1
|
Duan L, Liu G, Liao F, Xie C, Shi J, Yang X, Zheng F, Reis RL, Kundu SC, Xiao B. Antheraea pernyi silk nanofibrils with inherent RGD motifs accelerate diabetic wound healing: A novel drug-free strategy to promote hemostasis, regulate immunity and improve re-epithelization. Biomaterials 2025; 318:123127. [PMID: 39879843 DOI: 10.1016/j.biomaterials.2025.123127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
The chronic inflammation and matrix metalloprotease (MMP)-induced tissue degradation significantly disrupt re-epithelization and delay the healing process of diabetic wounds. To address these issues, we produced nanofibrils from Antheraea pernyi (Ap) silk fibers via a facile and green treatment of swelling and shearing. The integrin receptors on the cytomembrane could specifically bind to the Ap nanofibrils (ApNFs) due to their inherent Arg-Gly-Asp (RGD) motifs, which activated platelets to accelerate coagulation and promoted fibroblast migration, adhesion and spreading. These degradable nanofibrils served as effective competitive substrates to reduce MMP-induced tissue degradation. ApNFs and their enzymatic hydrolysates could modulate macrophage polarization due to their RGD motifs. RNA sequencing further revealed that ApNFs treatment activated the JAK2-STAT5b and PI3K-Akt signaling pathways while suppressed the NF-κB, IL-17 and TNF signaling pathways in macrophages. The full-thickness skin wound experiments confirmed that ApNFs significantly accelerated wound healing in both diabetic and non-diabetic rats. Notably, in diabetic wound, ApNFs and their enzymatic hydrolysates polarized the accumulated M1-type macrophages into M2-type, which promoted the wound to get rid of the inflammatory stage and transition to the following proliferative stage, improving the wound healing percentage on day 14 from 74.9 % to 93.2 % by facilitating collagen deposition, angiogenesis and re-epithelization. These results demonstrate that ApNFs are promising drug-free diabetic wound dressings with favorable inherent immunoregulatory properties for biomedical translation.
Collapse
Affiliation(s)
- Lian Duan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Ga Liu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Fuying Liao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Chunyu Xie
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jiahao Shi
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Xiao Yang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Fan Zheng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, 4800-058, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, 4800-058, Portugal
| | - Bo Xiao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
2
|
Pérez-Lloret M, Reidy E, Lozano-Pérez AA, Marchal JA, Lens PNL, Ryan AE, Erxleben A. Auranofin loaded silk fibroin nanoparticles for colorectal cancer treatment. Drug Deliv Transl Res 2025; 15:1994-2008. [PMID: 39382824 DOI: 10.1007/s13346-024-01719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/10/2024]
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer related deaths worldwide and the prevalence in young people especially is increasing annually. In the search for innovative approaches to treat the disease, drug delivery systems (DDS) are promising owing to their unique properties, which allow improved therapeutic results with lower drug concentrations, overcoming drug resistance and at the same time potentially reducing side effects. Silk fibroin is a biopolymer that can be processed to obtain biocompatible and biodegradable nanoparticles that can be efficiently loaded by surface adsorption with small-molecule therapeutics and allow their transport and sustained release by modulating their pharmacokinetics. Auranofin (AF) has recently been repurposed for its strong anticancer activity and is currently in clinical trials. Its mechanism of action is through the inhibition of thioredoxin reductase enzymes, which play an essential role in several intracellular processes and are overexpressed in some tumours. Taking into account that AF has a low solubility in water, we propose silk fibroin nanoparticles (SFN) as AF carrier in order to improve its bioavailability, increasing cellular absorption and preventing its degradation or avoiding some resistance mechanisms. Here we report the preparation and characterization of a new formulation of AF-loaded silk fibroin nanoparticles (SFN-AF), its functionalization with FITC for the analysis of cellular uptake, as well as its cytotoxic activity against cell lines of human colorectal cancer (HT29 and HCT116) in both 2D and 3D cell cultures. 3D spheroid models provide a 3D environment which mimics the 3D aspects of CRC observed in vivo and represents an effective 3D environment to screen therapeutics for the treatment of CRC. The loaded nanoparticles showed a spherical morphology with a hydrodynamic diameter of ~ 160 nm and good stability in aqueous solution due to their negative surface charges. FESEM-EDX analysis revealed a homogeneous distribution of Au clusters with high electron density on the surface of the nanoparticles. SFN-AF incubated in phosphate buffer at 37 °C released 77% of the loaded AF over 10 days, showing an initial burst and then sustained release. Flow cytometry analysis showed that FITC-SFN-AF was efficiently internalized by both cell lines, which was confirmed by confocal microscopy imaging. SFN enhanced the cytotoxicity of AF in 2D cultures in both CRC lines. Promising results were also obtained in 3D culture paving the way for future application of this strategy as a therapy for CRC.
