMA/HA-NB hydrogel encapsulating adipose-derived chondrogenic exosomes enhances enthesis regeneration in chronic rotator cuff tears. Int J Biol Macromol 2025; 309:142800. [PMID: 40185430 DOI: 10.1016/j.ijbiomac.2025.142800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Chronic rotator cuff tears (RCTs) often lead to poor surgical outcomes, requiring innovative therapies. This study explores the potential of exosomes from chondrogenic stem/progenitor cells (CSPCs), encapsulated in a GelMA/HA-NB hydrogel, to improve rotator cuff healing. Adipose-derived stem cells (ASCs) were isolated and sorted to obtain CSPCs, from which exosomes (sub-Exos) were extracted and characterized. Unsorted ASCs exosomes (un-Exos) were also isolated for comparison. The hydrogel-exosome system was evaluated for biocompatibility, chondrogenic differentiation, and sustained release in vitro and in a chronic RCT rat model. 112 rats were divided into four groups: control, hydrogel alone, un-Exos with hydrogel, and sub-Exos with hydrogel. Healing was assessed at 4 and 8 weeks using micro-CT, histology, and biomechanical testing. In vitro, sub-Exos with hydrogel demonstrated excellent biocompatibility and enhanced chondrogenic potential. In vivo, sub-Exos were retained at the injury site for up to 14 days, significantly improving histological scores, bone mineral density, bone volume/total volume, and trabecular thickness. Biomechanical tests revealed superior failure load and stiffness in the sub-Exos group. These findings demonstrate that localized delivery of GelMA/HA-NB hydrogel-encapsulated sub-Exos significantly enhances enthesis healing, offering a promising cell-free therapeutic strategy for chronic RCTs.
Collapse
Affiliation(s)
- Yan Xu
- Department of Orthopaedics, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, China
| | - Xin Shi
- Department of Orthopaedics, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Haofeng Lin
- Department of Orthopaedics, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, China
| | - Siqi Li
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Zhiyuan Zhang
- Department of Orthopaedics, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, China
| | - Fuxin Wei
- Department of Orthopaedics, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, China.
| | - Yang Chen
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China; Department of Thoracic Surgery, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China.
| |
Collapse
|
2
|
Ye Z, Chen C, Chen H, Huang K, Qiao Y, Wu C, Wu X, Su W, Dong S, Xu J, Xu C, Zhao J. Bone Marrow Stimulation Yielded Similar Clinical Outcomes With Improved Tendon Healing and Abduction Strength Compared With Decortication for Arthroscopic Rotator Cuff Repair in Shoulder Active Patients. Arthroscopy 2025:S0749-8063(25)00056-8. [PMID: 39914606 DOI: 10.1016/j.arthro.2025.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 02/23/2025]
Abstract
PURPOSE To compare the clinical outcomes and tendon healing between bone marrow stimulation (BMS) and decortication as footprint preparation techniques for arthroscopic rotator cuff repair (ARCR) in shoulder active patients. METHODS This double-blinded randomized clinical trial recruited 120 patients aged older than 45 years, at active levels, and diagnosed with chronic unilateral rotator cuff tears. Participants were 1:1 randomized to undergo ARCR using the double-row suture-bridge technique with BMS (BMS group) or with decortication (DEC group) for footprint preparation. The primary outcome was the American Shoulder and Elbow Surgeons score (range, 0-100, with greater scores indicating better shoulder function and fewer symptoms) at 24 months. Secondary outcomes included patient-reported outcomes, physical examinations, and rotator cuff integrity (evaluated on magnetic resonance imaging using a 5-graded system). RESULTS Of the 120 participants (age, 58.7 ± 8.1 years; 83 females [69.2%]) enrolled and randomized between May 2017 and November 2021, 109 (90.8%) were analyzed with the completion of follow-up visits. The American Shoulder and Elbow Surgeons scores at 24 months were not statistically significantly different between the BMS and DEC groups (89.2 ± 12.2 vs 87.8 ± 13.9; adjusted difference, 1.7; 95% confidence interval -3.3 to 6.7; P = .498). The BMS group showed superior rotator cuff integrity (incomplete healing, 33.9% vs 54.7%; P = .029) and abduction muscle strength (8.7 ± 3.2 vs 7.4 ± 3.3 kg; P = .031) at 24 months as compared with the DEC group; the superiority was more significant in the subgroup of participants with higher shoulder activity levels. The rates of adverse events were comparable between groups. CONCLUSIONS Among shoulder active patients undergoing ARCR, BMS did not result in superior patient-reported outcomes at 24 months postoperatively compared with decortication. Nevertheless, BMS resulted in greater rates of tendon healing and clinically significant improvement in abduction strength and thus can be recommended in patients requiring high levels of manual labor or sports activities. LEVEL OF EVIDENCE Level I, randomized clinical trial.
Collapse
Affiliation(s)
- Zipeng Ye
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang'an Chen
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiang Chen
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Huang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Qiao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenliang Wu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiulin Wu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Su
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shikui Dong
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Xu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caiqi Xu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Chen K, Liu Z, Zhou X, Zheng W, Cao H, Yang Z, Wang Z, Ning C, Li Q, Zhao H. Hierarchy Reproduction: Multiphasic Strategies for Tendon/Ligament-Bone Junction Repair. Biomater Res 2025; 29:0132. [PMID: 39844867 PMCID: PMC11751208 DOI: 10.34133/bmr.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/15/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Tendon/ligament-bone junctions (T/LBJs) are susceptible to damage during exercise, resulting in anterior cruciate ligament rupture or rotator cuff tear; however, their intricate hierarchical structure hinders self-regeneration. Multiphasic strategies have been explored to fuel heterogeneous tissue regeneration and integration. This review summarizes current multiphasic approaches for rejuvenating functional gradients in T/LBJ healing. Synthetic, natural, and organism-derived materials are available for in vivo validation. Both discrete and gradient layouts serve as sources of inspiration for organizing specific cues, based on the theories of biomaterial topology, biochemistry, mechanobiology, and in situ delivery therapy, which form interconnected network within the design. Novel engineering can be constructed by electrospinning, 3-dimensional printing, bioprinting, textiling, and other techniques. Despite these efforts being limited at present stage, multiphasic scaffolds show great potential for precise reproduction of native T/LBJs and offer promising solutions for clinical dilemmas.
Collapse
Affiliation(s)
- Kaiting Chen
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Zezheng Liu
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Xinying Zhou
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Wanyu Zheng
- School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - He Cao
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Zijian Yang
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Zhengao Wang
- School of Materials Science and Engineering,
South China University of Technology, Guangzhou 510006, P. R. China
| | - Chengyun Ning
- School of Materials Science and Engineering,
South China University of Technology, Guangzhou 510006, P. R. China
| | - Qingchu Li
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Huiyu Zhao
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| |
Collapse
|
4
|
Bai L, Kasimu A, Wang S, Qiu Z, Xu M, Qu X, Chen B, Liu Q, Ai Y, Li M, Xiu J, Liu K, Wen N, He J, Zhang J, Yin Z. Electrohydrodynamic-Printed Dual-Triphase Microfibrous Scaffolds Reshaping the Lipidomic Profile for Enthesis Healing in a Rat Rotator Cuff Repair Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406069. [PMID: 39580676 DOI: 10.1002/smll.202406069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Indexed: 11/26/2024]
Abstract
Rotator cuff injuries often result in chronic pain and functional limitations due to retears and scar formation at the enthesis. This study assess the efficacy of electrohydrodynamic-printed microfibrous dual-triphase scaffolds (DTSs), designed to optimize enthesis repair. These scaffolds, composed of polycaprolactone enhanced with nanohydroxyapatite, nano-magnesium-oxide, and kartogenin demonstrate significant biological advantages. In vitro, the scaffolds support over 95% stem cell viability and promote enhanced expression of critical markers such as tenomodulin (TNMD), sex-determining region Y-Box transcription factor 9 (SOX-9), and runt-related transcription factor 2 (RUNX-2). Enhanced expressions of tendon markers tenomodulin and scleraxis (SCX) are noted, alongside significant upregulation of chondrocyte and osteoblast markers. In vivo, these scaffolds significantly improve the biomechanical properties of the repaired enthesis, with a maximum failure load of 27.0 ± 4.2 N and ultimate stress of 5.5 ± 1.0 MPa at 6 weeks postimplantation. Lipidomic analysis indicates substantial regulation of phospholipids such as phosphatidylcholine and phosphatidylserine, highlighting the scaffold's capacity to modulate biochemical pathways critical for tissue repair and regeneration. This study underscores the potential of DTS to improve clinical outcomes in rotator cuff injury treatment by enhancing cellular differentiation, biomechanical properties, and biochemical environment, setting a foundation for personalized treatment strategies in tendon-bone repair.
Collapse
Affiliation(s)
- Lang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ayiguli Kasimu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuai Wang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Joint Surgery, Xi'an Aerospace General Hospital, Xi'an, 710100, China
| | - Zhennan Qiu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meiguang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoli Qu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baojun Chen
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Qiaonan Liu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yixiang Ai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meng Li
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jintao Xiu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kai Liu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Nuanyang Wen
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, 710069, China
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
5
|
Zhong S, Lan Y, Liu J, Seng Tam M, Hou Z, Zheng Q, Fu S, Bao D. Advances focusing on the application of decellularization methods in tendon-bone healing. J Adv Res 2025; 67:361-372. [PMID: 38237768 PMCID: PMC11725151 DOI: 10.1016/j.jare.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND The tendon or ligament is attached to the bone by a triphasic but continuous area of heterogeneous tissue called the tendon-bone interface (TBI). The rapid and functional regeneration of TBI is challenging owing to its complex composition and difficulty in self-healing. The development of new technologies, such as decellularization, has shown promise in the regeneration of TBI. Several ex vivo and in vivo studies have shown that decellularized grafts and decellularized biomaterial scaffolds achieved better efficacy in enhancing TBI healing. However further information on the type of review that is available is needed. AIM OF THE REVIEW In this review, we discuss the current application of decellularization biomaterials in promoting TBI healing and the possible mechanisms involved. With this work, we would like to reveal how tissues or biomaterials that have been decellularized can improve tendon-bone healing and to provide a theoretical basis for future related studies. KEY SCIENTIFIC CONCEPTS OF THE REVIEW Decellularization is an emerging technology that utilizes various chemical, enzymatic and/or physical strategies to remove cellular components from tissues while retaining the structure and composition of the extracellular matrix (ECM). After decellularization, the cellular components of the tissue that cause an immune response are removed, while various biologically active biofactors are retained. This review further explores how tissues or biomaterials that have been decellularized improve TBI healing.
Collapse
Affiliation(s)
- Sheng Zhong
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yujian Lan
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jinyu Liu
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | | | - Zhipeng Hou
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qianghua Zheng
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shijie Fu
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Dingsu Bao
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China; Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China.
| |
Collapse
|
6
|
Long Z, Nakagawa K, Wang Z, Shi G, Sanchez-Sotelo J, Steinmann SP, Zhao C. Engineered Tendon-Fibrocartilage-Bone Composite With Mechanical Stimulation for Augmentation of Rotator Cuff Repair: A Study Using an In Vivo Canine Model With a 6-Month Follow-up. Am J Sports Med 2024; 52:3376-3387. [PMID: 39370691 DOI: 10.1177/03635465241282668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
BACKGROUND Rotator cuff repair augmentation using biological materials has become popular in clinical practice to reduce the high retear rates associated with traditional repair techniques. Tissue engineering approaches, such as engineered tendon-fibrocartilage-bone composite (TFBC), have shown promise in enhancing the biological healing of rotator cuff tears in animals. However, previous studies have provided limited long-term data on TFBC repair outcomes. The effect of mechanical stimulation on TFBC has not been explored extensively. PURPOSE To evaluate functional outcomes after rotator cuff repair with engineered TFBC subjected to mechanical stimulation in a 6-month follow-up using a canine in vivo model. STUDY DESIGN Controlled laboratory study. METHODS A total of 40 canines with an acute infraspinatus (ISP) tendon transection model were randomly allocated to 4 groups (n =10): (1) unilateral ISP tendon undergoing suture repair only (control surgery); (2) augmentation with engineered TFBC alone (TFBC); (3) augmentation with engineered TFBC and bone marrow-derived stem cells (BMSCs) (TFBC+C); and (4) augmentation with engineered TFBC and BMSCs, as well as mechanical stimulation (TFBC+C+M). Outcome measures-including biomechanical evaluations such as failure strength, stiffness, failure mode, gross appearance, ISP tendon and muscle morphological assessment, and histological analysis-were performed 6 months after surgery. RESULTS As shown in the mechanical test, the TFBC+C+M group exhibited higher failure strength compared with other repair techniques. The most common failure mode was avulsion fracture in the TFBC+C+M group, but tendon-bone junction rupture was observed predominantly in different groups. Engineered TFBC with mechanical stimulation showed over 70% relative failure strength compared with normal ISP, and the other groups showed about 50% relative failure strength. Histological analysis revealed less fat infiltration and closer-to-normal muscle fiber structure in the mechanical stimulation group. CONCLUSION This study provides evidence that mechanical stimulation of engineered TFBC promotes rotator cuff regeneration, thus supporting its potential for rotator cuff repair augmentation. CLINICAL RELEVANCE This study provides valuable evidence supporting the use of a novel tissue-engineered material (TFBC) in rotator cuff repair and paves the way for advancements in the field of rotator cuff regeneration.
