1
|
Shabnum SS, Siranjeevi R, Raj CK, Saravanan A, Vickram AS, Chopra H, Malik T. Advancements in nanotechnology-driven photodynamic and photothermal therapies: mechanistic insights and synergistic approaches for cancer treatment. RSC Adv 2024; 14:38952-38995. [PMID: 39659608 PMCID: PMC11629304 DOI: 10.1039/d4ra07114j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer is a disease that involves uncontrolled cell division triggered by genetic damage to the genes that control cell growth and division. Cancer starts as a localized illness, but subsequently spreads to other areas in the human body (metastasis), making it incurable. Cancer is the second most prevalent cause of mortality worldwide. Every year, almost ten million individuals get diagnosed with cancer. Although different cancer treatment options exist, such as chemotherapy, radiation, surgery and immunotherapy, their clinical efficacy is limited due to their significant side effects. New cancer treatment options, such as phototherapy, which employs light for the treatment of cancer, have sparked a growing fascination in the cancer research community. Phototherapies are classified into two types: photodynamic treatment (PDT) and photothermal therapy (PTT). PDT necessitates the use of a photosensitizing chemical and exposure to light at a certain wavelength. Photodynamic treatment (PDT) is primarily based on the creation of singlet oxygen by the stimulation of a photosensitizer, which is then used to kill tumor cells. PDT can be used to treat a variety of malignancies. On the other hand, PTT employs a photothermal molecule that activates and destroys cancer cells at the longer wavelengths of light, making it less energetic and hence less hazardous to other cells and tissues. While PTT is a better alternative to standard cancer therapy, in some irradiation circumstances, it can cause cellular necrosis, which results in pro-inflammatory reactions that can be harmful to therapeutic effectiveness. Latest research has revealed that PTT may be adjusted to produce apoptosis instead of necrosis, which is attractive since apoptosis reduces the inflammatory response.
Collapse
Affiliation(s)
- S Sameera Shabnum
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - R Siranjeevi
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - C Krishna Raj
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS Chennai-602105 Tamil Nadu India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University Rajpura 140401 Punjab India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University 378 Jimma Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara 144411 India
| |
Collapse
|
2
|
Chen Q, Liu Y, Chen Q, Li M, Xu L, Lin B, Tan Y, Liu Z. DNA Nanostructures: Advancing Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405231. [PMID: 39308253 DOI: 10.1002/smll.202405231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Indexed: 12/06/2024]
Abstract
Cancer immunotherapy is a groundbreaking medical revolution and a paradigm shift from traditional cancer treatments, harnessing the power of the immune system to target and destroy cancer cells. In recent years, DNA nanostructures have emerged as prominent players in cancer immunotherapy, exhibiting immense potential due to their controllable structure, surface addressability, and biocompatibility. This review provides an overview of the various applications of DNA nanostructures, including scaffolded DNA, DNA hydrogels, tetrahedral DNA nanostructures, DNA origami, spherical nucleic acids, and other DNA-based nanostructures in cancer immunotherapy. These applications explore their roles in vaccine development, immune checkpoint blockade therapies, adoptive cellular therapies, and immune-combination therapies. Through rational design and optimization, DNA nanostructures significantly bolster the immunogenicity of the tumor microenvironment by facilitating antigen presentation, T-cell activation, tumor infiltration, and precise immune-mediated tumor killing. The integration of DNA nanostructures with cancer therapies ushers in a new era of cancer immunotherapy, offering renewed hope and strength in the battle against this formidable foe of human health.
Collapse
Affiliation(s)
- Qianqian Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan Province, 410013, P. R. China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan Province, 410013, P. R. China
| | - Bingyu Lin
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan Province, 410013, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan Province, 410013, P. R. China
| |
Collapse
|
3
|
Kaur H, Gogoi B, Sharma I, Das DK, Azad MA, Pramanik DD, Pramanik A. Hydrogels as a Potential Biomaterial for Multimodal Therapeutic Applications. Mol Pharm 2024; 21:4827-4848. [PMID: 39290162 PMCID: PMC11462506 DOI: 10.1021/acs.molpharmaceut.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Hydrogels, composed of hydrophilic polymer networks, have emerged as versatile materials in biomedical applications due to their high water content, biocompatibility, and tunable properties. They mimic natural tissue environments, enhancing cell viability and function. Hydrogels' tunable physical properties allow for tailored antibacterial biomaterial, wound dressings, cancer treatment, and tissue engineering scaffolds. Their ability to respond to physiological stimuli enables the controlled release of therapeutics, while their porous structure supports nutrient diffusion and waste removal, fostering tissue regeneration and repair. In wound healing, hydrogels provide a moist environment, promote cell migration, and deliver bioactive agents and antibiotics, enhancing the healing process. For cancer therapy, they offer localized drug delivery systems that target tumors, minimizing systemic toxicity and improving therapeutic efficacy. Ocular therapy benefits from hydrogels' capacity to form contact lenses and drug delivery systems that maintain prolonged contact with the eye surface, improving treatment outcomes for various eye diseases. In mucosal delivery, hydrogels facilitate the administration of therapeutics across mucosal barriers, ensuring sustained release and the improved bioavailability of drugs. Tissue regeneration sees hydrogels as scaffolds that mimic the extracellular matrix, supporting cell growth and differentiation for repairing damaged tissues. Similarly, in bone regeneration, hydrogels loaded with growth factors and stem cells promote osteogenesis and accelerate bone healing. This article highlights some of the recent advances in the use of hydrogels for various biomedical applications, driven by their ability to be engineered for specific therapeutic needs and their interactive properties with biological tissues.
Collapse
Affiliation(s)
- Harpreet Kaur
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Bishmita Gogoi
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Ira Sharma
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Deepak Kumar Das
- Department
of Chemistry and Nanoscience, GLA University, Mathura, Uttar Pradesh 281 406, India
| | - Mohd Ashif Azad
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | | | - Arindam Pramanik
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
- School
of Medicine, University of Leeds, Leeds LS97TF, United Kingdom
| |
Collapse
|
4
|
Um‐e‐Kalsoom, Wang S, Qu J, Liu L. Innovative optical imaging strategies for monitoring immunotherapy in the tumor microenvironments. Cancer Med 2024; 13:e70155. [PMID: 39387259 PMCID: PMC11465031 DOI: 10.1002/cam4.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND The tumor microenvironment (TME) plays a critical role in cancer progression and response to immunotherapy. Immunotherapy targeting the immune system has emerged as a promising treatment modality, but challenges in understanding the TME limit its efficacy. Optical imaging strategies offer noninvasive, real-time insights into the interactions between immune cells and the TME. OBJECTIVE This review assesses the progress of optical imaging technologies in monitoring immunotherapy within the TME and explores their potential applications in clinical trials and personalized cancer treatment. METHODS This is a comprehensive literature review based on the advances in optical imaging modalities including fluorescence imaging (FLI), bioluminescence imaging (BLI), and photoacoustic imaging (PAI). These modalities were analyzed for their capacity to provide high-resolution, real-time imaging of immune cell dynamics, tumor vasculature, and other critical components of the TME. RESULTS Optical imaging techniques have shown significant potential in tracking immune cell infiltration, assessing immune checkpoint inhibitors, and visualizing drug delivery within the TME. Technologies like FLI and BLI are pivotal in tracking immune responses in preclinical models, while PAI provides functional imaging with deeper tissue penetration. The integration of these modalities with immunotherapy holds promise for improving treatment monitoring and outcomes. CONCLUSION Optical imaging is a powerful tool for understanding the complexities of the TME and optimizing immunotherapy. Further advancements in imaging technologies, combined with nanomaterial-based approaches, could pave the way for enhanced diagnostic accuracy and therapeutic efficacy in cancer treatment.
Collapse
Affiliation(s)
- Um‐e‐Kalsoom
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Shiqi Wang
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| |
Collapse
|
5
|
Pati AR, Ko YS, Bae C, Choi I, Heo YJ, Lee C. Highly porous hydrogels for efficient solar water evaporation. SOFT MATTER 2024; 20:4988-4997. [PMID: 38884450 DOI: 10.1039/d4sm00388h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Solar energy is a plentiful renewable resource on Earth, with versatile applications in both domestic and industrial settings, particularly in solar steam generation (SSG). However, current SSG processes encounter challenges such as low efficiency and the requirement for extremely high concentrations of solar irradiation. Interfacial evaporation technology has emerged as a solution to these issues, offering improved solar performance compared to conventional SSG processes. Nonetheless, its implementation introduces additional complexities and costs to system construction. In this study, we present the development of hydrophilic, three-dimensional network-structured hydrogels with high porosity and swelling ratio using a facile fabrication technique. We systematically varied the mixing ratios of four key ingredients (polyethylene glycol diacrylate, PEGDA; polyethylene glycol methyl-ether acrylate, PEGMA; phosphate-buffered saline, PBS; and 2-hydroxy-2-methylpropiophenone, PI) to control the mean pore size and swelling ratio of the hydrogel. Additionally, plasmonic gold nanoparticles were incorporated into the hydrogel using a novel methodology to enhance solar light absorption and subsequent evaporation efficiency. The resulting material exhibited a remarkable solar efficiency of 77% and an evaporation rate of 1.6 kg m-2 h-1 under standard solar illumination (one sun), comparable to those of state-of-the-art SSG devices. This high efficiency can be attributed to the synergistic effects of the hydrogel's unique composition and nanoparticle concentration. These findings offer a promising avenue for the development of highly efficient solar-powered evaporation applications.
Collapse
Affiliation(s)
- Akash Ranjan Pati
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin-si 17104, Republic of Korea.
| | - Young-Su Ko
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin-si 17104, Republic of Korea.
| | - Changwoo Bae
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin-si 17104, Republic of Korea.
| | - Inhee Choi
- Department of Life Sciences, University of Seoul, Seoul 02504, Republic of Korea
| | - Yun Jung Heo
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin-si 17104, Republic of Korea.
