1
|
Deng S, Zhang S, Shen T, Wang X, Gao Z, Zhang W, Dai K, Wang J, Liu C. Amphiphilic cytokine traps remodel marrow adipose tissue for hematopoietic microenvironment amelioration. Bioact Mater 2024; 42:226-240. [PMID: 39285915 PMCID: PMC11404087 DOI: 10.1016/j.bioactmat.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is extensively employed in the treatment of hematological malignancies but is markedly constrained by the paucity of hematopoietic stem/progenitor cells (HSPCs). Recent studies have found that marrow adipose tissue (MAT) acts on hematopoiesis through complicated mechanisms. Therefore, the osteo-organoids fabricated in vivo using biomaterials loaded with recombinant human bone morphogenetic protein 2 (rhBMP-2) have been used as models of MAT for our research. To obtain sufficient amounts of therapeutic HSPCs and healthy MAT, we have developed amphiphilic chitosan (AC)-gelatin as carriers of rhBMP-2 to the regulate type conversion of adipose tissue and trap hematopoietic growth factors. Unlike medicine interventions or cell therapies, the traps based on AC not only attenuate the occupancy of adipocytes within the hematopoietic microenvironment while preserving stem cell factor concentrations, but also improve marrow metabolism by promoting MAT browning. In conclusion, this approach increases the proportion of HSPCs in osteo-organoids, and optimizes the composition and metabolic status of MAT. These findings furnish an experimental basis for regulating hematopoiesis in vivo through materials that promote the development of autologous HSPCs. Additionally, this approach presents a theoretical model of rapid adipogenesis for the study of adipose-related pathologies and potential pharmacological targets.
Collapse
Affiliation(s)
- Shunshu Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Shuang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Tong Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xuanlin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Zehua Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Wenchao Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Kai Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
2
|
Łuczak JW, Palusińska M, Matak D, Pietrzak D, Nakielski P, Lewicki S, Grodzik M, Szymański Ł. The Future of Bone Repair: Emerging Technologies and Biomaterials in Bone Regeneration. Int J Mol Sci 2024; 25:12766. [PMID: 39684476 DOI: 10.3390/ijms252312766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Bone defects and fractures present significant clinical challenges, particularly in orthopedic and maxillofacial applications. While minor bone defects may be capable of healing naturally, those of a critical size necessitate intervention through the use of implants or grafts. The utilization of traditional methodologies, encompassing autografts and allografts, is constrained by several factors. These include the potential for donor site morbidity, the restricted availability of suitable donors, and the possibility of immune rejection. This has prompted extensive research in the field of bone tissue engineering to develop advanced synthetic and bio-derived materials that can support bone regeneration. The optimal bone substitute must achieve a balance between biocompatibility, bioresorbability, osteoconductivity, and osteoinductivity while simultaneously providing mechanical support during the healing process. Recent innovations include the utilization of three-dimensional printing, nanotechnology, and bioactive coatings to create scaffolds that mimic the structure of natural bone and enhance cell proliferation and differentiation. Notwithstanding the advancements above, challenges remain in optimizing the controlled release of growth factors and adapting materials to various clinical contexts. This review provides a comprehensive overview of the current advancements in bone substitute materials, focusing on their biological mechanisms, design considerations, and clinical applications. It explores the role of emerging technologies, such as additive manufacturing and stem cell-based therapies, in advancing the field. Future research highlights the need for multidisciplinary collaboration and rigorous testing to develop advanced bone graft substitutes, improving outcomes and quality of life for patients with complex defects.