Collapse
Affiliation(s)
- Zeling Long
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Sports Medicine, The First Affiliate Hospital of Shenzhen University (The Second People's Hospital of Shenzhen), Shenzhen, Guangdong, China
| | - Koichi Nakagawa
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Zhanwen Wang
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Guidong Shi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Scott P Steinmann
- Department of Orthopedic Surgery, University of Tennessee Health Science Center College of Medicine, Chattanooga, Tennessee, USA
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Huang S, Tam MY, Ho WHC, Wong HK, Zhou M, Zeng C, Xie D, Elmer Ker DF, Ling SK, Tuan RS, Wang DM. Establishing a rabbit model with massive supraspinatus tendon defect for investigating scaffold-assisted tendon repair. Biol Proced Online 2024; 26:31. [PMID: 39367314 PMCID: PMC11453025 DOI: 10.1186/s12575-024-00256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Shoulder pain and disability from rotator cuff tears remain challenging clinical problem despite advancements in surgical techniques and materials. To advance our understanding of injury progression and develop effective therapeutics using tissue engineering and regenerative medicine approaches, it is crucial to develop and utilize animal models that closely resemble the anatomy and display the pathophysiology of the human rotator cuff. Among various animal models, the rabbit shoulder defect model is particularly favored due to its similarity to human rotator cuff pathology. However, a standardized protocol for creating a massive rotator cuff defect in the rabbits is not well defined. Therefore, the objective of our study was to establish a robust and reproducible model of a rotator cuff defect to evaluate the regenerative efficacy of scaffolds. RESULTS In our study, we successfully developed a rabbit model with a massive supraspinatus tendon defect that closely resembles the common rotator cuff injuries observed in humans. This defect involved a complete transection of the tendon, spanning 10 mm in length and encompassing its full thickness and width. To ensure stable scaffolding, we employed an innovative bridging suture technique that utilized a modified Mason-Allen suture as a structural support. Moreover, to assess the therapeutic effectiveness of the model, we utilized different scaffolds, including a bovine tendon extracellular matrix (ECM) scaffold and a commercial acellular dermal matrix (ADM) scaffold. Throughout the observation period, no scaffold damage was observed. Notably, comprehensive histological analysis demonstrated that the regenerative tissue in the tendon ECM scaffold group exhibited an organized and aligned fiber structure, indicating tendon-like tissue regeneration while the tissue in the ADM group showed comparatively less organization. CONCLUSIONS This study presents a comprehensive description of the implemented procedures for the development of a highly reproducible animal model that induces massive segmental defects in rotator cuff tendons. This protocol can be universally implemented with alternative scaffolds to investigate extensive tendon defects and evaluate the efficacy of regenerative treatments. The application of our animal model offers a standardized and reproducible platform, enabling researchers to systematically evaluate, compare, and optimize scaffold designs. This approach holds significant importance in advancing the development of tissue engineering strategies for effectively repairing extensive tendon defects.
Collapse
Affiliation(s)
- Shuting Huang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
| | - Ming Yik Tam
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Hon Caleb Ho
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hong Ki Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Meng Zhou
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Zeng
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Denghui Xie
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dai Fei Elmer Ker
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Samuel Kk Ling
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rocky S Tuan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China.
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Lin S, Reisdorf R, Lu CK, Wang Z, An KN, Moran SL, Amadio PC, Zhao C. Cell-based tissue engineered flexor tendon allograft: A canine in vivo study. J Orthop Res 2024; 42:1923-1932. [PMID: 38639414 PMCID: PMC11293999 DOI: 10.1002/jor.25854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/31/2024] [Accepted: 03/30/2024] [Indexed: 04/20/2024]
Abstract
This study aimed to compare the clinically established autologous extrasynovial tendon graft to a newly developed tissue-engineered allograft (Eng-allograft) in terms of functional outcomes following flexor tendon reconstruction in a canine model. The second and fifth flexor digitorum profundus (FDP) tendons from 16 dogs were transected and repaired in Zone II. After 6 weeks of cage activity, the repaired tendons were intentionally ruptured, creating a clinically relevant model for reconstruction. The re-ruptured FDP tendons were then reconstructed using either the clinically standard autologous extrasynovial tendon graft or the Eng-allograft, which had been revitalized with autologous bone marrow-derived mesenchymal stem cells (BMSCs) and synovialized using carbodiimide derivatized synovial fluid (cd-SYN). Following 12 weeks of postoperative rehabilitation, the functional outcomes of the surgical digits were evaluated. The Eng-allograft group exhibited improved digital function, including lower digit work of flexion and reduced adhesion status, while maintaining similar tendon gliding resistance compared to the autograft group. However, the failure load of both the distal and proximal host/graft conjunctions in the Eng-allograft group was significantly lower than that of the autograft group with higher graft rupture at the host-graft junction. In conclusion, the decellularized allogenic intrasynovial tendon, when revitalized BMSCs and synovialized with cd-SYN, demonstrates positive effects on digital function improvement and adhesion reduction. However, the healing at both proximal and distal graft/host junctions is far lower than the autograft. Further research is needed to enhance the healing capacity of allograft conjunctions, aiming to achieve a comparable level of healing seen with autografts.
Collapse
Affiliation(s)
- Subin Lin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Ramona Reisdorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Chun Kuan Lu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Zhanwen Wang
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Kai-Nan An
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Steven L. Moran
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Peter C. Amadio
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
9
|
Nicodemo MC, Arisawa EALS, Sant'anna LB, Lopes-Martins R. Photobiomodulation and amniotic membrane for treat tendon injury in rats. AN ACAD BRAS CIENC 2024; 96:e20231139. [PMID: 39140521 DOI: 10.1590/0001-3765202420231139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/19/2024] [Indexed: 08/15/2024] Open
Abstract
Tendons, complex fibrous structures, are subjected to great tensions, which can give rise to the so-called tendinopathies. This study aimed to evaluate photobiomodulation and human Amniotic Membrane applied as single or combined therapies to treat induced Achilles tendon lesions. Seventy-five rats were divided into five groups (n=15): C- control Sham surgery; I- tendon injury; LA- tendon injury treated with photobiomodulation; AM- tendon injury treated with Amniotic Membrane; LAM- tendon injury + photobiomodulation and Amniotic Membrane, subdivided into three groups (n=5) with analysis at 3, 7, and 14 days. The tendon injuries were made with a 20 g weight released from a mini guillotine onto the ankle in dorsiflexion. AM and LAM groups received an Amniotic Membrane fragment while LA and LAM groups received transcutaneous photobiomodulation, using a 660 nm wavelength laser. The inflammatory cells showed statistical differences between groups C and I (p<0.05), I and AM (p<0.01), I and LA (p<0.05), and I and LAM (p<0.01). Both photobiomodulation and Amniotic Membrane were shown to enhance tendon repair, and the association of photobiomodulation plus Amniotic Membrane was the most effective treatment. We conclude that the association of photobiomodulation plus Amniotic Membrane was effective in accelerating and improving the tendon regeneration process.
Collapse
Affiliation(s)
- Mariana C Nicodemo
- Universidade do Vale do Paraíba - UNIVAP, Laboratório de Bioestimulação e Reparo Tecidual, Av. Shishima Hifumi, 2911, Urbanova, 12244-000 São José dos Campos, SP, Brazil
| | - Emilia Angela L S Arisawa
- Universidade do Vale do Paraíba - UNIVAP, Laboratório de Bioestimulação e Reparo Tecidual, Av. Shishima Hifumi, 2911, Urbanova, 12244-000 São José dos Campos, SP, Brazil
| | - Luciana B Sant'anna
- Universidade do Vale do Paraíba - UNIVAP, Laboratório de Histologia e Terapia Regenerativa, Av. Shishima Hifumi, 2911, Urbanova, 12244-000 São José dos Campos, SP, Brazil
| | - Rodrigo Lopes-Martins
- Universidade Brasil, Programa de Pós-Graduação em Bioengenharia, Rua Carolina Fonseca, 584, Itaquera, 08230-030 São Paulo, SP, Brazil
| |
Collapse
|
10
|
Cui M, Sun Y, Zhang X, Yang P, Jiang W. Osteochondral tissue engineering in translational practice: histological assessments and scoring systems. Front Bioeng Biotechnol 2024; 12:1434323. [PMID: 39157444 PMCID: PMC11327087 DOI: 10.3389/fbioe.2024.1434323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Osteochondral lesions are common pathological alterations in synovial joints. Different techniques have been designed to achieve osteochondral repair, and tissue-engineered osteochondral grafts have shown the most promise. Histological assessments and related scoring systems are crucial for evaluating the quality of regenerated tissue, and the interpretation and comparison of various repair techniques require the establishment of a reliable and widely accepted histological method. To date, there is still no consensus on the type of histological assessment and scoring system that should be used for osteochondral repair. In this review, we summarize common osteochondral staining methods, discuss the criteria regarding high-quality histological images, and assess the current histological scoring systems for osteochondral regeneration. Safranin O/Fast green is the most widely used staining method for the cartilage layer, whereas Gomori and Van Gieson staining detect new bone formation. We suggest including the graft-host interface and more sections together with the basic histological information for images. An ideal scoring system should analyze both the cartilage and bone regions, especially for the subchondral bone plate. Furthermore, histological assessments should be performed over a longer period of time to minimize discrepancies caused by defect size and animal species.
Collapse
Affiliation(s)
- Mengying Cui
- The Second Hospital of Jilin University, Jilin, China
| | - Yang Sun
- Orthopedic Medical Center, The Second Hospital of Jilin University, Jilin, China
| | | | - Pengju Yang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Jilin, China
| | - Weibo Jiang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Jilin, China
| |
Collapse
|
11
|
Wang B, Chen Q, Zou X, Zheng P, Zhu J. Advances in non-coding RNA in tendon injuries. Front Genet 2024; 15:1396195. [PMID: 38836038 PMCID: PMC11148651 DOI: 10.3389/fgene.2024.1396195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024] Open
Abstract
Tendons serve as important weight-bearing structures that smoothly transfer forces from muscles to skeletal parts, allowing contracted muscle movements to be translated into corresponding joint movements. For body mechanics, tendon tissue plays an important role. If the tendons are damaged to varying degrees, it can lead to disability or pain in patients. That is to say, tendon injuries havea significant impact on quality of life and deserve our high attention. Compared to other musculoskeletal tissues, tendons are hypovascular and hypo-cellular, and therefore have a greater ability to heal, this will lead to a longer recovery period after injury or even disability, which will significantly affect the quality of life. There are many causes of tendon injury, including trauma, genetic factors, inflammation, aging, and long-term overuse, and the study of related mechanisms is of great significance. Currently, tendon there are different treatment modalities, like injection therapy and surgical interventions. However, they have a high failure rate due to different reasons, among which the formation of adhesions severely weakens the tissue strength, affecting the functional recovery and the patient's quality of life. A large amount of data has shown that non coding RNAs can play a huge role in this field, thus attracting widespread attention from researchers from various countries. This review summarizes the relevant research progress on non-coding RNAs in tendon injuries, providing new ideas for a deeper understanding of tendon injuries and exploring new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Bin Wang
- Department of Plastics, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, China
| | - Qiang Chen
- Center for Plastic and Reconstructive Surgery, Department of Hand and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaodi Zou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Zheng
- Department of Plastics, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, China
| | - Jie Zhu
- Center for General Practice Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
12
|
Chen Y, Li Y, Zhu W, Liu Q. Biomimetic gradient scaffolds for the tissue engineering and regeneration of rotator cuff enthesis. Biofabrication 2024; 16:032005. [PMID: 38697099 DOI: 10.1088/1758-5090/ad467d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Rotator cuff tear is one of the most common musculoskeletal disorders, which often results in recurrent shoulder pain and limited movement. Enthesis is a structurally complex and functionally critical interface connecting tendon and bone that plays an essential role in maintaining integrity of the shoulder joint. Despite the availability of advanced surgical procedures for rotator cuff repair, there is a high rate of failure following surgery due to suboptimal enthesis healing and regeneration. Novel strategies based on tissue engineering are gaining popularity in improving tendon-bone interface (TBI) regeneration. Through incorporating physical and biochemical cues into scaffold design which mimics the structure and composition of native enthesis is advantageous to guide specific differentiation of seeding cells and facilitate the formation of functional tissues. In this review, we summarize the current state of research in enthesis tissue engineering highlighting the development and application of biomimetic scaffolds that replicate the gradient TBI. We also discuss the latest techniques for fabricating potential translatable scaffolds such as 3D bioprinting and microfluidic device. While preclinical studies have demonstrated encouraging results of biomimetic gradient scaffolds, the translation of these findings into clinical applications necessitates a comprehensive understanding of their safety and long-term efficacy.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yexin Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Qian Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
13
|
Chu Kwan W, Partanen A, Narayanan U, Waspe AC, Drake JM. Biomechanical testing of ex vivo porcine tendons following high intensity focused ultrasound thermal ablation. PLoS One 2024; 19:e0302778. [PMID: 38713687 DOI: 10.1371/journal.pone.0302778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/12/2024] [Indexed: 05/09/2024] Open
Abstract
INTRODUCTION Magnetic resonance-guided focused ultrasound (MRgFUS) has been demonstrated to be able to thermally ablate tendons with the aim to non-invasively disrupt tendon contractures in the clinical setting. However, the biomechanical changes of tendons permitting this disrupting is poorly understood. We aim to obtain a dose-dependent biomechanical response of tendons following magnetic resonance-guided focused ultrasound (MRgFUS) thermal ablation. METHODS Ex vivo porcine tendons (n = 72) were embedded in an agar phantom and randomly assigned to 12 groups based on MRgFUS treatment. The treatment time was 10, 20, or 30s, and the applied acoustic power was 25, 50, 75, or 100W. Following each MRgFUS treatment, tendons underwent biomechanical tensile testing on an Instron machine, which calculated stress-strain curves during tendon elongation. Rupture rate, maximum treatment temperature, Young's modulus and ultimate strength were analyzed for each treatment energy. RESULTS The study revealed a dose-dependent response, with tendons rupturing in over 50% of cases when energy delivery exceeded 1000J and 100% disruption at energy levels beyond 2000J. The achieved temperatures during MRgFUS were directly proportional to energy delivery. The highest recorded temperature was 56.8°C ± 9.34 (3000J), while the lowest recorded temperate was 18.6°C ± 0.6 (control). The Young's modulus was highest in the control group (47.3 MPa ± 6.5) and lowest in the 3000J group (13.2 MPa ± 5.9). There was no statistically significant difference in ultimate strength between treatment groups. CONCLUSION This study establishes crucial thresholds for reliable and repeatable disruption of tendons, laying the groundwork for future in vivo optimization. The findings prompt further exploration of MRgFUS as a non-invasive modality for tendon disruption, offering hope for improved outcomes in patients with musculotendinous contractures.