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Choongyeop Lee
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin-si 17104, Republic of Korea.
| |
Collapse
|
6
|
Huang S, Hou Y, Tang Z, Suhail M, Cui M, Iqbal MZ, Kong X. Near-infrared-II responsive ovalbumin functionalized gold-genipin nanosystem cascading photo-immunotherapy of cancer. NANOTECHNOLOGY 2024; 35:365102. [PMID: 38861966 DOI: 10.1088/1361-6528/ad568c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Synergistic cancer therapies have attracted wide attention owing to their multi-mode tumor inhibition properties. Especially, photo-responsive photoimmunotherapy demonstrates an emerging cancer treatment paradigm that significantly improved treatment efficiency. Herein, near-infrared-II responsive ovalbumin functionalized Gold-Genipin nanosystem (Au-G-OVA NRs) was designed for immunotherapy and deep photothermal therapy of breast cancer. A facile synthesis method was employed to prepare the homogeneous Au nanorods (Au NRs) with good dispersion. The nanovaccine was developed further by the chemical cross-linking of Au-NRs, genipin and ovalbumin. The Au-G-OVA NRs outstanding aqueous solubility, and biocompatibility against normal and cancer cells. The designed NRs possessed enhanced localized surface plasmon resonance (LSPR) effect, which extended the NIR absorption in the second window, enabling promising photothermal properties. Moreover, genipin coating provided complimentary red fluorescent and prepared Au-G-OVA NRs showed significant intracellular encapsulation for efficient photoimmunotherapy outcomes. The designed nanosystem possessed deep photothermal therapy of breast cancer and 90% 4T1 cells were ablated by Au-G-OVA NRs (80μg ml-1concentration) after 1064 nm laser irradiation. In addition, Au-G-OVA NRs demonstrated outstanding vaccination phenomena by facilitating OVA delivery, antigen uptake, maturation of bone marrow dendritic cells, and cytokine IFN-γsecretion for tumor immunosurveillance. The aforementioned advantages permit the utilization of fluorescence imaging-guided photo-immunotherapy for cancers, demonstrating a straightforward approach for developing nanovaccines tailored to precise tumor treatment.
Collapse
Affiliation(s)
- Shuqi Huang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yike Hou
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zhe Tang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Muhamamd Suhail
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Mingyue Cui
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
7
|
Yang J, Wang Z, Ma C, Tang H, Hao H, Li M, Luo X, Yang M, Gao L, Li J. Advances in Hydrogels of Drug Delivery Systems for the Local Treatment of Brain Tumors. Gels 2024; 10:404. [PMID: 38920950 PMCID: PMC11202553 DOI: 10.3390/gels10060404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
The management of brain tumors presents numerous challenges, despite the employment of multimodal therapies including surgical intervention, radiotherapy, chemotherapy, and immunotherapy. Owing to the distinct location of brain tumors and the presence of the blood-brain barrier (BBB), these tumors exhibit considerable heterogeneity and invasiveness at the histological level. Recent advancements in hydrogel research for the local treatment of brain tumors have sought to overcome the primary challenge of delivering therapeutics past the BBB, thereby ensuring efficient accumulation within brain tumor tissues. This article elaborates on various hydrogel-based delivery vectors, examining their efficacy in the local treatment of brain tumors. Additionally, it reviews the fundamental principles involved in designing intelligent hydrogels that can circumvent the BBB and penetrate larger tumor areas, thereby facilitating precise, controlled drug release. Hydrogel-based drug delivery systems (DDSs) are posited to offer a groundbreaking approach to addressing the challenges and limitations inherent in traditional oncological therapies, which are significantly impeded by the unique structural and pathological characteristics of brain tumors.
Collapse
Affiliation(s)
- Jingru Yang
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China;
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Zhijie Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Chenyan Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Hongyu Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Haoyang Hao
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Mengyao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Xianwei Luo
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Mingxin Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Liang Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China;
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| |
Collapse
|
8
|
Yang S, Wu J, Wang Z, Cheng Y, Zhang R, Yao C, Yang D. A Smart DNA Hydrogel Enables Synergistic Immunotherapy and Photodynamic Therapy of Melanoma. Angew Chem Int Ed Engl 2024; 63:e202319073. [PMID: 38353346 DOI: 10.1002/anie.202319073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Indexed: 03/01/2024]
Abstract
Immunotherapy faces insufficient immune activation and limited immune effectiveness. Herein, we report a smart DNA hydrogel that enables the release of multivalent functional units at the tumor site to enhance the efficacy of immunotherapy. The smart DNA hydrogel was assembled from two types of ultra-long DNA chains synthesized via rolling circle amplification. One DNA chain contained immune adjuvant CpG oligonucleotides and polyaptamers for loading natural killer cell-derived exosomes; the other chain contained multivalent G-quadruplex for loading photodynamic agents. DNA chains formed DNA hydrogel through base-pairing. HhaI restriction endonuclease sites were designed between functional units. Upon stimuli in the tumor sites, the hydrogel was effectively cleaved by the released HhaI and disassembled into functional units. Natural killer cell-derived exosomes played an anti-tumor role, and the CpG oligonucleotide activated antigen-presenting cells to enhance the immunotherapy. Besides the tumor-killing effect of photodynamic therapy, the generated cellular debris acted as an immune antigen to further enhance the immunotherapeutic effect. In a mouse melanoma orthotopic model, the smart DNA hydrogel as a localized therapeutic agent, achieved a remarkable tumor suppression rate of 91.2 %. The smart DNA hydrogel exhibited enhanced efficacy of synergistic immunotherapy and photodynamic therapy, expanding the application of DNA materials in biomedicine.
Collapse
Affiliation(s)
- Sen Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P.R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, P.R. China
| | - Junlin Wu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P.R. China
| | - Zhongyu Wang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P.R. China
| | - Yu Cheng
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P.R. China
| | - Rui Zhang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P.R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, P.R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P.R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P.R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, P.R. China
| |
Collapse
|
9
|
He W, Zhang Y, Qu Y, Liu M, Li G, Pan L, Xu X, Shi G, Hao Q, Liu F, Gao Y. Research progress on hydrogel-based drug therapy in melanoma immunotherapy. BMB Rep 2024; 57:71-78. [PMID: 38053295 PMCID: PMC10910090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/04/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Melanoma is one of the most aggressive skin tumors, and conventional treatment modalities are not effective in treating advanced melanoma. Although immunotherapy is an effective treatment for melanoma, it has disadvantages, such as a poor response rate and serious systemic immune-related toxic side effects. The main solution to this problem is the use of biological materials such as hydrogels to reduce these side effects and amplify the immune killing effect against tumor cells. Hydrogels have great advantages as local slow-release drug carriers, including the ability to deliver antitumor drugs directly to the tumor site, enhance the local drug concentration in tumor tissue, reduce systemic drug distribution and exhibit good degradability. Despite these advantages, there has been limited research on the application of hydrogels in melanoma treatment. Therefore, this article provides a comprehensive review of the potential application of hydrogels in melanoma immunotherapy. Hydrogels can serve as carriers for sustained drug delivery, enabling the targeted and localized delivery of drugs with minimal systemic side effects. This approach has the potential to improve the efficacy of immunotherapy for melanoma. Thus, the use of hydrogels as drug delivery vehicles for melanoma immunotherapy has great potential and warrants further exploration. [BMB Reports 2024; 57(2): 71-78].
Collapse
Affiliation(s)
- Wei He
- College of Life Science, Northwest University, Xi’an 710069, China
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Yanqin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Air Force Military Medical University, Xi’an 710032, China
| | - Yi Qu
- Department of Xi’an Shunmei Medical Cosmetology Outpatient, Xi’an 710075, China
| | - Mengmeng Liu
- College of Life Science, Northwest University, Xi’an 710069, China
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Guodong Li
- College of Life Science, Northwest University, Xi’an 710069, China
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Luxiang Pan
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Xinyao Xu
- College of Life Science, Northwest University, Xi’an 710069, China
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Gege Shi
- College of Life Science, Northwest University, Xi’an 710069, China
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Fen Liu
- Department of Periodontology, Shenzhen Stomatological Hospital (Pingshan), Southern Medical University, Shenzhen 510515, China
| | - Yuan Gao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
10
|
Zhao C, Pan B, Wang T, Yang H, Vance D, Li X, Zhao H, Hu X, Yang T, Chen Z, Hao L, Liu T, Wang Y. Advances in NIR-Responsive Natural Macromolecular Hydrogel Assembly Drugs for Cancer Treatment. Pharmaceutics 2023; 15:2729. [PMID: 38140070 PMCID: PMC10747500 DOI: 10.3390/pharmaceutics15122729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer is a serious disease with an abnormal proliferation of organ tissues; it is characterized by malignant infiltration and growth that affects human life. Traditional cancer therapies such as resection, radiotherapy and chemotherapy have a low cure rate and often cause irreversible damage to the body. In recent years, since the traditional treatment of cancer is still very far from perfect, researchers have begun to focus on non-invasive near-infrared (NIR)-responsive natural macromolecular hydrogel assembly drugs (NIR-NMHADs). Due to their unique biocompatibility and extremely high drug encapsulation, coupling with the spatiotemporal controllability of NIR, synergistic photothermal therapy (PTT), photothermal therapy (PDT), chemotherapy (CT) and immunotherapy (IT) has created excellent effects and good prospects for cancer treatment. In addition, some emerging bioengineering technologies can also improve the effectiveness of drug delivery systems. This review will discuss the properties of NIR light, the NIR-functional hydrogels commonly used in current research, the cancer therapy corresponding to the materials encapsulated in them and the bioengineering technology that can assist drug delivery systems. The review provides a constructive reference for the optimization of NIR-NMHAD experimental ideas and its application to human body.
Collapse
Affiliation(s)
- Chenyu Zhao
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| | - Boyue Pan
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| | - Tianlin Wang
- Department of Biophysics, School of Intelligent Medicine, China Medical University, Shenyang 110122, China; (T.W.); (H.Y.)
| | - Huazhe Yang
- Department of Biophysics, School of Intelligent Medicine, China Medical University, Shenyang 110122, China; (T.W.); (H.Y.)
| | - David Vance
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
- School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK
| | - Xiaojia Li
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang 110122, China; (X.L.); (H.Z.)
| | - Haiyang Zhao
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang 110122, China; (X.L.); (H.Z.)