Collapse
Affiliation(s)
- Julia Weronika Łuczak
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8, Bldg. 23, 02-786 Warsaw, Poland
| | - Małgorzata Palusińska
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Damian Matak
- European Biomedical Institute, 05-410 Jozefów, Poland
| | - Damian Pietrzak
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Sławomir Lewicki
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, Pl. Żelaznej Bramy 10, 00-136 Warsaw, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8, Bldg. 23, 02-786 Warsaw, Poland
| | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
- European Biomedical Institute, 05-410 Jozefów, Poland
| |
Collapse
|
3
|
Zhu F, Ji L, Dai K, Deng S, Wang J, Liu C. In situ licensing of mesenchymal stem cell immunomodulatory function via BMP-2 induced developmental process. Proc Natl Acad Sci U S A 2024; 121:e2410579121. [PMID: 39565311 PMCID: PMC11621467 DOI: 10.1073/pnas.2410579121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
The immunomodulatory function of mesenchymal stem cells (MSCs) is plastic and susceptible to resident microenvironment in vivo or inflammatory factors in vitro. We propose a unique method to enhance the immunoregulatory functions of mesenchymal stem cells (MSCs) through an artificially controllable in vivo inflammatory microenvironment generated by biomaterials loaded with BMP-2 that induce bone development. MSCs activated through this method effectively induce M1 macrophage polarization toward the M2 phenotype, promote differentiation of naïve T cells into regulatory T cells, and inhibit the proliferation of activated T cells via prostaglandin E2 (PGE2) secretion. This in vivo licensing not only preserves the immunogenicity of MSCs but also alters DNA methylation patterns, enabling MSCs to exhibit immunoregulatory effects with epigenetic memory. Validation in a mouse colitis model demonstrated their therapeutic efficacy and long-term viability. Furthermore, we found that the material composition influences the inflammatory response during development, with polysaccharide-based biomaterials proving advantageous over protein-based materials in establishing an inflammatory niche conducive to MSC activity. These findings underscore the potential of tissue engineering to create in vivo environments that license MSCs, offering a strategic avenue to enhance MSC-based therapies for addressing significant immune disorders.
Collapse
Affiliation(s)
- Fuwei Zhu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- School of Materials Science and Engineering, Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Luli Ji
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- School of Materials Science and Engineering, Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Kai Dai
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- School of Materials Science and Engineering, Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Shunshu Deng
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- School of Materials Science and Engineering, Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- School of Materials Science and Engineering, Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Changsheng Liu
- School of Materials Science and Engineering, Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- School of Materials Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| |
Collapse
|
4
|
Faeed M, Ghiasvand M, Fareghzadeh B, Taghiyar L. Osteochondral organoids: current advances, applications, and upcoming challenges. Stem Cell Res Ther 2024; 15:183. [PMID: 38902814 PMCID: PMC11191177 DOI: 10.1186/s13287-024-03790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024] Open
Abstract
In the realm of studying joint-related diseases, there is a continuous quest for more accurate and representative models. Recently, regenerative medicine and tissue engineering have seen a growing interest in utilizing organoids as powerful tools for studying complex biological systems in vitro. Organoids, three-dimensional structures replicating the architecture and function of organs, provide a unique platform for investigating disease mechanisms, drug responses, and tissue regeneration. The surge in organoid research is fueled by the need for physiologically relevant models to bridge the gap between traditional cell cultures and in vivo studies. Osteochondral organoids have emerged as a promising avenue in this pursuit, offering a better platform to mimic the intricate biological interactions within bone and cartilage. This review explores the significance of osteochondral organoids and the need for their development in advancing our understanding and treatment of bone and cartilage-related diseases. It summarizes osteochondral organoids' insights and research progress, focusing on their composition, materials, cell sources, and cultivation methods, as well as the concept of organoids on chips and application scenarios. Additionally, we address the limitations and challenges these organoids face, emphasizing the necessity for further research to overcome these obstacles and facilitate orthopedic regeneration.
Collapse
Affiliation(s)
- Maryam Faeed
- Cell and Molecular School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mahsa Ghiasvand
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran
| | - Bahar Fareghzadeh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Taghiyar
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
5
|
Dai K, Wang J, Liu C. Biomaterial-assisted therapeutic cell production and modification in vivo. Exp Hematol 2024; 133:104192. [PMID: 38432427 DOI: 10.1016/j.exphem.2024.104192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Hematopoietic stem cell transplantation remains the preferred treatment for a variety of hematopoietic function disorders. To address the issue of limited numbers of hematopoietic stem/progenitor cells (HSPCs), significant progress has been made in the technology for ex vivo expansion of HSPCs. In addition, biomaterial-assisted in vivo production technology for therapeutic cells, including HSPCs, is gradually gaining attention. With the aid of specifically functional biomaterials, researchers can construct bone-like tissues exhibiting typical bone marrow-like structures (termed in vivo osteo-organoids in this article) for the production of therapeutic cells. These in vivo osteo-organoids mimic the native bone marrow niche and provide a microenvironment conducive to the expansion and differentiation of HSPCs. In this perspective article, we systematically summarize the history of in vivo osteo-organoids as a model for studying hematopoiesis and cancer metastasis and propose the challenges faced by the in vivo osteo-organoid production platform for therapeutic cells in terms of clinical translation. Ultimately, we hope to achieve functional customization of in vivo osteo-organoid-derived cells through continuously developed material design methods, so as to meet the treatment needs of different types of diseases and bring hope for life to more people.
Collapse
Affiliation(s)
- Kai Dai
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jing Wang
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China; Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China.