Collapse
Affiliation(s)
| | | | - Unni Narayanan
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adam C Waspe
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James M Drake
- The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Dai X, Yuan M, Yang Y, Dang M, Yang J, Shi J, Liu D, Li M, Yao H, Fei W. Dual cross-linked COL1/HAp bionic gradient scaffolds containing human amniotic mesenchymal stem cells promote rotator cuff tendon-bone interface healing. BIOMATERIALS ADVANCES 2024; 158:213799. [PMID: 38364326 DOI: 10.1016/j.bioadv.2024.213799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
The tendon-bone interface heals through scar tissue, while the lack of a natural interface gradient structure and collagen fibre alignment leads to the occurrence of retearing. Therefore, the promotion of tendon healing has become the focus of regenerative medicine. The purpose of this study was to develop a gradient COL1/ hydroxyapatite (HAp) biomaterial loaded with human amniotic mesenchymal stem cells (hAMSCs). The performance of common cross-linking agents, Genipin, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS), and dual cross-linked materials were compared to select the best cross-linking mechanism to optimize the biological and mechanical properties of the scaffold. The optimal COL1/HAp-loaded with hAMSCs were implanted into the tendon-bone rotator cuff interfaces in rats and the effect on the tendon-bone healing was assessed by micro-CT, histological analysis, and biomechanical properties. The results showed that Genipin and EDC/NHS dual cross-linked COL1/HAp had good biological activity and mechanical properties and promoted the proliferation and differentiation of hAMSCs. Animal experiments showed that the group using a scaffold loaded with hAMSCs had excellent continuity and orientation of collagen fibers, increased fibrocartilage and bone formation, and significantly higher biomechanical functions than the control group at the interface at 12 weeks post operation. This study demonstrated that dual cross-linked gradient COL1/HAp-loaded hAMSCs could promote interface healing, thereby providing a feasible strategy for tendon-bone interface regeneration.
Collapse
Affiliation(s)
- Xiaomei Dai
- School of Nursing and School of Public Health, Yangzhou University, Yangzhou 225001, PR China; Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou 225001, PR China
| | - Meijuan Yuan
- School of Nursing and School of Public Health, Yangzhou University, Yangzhou 225001, PR China; Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou 225001, PR China
| | - Yuxia Yang
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou 225001, PR China; Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Mengbo Dang
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou 225001, PR China; Dalian Medical University, Dalian 116044, PR China
| | - Jian Yang
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou 225001, PR China; Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Junli Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Dianwei Liu
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou 225001, PR China; Dalian Medical University, Dalian 116044, PR China
| | - Mingjun Li
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou 225001, PR China; Dalian Medical University, Dalian 116044, PR China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, PR China.
| | - Wenyong Fei
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou 225001, PR China.
| |
Collapse
|
15
|
Wang C, Zhang X, Wang DM, Yung PSH, Tuan RS, Ker DFE. Optimized design of an enthesis-mimicking suture anchor-tendon hybrid graft for mechanically robust bone-tendon repair. Acta Biomater 2024; 176:277-292. [PMID: 38244656 DOI: 10.1016/j.actbio.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Repair of functionally graded biological interfaces requires joining dissimilar materials such as hard bone to soft tendon/ligament, with re-injuries/re-tears expected to be minimized by incorporating biomimicking, stress-reducing features within grafts. At bone-tendon interfaces (entheses), stress can be reduced via angled insertion, geometric flaring, mechanical gradation, and interdigitation of tissues. Here, we incorporated enthesis attributes into 3D in silico and physical models of a unique suture anchor-tendon hybrid graft (SATHG) and investigated their effects on stress reduction via finite element analyses (FEA) studies. Over 20 different simulations altering SATHG angulation, flaring, mechanical gradation, and interdigitation identified an optimal design, which included 90° angulation, 25° flaring, and a compliant (ascending then descending) mechanical gradient in SATHG's bone-to-tendon-like transitional region. This design reduced peak stress concentration factor (SCF) by 43.6 % relative to an ascending-only mechanical gradient typically used in hard-to-soft tissue engineering. To verify FEA results, SATHG models were fabricated using a photocrosslinkable bone-tendon-like polyurethane (QHM polymer) for ex vivo tensile assessment. Tensile testing showed that ultimate load (132.9 N), displacement-at-failure (1.78 mm), stiffness (135.4 N/mm), and total work-to-failure (422.1 × 10-3 J) were highest in the optimized design. Furthermore, to assess envisioned usage, SATHG pull-out testing and 6-week in vivo implantation into large, 0.5-cm segmental supraspinatus tendon defects was performed. SATHG pull-out testing showed secure bone attachment while histological assessment such as hematoxylin and eosin (H&E) together with Safranin-O staining showed biocompatibility including enthesis regeneration. This work demonstrates that engineering biomaterials with FEA-optimized, enthesis-like attributes shows potential for enhancing hard-to-soft tissue repair. STATEMENT OF SIGNIFICANCE: Successful repair of hard-to-soft tissue injuries is challenging due to high stress concentrations within bone-tendon/ligament grafts that mechanically compromise repair strength. While stress-reducing gradient biomaterials have been reported, little-to-no attention has focused on other bone-tendon/ligament interface (enthesis) features. To this end, a unique bone-tendon graft (SATHG) was developed by combining two common orthopaedic devices along with biomimetic incorporation of four enthesis-like features to reduce stress and encourage widespread clinician adoption. Notably, utilizing designs based on natural stress dissipation principles such as anchor insertion angle, geometric flaring, and mechanical gradation reduced stress by 43.6 % in silico, which was confirmed ex vivo, while in vivo studies showed SATHG's ability to support native enthesis regeneration. Thus, SATHG shows promise for hard-to-soft tissue repairs.
Collapse
Affiliation(s)
- Chenyang Wang
- Institute for Tissue Engineering and Regenerative Medicine, Lo Kwee-Seong Biomedical Sciences Building, Area 39, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, Lo Kwee-Seong Biomedical Sciences Building, Area 39, The Chinese University of Hong Kong, Hong Kong SAR
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, Lo Kwee-Seong Biomedical Sciences Building, Area 39, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, Lo Kwee-Seong Biomedical Sciences Building, Area 39, The Chinese University of Hong Kong, Hong Kong SAR; Center for Neuromusculoskeletal Restorative Medicine, InnoHK, Hong Kong Science Park, Hong Kong SAR
| | - Dan Michelle Wang
- Institute for Tissue Engineering and Regenerative Medicine, Lo Kwee-Seong Biomedical Sciences Building, Area 39, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, Lo Kwee-Seong Biomedical Sciences Building, Area 39, The Chinese University of Hong Kong, Hong Kong SAR; Ministry of Education Key Laboratory for Regenerative Medicine, Lo Kwee-Seong Biomedical Sciences Building, Area 39, The Chinese University of Hong Kong, Hong Kong SAR; Center for Neuromusculoskeletal Restorative Medicine, InnoHK, Hong Kong Science Park, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Lui Che Woo Clinical Science Building, Prince of Wales Hospital, Hong Kong SAR
| | - Patrick S H Yung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Lui Che Woo Clinical Science Building, Prince of Wales Hospital, Hong Kong SAR; Center for Neuromusculoskeletal Restorative Medicine, InnoHK, Hong Kong Science Park, Hong Kong SAR; Institute for Tissue Engineering and Regenerative Medicine, Lo Kwee-Seong Biomedical Sciences Building, Area 39, The Chinese University of Hong Kong, Hong Kong SAR
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, Lo Kwee-Seong Biomedical Sciences Building, Area 39, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, Lo Kwee-Seong Biomedical Sciences Building, Area 39, The Chinese University of Hong Kong, Hong Kong SAR; Center for Neuromusculoskeletal Restorative Medicine, InnoHK, Hong Kong Science Park, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Lui Che Woo Clinical Science Building, Prince of Wales Hospital, Hong Kong SAR
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, Lo Kwee-Seong Biomedical Sciences Building, Area 39, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, Lo Kwee-Seong Biomedical Sciences Building, Area 39, The Chinese University of Hong Kong, Hong Kong SAR; Ministry of Education Key Laboratory for Regenerative Medicine, Lo Kwee-Seong Biomedical Sciences Building, Area 39, The Chinese University of Hong Kong, Hong Kong SAR; Center for Neuromusculoskeletal Restorative Medicine, InnoHK, Hong Kong Science Park, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Lui Che Woo Clinical Science Building, Prince of Wales Hospital, Hong Kong SAR.
| |
Collapse
|
16
|
Shi Q, Chen Y, Xu Y, Chen C, Lu H. Engineering a functional ACL reconstruction graft containing a triphasic enthesis-like structure in bone tunnel for the enhancement of graft-to-bone integration. J Orthop Translat 2024; 45:155-167. [PMID: 38559900 PMCID: PMC10979121 DOI: 10.1016/j.jot.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024] Open
Abstract
Background Anterior cruciate ligament (ACL) rupture is a common sports injury, which causes knee instability and abnormal joint kinematics. The current ACL graft was single-phasic, and not convenient for the formation of enthesis-like tissue in the bone tunnel, resulting in poor integration of graft-to-bone. Methods A band-shaped acellular tendon (BAT) was prepared as the core component of the ACL reconstruction graft at first, while sleeve-shaped acellular cartilage (SAC) or sleeve-shaped acellular bone (SAB) was fabricated using a vacuum aspiration system (VAS)-based decellularization protocol. The biocompatibility of the three acellular matrixes was evaluated. Furthermore, a collagen-binding peptide (CBP) derived from the A3 domain of von Willebrand factor was respectively fused into the N-terminal of GDF7, TGFβ3, or BMP2 to synthesize three recombinant growth factors capable of binding collagen (named C-GDF7, C-TGFβ3, or C-BMP2), which were respectively tethered to the BAT, SAC or SAB for improving their inducibilities in stem cell differentiation. An in-vitro experiment was performed to evaluate theirs osteogenic, chondrogenic, and tenogenic inducibilities. Then, C-TGFβ3-tethering SAC (C-TGFβ3@SAC) and C-BMP2-tethering SAB (C-BMP2@SAB) were sequentially surrounded at the bone tunnel part of C-GDF7-tethering BAT (C-GDF7@BAT), thus a sleeve-shaped acellular graft with a triphasic enthesis-like structure in bone tunnel part (named tissue-engineered graft, TE graft) was engineered. Lastly, a canine ACL reconstruction model was used to evaluate the in-vivo performance of this TE graft in enhancing graft-to-bone integration. Results The BAT, SAC, and SAB well preserved the structure and components of native tendon, cartilage, and bone, showing good biocompatibility. C-GDF7, C-TGFβ3, or C-BMP2 showed a stronger binding ability to BAT, SAC, and SAB. The C-GDF7@BAT, C-TGFβ3@SAC, or C-BMP2@SAB was a controlled delivery system for the scaffold-specific release of GDF7, TGFβ3, and BMP2, thus showing superior tenogenic, chondrogenic, or osteogenic inducibility, respectively. Using a canine ACL reconstruction model, abundant newly-formed bone and connective collagen fibers could be observed at the integration site between TE graft and bone tunnel at postoperative 16 weeks. Meanwhile, the failure load of the reconstructed ACL by TE graft was significantly higher than that of the autograft. Conclusion The TE graft could be used to reconstruct ruptured ACL and augment graft-to-bone integration, thus demonstrating high potential for clinical translation in ACL reconstruction. Translational potential of this article The findings of the study indicated that the TE graft could be a novel graft for ACL reconstruction with the ability to augment graft-to-bone integration, which may provide a foundation for future clinical application.
Collapse
Affiliation(s)
- Qiang Shi
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Can Chen
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
17
|
Shi G, Koichi N, Wan R, Wang Y, Reisdorf R, Wilson A, Huang TC, Amadio PC, Meves A, Zhao C, Moran SL. Pentamidine-loaded gelatin decreases adhesion formation of flexor tendon. J Orthop Translat 2024; 45:75-87. [PMID: 38511123 PMCID: PMC10950576 DOI: 10.1016/j.jot.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 03/22/2024] Open
Abstract
Background Prevention of adhesion formation following flexor tendon repair is essential for restoration of normal finger function. Although many medications have been studied in the experimental setting to prevent adhesions, clinical application is limited due to the complexity of application and delivery in clinical translation. Methods In this study, optimal dosages of gelatin and pentamidine were validated by gelatin concentration test. Following cell viability, cell migration, live and dead cell, and cell adhesion assay of the Turkey tenocytes, a model of Turkey tendon repair was established to evaluate the effectiveness of the Pentamidine-Gelatin sheet. Results Pentamidine carried with gelatin, a Food and drug administration (FDA) approved material for drug delivery, showed good dynamic release, biocompatibility, and degradation. The optimal dose of pentamidine (25ug) was determined in the in vivo study using tenocyte viability, migration, and cell adhesion assays. Further biochemical analyses demonstrated that this positive effect may be due to pentamidine downregulating the Wnt signaling pathway without affecting collagen expression. Conclusions We tested a FDA-approved antibiotic, pentamidine, for reducing adhesion formation after flexor tendon repair in both in vitro and in vivo using a novel turkey animal model. Compared with the non-pentamidine treatment group, pentamidine treated turkeys had significantly reduced adhesions and improved digit function after six weeks of tendon healing. The translational potential of this article This study for the first time showed that a common clinical drug, pentamidine, has a potential for clinical application to reduce tendon adhesions and improve tendon gliding function without interfering with tendon healing.