| | - Xinru Hu
- The 1st Clinical Department, China Medical University, Shenyang 110122, China;
| | - Tianchang Yang
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
| | - Zihao Chen
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
| | - Liang Hao
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| | - Ting Liu
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
| | - Yang Wang
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| |
Collapse
|
11
|
Mohaghegh N, Ahari A, Zehtabi F, Buttles C, Davani S, Hoang H, Tseng K, Zamanian B, Khosravi S, Daniali A, Kouchehbaghi NH, Thomas I, Serati Nouri H, Khorsandi D, Abbasgholizadeh R, Akbari M, Patil R, Kang H, Jucaud V, Khademhosseini A, Hassani Najafabadi A. Injectable hydrogels for personalized cancer immunotherapies. Acta Biomater 2023; 172:67-91. [PMID: 37806376 DOI: 10.1016/j.actbio.2023.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
The field of cancer immunotherapy has shown significant growth, and researchers are now focusing on effective strategies to enhance and prolong local immunomodulation. Injectable hydrogels (IHs) have emerged as versatile platforms for encapsulating and controlling the release of small molecules and cells, drawing significant attention for their potential to enhance antitumor immune responses while inhibiting metastasis and recurrence. IHs delivering natural killer (NK) cells, T cells, and antigen-presenting cells (APCs) offer a viable method for treating cancer. Indeed, it can bypass the extracellular matrix and gradually release small molecules or cells into the tumor microenvironment, thereby boosting immune responses against cancer cells. This review provides an overview of the recent advancements in cancer immunotherapy using IHs for delivering NK cells, T cells, APCs, chemoimmunotherapy, radio-immunotherapy, and photothermal-immunotherapy. First, we introduce IHs as a delivery matrix, then summarize their applications for the local delivery of small molecules and immune cells to elicit robust anticancer immune responses. Additionally, we discuss recent progress in IHs systems used for local combination therapy, including chemoimmunotherapy, radio-immunotherapy, photothermal-immunotherapy, photodynamic-immunotherapy, and gene-immunotherapy. By comprehensively examining the utilization of IHs in cancer immunotherapy, this review aims to highlight the potential of IHs as effective carriers for immunotherapy delivery, facilitating the development of innovative strategies for cancer treatment. In addition, we demonstrate that using hydrogel-based platforms for the targeted delivery of immune cells, such as NK cells, T cells, and dendritic cells (DCs), has remarkable potential in cancer therapy. These innovative approaches have yielded substantial reductions in tumor growth, showcasing the ability of hydrogels to enhance the efficacy of immune-based treatments. STATEMENT OF SIGNIFICANCE: As cancer immunotherapy continues to expand, the mode of therapeutic agent delivery becomes increasingly critical. This review spotlights the forward-looking progress of IHs, emphasizing their potential to revolutionize localized immunotherapy delivery. By efficiently encapsulating and controlling the release of essential immune components such as T cells, NK cells, APCs, and various therapeutic agents, IHs offer a pioneering pathway to amplify immune reactions, moderate metastasis, and reduce recurrence. Their adaptability further shines when considering their role in emerging combination therapies, including chemoimmunotherapy, radio-immunotherapy, and photothermal-immunotherapy. Understanding IHs' significance in cancer therapy is essential, suggesting a shift in cancer treatment dynamics and heralding a novel period of focused, enduring, and powerful therapeutic strategies.
Collapse
Affiliation(s)
- Neda Mohaghegh
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Amir Ahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Surgery, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Claire Buttles
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Indiana University Bloomington, Department of Biology, Bloomington, IN 47405, USA
| | - Saya Davani
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Hanna Hoang
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90024, USA
| | - Kaylee Tseng
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90007, USA
| | - Benjamin Zamanian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Safoora Khosravi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Ariella Daniali
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Negar Hosseinzadeh Kouchehbaghi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, Tehran, Iran
| | - Isabel Thomas
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Hamed Serati Nouri
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Rameshwar Patil
- Department of Basic Science and Neurosurgery, Division of Cancer Science, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Heemin Kang
- Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA.
| | | |
Collapse
|
12
|
Zheng H, Li M, Wu L, Liu W, Liu Y, Gao J, Lu Z. Progress in the application of hydrogels in immunotherapy of gastrointestinal tumors. Drug Deliv 2023; 30:2161670. [PMID: 36587630 PMCID: PMC9809389 DOI: 10.1080/10717544.2022.2161670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Gastrointestinal tumors are the most common cancers with the highest morbidity and mortality worldwide. Surgery accompanied by chemotherapy, radiotherapy and targeted therapy remains the first option for gastrointestinal tumors. However, poor specificity for tumor cells of these postoperative treatments often leads to severe side effects and poor prognosis. Tumor immunotherapy, including checkpoint blockade and tumor vaccines, has developed rapidly in recent years, showing good curative effects and minimal side effects in the treatment of gastrointestinal tumors. National Comprehensive Cancer Network guidelines recommend tumor immunotherapy as part of the treatment of gastrointestinal tumors. However, the heterogeneity of tumor cells, complicacy of the tumor microenvironment and poor tumor immunogenicity hamper the effectiveness of tumor immunotherapy. Hydrogels, defined as three-dimensional, hydrophilic, and water-insoluble polymeric networks, could significantly improve the overall response rate of immunotherapy due to their superior drug loading efficacy, controlled release and drug codelivery ability. In this article, we briefly describe the research progress made in recent years on hydrogel delivery systems in immunotherapy for gastrointestinal tumors and discuss the potential future application prospects and challenges to provide a reference for the clinical application of hydrogels in tumor immunotherapy.
Collapse
Affiliation(s)
- Hao Zheng
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Lili Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wenshang Liu
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yu Liu
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China,Jie Gao Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Zhengmao Lu
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China,CONTACT Zhengmao Lu Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai200433, China
| |
Collapse
|
13
|
He J, Ouyang X, Xiao F, Liu N, Wen L. Imaging-Guided Photoacoustic Immunotherapy Based on the Polydopamine-Functionalized Black Phosphorus Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54322-54334. [PMID: 37967339 DOI: 10.1021/acsami.3c13998] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Phototherapy has great application prospects in superficial tumors, such as melanoma, esophageal cancer, and breast carcinoma, owing to the advantages of noninvasiveness, high spatiotemporal selectivity, and less side effects. However, classical phototherapies including photodynamic and photothermal therapy still need to settle the bottleneck problems of poor efficacy, inevitable thermal damage, and a high rate of postoperative recurrence. In this study, we developed a nanocomposite with excellent optical properties and immune-stimulating properties, termed PBP@CpG, which was obtained by functionalizing black phosphorus (BP) with polydopamine and further adsorbing CpG. Benefiting from the protection of polydopamine against BP, ideal light absorption, and photoacoustic conversion properties, PBP@CpG not only enables precisely delineation of the tumor region with photoacoustic imaging but also powerfully disrupts the plasma membrane and cytoskeleton of tumor cells with a photoacoustic cavitation effect. In addition, we found that the photoacoustic cavitation effect was also capable of inducing immunogenic cell death and remarkably strengthening the antitumor immune response upon cooperating with immune adjuvant CpG. Therefore, PBP@CpG was expected to provide a promising nanoplatform for optical theranostics and herald a new strategy of photoimmunotherapy based on the photoacoustic cavitation effects and immunostimulatory effect.
Collapse
Affiliation(s)
- Jiawen He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, 519000 Zhuhai, Guangdong, China
| | - Xumei Ouyang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, 519000 Zhuhai, Guangdong, China
| | - Fengfeng Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, 519000 Zhuhai, Guangdong, China
| | - Ning Liu
- School of Clinical Medicine, Jining Medical University, 272067 Jining, Shandong, China
| | - Liewei Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, 519000 Zhuhai, Guangdong, China
| |
Collapse
|
14
|
Askari E, Shokrollahi Barough M, Rahmanian M, Mojtabavi N, Sarrami Forooshani R, Seyfoori A, Akbari M. Cancer Immunotherapy Using Bioengineered Micro/Nano Structured Hydrogels. Adv Healthc Mater 2023; 12:e2301174. [PMID: 37612251 PMCID: PMC11468077 DOI: 10.1002/adhm.202301174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Hydrogels, a class of materials with a 3D network structure, are widely used in various applications of therapeutic delivery, particularly cancer therapy. Micro and nanogels as miniaturized structures of the bioengineered hydrogels may provide extensive benefits over the common hydrogels in encapsulation and controlled release of small molecular drugs, macromolecular therapeutics, and even cells. Cancer immunotherapy is rapidly developing, and micro/nanostructured hydrogels have gained wide attention regarding their engineered payload release properties that enhance systemic anticancer immunity. Additionally, they are a great candidate due to their local administration properties with a focus on local immune cell manipulation in favor of active and passive immunotherapies. Although applied locally, such micro/nanostructured can also activate systemic antitumor immune responses by releasing nanovaccines safely and effectively inhibiting tumor metastasis and recurrence. However, such hydrogels are mostly used as locally administered carriers to stimulate the immune cells by releasing tumor lysate, drugs, or nanovaccines. In this review, the latest developments in cancer immunotherapy are summarized using micro/nanostructured hydrogels with a particular emphasis on their function depending on the administration route. Moreover, the potential for clinical translation of these hydrogel-based cancer immunotherapies is also discussed.
Collapse
Affiliation(s)
- Esfandyar Askari
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBC V8P 5C2Canada
| | - Mahdieh Shokrollahi Barough
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBC V8P 5C2Canada
- Department of ImmunologySchool of MedicineIran University of Medical SciencesTehran1449614535Iran
- ATMP DepartmentBreast Cancer Research CenterMotamed Cancer InstituteACECRTehran1517964311Iran
| | - Mehdi Rahmanian
- Biomaterials and Tissue Engineering DepartmentBreast Cancer Research CenterMotamed Cancer InstituteACECRTehran1517964311Iran
| | - Nazanin Mojtabavi
- Department of ImmunologySchool of MedicineIran University of Medical SciencesTehran1449614535Iran
| | | | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBC V8P 5C2Canada
- Biomaterials and Tissue Engineering DepartmentBreast Cancer Research CenterMotamed Cancer InstituteACECRTehran1517964311Iran
- Center for Advanced Materials and Related TechnologiesUniversity of VictoriaVictoriaBC V8P 5C2Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBC V8P 5C2Canada
- Center for Advanced Materials and Related TechnologiesUniversity of VictoriaVictoriaBC V8P 5C2Canada
- Center for Biomedical ResearchUniversity of VictoriaVictoriaBC V8P 5C2Canada
| |
Collapse
|
15
|
Zhang L, Zhang L, Wang Y, Jiang K, Gao C, Zhang P, Xie Y, Wang B, Zhao Y, Xiao H, Song J. Regulating the surface topography of CpG nanoadjuvants via coordination-driven self-assembly for enhanced tumor immunotherapy. NANOSCALE ADVANCES 2023; 5:4758-4769. [PMID: 37705793 PMCID: PMC10496906 DOI: 10.1039/d3na00322a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/09/2023] [Indexed: 09/15/2023]
Abstract
Immunoadjuvants play a key role in enhancing the efficacy of therapeutic tumor vaccines for treating malignant and recurrent cancers. However, due to the bottleneck in the rational design and mechanistic understanding of novel adjuvants, currently available immunoadjuvants in clinical practice are very limited. To boost adjuvant design and development, herein we propose a surface topography regulatory strategy for constructing novel adjuvants with improved adjuvant properties. One of the licensed adjuvants with a well-defined molecular mechanism of immune activation, cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs), was used as the material framework. We constructed immunostimulatory CpG nanoparticles (CpG NPs) with different surface topographies by coordination-driven self-assembly between CpG ODNs and ferrous ions. These self-assembled CpG NPs combine the biological and physical activation abilities of innate immunity and can be used as adjuvants of tumor antigens for malignant tumor immunotherapy. The experimental results showed that these CpG NPs could rapidly enter innate immune cells and remold the tumor microenvironment (TME) to enhance anti-tumor immunotherapy via (i) inducing proinflammatory cytokine production; (ii) promoting the transformation of macrophages from immunosuppressed M2 types into immunoactivated M1 types; (iii) amplifying the antigen presentation of mature dendritic cells (DCs), and (iv) activating T cells in tumor sites. Among the prepared nanostructures, pompon-shaped nanoparticles (NPpo) showed the strongest adjuvant properties and anti-tumor immunotherapeutic effect as the adjuvant of ovalbumin in melanoma-bearing mice. Overall, this work provides an effective strategy for designing novel adjuvants for activating the immunosuppressed TME to enable better cancer immunotherapy.