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China; Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China.
| |
Collapse
|
6
|
Dai K, Geng Z, Zhang W, Wei X, Wang J, Nie G, Liu C. Biomaterial design for regenerating aged bone: materiobiological advances and paradigmatic shifts. Natl Sci Rev 2024; 11:nwae076. [PMID: 38577669 PMCID: PMC10989671 DOI: 10.1093/nsr/nwae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
China's aging demographic poses a challenge for treating prevalent bone diseases impacting life quality. As bone regeneration capacity diminishes with age due to cellular dysfunction and inflammation, advanced biomaterials-based approaches offer hope for aged bone regeneration. This review synthesizes materiobiology principles, focusing on biomaterials that target specific biological functions to restore tissue integrity. It covers strategies for stem cell manipulation, regulation of the inflammatory microenvironment, blood vessel regeneration, intervention in bone anabolism and catabolism, and nerve regulation. The review also explores molecular and cellular mechanisms underlying aged bone regeneration and proposes a database-driven design process for future biomaterial development. These insights may also guide therapies for other age-related conditions, contributing to the pursuit of 'healthy aging'.
Collapse
Affiliation(s)
- Kai Dai
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Wenchao Zhang
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
| | - Xue Wei
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
| | - Jing Wang
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
An H, Zhang M, Gu Z, Jiao X, Ma Y, Huang Z, Wen Y, Dong Y, Zhang P. Advances in Polysaccharides for Cartilage Tissue Engineering Repair: A Review. Biomacromolecules 2024; 25:2243-2260. [PMID: 38523444 DOI: 10.1021/acs.biomac.3c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Cartilage repair has been a significant challenge in orthopedics that has not yet been fully resolved. Due to the absence of blood vessels and the almost cell-free nature of mature cartilage tissue, the limited ability to repair cartilage has resulted in significant socioeconomic pressures. Polysaccharide materials have recently been widely used for cartilage tissue repair due to their excellent cell loading, biocompatibility, and chemical modifiability. They also provide a suitable microenvironment for cartilage repair and regeneration. In this Review, we summarize the techniques used clinically for cartilage repair, focusing on polysaccharides, polysaccharides for cartilage repair, and the differences between these and other materials. In addition, we summarize the techniques of tissue engineering strategies for cartilage repair and provide an outlook on developing next-generation cartilage repair and regeneration materials from polysaccharides. This Review will provide theoretical guidance for developing polysaccharide-based cartilage repair and regeneration materials with clinical applications for cartilage tissue repair and regeneration.
Collapse
Affiliation(s)
- Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Meng Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiangyu Jiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yinglei Ma
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhe Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | | - Peixun Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
8
|
He L. Biomaterials for Regenerative Cranioplasty: Current State of Clinical Application and Future Challenges. J Funct Biomater 2024; 15:84. [PMID: 38667541 PMCID: PMC11050949 DOI: 10.3390/jfb15040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Acquired cranial defects are a prevalent condition in neurosurgery and call for cranioplasty, where the missing or defective cranium is replaced by an implant. Nevertheless, the biomaterials in current clinical applications are hardly exempt from long-term safety and comfort concerns. An appealing solution is regenerative cranioplasty, where biomaterials with/without cells and bioactive molecules are applied to induce the regeneration of the cranium and ultimately repair the cranial defects. This review examines the current state of research, development, and translational application of regenerative cranioplasty biomaterials and discusses the efforts required in future research. The first section briefly introduced the regenerative capacity of the cranium, including the spontaneous bone regeneration bioactivities and the presence of pluripotent skeletal stem cells in the cranial suture. Then, three major types of biomaterials for regenerative cranioplasty, namely the calcium phosphate/titanium (CaP/Ti) composites, mineralised collagen, and 3D-printed polycaprolactone (PCL) composites, are reviewed for their composition, material properties, and findings from clinical trials. The third part discusses perspectives on future research and development of regenerative cranioplasty biomaterials, with a considerable portion based on issues identified in clinical trials. This review aims to facilitate the development of biomaterials that ultimately contribute to a safer and more effective healing of cranial defects.