Collapse
Affiliation(s)
- Guidong Shi
- Department of Orthopaedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Nakagawa Koichi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Rou Wan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Yicun Wang
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Ramona Reisdorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Abigayle Wilson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Tony C.T. Huang
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Peter C. Amadio
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Steven L. Moran
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
18
|
Li M, Shi L, Chen X, Yi D, Ding Y, Chen J, Xing G, Chen S, Wang L, Zhang Y, Zhu Y, Wang Y. In-situ gelation of fibrin gel encapsulating platelet-rich plasma-derived exosomes promotes rotator cuff healing. Commun Biol 2024; 7:205. [PMID: 38374439 PMCID: PMC10876555 DOI: 10.1038/s42003-024-05882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Although platelet-rich plasma-derived exosomes (PRP-Exos) hold significant repair potential, their efficacy in treating rotator cuff tear (RCT) remains unknown. In light of the potential for clinical translation of fibrin gel and PRP-Exos, we evaluated their combined impact on RCT healing and explored suitable gel implantation techniques. In vitro experiments demonstrated that PRP-Exos effectively enhanced key phenotypes changes in tendon stem/progenitor cells. Multi-modality imaging, including conventional ultrasound, shear wave elastography ultrasound, and micro-computed tomography, and histopathological assessments were performed to collectively evaluate the regenerative effects on RCT. The regenerated tendons exhibited a well-ordered structure, while bone and cartilage regeneration were significantly improved. PRP-Exos participated in the healing process of RCT. In-situ gelation of fibrin gel-encapsulated PRP-Exos at the bone-tendon interface during surgery proved to be a feasible gel implantation method that benefits the healing outcome. Comprehensive multi-modality postoperative evaluations were necessary, providing a reliable foundation for post-injury repair.
Collapse
Affiliation(s)
- Molin Li
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Lin Shi
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xianghui Chen
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dan Yi
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yufei Ding
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jian Chen
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Guanghui Xing
- Department of Ultrasound, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Siming Chen
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Li Wang
- Medical School of Chinese PLA, Beijing, China
| | - Yongyi Zhang
- Medical School of Chinese PLA, Beijing, China
- No. 962 Hospital of the PLA Joint Logistic Support Force, Harbin, China
| | - Yaqiong Zhu
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Yuexiang Wang
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
19
|
Golebiowska AA, Intravaia JT, Sathe VM, Kumbar SG, Nukavarapu SP. Decellularized extracellular matrix biomaterials for regenerative therapies: Advances, challenges and clinical prospects. Bioact Mater 2024; 32:98-123. [PMID: 37927899 PMCID: PMC10622743 DOI: 10.1016/j.bioactmat.2023.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Tissue engineering and regenerative medicine have shown potential in the repair and regeneration of tissues and organs via the use of engineered biomaterials and scaffolds. However, current constructs face limitations in replicating the intricate native microenvironment and achieving optimal regenerative capacity and functional recovery. To address these challenges, the utilization of decellularized tissues and cell-derived extracellular matrix (ECM) has emerged as a promising approach. These biocompatible and bioactive biomaterials can be engineered into porous scaffolds and grafts that mimic the structural and compositional aspects of the native tissue or organ microenvironment, both in vitro and in vivo. Bioactive dECM materials provide a unique tissue-specific microenvironment that can regulate and guide cellular processes, thereby enhancing regenerative therapies. In this review, we explore the emerging frontiers of decellularized tissue-derived and cell-derived biomaterials and bio-inks in the field of tissue engineering and regenerative medicine. We discuss the need for further improvements in decellularization methods and techniques to retain structural, biological, and physicochemical characteristics of the dECM products in a way to mimic native tissues and organs. This article underscores the potential of dECM biomaterials to stimulate in situ tissue repair through chemotactic effects for the development of growth factor and cell-free tissue engineering strategies. The article also identifies the challenges and opportunities in developing sterilization and preservation methods applicable for decellularized biomaterials and grafts and their translation into clinical products.
Collapse
Affiliation(s)
| | - Jonathon T. Intravaia
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Vinayak M. Sathe
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Syam P. Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| |
Collapse
|
20
|
Li Y, Deng T, Aili D, Chen Y, Zhu W, Liu Q. Cell Sheet Technology: An Emerging Approach for Tendon and Ligament Tissue Engineering. Ann Biomed Eng 2024; 52:141-152. [PMID: 37731091 DOI: 10.1007/s10439-023-03370-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Tendon and ligament injuries account for a substantial proportion of disorders in the musculoskeletal system. While non-operative and operative treatment strategies have advanced, the restoration of native tendon and ligament structures after injury is still challenging due to its innate limited regenerative ability. Cell sheet technology is an innovative tool for tissue fabrication and cell transplantation in regenerative medicine. In this review, we first summarize different harvesting procedures and advantages of cell sheet technology, which preserves intact cell-to-cell connections and extracellular matrix. We then describe the recent progress of cell sheet technology from preclinical studies, focusing on the application of stem cell-derived sheets in treating tendon and ligament injuries, as well as highlighting its effects on mitigating inflammation and promoting tendon/graft-bone interface healing. Finally, we discuss several prerequisites for future clinical translation including the selection of appropriate cell source, optimization of preparation process, establishment of suitable animal model, and the fabrication of vascularized complex tissue. We believe this review could potentially provoke new ideas and drive the development of more functional biomimetic tissues using cell sheet technology to meet the needs of clinical patients.
Collapse
Affiliation(s)
- Yexin Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ting Deng
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Dilihumaer Aili
- Department of Orthopedic Surgery, Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Ürümqi, People's Republic of China
| | - Yang Chen
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Qian Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
21
|
Du C, Wu R, Yan W, Fang J, Dai W, Wang Y, Cheng J, Hu X, Ao Y, Liang X, Liu Z. Ultrasound-Controlled Delivery of Growth Factor-Loaded Cerasomes Combined with Polycaprolactone Scaffolds Seeded with Bone Marrow Mesenchymal Stem Cells for Biomimetic Tendon-to-Bone Interface Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:292-304. [PMID: 38133932 PMCID: PMC10789257 DOI: 10.1021/acsami.3c14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Rotator cuff tear (RCT) is a prevalent shoulder injury that poses challenges for achieving continuous and functional regeneration of the tendon-to-bone interface (TBI). In this study, we controlled the delivery of growth factors (GFs) from liposomal nanohybrid cerasomes by ultrasound and implanted three-dimensional printed polycaprolactone (PCL) scaffolds modified with polydopamine loaded with bone marrow mesenchymal stem cells (BMSCs) to repair tears of the infraspinatus tendon in a lapine model. Direct suturing (control, CTL) was used as a control. The PCL/BMSC/cerasome (PBC) devices are sutured with the enthesis of the infraspinatus tendon. The cerasomes and PCL scaffolds are highly stable with excellent biocompatibility. The roles of GFs BMP2, TGFβ1, and FGF2 in tissue-specific differentiation are validated. Compared with the CTL group, the PBC group had significantly greater proteoglycan deposition (P = 0.0218), collagen volume fraction (P = 0.0078), and proportions of collagen I (P = 0.0085) and collagen III (P = 0.0048). Biotin-labeled in situ hybridization revealed a high rate of survival for transplanted BMSCs. Collagen type co-staining at the TBI is consistent with multiple collagen regeneration. Our studies demonstrate the validity of biomimetic scaffolds of TBI with BMSC-seeded PCL scaffolds and GF-loaded cerasomes to enhance the treatment outcomes for RCTs.
Collapse
Affiliation(s)
- Cancan Du
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Ruiqi Wu
- Department
of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Wenqiang Yan
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Jingchao Fang
- Department
of Radiology, Peking University Third Hospital, Beijing 100191, China
| | - Wenli Dai
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Yiqun Wang
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Jin Cheng
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Xiaoqing Hu
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Yingfang Ao
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Xiaolong Liang
- Department
of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Zhenlong Liu
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| |
Collapse
|
22
|
Mandalia K, Mousad A, Welborn B, Bono O, Le Breton S, MacAskill M, Forlizzi J, Ives K, Ross G, Shah S. Scaffold- and graft-based biological augmentation of rotator cuff repair: an updated systematic review and meta-analysis of preclinical and clinical studies for 2010-2022. J Shoulder Elbow Surg 2023; 32:1784-1800. [PMID: 37178960 DOI: 10.1016/j.jse.2023.03.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/05/2023] [Accepted: 03/22/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Despite advancements in the surgical techniques of rotator cuff repair (RCR), there remains a high retear rate. Biological augmentation of repairs with overlaying grafts and scaffolds may enhance healing and strengthen the repair construct. This study aimed to investigate the efficacy and safety of scaffold-based (nonstructural) and overlay graft-based (structural) biological augmentation in RCR (excluding superior capsule reconstruction and bridging techniques) in both preclinical and clinical studies. METHODS This systematic review was performed in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, as well as guidelines outlined by The Cochrane Collaboration. A search of the PubMed, Embase, and Cochrane Library databases from 2010 until 2022 was conducted to identify studies reporting the clinical, functional, and/or patient-reported outcomes of ≥1 biological augmentation method in either animal models or humans. The methodologic quality of included primary studies was appraised using the Checklist to Evaluate a Report of a Non-pharmacological Trial (CLEAR-NPT) for randomized controlled trials and using the Methodological Index for Non-randomized Studies (MINORS) for nonrandomized studies. RESULTS A total of 62 studies (Level I-IV evidence) were included, comprising 47 studies reporting outcomes in animal models and 15 clinical studies. Of the 47 animal-model studies, 41 (87.2%) demonstrated biomechanical and histologic enhancement with improved RCR load to failure, stiffness, and strength. Of the 15 clinical studies, 10 (66.7%) illustrated improvement in postoperative clinical, functional, and patient-reported outcomes (eg, retear rate, radiographic thickness and footprint, and patient functional scores). No study reported a significant detriment to repair with augmentation, and all studies endorsed low complication rates. A meta-analysis of pooled retear rates demonstrated significantly lower odds of retear after treatment with biological augmentation of RCR compared with treatment with non-augmented RCR (odds ratio, 0.28; P < .00001), with low heterogeneity (I2 = 0.11). CONCLUSIONS Graft and scaffold augmentations have shown favorable results in both preclinical and clinical studies. Of the investigated clinical grafts and scaffolds, acellular human dermal allograft and bovine collagen demonstrate the most promising preliminary evidence in the graft and scaffold categories, respectively. With a low risk of bias, meta-analysis revealed that biological augmentation significantly lowered the odds of retear. Although further investigation is warranted, these findings suggest graft and scaffold biological augmentation of RCR to be safe.
Collapse
Affiliation(s)
- Krishna Mandalia
- Tufts University School of Medicine, Boston, MA, USA; New England Shoulder and Elbow Center, Boston, MA, USA.
| | - Albert Mousad
- Tufts University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | - Glen Ross
- New England Baptist Hospital, Boston, MA, USA
| | - Sarav Shah
- New England Baptist Hospital, Boston, MA, USA
| |
Collapse
|
23
|
Zhang X, Han K, Fang Z, Cho E, Huangfu X, Zhao J. Enhancement of Tendon-to-Bone Healing: Choose a Monophasic or Hierarchical Scaffold? Am J Sports Med 2023; 51:2688-2700. [PMID: 37470279 DOI: 10.1177/03635465231182976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
BACKGROUND To enhance the healing of tendon to bone, various biomimetically hierarchical scaffolds have been proposed. However, the fabrication of such scaffolds is complicated. Furthermore, the most significant result after a routine repair is loss of the transition zone between the tendon and bone, whose main components are similar to fibrocartilage. PURPOSE To compare tendon-to-bone healing results in a rabbit model using a monophasic graft (decellularized fibrocartilage graft; DFCG) and hierarchical graft (decellularized tendon-to-bone complex; DTBC) that contain the native hierarchical enthesis. STUDY DESIGN Controlled laboratory study. METHODS DFCG and DTBC were harvested from allogenic rabbits. A rabbit model of a chronic rotator cuff tear was established, and 3 groups were assessed: direct repair or repair with DFCG or DTBC fixed between the tendon and bone. Hierarchical evaluations of the repaired tendon-to-bone interface were performed with regard to the tendon zone, transition zone, and bone zone using histological staining and micro-computed tomography scanning. Biomechanical analysis was performed to evaluate the general healing strength. RESULTS The healing results in the tendon zone exhibited no significant difference among the 3 groups at any time point. In the transition zone, the grade in the direct repair group was significantly lower than that in the DFCG and DTBC groups at 4 weeks, and the grade in the DFCG group was significantly lower than that in the DTBC group at this time point. However, any significant difference between the DFCG group and DTBC group could no longer be detected at 8 and 16 weeks, which was inconsistent with the results of the biomechanical analysis. Micro-computed tomography analysis showed no significant difference among the 3 groups with regard to bone mineral density at 16 weeks. CONCLUSION A monophasic DFCG was able to achieve enhanced tendon-to-bone healing similar to that with hierarchical DTBC over the long term, with regard to both histological and biomechanical properties. CLINICAL RELEVANCE Fabrication of a monophasic scaffold instead of a hierarchical scaffold to promote regeneration and remodeling of a transition zone, which was mainly composed of fibrocartilaginous matrix between the tendon and bone, may be sufficient to enhance tendon-to-bone healing.