Collapse
Affiliation(s)
- Li Zhang
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou Zhejiang 310024 China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
- School of Pharmacy, Changzhou University Changzhou Jiangsu 213164 China
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Yuqi Wang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Kai Jiang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Chao Gao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Pengfei Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| | - Yujie Xie
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Bin Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Yun Zhao
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou Zhejiang 310024 China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Jie Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
16
|
Yu X, Xing G, Sheng S, Jin L, Zhang Y, Zhu D, Mei L, Dong X, Lv F. Neutrophil Camouflaged Stealth Nanovehicle for Photothermal-Induced Tumor Immunotherapy by Triggering Pyroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207456. [PMID: 36967574 DOI: 10.1002/advs.202207456] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/03/2023] [Indexed: 05/27/2023]
Abstract
The regulation of tumor immunosuppressive microenvironments via precise drug delivery is a promising strategy for preventing tumor recurrence and metastasis. Inspired by the stealth strategy, a stealthy nanovehicle based on neutrophil camouflage is developed to achieve precise delivery and tumor immunotherapy by triggering pyroptosis. The nanovehicle comprises anti-CD11b- and IR820-conjugated bovine serum albumin nanoparticles loaded with decitabine. Camouflaged by neutrophils, the nanovehicles achieve efficient tumor delivery by neutrophil hitchhiking owing to the biotropism of neutrophils for tumors. The fluorescent signal molecule, IR820, on the nanovehicle acts as a navigation monitor to track the precise delivery of the nanovehicle. The released decitabine upregulates gasdermin E, and laser irradiation activates caspase-3, thereby resulting in pyroptosis, which improves the system's adaptive immune response. In a triple-negative breast cancer animal model, it regulates the immunosuppressive microenvironment for effective tumor immunotherapy and induces a long-lasting and strong immune memory to prevent lung metastasis.
Collapse
Affiliation(s)
- Xuya Yu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P.R. China
| | - Guozheng Xing
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P.R. China
| | - Shupei Sheng
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P.R. China
| | - Limin Jin
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P.R. China
| | - Yan Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P.R. China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P.R. China
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P.R. China
| | - Xia Dong
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P.R. China
| | - Feng Lv
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P.R. China
| |
Collapse
|
17
|
Gan S, Wu Y, Zhang X, Zheng Z, Zhang M, Long L, Liao J, Chen W. Recent Advances in Hydrogel-Based Phototherapy for Tumor Treatment. Gels 2023; 9:gels9040286. [PMID: 37102898 PMCID: PMC10137920 DOI: 10.3390/gels9040286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Phototherapeutic agent-based phototherapies activated by light have proven to be safe modalities for the treatment of various malignant tumor indications. The two main modalities of phototherapies include photothermal therapy, which causes localized thermal damage to target lesions, and photodynamic therapy, which causes localized chemical damage by generated reactive oxygen species (ROS). Conventional phototherapies suffer a major shortcoming in their clinical application due to their phototoxicity, which primarily arises from the uncontrolled distribution of phototherapeutic agents in vivo. For successful antitumor phototherapy, it is essential to ensure the generation of heat or ROS specifically occurs at the tumor site. To minimize the reverse side effects of phototherapy while improving its therapeutic performance, extensive research has focused on developing hydrogel-based phototherapy for tumor treatment. The utilization of hydrogels as drug carriers allows for the sustained delivery of phototherapeutic agents to tumor sites, thereby limiting their adverse effects. Herein, we summarize the recent advancements in the design of hydrogels for antitumor phototherapy, offer a comprehensive overview of the latest advances in hydrogel-based phototherapy and its combination with other therapeutic modalities for tumor treatment, and discuss the current clinical status of hydrogel-based antitumor phototherapy.
Collapse
Affiliation(s)
- Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Long
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Shen S, Gao Y, Ouyang Z, Jia B, Shen M, Shi X. Photothermal-triggered dendrimer nanovaccines boost systemic antitumor immunity. J Control Release 2023; 355:171-183. [PMID: 36736909 DOI: 10.1016/j.jconrel.2023.01.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Tumor vaccine that can effectively activate or strengthen the body's antitumor immune response to kill and eliminate tumor cells has attracted widespread attention. Currently developed tumor vaccines have severe shortcomings such as low bioavailability and lack of dual or multiple functions, resulting in poor antitumor efficacy. Herein, we report the development of an advanced nanosystem integrated with phenylboronic acid (PBA)-functionalized poly(amidoamine) dendrimers of generation 5 (G5), copper sulfide nanoparticles, and cyclic GMP-AMP (cGAMP), an immune adjuvant (for short, G5-PBA@CuS/cGAMP) to act as a photothermal-triggered nanovaccine. We show that the prepared functional nanosystem possesses an average CuS core size of 3.6 nm, prominent near-infrared absorption feature to have an excellent photothermal conversion efficiency of 44.0%, and good protein adsorption characteristics due to the PBA modification. With these features, the developed nanosystem can be adopted for photothermal therapy of primary melanoma tumors and simultaneously absorb the whole tumor cell antigens, thus creating photothermal-triggered dendrimeric nanovaccine of G5-PBA@CuS/cGAMP/antigen in situ to induce antitumor immune response to inhibit the distal tumors as well. Meanwhile, melanoma cells treated with the G5-PBA@CuS in vitro under laser irradiation allowed the creation of G5-PBA@CuS/antigen complexes that could be further integrated with cGAMP to form preformed nanovaccine for effective primary tumor inhibition and tumor occurrence prevention. The designed photothermal-triggered dendrimeric nanovaccine may represent an advanced nanomedicine formulation to effectively inhibit the growth of primary and distal tumors, and prevent tumor occurrence through the stimulated systemic antitumor immunity.
Collapse
Affiliation(s)
- Siyan Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Bingyang Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
19
|
Zhu B, Qu F, Bi D, Geng R, Chen S, Zhu J. Monolayer LDH Nanosheets with Ultrahigh ICG Loading for Phototherapy and Ca 2+-Induced Mitochondrial Membrane Potential Damage to Co-Enhance Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9135-9149. [PMID: 36753759 DOI: 10.1021/acsami.2c22338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tumor recurrence and metastasis are the main causes of cancer mortality; traditional chemotherapeutic drugs have severe toxicity and side effects in cancer treatment. To overcome these issues, here, we present a pH-responsive, self-destructive intelligent nanoplatform for magnetic resonance/fluorescence dual-mode image-guided mitochondrial membrane potential damage (MMPD)/photodynamic (PDT)/photothermal (PTT)/immunotherapy for breast cancer treatment with external near infrared (NIR) light irradiation. To do so, we construct multifunctional monolayer-layered double hydroxide (LDH) nanosheets (MICaP), co-loading indocyanine green (ICG) with ultrahigh loading content realized via electrostatic interactions, and calcium phosphate (Ca3(PO4)2) coating via biomineralization. Such a combined therapy design is featured by the outstanding biocompatibility and provokes immunogenic cell death (ICD) of tumors toward cancer immunotherapy. The active transport of excess Ca2+ released from pH-sensitive Ca3(PO4)2 can induce MMPD of tumor cells to minimize oxygen consumption in the tumor microenvironment (TME). The presence of ICG not only generates singlet oxygen (1O2) to induce apoptosis by photodynamic therapy (PDT) but also initiates tumor cell necrosis by photothermal therapy (PTT) under near-infrared (NIR) light radiation. Eventually, the immune response generated by MMPD/PDT/PTT greatly promotes a cytotoxic T lymphocyte (CTL) response that can limit tumor growth and metastasis. Both in vitro and in vivo studies indeed illustrate outstanding antitumor efficiency and outcomes. We anticipate that such precisely designed nanoformulations can contribute in a useful and advantageous way that is conducive to explore novel nanomedicines with notable values in antitumor therapy.
Collapse
Affiliation(s)
- Bengao Zhu
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Fei Qu
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Duohang Bi
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Rui Geng
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Senbin Chen
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| |
Collapse
|
20
|
Liu C, Liao Y, Liu L, Xie L, Liu J, Zhang Y, Li Y. Application of injectable hydrogels in cancer immunotherapy. Front Bioeng Biotechnol 2023; 11:1121887. [PMID: 36815890 PMCID: PMC9935944 DOI: 10.3389/fbioe.2023.1121887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy is a revolutionary and promising approach to cancer treatment. However, traditional cancer immunotherapy often has the disadvantages of limited immune response rate, poor targeting, and low treatment index due to systemic administration. Hydrogels are drug carriers with many advantages. They can be loaded and transported with immunotherapeutic agents, chemical anticancer drugs, radiopharmaceuticals, photothermal agents, photosensitizers, and other therapeutic agents to achieve controlled release of drugs, extend the retention time of drugs, and thus successfully trigger anti-tumor effects and maintain long-term therapeutic effects after administration. This paper reviews recent advances in injectable hydrogel-based cancer immunotherapy, including immunotherapy alone, immunotherapy with combination chemotherapy, radiotherapy, phototherapy, and DNA hydrogel-based immunotherapy. Finally, we review the potential and limitations of injectable hydrogels in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Junbo Liu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yumao Zhang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuzhen Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Wang S, Zhou L, Tian H, Li B, Su M, Li Q, Nice EC, Huang C, Shao J, He T. Site-specific nanomodulator capable of modulation apoptosis for enhanced colorectal cancer chemo-photothermal therapy. J Nanobiotechnology 2023; 21:24. [PMID: 36670444 PMCID: PMC9863191 DOI: 10.1186/s12951-023-01779-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/26/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignancy with the second highest mortality and the third highest morbidity worldwide. However, the overall survival of patients is unsatisfactory, thus requiring more effective clinical strategies. Celastrol (CLT), a natural bioactive compound, has been reported to induce reactive oxygen species (ROS)-mediated apoptosis to exhibit significant antitumor effects against CRC. However, the poor water solubility, low targeting ability, and bioavailability of CLT have limited its application, and CLT-induced protective autophagy weakens its therapeutic efficiency. RESULTS We designed a targeted chemo-phototherapy nanoplatform (HCR NPs) to improve the application of CLT. The codelivery of IR820 and CLT in HCR NPs solved the water-soluble problem of CLT and enhanced apoptosis via IR820-mediated hyperthermia. In addition, hydroxychloroquine (HCQ) conjugated to hyaluronic acid (HA) not only increased the active targeting of HCR NPs but also inhibited CLT-induced protective autophagy to exacerbate apoptosis, thus achieving an amplified antitumor effect. Importantly, the HCR NPs exhibited an excellent therapeutic effect on CRC both in vitro and in vivo. CONCLUSION The HCR NPs presented in this study may not merely provide a new reference for the clinical application of CLT but also result in an attractive strategy for CRC treatment.