Collapse
Affiliation(s)
- Lizhe He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
9
|
Luo Z, Shi T, Ruan Z, Ding C, Huang R, Wang W, Guo Z, Zhan Z, Zhang Y, Chen Y. Quorum Sensing Interference Assisted Therapy-Based Magnetic Hyperthermia Amplifier for Synergistic Biofilm Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304836. [PMID: 37752756 DOI: 10.1002/smll.202304836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/07/2023] [Indexed: 09/28/2023]
Abstract
Biofilms offer bacteria a physical and metabolic barrier, enhancing their tolerance to external stress. Consequently, these biofilms limit the effectiveness of conventional antimicrobial treatment. Recently, quorum sensing (QS) has been linked to biofilm's stress response to thermal, oxidative, and osmotic stress. Herein, a multiple synergistic therapeutic strategy that couples quorum sensing interference assisted therapy (QSIAT)-mediated enhanced thermal therapy with bacteria-triggered immunomodulation in a single nanoplatform, is presented. First, as magnetic hyperthermia amplifier, hyaluronic acid-coated ferrite (HA@MnFe2 O4 ) attenuates the stress response of biofilm by down-regulating QS-related genes, including agrA, agrC, and hld. Next, the sensitized bacteria are eliminated with magnetic heat. QS interference and heat also destruct the biofilm, and provide channels for further penetration of nanoparticles. Moreover, triggered by bacterial hyaluronidase, the wrapped hyaluronic acid (HA) decomposes into disaccharides at the site of infection and exerts healing effect. Thus, by reversing the bacterial tissue invasion mechanism for antimicrobial purpose, tissue regeneration following pathogen invasion and thermal therapy is successfully attained. RNA-sequencing demonstrates the QS-mediated stress response impairment. In vitro and in vivo experiments reveal the excellent antibiofilm and anti-inflammatory effects of HA@MnFe2 O4 . Overall, QSIAT provides a universal enhancement strategy for amplifying the bactericidal effects of conventional therapy via stress response interference.
Collapse
Affiliation(s)
- Zhiyuan Luo
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Tingwang Shi
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zesong Ruan
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Cheng Ding
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Rentai Huang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Wenbo Wang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhao Guo
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zeming Zhan
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yunlong Zhang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yunfeng Chen
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
10
|
Xu J, He S, Xia T, Shan Y, Wang L. Targeting type H vessels in bone-related diseases. J Cell Mol Med 2024; 28:e18123. [PMID: 38353470 PMCID: PMC10865918 DOI: 10.1111/jcmm.18123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Blood vessels are essential for bone development and metabolism. Type H vessels in bone, named after their high expression of CD31 and Endomucin (Emcn), have recently been reported to locate mainly in the metaphysis, exhibit different molecular properties and couple osteogenesis and angiogenesis. A strong correlation between type H vessels and bone metabolism is now well-recognized. The crosstalk between type H vessels and osteoprogenitor cells is also involved in bone metabolism-related diseases such as osteoporosis, osteoarthritis, fracture healing and bone defects. Targeting the type H vessel formation may become a new approach for managing a variety of bone diseases. This review highlighted the roles of type H vessels in bone-related diseases and summarized the research attempts to develop targeted intervention, which will help us gain a better understanding of their potential value in clinical application.
Collapse
Affiliation(s)
- Juan Xu
- Outpatient DepartmentChildren's Hospital of Soochow UniversitySuzhouChina
| | - Shuang‐jian He
- Department of OrthopaedicsSuzhou Hospital, Affiliated Hospital of Medical School, Nanjing UniversitySuzhouChina
| | - Ting‐ting Xia
- Clinical Research InstituteSuzhou Hospital, Affiliated Hospital of Medical School, Nanjing UniversitySuzhouChina
| | - Yu Shan
- Department of OrthopeadicsSuzhou Ninth Hospital Affiliated to Soochow UniversitySuzhouChina
| | - Liang Wang
- Department of OrthopaedicsSuzhou Hospital, Affiliated Hospital of Medical School, Nanjing UniversitySuzhouChina
- Department of OrthopeadicsThe Fourth Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
11
|