Collapse
Affiliation(s)
- Xuancheng Zhang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang Han
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoyi Fang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Eunshinae Cho
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqiao Huangfu
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhong Zhao
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Liu Q, Qi J, Zhu W, Thoreson AR, An KN, Steinmann SP, Zhao C. The Effect of Pulling Angle on Rotator Cuff Mechanical Properties in a Canine In Vitro Model. Bioengineering (Basel) 2023; 10:599. [PMID: 37237669 PMCID: PMC10215708 DOI: 10.3390/bioengineering10050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The objective of this study was to examine the effect of pulling angle on time-zero mechanical properties of intact infraspinatus tendon or infraspinatus tendon repaired with the modified Mason-Allen technique in a canine model in vitro. Thirty-six canine shoulder samples were used. Twenty intact samples were randomly allocated into functional pull (135°) and anatomic pull (70°) groups (n = 10 per group). The remaining sixteen infraspinatus tendons were transected from the insertion and repaired using the modified Mason-Allen technique before being randomly allocated into functional pull or anatomic pull groups (n = 8 per group). Load to failure testing was performed on all specimens. The ultimate failure load and ultimate stress of the functional pulled intact tendons were significantly lower compared with anatomic pulled tendons (1310.2 ± 167.6 N vs. 1687.4 ± 228.2 N, p = 0.0005: 55.6 ± 8.4 MPa vs. 67.1 ± 13.3 MPa, p = 0.0334). For the tendons repaired with the modified Mason-Allen technique, no significant differences were observed in ultimate failure load, ultimate stress or stiffness between functional pull and anatomic pull groups. The variance of pulling angle had a significant influence on the biomechanical properties of the rotator cuff tendon in a canine shoulder model in vitro. Load to failure of the intact infraspinatus tendon was lower at the functional pulling position compared to the anatomic pulling position. This result indicates that uneven load distribution across tendon fibers under functional pull may predispose the tendon to tear. However, this mechanical character is not presented after rotator cuff repair using the modified Mason-Allen technique.
Collapse
Affiliation(s)
- Qian Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jun Qi
- Department of Orthopedics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | | | - Kai-Nan An
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott P. Steinmann
- Department of Orthopedic Surgery, University of Tennessee Health Science Center College of Medicine, Chattanooga, TN 37450, USA
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
25
|
Hu D, Li X, Li J, Tong P, Li Z, Lin G, Sun Y, Wang J. The preclinical and clinical progress of cell sheet engineering in regenerative medicine. Stem Cell Res Ther 2023; 14:112. [PMID: 37106373 PMCID: PMC10136407 DOI: 10.1186/s13287-023-03340-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Cell therapy is an accessible method for curing damaged organs or tissues. Yet, this approach is limited by the delivery efficiency of cell suspension injection. Over recent years, biological scaffolds have emerged as carriers of delivering therapeutic cells to the target sites. Although they can be regarded as revolutionary research output and promote the development of tissue engineering, the defect of biological scaffolds in repairing cell-dense tissues is apparent. Cell sheet engineering (CSE) is a novel technique that supports enzyme-free cell detachment in the shape of a sheet-like structure. Compared with the traditional method of enzymatic digestion, products harvested by this technique retain extracellular matrix (ECM) secreted by cells as well as cell-matrix and intercellular junctions established during in vitro culture. Herein, we discussed the current status and recent progress of CSE in basic research and clinical application by reviewing relevant articles that have been published, hoping to provide a reference for the development of CSE in the field of stem cells and regenerative medicine.
Collapse
Affiliation(s)
- Danping Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- HANGZHOU CHEXMED TECHNOLOGY CO., LTD, Hangzhou, 310000, China
| | - Xinyu Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Jie Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Pei Tong
- Hospital of Hunan Guangxiu, Medical College of Hunan Normal University, Hunan Normal University, Changsha, 410008, China
| | - Zhe Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China
| | - Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China.
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China.
| | - Juan Wang
- Shanghai Biomass Pharmaceutical Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 200437, China.
| |
Collapse
|
26
|
Mesenchymal stem cells and macrophages and their interactions in tendon-bone healing. J Orthop Translat 2023; 39:63-73. [PMID: 37188000 PMCID: PMC10175706 DOI: 10.1016/j.jot.2022.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023] Open
Abstract
Tendon-bone insertion injuries (TBI), such as anterior cruciate ligament (ACL) and rotator cuff injuries, are common degenerative or traumatic pathologies with a negative impact on the patient's daily life, and they cause huge economic losses every year. The healing process after an injury is complex and is dependent on the surrounding environment. Macrophages accumulate during the entire process of tendon and bone healing and their phenotypes progressively transform as they regenerate. As the "sensor and switch of the immune system", mesenchymal stem cells (MSCs) respond to the inflammatory environment and exert immunomodulatory effects during the tendon-bone healing process. When exposed to appropriate stimuli, they can differentiate into different tissues, including chondrocytes, osteocytes, and epithelial cells, promoting reconstruction of the complex transitional structure of the enthesis. It is well known that MSCs and macrophages communicate with each other during tissue repair. In this review, we discuss the roles of macrophages and MSCs in TBI injury and healing. Reciprocal interactions between MSCs and macrophages and some biological processes utilizing their mutual relations in tendon-bone healing are also described. Additionally, we discuss the limitations in our understanding of tendon-bone healing and propose feasible ways to exploit MSC-macrophage interplay to develop an effective therapeutic strategy for TBI injuries. The Translational potential of this article This paper reviewed the important functions of macrophages and mesenchymal stem cells in tendon-bone healing and described the reciprocal interactions between them during the healing process. By managing macrophage phenotypes, mesenchymal stem cells and the interactions between them, some possible novel therapies for tendon-bone injury may be proposed to promote tendon-bone healing after restoration surgery.
Collapse
|
27
|
Zou J, Yang W, Cui W, Li C, Ma C, Ji X, Hong J, Qu Z, Chen J, Liu A, Wu H. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon-bone healing. J Nanobiotechnology 2023; 21:14. [PMID: 36642728 PMCID: PMC9841717 DOI: 10.1186/s12951-023-01778-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Tendon-bone insertion (TBI) injuries, such as anterior cruciate ligament injury and rotator cuff injury, are the most common soft tissue injuries. In most situations, surgical tendon/ligament reconstruction is necessary for treating such injuries. However, a significant number of cases failed because healing of the enthesis occurs through scar tissue formation rather than the regeneration of transitional tissue. In recent years, the therapeutic potential of mesenchymal stem cells (MSCs) has been well documented in animal and clinical studies, such as chronic paraplegia, non-ischemic heart failure, and osteoarthritis of the knee. MSCs are multipotent stem cells, which have self-renewability and the ability to differentiate into a wide variety of cells such as chondrocytes, osteoblasts, and adipocytes. Numerous studies have suggested that MSCs could promote angiogenesis and cell proliferation, reduce inflammation, and produce a large number of bioactive molecules involved in the repair. These effects are likely mediated by the paracrine mechanisms of MSCs, particularly through the release of exosomes. Exosomes, nano-sized extracellular vesicles (EVs) with a lipid bilayer and a membrane structure, are naturally released by various cell types. They play an essential role in intercellular communication by transferring bioactive lipids, proteins, and nucleic acids, such as mRNAs and miRNAs, between cells to influence the physiological and pathological processes of recipient cells. Exosomes have been shown to facilitate tissue repair and regeneration. Herein, we discuss the prospective applications of MSC-derived exosomes in TBI injuries. We also review the roles of MSC-EVs and the underlying mechanisms of their effects on promoting tendon-bone healing. At last, we discuss the present challenges and future research directions.
Collapse
Affiliation(s)
- Jiaxuan Zou
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Weinan Yang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Wushi Cui
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Congsun Li
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Chiyuan Ma
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Xiaoxiao Ji
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Jianqiao Hong
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Zihao Qu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Jing Chen
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China.
| | - An Liu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China.
| | - Haobo Wu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China.
| |
Collapse
|
28
|
Chae S, Yong U, Park W, Choi YM, Jeon IH, Kang H, Jang J, Choi HS, Cho DW. 3D cell-printing of gradient multi-tissue interfaces for rotator cuff regeneration. Bioact Mater 2023; 19:611-625. [PMID: 35600967 PMCID: PMC9109128 DOI: 10.1016/j.bioactmat.2022.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
Owing to the prevalence of rotator cuff (RC) injuries and suboptimal healing outcome, rapid and functional regeneration of the tendon–bone interface (TBI) after RC repair continues to be a major clinical challenge. Given the essential role of the RC in shoulder movement, the engineering of biomimetic multi-tissue constructs presents an opportunity for complex TBI reconstruction after RC repair. Here, we propose a gradient cell-laden multi-tissue construct combined with compositional gradient TBI-specific bioinks via 3D cell-printing technology. In vitro studies demonstrated the capability of a gradient scaffold system in zone-specific inducibility and multi-tissue formation mimicking TBI. The regenerative performance of the gradient scaffold on RC regeneration was determined using a rat RC repair model. In particular, we adopted nondestructive, consecutive, and tissue-targeted near-infrared fluorescence imaging to visualize the direct anatomical change and the intricate RC regeneration progression in real time in vivo. Furthermore, the 3D cell-printed implant promotes effective restoration of shoulder locomotion function and accelerates TBI healing in vivo. In summary, this study identifies the therapeutic contribution of cell-printed constructs towards functional RC regeneration, demonstrating the translational potential of biomimetic gradient constructs for the clinical repair of multi-tissue interfaces. A biomimetic cellular TBI scaffold was 3D bioprinted with dECM bioinks. A gradient multi-tissue construct was implanted for RC repair in vivo. Targeted NIR fluorescence imaging facilitated real-time monitoring of TBI regeneration. The scaffolds had therapeutic contribution on gradient TBI regeneration and functional recovery.
Collapse
Affiliation(s)
- Suhun Chae
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang, 37673, South Korea
- EDmicBio Inc., 111 Hoegi-ro, Dongdaemun-gu, Seoul 02445, South Korea
| | - Uijung Yong
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang, 37673, South Korea
| | - Wonbin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang, 37673, South Korea
| | - Yoo-mi Choi
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang, 37673, South Korea
| | - In-Ho Jeon
- Department of Orthopaedic Surgery, Asan Medical Center, College of Medicine, University of Ulsan, 86 Asanbyeongwon-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, 149 13th Street, Boston, MA, 02114, USA
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang, 37673, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang, 37673, South Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, 149 13th Street, Boston, MA, 02114, USA
- Corresponding author.
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Corresponding author. Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, 37673, Kyungbuk, South Korea.
| |
Collapse
|
29
|
Gwon Y, Kim W, Park S, Kim Y, Kim H, Kim M, Kim J. Tissue-engineered tendon nano-constructs for repair of chronic rotator cuff tears in large animal models. Bioeng Transl Med 2023; 8:e10376. [PMID: 36684112 PMCID: PMC9842040 DOI: 10.1002/btm2.10376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 01/25/2023] Open
Abstract
Chronic rotator cuff tears (RCTs) are one of the most common injuries of shoulder pain. Despite the recent advances in surgical techniques and improved clinical outcomes of arthroscopically repaired rotator cuffs (RCs), complete functional recovery-without retear-of the RC tendon through tendon-to-bone interface (TBI) regeneration remains a key clinical goal to be achieved. Inspired by the highly organized nanostructured extracellular matrix in RC tendon tissue, we propose herein a tissue-engineered tendon nano-construct (TNC) for RC tendon regeneration. When compared with two currently used strategies (i.e., transosseous sutures and stem cell injections), our nano-construct facilitated more significant healing of all parts of the TBI (i.e., tendon, fibrocartilages, and bone) in both rabbit and pig RCT models owing to its enhancements in cell proliferation and differentiation, protein expression, and growth factor secretion. Overall, our findings demonstrate the high potential of this transplantable tendon nano-construct for clinical repair of chronic RCTs.
Collapse
Affiliation(s)
- Yonghyun Gwon
- Department of Convergence Biosystems EngineeringChonnam National UniversityGwangjuRepublic of Korea
- Department of Rural and Biosystems EngineeringChonnam National UniversityGwangjuRepublic of Korea
- Interdisciplinary Program in IT‐Bio Convergence SystemChonnam National UniversityGwangjuRepublic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems EngineeringChonnam National UniversityGwangjuRepublic of Korea
- Department of Rural and Biosystems EngineeringChonnam National UniversityGwangjuRepublic of Korea
- Interdisciplinary Program in IT‐Bio Convergence SystemChonnam National UniversityGwangjuRepublic of Korea
| | - Sunho Park
- Department of Convergence Biosystems EngineeringChonnam National UniversityGwangjuRepublic of Korea
- Department of Rural and Biosystems EngineeringChonnam National UniversityGwangjuRepublic of Korea
- Interdisciplinary Program in IT‐Bio Convergence SystemChonnam National UniversityGwangjuRepublic of Korea
| | - Yang‐Kyung Kim
- Department of Physical and Rehabilitation MedicineChonnam National University Medical School & HospitalGwangjuRepublic of Korea
| | - Hyoseong Kim
- Department of Convergence Biosystems EngineeringChonnam National UniversityGwangjuRepublic of Korea
- Department of Rural and Biosystems EngineeringChonnam National UniversityGwangjuRepublic of Korea
- Interdisciplinary Program in IT‐Bio Convergence SystemChonnam National UniversityGwangjuRepublic of Korea
| | - Myung‐Sun Kim
- Department of Orthopaedic Surgery, Chonnam National University Medical School & HospitalGwangjuRepublic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems EngineeringChonnam National UniversityGwangjuRepublic of Korea
- Department of Rural and Biosystems EngineeringChonnam National UniversityGwangjuRepublic of Korea
- Interdisciplinary Program in IT‐Bio Convergence SystemChonnam National UniversityGwangjuRepublic of Korea
- Institute of Nano‐Stem Cells Therapeutics, NANOBIOSYSTEM Co., LtdGwangjuRepublic of Korea
| |
Collapse
|
30
|
Kim W, Gwon Y, Park S, Kim H, Kim J. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioact Mater 2023; 19:50-74. [PMID: 35441116 PMCID: PMC8987319 DOI: 10.1016/j.bioactmat.2022.03.039] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional (3D) stem cell culture systems have attracted considerable attention as a way to better mimic the complex interactions between individual cells and the extracellular matrix (ECM) that occur in vivo. Moreover, 3D cell culture systems have unique properties that help guide specific functions, growth, and processes of stem cells (e.g., embryogenesis, morphogenesis, and organogenesis). Thus, 3D stem cell culture systems that mimic in vivo environments enable basic research about various tissues and organs. In this review, we focus on the advanced therapeutic applications of stem cell-based 3D culture systems generated using different engineering techniques. Specifically, we summarize the historical advancements of 3D cell culture systems and discuss the therapeutic applications of stem cell-based spheroids and organoids, including engineering techniques for tissue repair and regeneration.