Collapse
Affiliation(s)
- Shuqi Wang
- grid.410578.f0000 0001 1114 4286Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Li Zhou
- grid.203458.80000 0000 8653 0555Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 China
| | - Hailong Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China, School of Basic Medical Sciences and Forensic Medicine, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041 China
| | - Bowen Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China, School of Basic Medical Sciences and Forensic Medicine, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041 China
| | - Miao Su
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China, School of Basic Medical Sciences and Forensic Medicine, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041 China
| | - Qiong Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China, School of Basic Medical Sciences and Forensic Medicine, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041 China
| | - Edouard C. Nice
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | - Canhua Huang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China, School of Basic Medical Sciences and Forensic Medicine, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041 China
| | - Jichun Shao
- grid.464276.50000 0001 0381 3718The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051 Sichuan China
| | - Tao He
- grid.410578.f0000 0001 1114 4286Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000 Sichuan China
| |
Collapse
|
22
|
Biomaterial-assisted photoimmunotherapy for synergistic suppression of cancer progression. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Shen J, Lin M, Ding M, Yu N, Yang C, Kong D, Sun H, Xie Z. Tumor immunosuppressive microenvironment modulating hydrogels for second near-infrared photothermal-immunotherapy of cancer. Mater Today Bio 2022; 16:100416. [PMID: 36105677 PMCID: PMC9465322 DOI: 10.1016/j.mtbio.2022.100416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
Immunotherapy has recently been seen as a hopeful therapeutic device to inhibit tumor growth and metastasis, while the curative efficacy is limited by intrinsic immunosuppressive tumor microenvironment. Herein, we reported a tumor immunosuppressive microenvironment modulating hydrogel (TIMmH) platform to achieve second near-infrared (NIR-II) photothermal therapy (PTT) combined immunotherapy for durable inhibition of breast cancer. This TIMmH platform was synthesized through co-loading of NIR-II photothermal nanoagent and an immunoadjuvant cytosine-phosphateguanosine oligodeoxynucleotides (CpG ODNs) into the alginate hydrogel (ALG). Upon the administration of ALG into the tumor, the TIMmH was in situ formed via the coordination effect with Ca2+, locally encapsulating the semiconducting polymer nanoparticles (SPIIN) and CpG in the colloid, achieving to prolong the accumulation time and prevent the premature damage and release of immunotherapeutic agents. Upon 1064-nm photoirradiation, the TIMmHSD was able to elevate the intratumoral temperature for the ablation of tumors, which could induce the apoptosis of tumor cells and achieve thermal immune activation by regulating of an immunosuppressive microenvironment. The TIMmH-mediated combined treatment effectively suppressed the growths of breast cancers, and even acquired a sustained inhibition of the lung metastasis. This study provides a novel tumor immunosuppressive microenvironment modulating hydrogel platform with NIR-II photoexcited capacity for the safe, effective and durable lung metastasis-inhibiting breast cancer treatment.
Collapse
Affiliation(s)
- Junjian Shen
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, PR China
| | - Minghui Lin
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, PR China
| | - Mengbin Ding
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Ningyue Yu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Chun Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Department of Cancer, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Deping Kong
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, PR China
| | - Haitao Sun
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Department of Cancer, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
- Corresponding author.
| | - Zongyu Xie
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, PR China
- Corresponding author.
| |
Collapse
|
24
|
Lee J, Kim D, Le QV, Oh YK. Nanotherapeutics for immune network modulation in tumor microenvironments. Semin Cancer Biol 2022; 86:1066-1087. [PMID: 34844846 DOI: 10.1016/j.semcancer.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023]
Abstract
Immunotherapy has shown promise in cancer treatment, and is thus drawing increasing interest in this field. While the standard chemotherapy- and/or radiotherapy-based cancer treatments aim to directly kill cancer cells, immunotherapy uses host immune cell surveillance to fight cancer. In the tumor environment, there is a close relationship between tumor cells and the adjacent immune cells, which are largely suppressed by cancer-related regulation of immune checkpoints, immune-suppressive cytokines, and metabolic factors. The immune modulators currently approved for cancer treatment remain limited by issues with dose tolerance and insufficient efficacy. Researchers have developed and tested various nano-delivery systems with the goal of improving the treatment outcome of these drugs. By encapsulating immune modulators in particles and directing their tissue accumulation, some such systems have decreased immune-related toxicity while sharpening the antitumor response. Surface-ligand modification of nanoparticles has allowed drugs to be delivered to specific immune cells types. Researchers have also studied strategies for depleting or reprogramming the immune-suppressive cells to recover the immune environment. Combining a nanomaterial with an external stimulus has been used to induce immunogenic cell death; this favors the inflammatory environment found in tumor tissues to promote antitumor immunity. The present review covers the most recent strategies aimed at modulating the tumor immune environment, and discusses the challenges and future perspectives in developing nanoparticles for cancer immunotherapy.
Collapse
Affiliation(s)
- Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Quoc-Viet Le
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
25
|
Photothermal-based nanomaterials and photothermal-sensing: An overview. Biosens Bioelectron 2022; 220:114883. [DOI: 10.1016/j.bios.2022.114883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 09/21/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
26
|
Wang P, Chen B, Zhan Y, Wang L, Luo J, Xu J, Zhan L, Li Z, Liu Y, Wei J. Enhancing the Efficiency of Mild-Temperature Photothermal Therapy for Cancer Assisting with Various Strategies. Pharmaceutics 2022; 14:2279. [PMID: 36365098 PMCID: PMC9695556 DOI: 10.3390/pharmaceutics14112279] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/30/2022] Open
Abstract
Conventional photothermal therapy (PTT) irradiates the tumor tissues by elevating the temperature above 48 °C to exert thermal ablation, killing tumor cells. However, thermal ablation during PTT harmfully damages the surrounding normal tissues, post-treatment inflammatory responses, rapid metastasis due to the short-term mass release of tumor-cellular contents, or other side effects. To circumvent this limitation, mild-temperature photothermal therapy (MTPTT) was introduced to replace PTT as it exerts its activity at a therapeutic temperature of 42-45 °C. However, the significantly low therapeutic effect comes due to the thermoresistance of cancer cells as MTPTT figures out some of the side-effects issues. Herein, our current review suggested the mechanism and various strategies for improving the efficacy of MTPTT. Especially, heat shock proteins (HSPs) are molecular chaperones overexpressed in tumor cells and implicated in several cellular heat shock responses. Therefore, we introduced some methods to inhibit activity, reduce expression levels, and hinder the function of HSPs during MTPTT treatment. Moreover, other strategies also were emphasized, including nucleus damage, energy inhibition, and autophagy mediation. In addition, some therapies, like radiotherapy, chemotherapy, photodynamic therapy, and immunotherapy, exhibited a significant synergistic effect to assist MTPTT. Our current review provides a basis for further studies and a new approach for the clinical application of MTPTT.
Collapse
Affiliation(s)
- Pei Wang
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Biaoqi Chen
- Institute of Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Yunyan Zhan
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Lianguo Wang
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Jun Luo
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Jia Xu
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Lilin Zhan
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Zhihua Li
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Yuangang Liu
- Institute of Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| |
Collapse
|
27
|
Li X, Hu L, Tan C, Wang X, Ran Q, Chen L, Li Z. Platelet-promoting drug delivery efficiency for inhibition of tumor growth, metastasis, and recurrence. Front Oncol 2022; 12:983874. [PMID: 36276066 PMCID: PMC9582853 DOI: 10.3389/fonc.2022.983874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Nanomedicines are considered one of the promising strategies for anticancer therapy; however, the low targeting efficiency of nanomedicines in vivo is a great obstacle to their clinical applications. Camouflaging nanomedicines with either platelet membrane (PM) or platelet would significantly prolong the retention time of nanomedicines in the bloodstream, enhance the targeting ability of nanomedicines to tumor cells, and reduce the off-target effect of nanomedicines in major organs during the anticancer treatment. In the current review, the advantages of using PM or platelet as smart carriers for delivering nanomedicines to inhibit tumor growth, metastasis, and recurrence were summarized. The opportunities and challenges of this camouflaging strategy for anticancer treatment were also discussed.
Collapse
Affiliation(s)
- Xiaoliang Li
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Lanyue Hu
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Chengning Tan
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaojie Wang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qian Ran
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Li Chen
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- *Correspondence: Li Chen, ; Zhongjun Li,
| | - Zhongjun Li
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burn and Combined Injuries, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- *Correspondence: Li Chen, ; Zhongjun Li,
| |
Collapse
|
28
|
Fan H, Yan T, Chen S, Du Z, Alimu G, Zhu L, Ma R, Tang X, Heng Y, Alifu N, Zhang X. Polydopamine encapsulated new indocyanine green theranostic nanoparticles for enhanced photothermal therapy in cervical cancer HeLa cells. Front Bioeng Biotechnol 2022; 10:984166. [PMID: 36213060 PMCID: PMC9534555 DOI: 10.3389/fbioe.2022.984166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Photothermal therapy (PTT) has attracted extensive attention in cancer treatment due to its non-invasiveness, high efficiency, and repeatability in recent years. Photothermal agents (PTAs) are the key factor for PTT. Recently, although an increasing number of PTAs have been developed, there is still a great demand for optimized photothermal nanoparticles (NPs) with low toxicity, bio-safety and stability. Herein, new indocyanine green (IR820) with near-infrared (NIR:700–1,700 nm) fluorescence emission was selected as a photothermal agent (PTA). To enhance the PTT property, IR820 was encapsulated with another kind of PTA, polydopamine (PDA) under alkaline conditions. Furthermore, to improve the biocompatibility of the NPs, methoxy polyethylene glycol amine (mPEG-NH2) was modified via a Michael addition to form a novel kind of IR820@PDA@PEG NPs. After detailed characterization and analysis, the obtained IR820@PDA@PEG NPs showed a spherical shape with an average diameter of ∼159.6 nm. Meanwhile, the formed IR820@PDA@PEG NPs exhibited better photostability and lower cytotoxicity than free IR820 molecules. The photothermal performance of IR820@PDA@PEG NPs was further analyzed in vitro, and the temperature of IR820@PDA@PEG NPs (100 μg/ml) reached 54.8°C under 793 nm laser irradiation. Afterwards, the cellular uptake of IR820@PDA@PEG NPs was evaluated via confocal laser scanning fluorescence microscopic imaging. Then, PTT experiments on HeLa cells demonstrated that IR820@PDA@PEG NPs can hyperthermal ablate cancer cells (∼49.1%) under 793 nm laser irradiation. Therefore, IR820@PDA@PEG NPs would be a promising PTA for the treatment of cervical cancer HeLa cells.