Liu H, Chen H, Han Q, Sun B, Liu Y, Zhang A, Fan D, Xia P, Wang J. Recent advancement in vascularized tissue-engineered bone based on materials design and modification. Mater Today Bio 2023; 23:100858. [PMID: 38024843 PMCID: PMC10679779 DOI: 10.1016/j.mtbio.2023.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/03/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Bone is one of the most vascular network-rich tissues in the body and the vascular system is essential for the development, homeostasis, and regeneration of bone. When segmental irreversible damage occurs to the bone, restoring its vascular system by means other than autogenous bone grafts with vascular pedicles is a therapeutic challenge. By pre-generating the vascular network of the scaffold in vivo or in vitro, the pre-vascularization technique enables an abundant blood supply in the scaffold after implantation. However, pre-vascularization techniques are time-consuming, and in vivo pre-vascularization techniques can be damaging to the body. Critical bone deficiencies may be filled quickly with immediate implantation of a supporting bone tissue engineered scaffold. However, bone tissue engineered scaffolds generally lack vascularization, which requires modification of the scaffold to aid in enhancing internal vascularization. In this review, we summarize the relationship between the vascular system and osteogenesis and use it as a basis to further discuss surgical and cytotechnology-based pre-vascularization strategies and to describe the preparation of vascularized bone tissue engineered scaffolds that can be implanted immediately. We anticipate that this study will serve as inspiration for future vascularized bone tissue engineered scaffold construction and will aid in the achievement of clinical vascularized bone.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Hao Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Qin Han
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Bin Sun
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Aobo Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Danyang Fan
- Department of Dermatology, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Jincheng Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| |
Collapse
|
12
|
Li X, Luo X, He Y, Xu K, Ding Y, Gao P, Tao B, Li M, Tan M, Liu S, Liu P, Cai K. Micronano Titanium Accelerates Mesenchymal Stem Cells Aging through the Activation of Senescence-Associated Secretory Phenotype. ACS NANO 2023; 17:22885-22900. [PMID: 37947356 DOI: 10.1021/acsnano.3c07807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Stem cell senescence is one of the most representative events of organism aging and is responsible for many physiological abnormalities and disorders. In the scenario of orthopedic disease treatment, stem cell aging may affect the implantation outcome and even lead to operation failure. To explore whether stem cell aging will affect the osteointegration effect of titanium implant, a widely used micronano titanium (MNT) was fabricated. We first verified the expected osteointegration effect of the MNT, which could be attributed to the improvement of stem cell adhesion and osteogenic differentiation. Then, we obtained aged-derived bone marrow mesenchymal stem cells (BMSCs) and studied their biological behaviors on MNT both in vitro and in vivo. We found that compared with normal rats, MNT did not significantly improve the osteointegration in aged rats. Compared with normal rats, fewer endogenous stem cells were observed at the implant-host interface, and the expression of p21 (senescence marker) was also higher. We further confirmed that MNT promoted the nuclear localization of NF-κB in senescent stem cells through the activation of p38 MAPK, thereby inducing the occurrence of the senescence-associated secretory phenotype (SASP) and ultimately leading to the depletion of the stem-cell pool at the implant-host interface. However, the activation of p38 MAPK can still promote the osteogenic differentiation of nonsenescent BMSCs. These results showed an interesting paradoxical balance between osteogenesis and senescence on MNT surfaces and also provided insights for the design of orthopedic implants for aging patients.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Xinxin Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Yao Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Pengfei Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Meng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Meijun Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Shaopeng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| |
Collapse
|
13
|
Dai K, Zhang W, Deng S, Wang J, Liu C. Sulfated Polysaccharide Regulates the Homing of HSPCs in a BMP-2-Triggered In Vivo Osteo-Organoid. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301592. [PMID: 37357138 PMCID: PMC10460842 DOI: 10.1002/advs.202301592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/31/2023] [Indexed: 06/27/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) is a well-established method for a variety of acquired and congenital diseases. However, the limited number and sources of therapeutic hematopoietic stem/progenitor cells (HSPCs) hinder the further application of HSCT. A BMP-2 triggered in vivo osteo-organoid that is previously reported, serves as a kind of stem cell biogenerator, for obtaining therapeutic HSPCs via activating the residual regenerative capacity of mammals using bioactive biomaterials. Here, it is demonstrated that targeting the homing signaling of HSPCs elevates the proportions and biological functions of HSPCs in the in vivo osteo-organoid. Notably, it is identified that sulfonated chito-oligosaccharide, a degradation product of sulfonated chitosan, specifically elevates the expression of endothelial protein C receptor on HSPCs and vascular cell adhesion molecule-1 on macrophages in the in vivo osteo-organoid, ultimately leading to the production of adequate therapeutic HSPCs. This in vivo osteo-organoid approach has the potential to provide an alternative HSPCs source for HSCT and benefits more patients.