Collapse
Affiliation(s)
- Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyoseong Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
31
|
Bai L, Han Q, Meng Z, Chen B, Qu X, Xu M, Su Y, Qiu Z, Xue Y, He J, Zhang J, Yin Z. Bioprinted living tissue constructs with layer-specific, growth factor-loaded microspheres for improved enthesis healing of a rotator cuff. Acta Biomater 2022; 154:275-289. [PMID: 36328126 DOI: 10.1016/j.actbio.2022.10.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Substantial challenges remain in constructing the native tendon-to-bone interface for rotator cuff healing owing to the enthesis tissues' highly organized structural and compositional gradients. Herein, we propose to bioprint living tissue constructs with layer-specific growth factors (GFs) to promote enthesis regeneration by guiding the zonal differentiation of the loaded stem cells in situ. The sustained release of tenogenic, chondrogenic, and osteogenic GFs was achieved via microsphere-based delivery carriers embedded in the bioprinted constructs. Compared to the basal construct without GFs, the layer-specific tissue analogs realized region-specific differentiation of stem cells in vitro. More importantly, bioprinted living tissue constructs with layer-specific GFs rapidly enhanced the enthesis regeneration in a rabbit rotator cuff tear model in terms of biomechanical restoration, collagen deposition, and alignment, showing gradient interface of fibrocartilage structures with aligned collagen fibrils and an ultimate load failure of 154.3 ± 9.5 N resembling those of native enthesis tissues in 12 weeks. This exploration provides a feasible strategy to engineer living tissue constructions with region-specific differentiation potentials for the functional repair of gradient enthesis tissues. STATEMENT OF SIGNIFICANCE: Previous studies that employed acellular layer-specific scaffolds or stem cells for the reconstruction of the rotator cuff faced challenges due to their insufficient capability to rebuild the anisotropic compositional and structural gradients of native enthesis tissues. This manuscript proposed a living tissue construct with layer-specific, GFs-loaded µS, which can direct in situ and region-specific differentiation of the embedded stem cells to tenogenic, chondrogenic, and osteogenic lineages for functional regeneration of the enthesis tissues. This bioprinted living tissue construct with the unique capability to reduce fibrovascular scar tissue formation and simultaneously facilitate enthesis tissue remodeling might provide a promising strategy to repair complex and gradient tissues in the future.
Collapse
Affiliation(s)
- Lang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qian Han
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zijie Meng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baojun Chen
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, 450003, China
| | - Xiaoli Qu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meiguang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yanwen Su
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhennan Qiu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuan Xue
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
32
|
Zhang G, Zhou X, Hu S, Jin Y, Qiu Z. Large animal models for the study of tendinopathy. Front Cell Dev Biol 2022; 10:1031638. [PMID: 36393858 PMCID: PMC9640604 DOI: 10.3389/fcell.2022.1031638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Tendinopathy has a high incidence in athletes and the aging population. It can cause pain and movement disorders, and is one of the most difficult problems in orthopedics. Animal models of tendinopathy provide potentially efficient and effective means to develop understanding of human tendinopathy and its underlying pathological mechanisms and treatments. The selection of preclinical models is essential to ensure the successful translation of effective and innovative treatments into clinical practice. Large animals can be used in both micro- and macro-level research owing to their similarity to humans in size, structure, and function. This article reviews the application of large animal models in tendinopathy regarding injuries to four tendons: rotator cuff, patellar ligament, Achilles tendon, and flexor tendon. The advantages and disadvantages of studying tendinopathy with large animal models are summarized. It is hoped that, with further development of animal models of tendinopathy, new strategies for the prevention and treatment of tendinopathy in humans will be developed.
Collapse
Affiliation(s)
- Guorong Zhang
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xuyan Zhou
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Hu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Ye Jin, ; Zhidong Qiu,
| | - Zhidong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Ye Jin, ; Zhidong Qiu,
| |
Collapse
|
33
|
Chen C, Shi Q, Li M, Chen Y, Zhang T, Xu Y, Liao Y, Ding S, Wang Z, Li X, Zhao C, Sun L, Hu J, Lu H. Engineering an enthesis-like graft for rotator cuff repair: An approach to fabricate highly biomimetic scaffold capable of zone-specifically releasing stem cell differentiation inducers. Bioact Mater 2022; 16:451-471. [PMID: 35386315 PMCID: PMC8965727 DOI: 10.1016/j.bioactmat.2021.12.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/29/2021] [Accepted: 12/19/2021] [Indexed: 02/09/2023] Open
Abstract
Rotator cuff (RC) attaches to humerus across a triphasic yet continuous tissue zones (bone-fibrocartilage-tendon), termed "enthesis". Regrettably, rapid and functional enthesis regeneration is challenging after RC tear. The existing grafts bioengineered for RC repair are insufficient, as they were engineered by a scaffold that did not mimic normal enthesis in morphology, composition, and tensile property, meanwhile cannot simultaneously stimulate the formation of bone-fibrocartilage-tendon tissues. Herein, an optimized decellularization approach based on a vacuum aspiration device (VAD) was developed to fabricate a book-shaped decellularized enthesis matrix (O-BDEM). Then, three recombinant growth factors (CBP-GFs) capable of binding collagen were synthesized by fusing a collagen-binding peptide (CBP) into the N-terminal of BMP-2, TGF-β3, or GDF-7, and zone-specifically tethered to the collagen of O-BDEM to fabricate a novel scaffold (CBP-GFs/O-BDEM) satisfying the above-mentioned requirements. After ensuring the low immunogenicity of CBP-GFs/O-BDEM by a novel single-cell mass cytometry in a mouse model, we interleaved urine-derived stem cell-sheets into this CBP-GFs/O-BDEM to bioengineer an enthesis-like graft. Its high-performance on regenerating enthesis was determined in a canine model. These findings indicate this CBP-GFs/O-BDEM may be an excellent scaffold for constructing enthesis-like graft to patch large/massive RC tears, and provide breakthroughs in fabricating graded interfacial tissue.
Collapse
Affiliation(s)
- Can Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Qiang Shi
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Muzhi Li
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yang Chen
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Tao Zhang
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yan Xu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yunjie Liao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Shulin Ding
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhanwen Wang
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xing Li
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chunfeng Zhao
- Division of Orthopedic Research and Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, 55905, United States
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Corresponding author. Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, Hunan, China.
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Corresponding author. Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
34
|
Yoon JP, Kim DH, Min SG, Kim HM, Choi JH, Lee HJ, Park KH, Kim SS, Chung SW, Yoon SH. Effects of a graphene oxide-alginate sheet scaffold on rotator cuff tendon healing in a rat model. J Orthop Surg (Hong Kong) 2022; 30:10225536221125950. [PMID: 36121787 DOI: 10.1177/10225536221125950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Natural polymer scaffolds used to promote rotator cuff healing have limitations in terms of their mechanical and biochemical properties. This animal study aimed to investigate the effects of combined graphene oxide (GO) and alginate scaffold and the toxicity of GO on rotator cuff healing in a rat model. METHODS First, the mechanical properties of a GO/alginate scaffold and a pure alginate scaffold were compared. The in vitro cytotoxicity of and proliferation of human tenocytes with the GO/alginate scaffold were evaluated by CCK-8 assay. For the in vivo experiment, 20 male rats were randomly divided into two groups (n = 10 each), and supraspinatus repair was performed: group 1 underwent supraspinatus repair alone, and group 2 underwent supraspinatus repair with the GO/alginate scaffold. Biomechanical and histological analyses were performed to evaluate the quality of tendon-to-bone healing 8 weeks after rotator cuff repair. RESULTS The GO/alginate scaffold exhibited an increased maximum load (p = .001) and tensile strength (p = .001). In the cytotoxicity test, the cell survival rate with the GO/alginate scaffold was 102.08%. The proliferation rate of human tenocytes was no significant difference between the GO/alginate and alginate groups for 1, 3, 5, and 7 days. Biomechanically, group 2 exhibited a significantly greater ultimate failure load (p < .001), ultimate stress (p < .001), and stiffness (p < .001) than group 1. The histological analysis revealed that the tendon-to-bone interface in group 2 showed more collagen fibers bridging, tendon-to-bone integration, longitudinally oriented collagen fibers, and fibrocartilage formation than in group 1. CONCLUSION A small amount of GO added to alginate improved the mechanical properties of the scaffold without evidence of cytotoxicity. At 8 weeks after rotator cuff repair, the GO/alginate scaffold improved tendon-to-bone healing without causing any signs of toxicity in a rat model.
Collapse
Affiliation(s)
- Jong Pil Yoon
- Department of Orthopaedic Surgery, School of Medicine, 34986Kyungpook National University, Daegu, Korea
| | - Dong Hyun Kim
- Department of Orthopaedic Surgery, School of Medicine, 34986Kyungpook National University, Daegu, Korea
| | - Seung Gi Min
- Department of Orthopaedic Surgery, School of Medicine, 34986Kyungpook National University, Daegu, Korea
| | - Hun-Min Kim
- 65672Korea Dyeing & Finishing Technology Institute, Daegu, Korea
| | - Jin-Hyun Choi
- Department of Bio-Fibers and Materials Science, 34986Kyungpook National University, Daegu, Korea
| | - Hyun Joo Lee
- Department of Orthopaedic Surgery, School of Medicine, 34986Kyungpook National University, Daegu, Korea
| | - Kyeong Hyeon Park
- Department of Orthopaedic Surgery, School of Medicine, 34986Kyungpook National University, Daegu, Korea
| | - Seong Soo Kim
- Department of Orthopaedic Surgery, School of Medicine, 34986Kyungpook National University, Daegu, Korea
| | - Seok Won Chung
- Department of Orthopaedic Surgery, School of Medicine, 34986Konkuk University, Seoul, Korea
| | - Sung Hyuk Yoon
- Department of Orthopaedic Surgery, School of Medicine, 34986Kyungpook National University, Daegu, Korea
| |
Collapse
|
35
|
Long Z, Nakagawa K, Wang Z, Amadio PC, Zhao C, Gingery A. Age-related cellular and microstructural changes in the rotator cuff enthesis. J Orthop Res 2022; 40:1883-1895. [PMID: 34783060 PMCID: PMC9107523 DOI: 10.1002/jor.25211] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/21/2021] [Accepted: 10/30/2021] [Indexed: 02/04/2023]
Abstract
Rotator cuff injuries increase with age. The enthesis is the most frequent site of rotator cuff injury and degeneration. Understanding age-related changes of the enthesis are essential to determine the mechanism of rotator cuff injuries, degeneration, and to guide mechanistically driven therapies. In this study, we explored age-related cellular changes of the rotator cuff enthesis in young, mature, and aged rats. Here we found that the aged enthesis is typified by an increased mineralized zone and decreased nonmineralized zone. Proliferation, migration, and colony-forming potential of rotator cuff derived cells (RCECs) was attenuated with aging. The tenogenic and chondrogenic potential were significantly reduced, while the osteogenic potential increased in aged RCECs. The adipogenic potential increased in RCECs with age. This study explores the cellular differences found between young, mature, and aged rotator cuff enthesis cells and highlights the importance of using age-appropriate models, as well as provides a basis for further delineation of mechanisms and potential therapeutics for rotator cuff injuries.