Collapse
Affiliation(s)
- Huimin Fan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| | - Ting Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Shuang Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhong Du
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Gulinigaer Alimu
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Lijun Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Rong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaohui Tang
- Central Laboratory of Xinjiang Medical University, Urumqi, China
| | - Youqiang Heng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Nuernisha Alifu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
- *Correspondence: Nuernisha Alifu, ; Xueliang Zhang,
| | - Xueliang Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
- *Correspondence: Nuernisha Alifu, ; Xueliang Zhang,
| |
Collapse
|
29
|
Kim J, Choi Y, Kim DH, Yoon HY, Kim K. Injectable Hydrogel-Based Combination Cancer Immunotherapy for Overcoming Localized Therapeutic Efficacy. Pharmaceutics 2022; 14:1908. [PMID: 36145656 PMCID: PMC9502377 DOI: 10.3390/pharmaceutics14091908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 02/05/2023] Open
Abstract
Various immunotherapeutic agents that can elicit antitumor immune responses have recently been developed with the potential for improved efficacy in treating cancer. However, insufficient delivery efficiency at the tumor site, along with severe side effects after systemic administration of these anticancer agents, have hindered their therapeutic application in cancer immunotherapy. Hydrogels that can be directly injected into tumor sites have been developed to help modulate or elicit antitumor responses. Based on the biocompatibility, degradability, and controllable mechanochemical properties of these injectable hydrogels, various types of immunotherapeutic agents, such as hydrophobic anticancer drugs, cytokines, antigens, and adjuvants, have been easily and effectively encapsulated, resulting in the successful elicitation of antitumor immune responses and the retention of long-term immunotherapeutic efficacy following administration. This review summarizes recent advances in combination immunotherapy involving injectable hydrogel-based chemoimmunotherapy, photoimmunotherapy, and radioimmunotherapy. Finally, we briefly discuss the current limitations and future perspectives on injectable hydrogels for the effective combination immunotherapy of tumors.
Collapse
Affiliation(s)
- Jeongrae Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seonbuk-gu, Seoul 02841, Korea
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 14 Gil 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Korea
| | - Yongwhan Choi
- Noxpharm Co. 924B, 14 Gil 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seonbuk-gu, Seoul 02841, Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 14 Gil 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Korea
| | - Kwangmeyung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seonbuk-gu, Seoul 02841, Korea
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 14 Gil 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Korea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
30
|
Yang A, Sheng S, Bai Y, Xing G, Yu X, Zhu D, Mei L, Dong X, Lv F. Hydrogel/nanoparticles-mediated Cooperative Combination of Antiangiogenesis and Immunotherapy. Acta Biomater 2022; 153:124-138. [DOI: 10.1016/j.actbio.2022.09.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/01/2022]
|
31
|
Zhu C, Fang Z, Peng L, Gao F, Peng W, Song F. Curcumin Suppresses the Progression of Colorectal Cancer by Improving Immunogenic Cell Death Caused by Irinotecan. Chemotherapy 2022; 67:211-222. [DOI: 10.1159/000518121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/27/2021] [Indexed: 11/19/2022]
Abstract
<b><i>Background:</i></b> Irinotecan (IRI) is a common chemotherapeutic drug for colorectal cancer; however, the mechanism underlying its immunomodulatory effect remains unclear. Curcumin (CUR), an adjuvant drug with anti-inflammatory and antitumor effects, has been studied extensively, although its synergistic antitumor effect remains unclear. <b><i>Methods:</i></b> The effects of CUR and IRI on oxidative stress and their antitumor effects were detected by flow cytometry. Endoplasmic reticulum stress-related proteins including CHOP and BiP, and immunogenic cell death (ICD) proteins including calreticulin (CALR) and high mobility group box 1 (HMGB1), were detected by Western blotting. IFN-γ and TNF-α levels in the serum of mice were detected by ELISA. <b><i>Results:</i></b> IRI in combination with CUR had synergistic antitumor effects in CT-26 colon carcinoma cells. Combination treatment with IRI and CUR was more effective than IRI or CUR alone. IRI and CUR combination treatment significantly upregulated ICD-related proteins including CALR and HMGB1 and had a greater antitumor effect than IRI or CUR single treatment in vivo. CUR may synergistically improve the antitumor effect of IRI by promoting the ICD effect. <b><i>Conclusion:</i></b> Combination therapy with IRI and CUR may be an option for first-line chemotherapy in some patients with advanced colorectal cancer.
Collapse
|
32
|
Cyclodextrin-Based Nanoplatforms for Tumor Phototherapy: An Update. Pharmaceutics 2022; 14:pharmaceutics14071375. [PMID: 35890271 PMCID: PMC9323899 DOI: 10.3390/pharmaceutics14071375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Tumor phototherapies are light-mediated tumor treatment modalities, which usually refer to tumor photothermal therapy (PTT) and photodynamic therapy (PDT). Due to the outstanding spatial-temporal control over treatment through light irradiation, tumor phototherapies display extremely low side effects during treatment and are believed to be a tumor treatment method with a clinical translation potential. However, current tumor phototherapy nanoplatforms face obstacles, including light irradiation-induced skin burning, tumor hypoxia microenvironments, limited light penetration depth, et al. Therefore, one important research direction is developing a tumor phototherapy nanoplatform with multifunctionality and enhanced pharmacological effects to overcome the complexity of tumor treatment. On the other hand, cyclodextrins (CDs) are starch-originated circular oligosaccharides with negligible toxicity and have been used to form supermolecular nanostructures through a host–guest interaction between the inner cavity of CDs and functional biomolecules. In the past few years, numerous studies have focused on CD-based multifunctional tumor phototherapy nanoplatforms with an enhanced photoeffect, responsive morphological transformation, and elevated drug bioavailability. This review focuses on the preparation methods of CD-based tumor phototherapy nanoplatforms and their unique physiochemical properties for improving anti-tumor pharmacological efficacy.
Collapse
|
33
|
Nie W, Chen J, Wang B, Gao X. Nonviral vector system for cancer immunogene therapy. MEDCOMM – BIOMATERIALS AND APPLICATIONS 2022. [DOI: 10.1002/mba2.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wen Nie
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu PR China
| | - Jing Chen
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu PR China
| | - Bilan Wang
- Department of Pharmacy West China Second University Hospital of Sichuan University Chengdu PR China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu PR China
| |
Collapse
|
34
|
Heptamethine Cyanine-Loaded Nanomaterials for Cancer Immuno-Photothermal/Photodynamic Therapy: A Review. Pharmaceutics 2022; 14:pharmaceutics14051015. [PMID: 35631600 PMCID: PMC9144181 DOI: 10.3390/pharmaceutics14051015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
The development of strategies capable of eliminating metastasized cancer cells and preventing tumor recurrence is an exciting and extremely important area of research. In this regard, therapeutic approaches that explore the synergies between nanomaterial-mediated phototherapies and immunostimulants/immune checkpoint inhibitors have been yielding remarkable results in pre-clinical cancer models. These nanomaterials can accumulate in tumors and trigger, after irradiation of the primary tumor with near infrared light, a localized temperature increase and/or reactive oxygen species. These effects caused damage in cancer cells at the primary site and can also (i) relieve tumor hypoxia, (ii) release tumor-associated antigens and danger-associated molecular patterns, and (iii) induced a pro-inflammatory response. Such events will then synergize with the activity of immunostimulants and immune checkpoint inhibitors, paving the way for strong T cell responses against metastasized cancer cells and the creation of immune memory. Among the different nanomaterials aimed for cancer immuno-phototherapy, those incorporating near infrared-absorbing heptamethine cyanines (Indocyanine Green, IR775, IR780, IR797, IR820) have been showing promising results due to their multifunctionality, safety, and straightforward formulation. In this review, combined approaches based on phototherapies mediated by heptamethine cyanine-loaded nanomaterials and immunostimulants/immune checkpoint inhibitor actions are analyzed, focusing on their ability to modulate the action of the different immune system cells, eliminate metastasized cancer cells, and prevent tumor recurrence.
Collapse
|
35
|
Zhang Y, Sun Y, Dong X, Wang QS, Zhu D, Mei L, Yan H, Lv F. A Platelet Intelligent Vehicle with Navigation for Cancer Photothermal-Chemotherapy. ACS NANO 2022; 16:6359-6371. [PMID: 35324149 DOI: 10.1021/acsnano.2c00453] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Controllable and visible delivery of therapeutic agents is critical for tumor precise therapy. Tumor targeting and deep penetration of therapeutic agents are still challenging issues for controllable delivery. Visible drug delivery with imaging navigation can optimize the treatment window for personalized medicine. Herein, a biomimetic platelet intelligent vehicle with navigation (IRDNP-PLT) was developed to achieve controllable and visible delivery with a navigation system, a driving system, and a loading system. The platelets acted as engines and drug repositories to exert the target driving and delivery functions. The fluorescent photothermal agent IR-820 was introduced in the platform to offer an imaging navigation for the intelligent platelet vehicle in addition to photothermal therapy. The nanodrug-loaded platelets enabled efficient drug loading and controlled release of the therapeutic payload by encapsulating photothermal-/pH-sensitive chemotherapeutic nanoparticles (PDA@Dox NPs). In in vivo experiments on 4T1 tumor-bearing mice models, IRDNP-PLT performed well in tumor targeting and showed excellent therapeutic efficacy and tumor recurrence prevention ability. The intelligent platelet vehicle achieved the functions of tumor targeting and deep penetration, fluorescence imaging guidance, photocontrolled drug release, and chemo-photothermal combination therapy, suggesting the advancement for tumor precise delivery and efficient therapy.