Collapse
Affiliation(s)
- Kai Dai
- Key Laboratory for Ultrafine Materials of the Ministry of Education and Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wenchao Zhang
- Key Laboratory for Ultrafine Materials of the Ministry of Education and Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Shunshu Deng
- Key Laboratory for Ultrafine Materials of the Ministry of Education and Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jing Wang
- Key Laboratory for Ultrafine Materials of the Ministry of Education and Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of the Ministry of Education and Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
14
|
Xu Z, Kusumbe AP, Cai H, Wan Q, Chen J. Type H blood vessels in coupling angiogenesis-osteogenesis and its application in bone tissue engineering. J Biomed Mater Res B Appl Biomater 2023; 111:1434-1446. [PMID: 36880538 DOI: 10.1002/jbm.b.35243] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
One specific capillary subtype, termed type H vessel, has been found with unique functional characteristics in coupling angiogenesis with osteogenesis. Researchers have fabricated a variety of tissue engineering scaffolds to enhance bone healing and regeneration through the accumulation of type H vessels. However, only a limited number of reviews discussed the tissue engineering strategies for type H vessel regulation. The object of this review is to summary the current utilizes of bone tissue engineering to regulate type H vessels through various signal pathways including Notch, PDGF-BB, Slit3, HIF-1α, and VEGF signaling. Moreover, we give an insightful overview of recent research progress about the morphological, spatial and age-dependent characteristics of type H blood vessels. Their unique role in tying angiogenesis and osteogenesis together via blood flow, cellular microenvironment, immune system and nervous system are also summarized. This review article would provide an insight into the combination of tissue engineering scaffolds with type H vessels and identify future perspectives for vasculized tissue engineering research.
Collapse
Affiliation(s)
- Zhengyi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Anjali P Kusumbe
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford, UK
| | - He Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Jin S, Yang R, Hu C, Xiao S, Zuo Y, Man Y, Li Y, Li J. Plant-Derived Polyphenol and LL-37 Peptide-Modified Nanofibrous Scaffolds for Promotion of Antibacterial Activity, Anti-Inflammation, and Type-H Vascularized Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7804-7820. [PMID: 36725088 DOI: 10.1021/acsami.2c20776] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The regeneration of oral tissues is a challenging clinical problem because of the complex microbial and biological stress environments. Electrospun fibrous scaffolds have attracted significant interest as effective barrier membranes for guided bone regeneration (GBR); however, no mature strategy yet exists for the surface modification of fibers to provide versatility to satisfy clinical requirements. This study demonstrated a practical biosafety strategy: the combined use of plant polyphenols and LL-37 peptides to modify the fiber surface to endow the fibrous scaffold with antimicrobial activity, immunoregulation, and vascularized bone regeneration. We confirmed that the LL-37 peptides interacted with tannic acid (TA) through noncovalent bonds through experiments and molecular docking simulation analysis. In vitro experiments showed that the TA coating imparted strong antibacterial properties to the fibrous scaffold, but it also caused cytotoxicity. The grafting of LL-37 peptide promoted the spreading, migration, and osteogenic differentiation of mesenchymal stem cells and was also conducive to the M2 polarization of RAW264.7 cells. In vivo experiments further verified that the LL-37 peptide-grafted fibrous scaffold significantly enhanced angiogenesis, anti-inflammatory effects, and type-H vascularized bone regeneration. Overall, the fibrous scaffold modified by the LL-37 peptide through TA grafting has significant potential for GBR applications.
Collapse
Affiliation(s)
- Shue Jin
- Analytical & Testing Center, Orthopedic Research Institute, Department of Orthopedic, West China Hospital, Sichuan University, Chengdu610065, P. R. China
| | - Renli Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, P. R. China
| | - Chen Hu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, P. R. China
| | - Shiqi Xiao
- Analytical & Testing Center, Orthopedic Research Institute, Department of Orthopedic, West China Hospital, Sichuan University, Chengdu610065, P. R. China
| | - Yi Zuo
- Analytical & Testing Center, Orthopedic Research Institute, Department of Orthopedic, West China Hospital, Sichuan University, Chengdu610065, P. R. China
| | - Yi Man
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, P. R. China
| | - Yubao Li
- Analytical & Testing Center, Orthopedic Research Institute, Department of Orthopedic, West China Hospital, Sichuan University, Chengdu610065, P. R. China
| | - Jidong Li
- Analytical & Testing Center, Orthopedic Research Institute, Department of Orthopedic, West China Hospital, Sichuan University, Chengdu610065, P. R. China
| |
Collapse
|
16
|
Dai K, Zhang Q, Deng S, Yu Y, Zhu F, Zhang S, Pan Y, Long D, Wang J, Liu C. A BMP-2-triggered in vivo osteo-organoid for cell therapy. SCIENCE ADVANCES 2023; 9:eadd1541. [PMID: 36608118 PMCID: PMC9821865 DOI: 10.1126/sciadv.add1541] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cell therapies and regenerative medicine interventions require an adequate source of therapeutic cells. Here, we demonstrate that constructing in vivo osteo-organoids by implanting bone morphogenetic protein-2-loaded scaffolds into the internal muscle pocket near the femur of mice supports the growth and subsequent harvest of therapeutically useful cells including hematopoietic stem/progenitor cells (HSPCs), mesenchymal stem cells (MSCs), lymphocytes, and myeloid cells. Profiling of the in vivo osteo-organoid maturation process delineated three stages-fibroproliferation, osteochondral differentiation, and marrow generation-each of which entailed obvious changes in the organoid structure and cell type distribution. The MSCs harvested from the osteochondral differentiation stage mitigated carbon tetrachloride (CCl4)-induced chronic liver fibrosis in mice, while HSPCs and immune cells harvested during the marrow generation stage rapidly and effectively reconstituted the impaired peripheral and solid immune organs of irradiated mice. These findings demonstrate the therapeutic potentials of in vivo osteo-organoid-derived cells in cell therapies.