Collapse
Affiliation(s)
- Zeling Long
- Tendon and Soft Tissue Biomechanics Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN,Department of Orthopedics, The Second People’s Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Koichi Nakagawa
- Tendon and Soft Tissue Biomechanics Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Zhanwen Wang
- Tendon and Soft Tissue Biomechanics Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN,Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Peter C. Amadio
- Tendon and Soft Tissue Biomechanics Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Chunfeng Zhao
- Tendon and Soft Tissue Biomechanics Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Anne Gingery
- Tendon and Soft Tissue Biomechanics Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN,Department of Orthopaedic Surgery, Indiana University Medical School, Indianapolis, IN
| |
Collapse
|
36
|
Abstract
Purpose of Review Pain presents a unique challenge due to the complexity of the biological pathways involved in the pain perception, the growing concern regarding the use of opioid analgesics, and the limited availability of optimal treatment options. The use of biomaterials and regenerative medicine in pain management is being actively explored and showing exciting progress in improving the efficacy of conventional pharmacotherapy and as novel non-pharmacological therapy for chronic pain caused by degenerative diseases. In this paper we review current clinical applications, and promising research in the use of biomaterials and regenerative medicine in pain management. Recent Findings Regenerative therapies have been developed to repair damaged tissues in back, joint, and shoulder that lead to chronic and inflammatory pain. Novel regenerative biomaterials have been designed to incorporate biochemical and physical pro-regenerative cues that augment the efficacy of regenerative therapies. New biomaterials improve target localization with improved tunability for controlled drug delivery, and injectable scaffolds enhance the efficacy of regenerative therapies through improving cellular migration. Advanced biomaterial carrier systems have been developed for sustained and targeted delivery of analgesic agents to specific tissues and organs, showing improved treatment efficacy, extended duration of action, and reduced dosage. Targeting endosomal receptors by nanoparticles has shown promising anti-nociception effects. Biomaterial scavengers are designed to remove proinflammatory reactive oxygen species that trigger nociceptors and cause pain hypersensitivity, providing a proactive approach for pain management. Summary Pharmacotherapy remains the method of choice for pain management; however, conventional analgesic agents are associated with adverse effects. The relatively short duration of action when applied as free drug limited their efficacy in postoperative and chronic pain treatment. The application of biomaterials in pain management is a promising strategy to improve the efficacy of current pharmacotherapy through sustained and targeted delivery of analgesic agents. Regenerative medicine strategies target the damaged tissue and provide non-pharmacological alternatives to manage chronic and inflammatory pain. In the future, the successful development of regenerative therapies that completely repair damaged tissues will provide a more optimal alternative for the treatment of chronic pain caused. Future studies will leverage on the increasing understanding of the molecular mechanisms governing pain perception and transmission, injury response and tissue regeneration, and the development of new biomaterials and tissue regenerative methods.
Collapse
|
37
|
Xu Z, Fang Y, Chen Y, Zhao Y, Wei W, Teng C. Hydrogel Development for Rotator Cuff Repair. Front Bioeng Biotechnol 2022; 10:851660. [PMID: 35782490 PMCID: PMC9240348 DOI: 10.3389/fbioe.2022.851660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Rotator cuff tears (RCTs) are common in shoulder disease and disability. Despite significant advances in surgical repair techniques, 20–70% of patients still have postoperative rotator cuff dysfunction. These functional defects may be related to retear or rotator cuff quality deterioration due to tendon retraction and scar tissue at the repair site. As an effective delivery system, hydrogel scaffolds may improve the healing of RCTs and be a useful treatment for irreparable rotator cuff injuries. Although many studies have tested this hypothesis, most are limited to laboratory animal experiments. This review summarizes differences in hydrogel scaffold construction, active ingredients, and application methods in recent research. Efforts to determine the indications of hydrogel scaffolds (with different constructions and cargos) for various types of RCTs, as well as the effectiveness and reliability of application methods and devices, are also discussed.
Collapse
Affiliation(s)
- Zhengyu Xu
- Department of Orthopaedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yifei Fang
- Department of Orthopaedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yao Chen
- Department of Orthopaedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yushuang Zhao
- Department of Orthopaedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Wei Wei
- Department of Orthopaedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Wei Wei, ; Chong Teng,
| | - Chong Teng
- Department of Orthopaedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- *Correspondence: Wei Wei, ; Chong Teng,
| |
Collapse
|
38
|
Zuo R, Liu J, Zhang Y, Zhang H, Li J, Wu J, Ji Y, Mao S, Li C, Zhou Y, Wu Y, Cai D, Sun Y, Zhang C. In situ regeneration of bone-to-tendon structures: Comparisons between costal-cartilage derived stem cells and BMSCs in the rat model. Acta Biomater 2022; 145:62-76. [PMID: 35381396 DOI: 10.1016/j.actbio.2022.03.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/01/2022]
Abstract
Bone-tendon interface (BTI), also called enthesis, is composed of the bone, fibrocartilage, and tendon/ligament with gradual structural characteristics. The unique gradient structure is particularly important for mechanical stress transfer between bone and soft tissues. However, BTI injuries result in fibrous scar repairs and high incidences of re-rupture, which is attributed to the lack of local stem cells with tenogenic and osteogenic potentials. In the rat model, we identified unique stem cells from costal cartilage (CDSCs) with a high in situ regeneration potential of BTI structures. Compared to bone-marrow mesenchymal stem cells (BMSCs), CDSCs exhibit higher self-renewal capacities, better adaptability to low-oxygen and low-nutrient post-transplantation environments, as well as strong bi-potent differentiation abilities of osteogenesis and tenogenesis. After transplantation, CDSCs can survive, proliferate, and in situ gradually regenerate BTI structures. Therefore, CDSCs have a great potential for tissue engineering regeneration in BTI injuries, and have future clinical application prospects. STATEMENT OF SIGNIFICANCE: Tissue engineering is a promising technique for bone-to-tendon interface (BTI) regeneration after injury, but it is still a long way from clinical application. One of the major reasons is the lack of suitable seed cells. This study found an ideal source of seed cells derived from costal cartilages (CDSCs). Compared to the traditional seed cell BMSCs, CDSCs have higher proliferation ability, strong chondrogenic and tenogenic differentiation potential, and better adaptability to low-oxygen and low nutrient conditions. CDSCs were able to survive, proliferate, and regenerate BTI structures in situ, in contrast to BMSCs. CDSCs transplantation showed strong BTI structures regeneration potential both histologically and biomechanically, making it a suitable seed cell for the tissue engineering regeneration of BTI.
Collapse
|
39
|
Wang HN, Rong X, Yang LM, Hua WZ, Ni GX. Advances in Stem Cell Therapies for Rotator Cuff Injuries. Front Bioeng Biotechnol 2022; 10:866195. [PMID: 35694228 PMCID: PMC9174670 DOI: 10.3389/fbioe.2022.866195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Rotator cuff injury is a common upper extremity musculoskeletal disease that may lead to persistent pain and functional impairment. Despite the clinical outcomes of the surgical procedures being satisfactory, the repair of the rotator cuff remains problematic, such as through failure of healing, adhesion formation, and fatty infiltration. Stem cells have high proliferation, strong paracrine action, and multiple differentiation potential, which promote tendon remodeling and fibrocartilage formation and increase biomechanical strength. Additionally, stem cell-derived extracellular vesicles (EVs) can increase collagen synthesis and inhibit inflammation and adhesion formation by carrying regulatory proteins and microRNAs. Therefore, stem cell-based therapy is a promising therapeutic strategy that has great potential for rotator cuff healing. In this review, we summarize the advances of stem cells and stem cell-derived EVs in rotator cuff repair and highlight the underlying mechanism of stem cells and stem cell-derived EVs and biomaterial delivery systems. Future studies need to explore stem cell therapy in combination with cellular factors, gene therapy, and novel biomaterial delivery systems.
Collapse
Affiliation(s)
- Hao-Nan Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xiao Rong
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Lu-Ming Yang
- Musculoskeletal Sonography and Occupational Performance Lab, Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Wei-Zhong Hua
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Guo-Xin Ni
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
40
|
Wang L, Jiang J, Lin H, Zhu T, Cai J, Su W, Chen J, Xu J, Li Y, Wang J, Zhang K, Zhao J. Advances in Regenerative Sports Medicine Research. Front Bioeng Biotechnol 2022; 10:908751. [PMID: 35646865 PMCID: PMC9136559 DOI: 10.3389/fbioe.2022.908751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/21/2022] [Indexed: 01/08/2023] Open
Abstract
Regenerative sports medicine aims to address sports and aging-related conditions in the locomotor system using techniques that induce tissue regeneration. It also involves the treatment of meniscus and ligament injuries in the knee, Achilles’ tendon ruptures, rotator cuff tears, and cartilage and bone defects in various joints, as well as the regeneration of tendon–bone and cartilage–bone interfaces. There has been considerable progress in this field in recent years, resulting in promising steps toward the development of improved treatments as well as the identification of conundrums that require further targeted research. In this review the regeneration techniques currently considered optimal for each area of regenerative sports medicine have been reviewed and the time required for feasible clinical translation has been assessed. This review also provides insights into the direction of future efforts to minimize the gap between basic research and clinical applications.
Collapse
Affiliation(s)
- Liren Wang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’ Hospital, Shanghai, China
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Tonghe Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-Coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
| | - Jiangyu Cai
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Wei Su
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jiebo Chen
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Junjie Xu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yamin Li
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jing Wang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- *Correspondence: Kai Zhang, ; Jinzhong Zhao,
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’ Hospital, Shanghai, China
- *Correspondence: Kai Zhang, ; Jinzhong Zhao,
| |
Collapse
|
41
|
Wang L, Zhu T, Kang Y, Zhang J, Du J, Gao H, Chen S, Jiang J, Zhao J. Crimped nanofiber scaffold mimicking tendon-to-bone interface for fatty-infiltrated massive rotator cuff repair. Bioact Mater 2022; 16:149-161. [PMID: 35386329 PMCID: PMC8958472 DOI: 10.1016/j.bioactmat.2022.01.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Electrospun fibers, with proven ability to promote tissue regeneration, are widely being explored for rotator cuff repairing. However, without post treatment, the microstructure of the electrospun scaffold is vastly different from that of natural extracellular matrix (ECM). Moreover, during mechanical loading, the nanofibers slip that hampers the proliferation and differentiation of migrating stem cells. Here, electrospun nanofiber scaffolds, with crimped nanofibers and welded joints to biomimic the intricate natural microstructure of tendon-to-bone insertion, were prepared using poly(ester-urethane)urea and gelatin via electrospinning and double crosslinking by a multi-bonding network densification strategy. The crimped nanofiber scaffold (CNS) features bionic tensile stress and induces chondrogenic differentiation, laying credible basis for in vivo experimentation. After repairing a rabbit massive rotator cuff tear using a CNS for 3 months, the continuous translational tendon-to-bone interface was fully regenerated, and fatty infiltration was simultaneously inhibited. Instead of micro-CT, μCT was employed to visualize the integrity and intricateness of the three-dimensional microstructure of the CNS-induced-healed tendon-to-bone interface at an ultra-high resolution of less than 1 μm. This study sheds light on the correlation between nanofiber post treatment and massive rotator cuff repair and provides a general strategy for crimped nanofiber preparation and tendon-to-bone interface imaging characterization. Electrospun scaffold mimicking the microstructure of ECM was fabricated. The translational microstructure of tendon-to-bone interface was regenerated. Tendon-to-bone interface was 3D visualized with resolution less than 1 μm. Muscle fatty infiltration was inhibited for massive rotator cuff tear.
Collapse
Affiliation(s)
- Liren Wang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.,Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Tonghe Zhu
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Yuhao Kang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.,Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Jianguang Zhang
- Department of Medgen Group Research Laboratory, 18 Qinglan 3 Rd, Shenzhen, 518118, China
| | - Juan Du
- Biofunctional Materials Research Group, College of Chemistry and Chemical Engineering, Multidisciplinary Center for Advanced Materials, Institute of Advanced Studies, Shanghai University of Engineering Science, No. 333 Longteng Rd, Shanghai, 201620, China
| | - Haihan Gao
- Biofunctional Materials Research Group, College of Chemistry and Chemical Engineering, Multidisciplinary Center for Advanced Materials, Institute of Advanced Studies, Shanghai University of Engineering Science, No. 333 Longteng Rd, Shanghai, 201620, China.,Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Sihao Chen
- Biofunctional Materials Research Group, College of Chemistry and Chemical Engineering, Multidisciplinary Center for Advanced Materials, Institute of Advanced Studies, Shanghai University of Engineering Science, No. 333 Longteng Rd, Shanghai, 201620, China
| | - Jia Jiang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.,Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.,Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
42
|
Yang J, Kang Y, Zhao W, Jiang J, Jiang Y, Zhao B, Jiao M, Yuan B, Zhao J, Ma B. Evaluation of patches for rotator cuff repair: A systematic review and meta-analysis based on animal studies. Bioact Mater 2022; 10:474-491. [PMID: 34901561 PMCID: PMC8633530 DOI: 10.1016/j.bioactmat.2021.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Based on the published animal studies, we systematically evaluated the outcomes of various materials for rotator cuff repair in animal models and the potentials of their clinical translation. 74 animal studies were finally included, of which naturally derived biomaterials were applied the most widely (50.0%), rats were the most commonly used animal model (47.0%), and autologous tissue demonstrated the best outcomes in all animal models. The biomechanical properties of naturally derived biomaterials (maximum failure load: WMD 18.68 [95%CI 7.71-29.66]; P = 0.001, and stiffness: WMD 1.30 [95%CI 0.01-2.60]; P = 0.048) was statistically significant in the rabbit model. The rabbit model showed better outcomes even though the injury was severer compared with the rat model.
Collapse
Affiliation(s)
- Jinwei Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Reproductive Medicine Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, 730050, China
| | - Yuhao Kang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wanlu Zhao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yanbiao Jiang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bing Zhao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingyue Jiao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bo Yuan
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Bin Ma
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, 730000, China
| |
Collapse
|
43
|
Liu Q, Tang Q, Liao L, Li D, Zhu W, Zhao C. Translational therapy from preclinical animal models for muscle degeneration after rotator cuff injury. J Orthop Translat 2022; 35:13-22. [PMID: 35846726 PMCID: PMC9260436 DOI: 10.1016/j.jot.2022.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic rotator cuff tears are debilitating diseases which significantly affect patients’ quality of life and pose substantial financial burden to the society. The intraoperative reparability of injured tendon and postoperative probability of tendon retear are highly associated with the quality of torn muscles, specifically, the severity of muscle atrophy and fatty infiltration. Animal models that reproduce the characteristic muscle pathology after rotator cuff injury have been developed and used to provide insight into the underlying biology and pathophysiology. In this review, we briefly summarize the current information obtained from preclinical animal studies regarding the degenerative change of cuff muscle subsequent to tendon release and/or suprascapular nerve denervation. Importantly, we focus on the potential translational therapeutic targets or agents for the prevention or reversal of muscle atrophy and fatty infiltration. While further studies are warranted to assess the safety and efficacy of novel therapies derived from these preclinical animal research, we believe that their clinical translation for the treatment of rotator cuff disorders is on the horizon. The Translational potential of this article Novel therapeutic strategies described in this review from preclinical animal studies hold a great translational potential for preventing or reversing rotator cuff muscle pathology, while further assessments on their safety and efficacy are warranted.