Collapse
Affiliation(s)
- Yan Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Yuanchao Sun
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Xia Dong
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Qiang-Song Wang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Husheng Yan
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Feng Lv
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| |
Collapse
|
36
|
Liu K, Liao Y, Zhou Z, Zhang L, Jiang Y, Lu H, Xu T, Yang D, Gao Q, Li Z, Tan S, Cao W, Chen F, Li G. Photothermal-triggered immunogenic nanotherapeutics for optimizing osteosarcoma therapy by synergizing innate and adaptive immunity. Biomaterials 2022; 282:121383. [DOI: 10.1016/j.biomaterials.2022.121383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 12/20/2022]
|
37
|
Ding J, Wang T, Chen Z, Lin Z, Chen X, He C. Enhanced antitumor chemo‐immunotherapy by local co‐delivery of chemotherapeutics, immune checkpoint blocking antibody and
IDO
inhibitor using an injectable polypeptide hydrogel. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ding
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin P. R. China
- College of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui P. R. China
| | - Tianran Wang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin P. R. China
- College of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui P. R. China
| | - Zhixiong Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin P. R. China
- College of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui P. R. China
| | - Zhiqiang Lin
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin P. R. China
- College of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui P. R. China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin P. R. China
- College of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui P. R. China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin P. R. China
- College of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui P. R. China
| |
Collapse
|
38
|
Zhao J, Ye H, Lu Q, Wang K, Chen X, Song J, Wang H, Lu Y, Cheng M, He Z, Zhai Y, Zhang H, Sun J. Inhibition of post-surgery tumour recurrence via a sprayable chemo-immunotherapy gel releasing PD-L1 antibody and platelet-derived small EVs. J Nanobiotechnology 2022; 20:62. [PMID: 35109878 PMCID: PMC8812025 DOI: 10.1186/s12951-022-01270-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/17/2022] [Indexed: 12/28/2022] Open
Abstract
Background Melanoma is the most serious type of skin cancer, and surgery is an effective method to treat melanoma. Unfortunately, local residual micro-infiltrated tumour cells and systemic circulating tumour cells (CTCs) are significant causes of treatment failure, leading to tumour recurrence and metastasis. Methods Small EVs were isolated from platelets by differential centrifugation, and doxorubicin-loaded small EVs (PexD) was prepared by mixing small EVs with doxorubicin (DOX). PexD and an anti-PD-L1 monoclonal antibody (aPD-L1) were co-encapsulated in fibrin gel. The synergistic antitumour efficacy of the gel containing PexD and aPD-L1 was assessed both in vitro and in vivo. Results Herein, we developed an in situ-formed bioresponsive gel combined with chemoimmunotherapeutic agents as a drug reservoir that could effectively inhibit both local tumour recurrence and tumour metastasis. In comparison with a DOX solution, PexD could better bind to tumour cells, induce more tumour immunogenic cell death (ICD) and promote a stronger antitumour immune response. PexD could enter the blood circulation through damaged blood vessels to track and eliminate CTCs. The concurrent release of aPD-L1 at the tumour site could impair the PD-1/PD-L1 pathway and restore the tumour-killing effect of cytotoxic T cells. This chemoimmunotherapeutic strategy triggered relatively strong T cell immune responses, significantly improving the tumour immune microenvironment. Conclusion Our findings indicated that the immunotherapeutic fibrin gel could “awaken” the host innate immune system to inhibit both local tumour recurrence post-surgery and metastatic potential, thus, it could serve as a promising approach to prevent tumour recurrence. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01270-7.
Collapse
Affiliation(s)
- Jian Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Hao Ye
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China.,Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, 8092, Zurich, Switzerland
| | - Qi Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Xiaofeng Chen
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Jiaxuan Song
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Helin Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Yutong Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Yinglei Zhai
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Haotian Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China.
| |
Collapse
|
39
|
Chen W, Zhang C, Chen D, Li Y, Wu S, Xu C, Su L, Zhang Q. Tumor redox microenvironment modulating composite hydrogels for enhanced sonodynamic therapy of colorectal cancer. J Mater Chem B 2022; 10:1960-1968. [DOI: 10.1039/d2tb00170e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effective treatment of colorectal cancer is important to improve the quality of life for patients, which however remains a great challenge in the clinic. Herein, we report the construction of...
Collapse
|
40
|
Manivasagan P, Joe A, Han HW, Thambi T, Selvaraj M, Chidambaram K, Kim J, Jang ES. Recent advances in multifunctional nanomaterials for photothermal-enhanced Fenton-based chemodynamic tumor therapy. Mater Today Bio 2022; 13:100197. [PMID: 35036895 PMCID: PMC8753377 DOI: 10.1016/j.mtbio.2021.100197] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Photothermal (PT)-enhanced Fenton-based chemodynamic therapy (CDT) has attracted a significant amount of research attention over the last five years as a highly effective, safe, and tumor-specific nanomedicine-based therapy. CDT is a new emerging nanocatalyst-based therapeutic strategy for the in situ treatment of tumors via the Fenton reaction or Fenton-like reaction, which has got fast progress in recent years because of its high specificity and activation by endogenous substances. A variety of multifunctional nanomaterials such as metal-, metal oxide-, and metal-sulfide-based nanocatalysts have been designed and constructed to trigger the in situ Fenton or Fenton-like reaction within the tumor microenvironment (TME) to generate highly cytotoxic hydroxyl radicals (•OH), which is highly efficient for the killing of tumor cells. However, research is still required to enhance the curative outcomes and minimize its side effects. Specifically, the therapeutic efficiency of certain CDTs is still hindered by the TME, including low levels of endogenous hydrogen peroxide (H2O2), overexpression of reduced glutathione (GSH), and low catalytic efficacy of Fenton or Fenton-like reactions (pH 5.6-6.8), which makes it difficult to completely cure cancer using monotherapy. For this reason, photothermal therapy (PTT) has been utilized in combination with CDT to enhance therapeutic efficacy. More interestingly, tumor heating during PTT not only causes damage to the tumor cells but can also accelerate the generation of •OH via the Fenton and Fenton-like reactions, thus enhancing the CDT efficacy, providing more effective cancer treatment when compared with monotherapy. Currently, synergistic PT-enhanced CDT using multifunctional nanomaterials with both PT and chemodynamic properties has made enormous progress in cancer theranostics. However, there has been no comprehensive review on this subject published to date. In this review, we first summarize the recent progress in PT-enhanced Fenton-based CDT for cancer treatment. We then discuss the potential and challenges in the future development of PT-enhanced Fenton-based nanocatalytic tumor therapy for clinical application.
Collapse
Affiliation(s)
- Panchanathan Manivasagan
- Department of Chemical and Biological Engineering and R&E Center for Chemical and Biological Engineering (BK21 FOUR), Korea University, Seoul, 02841, Republic of Korea
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Ara Joe
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Hyo-Won Han
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Thavasyappan Thambi
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology & Toxicology, School of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Jungbae Kim
- Department of Chemical and Biological Engineering and R&E Center for Chemical and Biological Engineering (BK21 FOUR), Korea University, Seoul, 02841, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Eue-Soon Jang
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk, 39177, Republic of Korea
| |
Collapse
|
41
|
Wang H, Liu Y, Zhu X, Chen C, Fu Z, Wang M, Lin D, Chen Z, Lu C, Yang H. Multistage Cooperative Nanodrug Combined with PD-L1 for Enhancing Antitumor Chemoimmunotherapy. Adv Healthc Mater 2021; 10:e2101199. [PMID: 34382363 DOI: 10.1002/adhm.202101199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Combinatorial CpG oligonucleotide (CPG) and chemotherapy drug represent a promising approach to reactivate immune system. However, these two agents possess different physicochemical properties, hindering the application of direct self-assembly of these two cargos into a single nanostructure. Here, a multistage cooperative nanodrug is developed by the direct self-assembly of cis-platinum (CDDP, Pt), l-arginine (l-Arg, R), and CPG (defined as PtR/CPG) for antitumor chemoimmunotherapy. First, the CDDP can induce cell apoptosis. Meanwhile, CDDP also promotes the production of H2 O2 , catalyzing the conversion of l-Arg into nitric oxide (NO). The generated NO decreases the multidrug resistance of cells toward CDDP. Thus, the synergistic effects of CDDP and NO can trigger immunogenic cell death to produce tumor-associated antigens (TAAs). The TAAs and CPG will induce the maturation of dendritic cells (DCs) and enhance antigen presentation ability of DCs. In this way, the PtR/CPG can reverse the immunosuppressive microenvironment, sensitizing tumors to immune checkpoint inhibitors mediated by the programmed death-ligand 1 (PD-L1) antibody. Furthermore, the PtR/CPG combined with the PD-L1 antibody decreases the exhaustion and dysfunction of cytotoxic T lymphocytes to elicit durable systemic immune response. As a result, the prepared PtR/CPG nanodrug in combination with PD-L1 may be highly significant for cancer immunotherapy.
Collapse
Affiliation(s)
- Haihui Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| | - Yongfei Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| | - Xiaohui Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| | - Chengyun Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| | - Zhangcheng Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| | - Min Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| | - Danying Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| | - Zhaowei Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| |
Collapse
|
42
|
Sun J, Xing F, Braun J, Traub F, Rommens PM, Xiang Z, Ritz U. Progress of Phototherapy Applications in the Treatment of Bone Cancer. Int J Mol Sci 2021; 22:ijms222111354. [PMID: 34768789 PMCID: PMC8584114 DOI: 10.3390/ijms222111354] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Bone cancer including primary bone cancer and metastatic bone cancer, remains a challenge claiming millions of lives and affecting the life quality of survivors. Conventional treatments of bone cancer include wide surgical resection, radiotherapy, and chemotherapy. However, some bone cancer cells may remain or recur in the local area after resection, some are highly resistant to chemotherapy, and some are insensitive to radiotherapy. Phototherapy (PT) including photodynamic therapy (PDT) and photothermal therapy (PTT), is a clinically approved, minimally invasive, and highly selective treatment, and has been widely reported for cancer therapy. Under the irradiation of light of a specific wavelength, the photosensitizer (PS) in PDT can cause the increase of intracellular ROS and the photothermal agent (PTA) in PTT can induce photothermal conversion, leading to the tumoricidal effects. In this review, the progress of PT applications in the treatment of bone cancer has been outlined and summarized, and some envisioned challenges and future perspectives have been mentioned. This review provides the current state of the art regarding PDT and PTT in bone cancer and inspiration for future studies on PT.
Collapse
Affiliation(s)
- Jiachen Sun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Joy Braun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Frank Traub
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Pol Maria Rommens
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
- Correspondence: (Z.X.); (U.R.)
| | - Ulrike Ritz
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Correspondence: (Z.X.); (U.R.)
| |
Collapse
|
43
|
Yang A, Bai Y, Dong X, Ma T, Zhu D, Mei L, Lv F. Hydrogel/nanoadjuvant-mediated combined cell vaccines for cancer immunotherapy. Acta Biomater 2021; 133:257-267. [PMID: 34407475 DOI: 10.1016/j.actbio.2021.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/29/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022]
Abstract
Combined cell vaccines of tumor whole cells and dendritic cells (DCs) provide an effective individualized immunotherapy for malignant tumors. We propose an innovative strategy termed "biomaterial-mediated combined cell vaccines for immunotherapy," which combines tumor cell and DC vaccines with a cyclodextrin-polyethylene glycol hydrogel and a cytosine-phosphate-guanine (CpG) nanoadjuvant. The nanoadjuvant promotes antigen presentation and amplifies immune-eliciting potency by co-delivery of antigens and adjuvants. The hydrogel scaffold provides a better growth microenvironment for injected exogenous DCs and recruits endogenous DCs to maintain their viability for synergistic effect. The results indicated that, relative to live tumor cells, the immunogenically dying tumor cells activated DC maturation effectively with the auxiliary effect of immune adjuvant CpG nanoparticles. The increased T cell percentage, proliferation ability, cytokine secretion, and cytotoxic effect revealed the enhanced immunogenicity of the combined cell vaccines. The combined hydrogel/nanoadjuvant system showed the best efficiency in inhibiting tumor growth. Moreover, vaccination with a single dose of hydrogel-based combined vaccines significantly delayed the development of tumors. The biomaterial-mediated combined cell vaccines remarkably increased the infiltration of effector T cells, alleviated the intratumoral immunosuppressive microenvironment, and maximized the immune effect of the vaccines, thus improving cancer immunotherapy. STATEMENT OF SIGNIFICANCE: Cell-based vaccines, including tumor whole-cell vaccine or DC vaccine, have attracted wide attention as an effective method for cancer immunotherapy. However, it is difficult to gain satisfactory outcomes in clinical trials because of the low immunogenicity of tumor whole cell vaccine and the short-term survival of transferred DC vaccine. Therefore, improving the ability of cell-based vaccines to induce a strong and durable immune response is the primary objective for vaccine development. Biomaterial-mediated combined cell vaccines is an innovative strategy for cancer immunotherapy. The combined hydrogel/ nanoadjuvant system comprises immunogenically dying tumor cells, DCs, and nanoadjuvants. Nanoadjuvant-loaded immunogenically dying tumor cells can induce efficient immune response as the tumor cell vaccine. The hydrogel-based combined tumor cell/DC vaccine could be used for individualized immunotherapy.