Collapse
Affiliation(s)
- Kai Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qinghao Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shunshu Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yuanman Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Fuwei Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shuang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - YuanZhong Pan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Dandan Long
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
17
|
Zhang X, Jiang W, Xie C, Wu X, Ren Q, Wang F, Shen X, Hong Y, Wu H, Liao Y, Zhang Y, Liang R, Sun W, Gu Y, Zhang T, Chen Y, Wei W, Zhang S, Zou W, Ouyang H. Msx1 + stem cells recruited by bioactive tissue engineering graft for bone regeneration. Nat Commun 2022; 13:5211. [PMID: 36064711 PMCID: PMC9445030 DOI: 10.1038/s41467-022-32868-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 08/17/2022] [Indexed: 12/11/2022] Open
Abstract
Critical-sized bone defects often lead to non-union and full-thickness defects of the calvarium specifically still present reconstructive challenges. In this study, we show that neurotrophic supplements induce robust in vitro expansion of mesenchymal stromal cells, and in situ transplantation of neurotrophic supplements-incorporated 3D-printed hydrogel grafts promote full-thickness regeneration of critical-sized bone defects. Single-cell RNA sequencing analysis reveals that a unique atlas of in situ stem/progenitor cells is generated during the calvarial bone healing in vivo. Notably, we find a local expansion of resident Msx1+ skeletal stem cells after transplantation of the in situ cell culture system. Moreover, the enhanced calvarial bone regeneration is accompanied by an increased endochondral ossification that closely correlates to the Msx1+ skeletal stem cells. Our findings illustrate the time-saving and regenerative efficacy of in situ cell culture systems targeting major cell subpopulations in vivo for rapid bone tissue regeneration. Critical-sized bone defects still present clinical challenges. Here the authors show that transplantation of neurotrophic supplement-incorporated hydrogel grafts promote full-thickness regeneration of the calvarium and perform scRNA-seq to reveal contributing stem/progenitor cells, notably a resident Msx1+ skeletal stem cell population.
Collapse
Affiliation(s)
- Xianzhu Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Jiang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang Xie
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyu Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Ren
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fei Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xilin Shen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Hong
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Youguo Liao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Renjie Liang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Sun
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqing Gu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yishan Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China. .,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China. .,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
18
|
Fu H, Wang L, Bao Q, Ni D, Hu P, Shi J. Acid Neutralization and Immune Regulation by Calcium-Aluminum-Layered Double Hydroxide for Osteoporosis Reversion. J Am Chem Soc 2022; 144:8987-8999. [PMID: 35549335 DOI: 10.1021/jacs.2c00749] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Osteoporosis is a kind of global chronic bone disease characterized by progressive loss of bone mass and bone quality reduction, leading to a largely increased risk of bone fragility. In clinics, the current treatment of osteoporosis relies on the inhibition of bone damage by osteoclasts but ignores the function of immune cells in the progress of osteoporosis, leading to much compromised therapeutic efficacy. In this work, a highly effective osteoporosis-immunotherapeutic modality is established for the treatment of osteoporosis based on acid neutralization in synergy with immune microenvironment regulation by a specially designed nanocatalytic medicine, calcein functionalized calcium-aluminum-layered double hydroxide (CALC) nanosheets. Briefly, the mildly alkaline CALC nanosheets could neutralize the acidic microenvironment of osteoporosis accompanying the acidity-responsive LDH degradation. Subsequently, calcium phosphate nanoparticles (CAPs) are generated by the reaction between the released Ca2+ from LDH degradation and endogenous phosphates, resulting in M2 phenotype anti-inflammatory differentiation of bone macrophages through a c-Maf transcriptional factor pathway and the following activity enhancements of regulatory T cells (Treg) and the deactivation of T helper 17 cells (TH17). Both in vitro and in vivo results show an excellent therapeutic efficacy on osteoporosis featuring a significant BV/TV (%) enhancement of femurs from 6.2 to 10.7, demonstrating high feasibility of this therapeutic concept through the combined acid neutralization and immune regulation. Such an inorganic nanomaterial-based strategy provides a novel, efficient, and biosafe therapeutic modality for intractable osteoporosis treatment, which will benefit patients suffering from osteoporosis.