Collapse
|
44
|
Xu W, Qing X, Liu S, Yang D, Dong X, Zhang Y. Hollow Mesoporous Manganese Oxides: Application in Cancer Diagnosis and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106511. [PMID: 35043579 DOI: 10.1002/smll.202106511] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Indexed: 06/14/2023]
Abstract
The precision, minimal invasiveness, and integration of diagnosis and treatment are critical factors for tumor treatment at the present. Although nanomedicine has shown the potential in tumor precision treatment, nanocarriers with high efficiency, excellent targeting, controlled release, and good biocompatibility still need to be further explored. Hollow mesoporous manganese oxides nanomaterials (HM-MONs), as an efficient drug delivery carrier, have attracted substantial attention in applications of tumor diagnosis and therapy due to their unique properties, such as tumor microenvironment stimuli-responsiveness, prominent catalytic activity, excellent biodegradation, and outstanding magnetic resonance imaging ability. The HM-MONs can not only enhance the therapeutic efficiency but also realize multimodal diagnosis of tumors. Consequently, it is necessary to introduce applications based on HM-MONs in cancer diagnosis and therapy. In this review, the representative progress of HM-MONs in synthesis is discussed. Then, several promising applications in drug delivery, bio-imaging, and bio-detection are highlighted. Finally, the challenges and perspectives of the anticancer applications are summarized, which is expected to provide meaningful guidance on further research.
Collapse
Affiliation(s)
- Wenjing Xu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xin Qing
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Shengli Liu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yewei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| |
Collapse
|
45
|
Ma H, Yang C, Ma Z, Wei X, Younis MR, Wang H, Li W, Wang Z, Wang W, Luo Y, Huang P, Wang J. Multiscale Hierarchical Architecture-Based Bioactive Scaffolds for Versatile Tissue Engineering. Adv Healthc Mater 2022; 11:e2102837. [PMID: 35355444 DOI: 10.1002/adhm.202102837] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/24/2022] [Indexed: 12/13/2022]
Abstract
Artificial construction from tendon to bone remains a formidable challenge in tissue engineering owing to their structural complexity. In this work, bioinspired calcium silicate nanowires and alginate composite hydrogels are utilized as building blocks to construct multiscale hierarchical bioactive scaffolds for versatile tissue engineering from tendon to bone. By integrating 3D printing technology and mechanical stretch post-treatment in a confined condition, the obtained composite hydrogels possess bioinspired reinforcement architectures from nano- to submicron- to microscale with significantly enhanced mechanical properties. The biochemical and topographical cues of the composite hydrogel scaffolds provide much more efficient microenvironment to the rabbit bone mesenchymal stem cells and rabbit tendon stem cells, leading to ordered alignment and improved differentiation. The composite hydrogels markedly promote in vivo tissue regeneration from bone to tendon, especially fibrocartilage transitional tissue. Therefore, such calcium silicate nanowires/alginate composite hydrogels with multiscale hierarchical structures have potential application for tissue regeneration from tendon to bone. This work provides an innovative strategy to construct multiscale hierarchical architecture-based scaffolds for tendon/bone engineering.
Collapse
Affiliation(s)
- Hongshi Ma
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine 639 Zhizaoju Road Shanghai 200011 China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences 1295 Dingxi Road Shanghai 200050 China
| | - Chen Yang
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou 325000 China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Wenzhou Zhejiang 325000 China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine 639 Zhizaoju Road Shanghai 200011 China
| | - Xiaoyue Wei
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Hanbo Wang
- Jining Medical University 133 Hehua Road Jining City 272067 China
| | - Wentao Li
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine 639 Zhizaoju Road Shanghai 200011 China
| | - Zhiyong Wang
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Wenhao Wang
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine 639 Zhizaoju Road Shanghai 200011 China
| | - Yongxiang Luo
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine 639 Zhizaoju Road Shanghai 200011 China
| |
Collapse
|
46
|
Ariga K, Fakhrullin R. Materials Nanoarchitectonics from Atom to Living Cell: A Method for Everything. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220071] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, 42000, Republic of Tatarstan, Russian Federation
| |
Collapse
|
47
|
Yang R, Zheng Y, Zhang Y, Li G, Xu Y, Zhang Y, Xu Y, Zhuang C, Yu P, Deng L, Cui W, Chen Y, Wang L. Bipolar Metal Flexible Electrospun Fibrous Membrane Based on Metal-Organic Framework for Gradient Healing of Tendon-to-Bone Interface Regeneration. Adv Healthc Mater 2022; 11:e2200072. [PMID: 35286782 DOI: 10.1002/adhm.202200072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Indexed: 12/17/2022]
Abstract
Metal ions play a significant role in tissue repair, with widely application in clinical treatment. However, the therapeutic effect of metal ions is always limited due to metabolization and narrow repair capability. Here, a bipolar metal flexible electrospun fibrous membrane based on a metal-organic framework (MOF), which is bioinspired by the gradient structure of the tendon-to-bone interface, with a combination of regulating osteoblasts differentiation and angiogenesis properties, is constructed successfully by a continuous electrospinning technique and matching the longitudinal space morphology for synchronous regeneration. Furthermore, the MOF, acting as carriers, can not only achieve the sustainable release of metal ions, but promote the osteogenesis and tenogenesis on the scaffold. The in vitro data show that this novel hierarchical structure can accelerate the tenogenesis, the biomineralization, and angiogenesis. Moreover, in the in vivo experiment, the flexible fibrous membrane can promote tendon and bone tissue repair, and fibrocartilage reconstruction, to realize the multiple tissue synchronous regeneration at the damaged tendon-to-bone interface. Altogether, this newly developed bipolar metal flexible electrospun fibrous membrane based on a MOF, as a new biomimetic flexible scaffold, has great potential in reconstruct the tissue damage, especially gradient tissue damage.
Collapse
Affiliation(s)
- Renhao Yang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yunlong Zheng
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University Tianjin 300071 P. R. China
| | - Yin Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Gen Li
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yidong Xu
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yin Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yang Xu
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Chengyu Zhuang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Pei Yu
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Lianfu Deng
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University Tianjin 300071 P. R. China
| | - Lei Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| |
Collapse
|
48
|
Mechanical Properties of Animal Tendons: A Review and Comparative Study for the Identification of the Most Suitable Human Tendon Surrogates. Processes (Basel) 2022. [DOI: 10.3390/pr10030485] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mechanical response of a tendon to load is strictly related to its complex and highly organized hierarchical structure, which ranges from the nano- to macroscale. In a broader context, the mechanical properties of tendons during tensile tests are affected by several distinct factors, due in part to tendon nature (anatomical site, age, training, injury, etc.) but also depending on the experimental setup and settings. This work aimed to present a systematic review of the mechanical properties of tendons reported in the scientific literature by considering different anatomical regions in humans and several animal species (horse, cow, swine, sheep, rabbit, dog, rat, mouse, and foal). This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method. The literature research was conducted via Google Scholar, PubMed, PicoPolito (Politecnico di Torino’s online catalogue), and Science Direct. Sixty studies were selected and analyzed. The structural and mechanical properties described in different animal species were reported and summarized in tables. Only the results from studies reporting the strain rate parameter were considered for the comparison with human tendons, as they were deemed more reliable. Our findings showed similarities between animal and human tendons that should be considered in biomechanical evaluation. An additional analysis of the effects of different strain rates showed the influence of this parameter.
Collapse
|
49
|
Dobson LK, Zeitouni S, McNeill EP, Bearden RN, Gregory CA, Saunders WB. Canine Mesenchymal Stromal Cell-Mediated Bone Regeneration is Enhanced in the Presence of Sub-Therapeutic Concentrations of BMP-2 in a Murine Calvarial Defect Model. Front Bioeng Biotechnol 2021; 9:764703. [PMID: 34796168 PMCID: PMC8592971 DOI: 10.3389/fbioe.2021.764703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 11/15/2022] Open
Abstract
Novel bone regeneration strategies often show promise in rodent models yet are unable to successfully translate to clinical therapy. Sheep, goats, and dogs are used as translational models in preparation for human clinical trials. While human MSCs (hMSCs) undergo osteogenesis in response to well-defined protocols, canine MSCs (cMSCs) are more incompletely characterized. Prior work suggests that cMSCs require additional agonists such as IGF-1, NELL-1, or BMP-2 to undergo robust osteogenic differentiation in vitro. When compared directly to hMSCs, cMSCs perform poorly in vivo. Thus, from both mechanistic and clinical perspectives, cMSC and hMSC-mediated bone regeneration may differ. The objectives of this study were twofold. The first was to determine if previous in vitro findings regarding cMSC osteogenesis were substantiated in vivo using an established murine calvarial defect model. The second was to assess in vitro ALP activity and endogenous BMP-2 gene expression in both canine and human MSCs. Calvarial defects (4 mm) were treated with cMSCs, sub-therapeutic BMP-2, or the combination of cMSCs and sub-therapeutic BMP-2. At 28 days, while there was increased healing in defects treated with cMSCs, defects treated with cMSCs and BMP-2 exhibited the greatest degree of bone healing as determined by quantitative μCT and histology. Using species-specific qPCR, cMSCs were not detected in relevant numbers 10 days after implantation, suggesting that bone healing was mediated by anabolic cMSC or ECM-driven cues and not via engraftment of cMSCs. In support of this finding, defects treated with cMSC + BMP-2 exhibited robust deposition of Collagens I, III, and VI using immunofluorescence. Importantly, cMSCs exhibited minimal ALP activity unless cultured in the presence of BMP-2 and did not express endogenous canine BMP-2 under any condition. In contrast, human MSCs exhibited robust ALP activity in all conditions and expressed human BMP-2 when cultured in control and osteoinduction media. This is the first in vivo study in support of previous in vitro findings regarding cMSC osteogenesis, namely that cMSCs require additional agonists to initiate robust osteogenesis. These findings are highly relevant to translational cell-based bone healing studies and represent an important finding for the field of canine MSC-mediated bone regeneration.
Collapse
Affiliation(s)
- Lauren K Dobson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Suzanne Zeitouni
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, United States
| | - Eoin P McNeill
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, United States
| | - Robert N Bearden
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, United States
| | - W Brian Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
50
|
Feng W, Jin Q, Ming-Yu Y, Yang H, Xu T, You-Xing S, Xu-Ting B, Wan C, Yun-Jiao W, Huan W, Ai-Ning Y, Yan L, Hong T, Pan H, Mi-Duo M, Gang H, Mei Z, Xia K, Kang-Lai T. MiR-6924-5p-rich exosomes derived from genetically modified Scleraxis-overexpressing PDGFRα(+) BMMSCs as novel nanotherapeutics for treating osteolysis during tendon-bone healing and improving healing strength. Biomaterials 2021; 279:121242. [PMID: 34768151 DOI: 10.1016/j.biomaterials.2021.121242] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
Osteolysis at the tendon-bone interface can impair pullout strength during tendon-bone healing and lead to surgery failure, but the effects of clinical treatments are not satisfactory. Mesenchymal stem cell (MSC)-derived exosomes have been used as potent and feasible natural nanocarriers for drug delivery and have been proven to enhance tendon-bone healing strength, indicating that MSC-derived exosomes could be a promising therapeutic strategy. In this study, we explored Scleraxis (Scx) dynamically expressed in PDGFRα(+) bone marrow-derived mesenchymal stem cells (BMMSCs) during natural tendon-bone healing. Then, we investigated the role of PDGFRα(+) BMMSCs in tendon-bone healing after Scx overexpression as well as the underlying mechanisms. Our data demonstrated that Scx-overexpressing PDGFRα(+) BMMSCs (BMMSCScx) could efficiently inhibit peritunnel osteolysis and enhance tendon-bone healing strength by preventing osteoclastogenesis in an exosomes-dependent manner. Exosomal RNA-seq revealed that the abundance of a novel miRNA, miR-6924-5p, was highest among miRNAs. miR-6924-5p could directly inhibit osteoclast formation by binding to the 3'-untranslated regions (3'UTRs) of OCSTAMP and CXCL12. Inhibition of miR-6924-5p expression reversed the prevention of osteoclastogenic differentiation by BMMSCScx derived exosomes (BMMSCScx-exos). Local injection of BMMSCScx-exos or miR-6924-5p dramatically reduced osteoclast formation and improved tendon-bone healing strength. Furthermore, delivery of miR-6924-5p efficiently inhibited the osteoclastogenesis of human monocytes. In brief, our study demonstrates that BMMSCScx-exos or miR-6924-5p could serve as a potential therapy for the treatment of osteolysis during tendon-bone healing and improve the outcome.
Collapse
Affiliation(s)
- Wang Feng
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Qian Jin
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China; Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yang Ming-Yu
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - He Yang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Tao Xu
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Shi You-Xing
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Bian Xu-Ting
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Chen Wan
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Wang Yun-Jiao
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Wang Huan
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Yang Ai-Ning
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Li Yan
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Tang Hong
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Huang Pan
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Mu Mi-Duo
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - He Gang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Zhou Mei
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Kang Xia
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China; Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Tang Kang-Lai
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China.
| |
Collapse
|