Collapse
Affiliation(s)
- Afeng Yang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Yun Bai
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Xia Dong
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| | - Teng Ma
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Feng Lv
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| |
Collapse
|
44
|
Liu S, Liu H, Song X, Jiang A, Deng Y, Yang C, Sun D, Jiang K, Yang F, Zheng Y. Adoptive CD8 +T-cell grafted with liposomal immunotherapy drugs to counteract the immune suppressive tumor microenvironment and enhance therapy for melanoma. NANOSCALE 2021; 13:15789-15803. [PMID: 34528979 DOI: 10.1039/d1nr04036g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The immunosuppressive tumor microenvironment has become a formidable obstacle to the treatment of tumors using adoptive T cell therapy, in particular solid tumors. For the purposes of addressing this issue, effector OT-1 CD8+T cells conjugated with liposomal immune regulators (CD8-T-LP-CpG/CD8-T-LP-BMS-202) were developed. An anionic liposome formulation was employed to avoid T cell aggregation and prevent unfavorable side-effects. The inclusion of EGCG in the LP-CpG formulation facilitated the formation of compact complexes with poly lysine (PLL) and is thus expected to increase the stability. CD8-T-LP-CpG administered with a median dose of CpG (20 μg per mouse) markedly reduced the frequency of tumor infiltrating polymorphonuclear leukocyte myeloid-derived suppressor cells (PMN-MDSCs) (20-folds), M2-like macrophages (8-folds), regulatory T-cells (Treg) (2.7-folds), and consequently increased the frequency of cytotoxic CD8+T cells in tumor-infiltrating lymphocytes (TILs) (2-folds) and splenic effector memory CD8+T cells (3-folds) relative to the phosphate buffered saline (PBS) control group. Furthermore, the absolute number of tumor infiltrating lymphocyte subtypes altered followed a consistent trend. The difference remained significant compared to the OT-1 CD8+T cells and the drug-loaded liposome combination group. According to in vivo imaging of CD8-T-LP-DiD, we assumed that the improvement in regulation of the tumor microenvironment of LP-CpG/LP-BMS-202 was attributed to the enhanced drug transportation to the tumor site aided by tumor-specific OT-1 CD8+T cells. In addition, CD8-T-LP-BMS-202 administered with a low dose of BMS-202 (1.5 mg per kg body weight) exerted a dramatically improved therapeutic effect by reducing the tumor infiltrating PMN-MDSCs and M2-like macrophages and the corresponding promoted cytotoxic CD8+T cell recruitment in the TILs and effector memory CD8+T cells mediated anti-tumor immunity. In summary, immune therapy drugs backpacked onto adoptive T cell therapy provides a feasible strategy to improve the therapeutic effect and could result in future clinical translation.
Collapse
Affiliation(s)
- Simeng Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China.
| | - Huimin Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China.
| | - Xiaoshuang Song
- State Key Laboratory of Biotherapy/Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China.
| | - Ailing Jiang
- State Key Laboratory of Biotherapy/Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China.
| | - Yuchuan Deng
- State Key Laboratory of Biotherapy/Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China.
| | - Chengli Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China.
| | - Dan Sun
- State Key Laboratory of Biotherapy/Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China.
| | - Kun Jiang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Fan Yang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Zheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
45
|
Lee D, Huntoon K, Wang Y, Jiang W, Kim BYS. Harnessing Innate Immunity Using Biomaterials for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007576. [PMID: 34050699 DOI: 10.1002/adma.202007576] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/29/2021] [Indexed: 06/12/2023]
Abstract
The discovery of immune checkpoint blockade has revolutionized the field of immuno-oncology and established the foundation for developing various new therapies that can surpass conventional cancer treatments. Most recent immunotherapeutic strategies have focused on adaptive immune responses by targeting T cell-activating pathways, genetic engineering of T cells with chimeric antigen receptors, or bispecific antibodies. Despite the unprecedented clinical success, these T cell-based treatments have only benefited a small proportion of patients. Thus, the need for the next generation of cancer immunotherapy is driven by identifying novel therapeutic molecules or new immunoengineered cells. To maximize the therapeutic potency via innate immunogenicity, the convergence of innate immunity-based therapy and biomaterials is required to yield an efficient index in clinical trials. This review highlights how biomaterials can efficiently reprogram and recruit innate immune cells in tumors and ultimately initiate activation of T cell immunity against advanced cancers. Moreover, the design and specific biomaterials that improve innate immune cells' targeting ability to selectively activate immunogenicity with minimal adverse effects are discussed.
Collapse
Affiliation(s)
- DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
46
|
Kumar AVP, Dubey SK, Tiwari S, Puri A, Hejmady S, Gorain B, Kesharwani P. Recent advances in nanoparticles mediated photothermal therapy induced tumor regression. Int J Pharm 2021; 606:120848. [PMID: 34216762 DOI: 10.1016/j.ijpharm.2021.120848] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022]
Abstract
Photothermal therapy (PTT) is a minimally invasive procedure for treating cancer. The two significant prerequisites of PTT are the photothermal therapeutic agent (PTA) and near-infrared radiation (NIR). The PTA absorbs NIR, causing hyperthermia in the malignant cells. This increased temperature at the tumor microenvironment finally results in tumor cell damage. Nanoparticles play a crucial role in PTT, aiding in the passive and active targeting of the PTA to the tumor microenvironment. Through enhanced permeation and retention effect and surface-engineering, specific targeting could be achieved. This novel delivery tool provides the advantages of changing the shape, size, and surface attributes of the carriers containing PTAs, which might facilitate tumor regression significantly. Further, inclusion of surface engineering of nanoparticles is facilitated through ligating ligands specific to overexpressed receptors on the cancer cell surface. Thus, transforming nanoparticles grants the ability to combine different treatment strategies with PTT to enhance cancer treatment. This review emphasizes properties of PTAs, conjugated biomolecules of PTAs, and the combinatorial techniques for a better therapeutic effect of PTT using the nanoparticle platform.
Collapse
Affiliation(s)
- Achalla Vaishnav Pavan Kumar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sunil K Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India.
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow 226002, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Siddhanth Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
47
|
Zhang X, Tan B, Wu Y, Zhang M, Liao J. A Review on Hydrogels with Photothermal Effect in Wound Healing and Bone Tissue Engineering. Polymers (Basel) 2021; 13:2100. [PMID: 34202237 PMCID: PMC8271463 DOI: 10.3390/polym13132100] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 02/05/2023] Open
Abstract
Photothermal treatment (PTT) is a promising strategy to deal with multidrug-resistant bacteria infection and promote tissue regeneration. Previous studies demonstrated that hyperthermia can effectively inhibit the growth of bacteria, whereas mild heat can promote cell proliferation, further accelerating wound healing and bone regeneration. Especially, hydrogels with photothermal properties could achieve remotely controlled drug release. In this review, we introduce a photothermal agent hybrid in hydrogels for a photothermal effect. We also summarize the potential mechanisms of photothermal hydrogels regarding antibacterial action, angiogenesis, and osteogenesis. Furthermore, recent developments in photothermal hydrogels in wound healing and bone regeneration applications are introduced. Finally, future application of photothermal hydrogels is discussed. Hydrogels with photothermal effects provide a new direction for wound healing and bone regeneration, and this review will give a reference for the tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.Z.); (B.T.); (Y.W.); (M.Z.)
| |
Collapse
|
48
|
Immunological effects of nano-enabled hyperthermia for solid tumors: opportunity and challenge. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Huang X, Lu Y, Guo M, Du S, Han N. Recent strategies for nano-based PTT combined with immunotherapy: from a biomaterial point of view. Theranostics 2021; 11:7546-7569. [PMID: 34158866 PMCID: PMC8210617 DOI: 10.7150/thno.56482] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/23/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer has been a great threat to humans for decades. Due to the limitations of monotherapy, combinational therapies such as photothermal therapy (PTT) and immunotherapy have gained increasing attention with expectation to overcome the shortfalls of each other and obtain satisfactory therapeutic outcomes. PTT can inhibit primary tumors by thermal ablation but usually fails to achieve complete eradication and cannot prevent metastasis and recurrence. Meanwhile, the efficacy of immunotherapy is usually attenuated by the weak immunogenicity of tumor and the immunosuppressive tumor microenvironment (ITM). Therefore, many recent studies have attempted to synergize PTT with immunotherapy in order to enhance the therapeutic efficacy. In this review, we aim to summarize the cutting-edge strategies in combining nano-based PTT with immunotherapy for cancer treatment. Herein, the combination strategies were mainly classified into four categories, including 1) nano-based PTT combined with antigens to induce host immune responses; 2) nano-based PTT in combination with immune adjuvants acting as in situ vaccines; 3) nano-based PTT synergized with immune checkpoint blockade or other regulators to relieve the ITM; 4) nano-based PTT combined with CAR-T therapy or cytokine therapy for tumor treatment. The characteristics of various photothermal agents and nanoplatforms as well as the immunological mechanisms for the synergism were also introduced in detail. Finally, we discussed the existing challenges and future prospects in combined PTT and immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ning Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
50
|
Xuan Y, Guan M, Zhang S. Tumor immunotherapy and multi-mode therapies mediated by medical imaging of nanoprobes. Theranostics 2021; 11:7360-7378. [PMID: 34158855 PMCID: PMC8210602 DOI: 10.7150/thno.58413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy is an effective tumor treatment strategy that has several advantages over conventional methods such as surgery, radiotherapy and chemotherapy. Studies show that multifunctional nanoprobes can achieve multi-mode image-guided multiple tumor treatment modes. The tumor cells killed by chemotherapies or phototherapies release antigens that trigger an immune response and augment the effects of tumor immunotherapy. Thus, combining immunotherapy and multifunctional nanoprobes can achieve early cancer diagnosis and treatment. In this review, we have summarized the current research on the applications of multifunctional nanoprobes in image-guided immunotherapy. In addition, image-guided synergistic chemotherapy/photothermal therapy/photodynamic therapy and immunotherapy have also been discussed. Furthermore, the application potential and clinical prospects of multifunctional nanoprobes in combination with immunotherapy have been assessed.
Collapse
Affiliation(s)
| | | | - Shubiao Zhang
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, 116600, China
| |
Collapse
|