Collapse
Affiliation(s)
- Hao Fu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Lingtian Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P. R. China
| | - Qunqun Bao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China.,Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P. R. China
| | - Ping Hu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China.,Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China.,Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| |
Collapse
|
19
|
Xie C, Ye J, Liang R, Yao X, Wu X, Koh Y, Wei W, Zhang X, Ouyang H. Advanced Strategies of Biomimetic Tissue-Engineered Grafts for Bone Regeneration. Adv Healthc Mater 2021; 10:e2100408. [PMID: 33949147 DOI: 10.1002/adhm.202100408] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/16/2021] [Indexed: 12/21/2022]
Abstract
The failure to repair critical-sized bone defects often leads to incomplete regeneration or fracture non-union. Tissue-engineered grafts have been recognized as an alternative strategy for bone regeneration due to their potential to repair defects. To design a successful tissue-engineered graft requires the understanding of physicochemical optimization to mimic the composition and structure of native bone, as well as the biological strategies of mimicking the key biological elements during bone regeneration process. This review provides an overview of engineered graft-based strategies focusing on physicochemical properties of materials and graft structure optimization from macroscale to nanoscale to further boost bone regeneration, and it summarizes biological strategies which mainly focus on growth factors following bone regeneration pattern and stem cell-based strategies for more efficient repair. Finally, it discusses the current limitations of existing strategies upon bone repair and highlights a promising strategy for rapid bone regeneration.
Collapse
Affiliation(s)
- Chang Xie
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
- Department of Sports Medicine Zhejiang University School of Medicine Hangzhou 310058 China
| | - Jinchun Ye
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Renjie Liang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Xudong Yao
- The Fourth Affiliated Hospital Zhejiang University School of Medicine Yiwu 322000 China
| | - Xinyu Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Yiwen Koh
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Wei Wei
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
- China Orthopedic Regenerative Medicine Group (CORMed) Hangzhou 310058 China
| | - Xianzhu Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
- Department of Sports Medicine Zhejiang University School of Medicine Hangzhou 310058 China
- China Orthopedic Regenerative Medicine Group (CORMed) Hangzhou 310058 China
| |
Collapse
|
20
|
Meng C, Su W, Liu M, Yao S, Ding Q, Yu K, Xiong Z, Chen K, Guo X, Bo L, Sun T. Controlled delivery of bone morphogenic protein-2-related peptide from mineralised extracellular matrix-based scaffold induces bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112182. [PMID: 34082982 DOI: 10.1016/j.msec.2021.112182] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Ideal bone tissue engineering scaffolds composed of extracellular matrix (ECM) require excellent osteoconductive ability to imitate the bone environment. We developed a mineralised tissue-derived ECM-modified true bone ceramic (TBC) scaffold for the delivery of aspartic acid-modified bone morphogenic protein-2 (BMP-2) peptide (P28) and assessed its osteogenic capacity. Decellularized ECM from porcine small intestinal submucosa (SIS) was coated onto the surface of TBC, followed by mineralisation modification (mSIS/TBC). P28 was subsequently immobilised onto the scaffolds in the absence of a crosslinker. The alkaline phosphatase activity and other osteogenic differentiation marker results showed that osteogenesis of the P28/mSIS/TBC scaffolds was significantly greater than that of the TBC and mSIS/TBC groups. In addition, to examine the osteoconductive capability of this system in vivo, we established a rat calvarial bone defect model and evaluated the new bone area and new blood vessel density. Histological observation showed that P28/mSIS/TBC exhibited favourable bone regeneration efficacy. This study proposes the use of mSIS/TBC loaded with P28 as a promising osteogenic scaffold for bone tissue engineering applications.
Collapse
Affiliation(s)
- Chunqing Meng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weijie Su
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Man Liu
- Department of Gastroenterology and Hepatology, Taikang Tongji Hospital, Wuhan 430050, China
| | - Sheng Yao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiuyue Ding
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Keda Yu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zekang Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaifang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Bo
- Department of Rheumatology, The second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China.
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|