Collapse
Affiliation(s)
- Marta Pérez-Lloret
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Eileen Reidy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine Nursing and health Sciences, University of Galway, University Road, Galway, H91TK33, Ireland
- CÚRAM Centre for Medical Devices, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine Nursing and health Sciences, University of Galway, Galway, Ireland
| | - Antonio Abel Lozano-Pérez
- Departamento de Biotecnología Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental, Murcia, 30150, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, 30120, Spain
| | - Juan A Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, 18012, Spain
- Excellence Research Unit Modelling Nature (MNat), University of Granada, Granada, 18016, Spain
- BioFab i3D-Biofabrication and 3D (Bio)Printing Laboratory, University of Granada, Granada, 18100, Spain
| | - Piet N L Lens
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine Nursing and health Sciences, University of Galway, University Road, Galway, H91TK33, Ireland.
- CÚRAM Centre for Medical Devices, University of Galway, Galway, Ireland.
| | - Andrea Erxleben
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91TK33, Ireland.
| |
Collapse
|
3
|
Feng Y, Liu Y, Liu L, Yang Q, An M, Yang H. Magnetite Micro/Nanorobots for Efficient Targeted Alleviation of Inflammatory Bowel Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503307. [PMID: 40277443 DOI: 10.1002/advs.202503307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/30/2025] [Indexed: 04/26/2025]
Abstract
Millions of people worldwide have inflammatory bowel disease (IBD). Self-driven micro/nanorobots (MNRs) are efficient in the treatment of IBD. However, their lack of controllability regarding direction of motion in the organism and their inability to achieve continuous navigation limits their further application. In this study, polydopamine is wrapped around the magnetite surface, loaded with an anti-inflammatory drug resveratrol, and wrapped with pH-responsive sodium alginate to obtain magnetic MNRs. MNRs can be driven by magnetic fields to achieve directional movement and targeted transportation. In addition, MNRs can effectively remove reactive oxygen species from the inflammation site, repair intestinal damage, inhibit the cellular pathway of pro-inflammatory factors, such as MAPK and NF-κB pathways, and restore intestinal flora, thereby relieving IBDs. MNRs are safe and effective for in vivo treatment of IBD and have proven to be a promising therapeutic platform. This MNRs therapeutic strategy provides new insights into comprehensive IBD therapy.
Collapse
Affiliation(s)
- Ying Feng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
| | - Yang Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
| | - Linlin Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
| | - Qian Yang
- Centre for Immune-oncology, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7BN, UK
| | - Miao An
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
4
|
Cui C, Tang J, Chen J, Zhang B, Li R, Zhang Q, Qiu C, Chen R, Min G, Sun Z, Weng H. Lactobacillus acidophilus extracellular vesicles-coated UiO-66-NH 2@siRNA nanoparticles for ulcerative colitis targeted gene therapy and gut microbiota modulation. J Nanobiotechnology 2025; 23:301. [PMID: 40247297 PMCID: PMC12007195 DOI: 10.1186/s12951-025-03376-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/06/2025] [Indexed: 04/19/2025] Open
Abstract
Ulcerative colitis (UC) is a complex and chronic inflammatory bowel disease whose pathogenesis involves genetic and environmental factors, which poses a challenge for treatment. Here, we have designed an innovative integrated therapeutic strategy using Lactobacillus acidophilus extracellular vesicles (EVs) to encapsulate UiO-66-NH2 nanoparticles bounded with TNF-α siRNA (EVs@UiO-66-NH2@siRNA) for UC treatment. This system shows superior affinity to inflammation-related cells due to the Lactobacillus acidophilus EVs can maintain immune homeostasis by regulating the secretion of cytokines in vitro. siRNA can specifically target the key inflammatory TNF-α in UC and silence its gene expression, thereby regulating the process of inflammatory response. After oral administration, EVs@UiO-66-NH2@siRNA demonstrates an accurate delivery of TNF-α siRNA to colonize the colon site and exerts a siRNA therapeutic effect by inhibiting the expression of TNF-α, which alleviates the intestinal inflammation in DSS-induced UC model. Moreover, this system can modulate the types and compositional structures of gut microbiota and metabolites to achieve an anti-inflammatory phenotype, which is helpful for the repair of intestinal homeostasis. We also have proved that UiO-66-NH2 nanoparticles exhibit a high loading capacity for TNF-α siRNA and good pH responsiveness, improving the potent release of siRNA in colon tissue. Collectively, the EVs@UiO-66-NH2@siRNA nano-delivery system demonstrate a feasible combination therapeutic strategy for UC through gut microecology modulation, immune regulation and TNF-α siRNA silence, which may provide a potential targeted treatment approach for inflammatory bowel disease.
Collapse
Affiliation(s)
- Chenyang Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jiaze Tang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jie Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Beining Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ruonan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Qiang Zhang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Chunjing Qiu
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Rongchen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Geng Min
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhaowei Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Haibo Weng
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
5
|
Li Y, Ma H, Shi H, Wang B, Li D, Tian H, Mei X, Wu C. Dextran sulfate-coated curcumin nanocrystals for the treatment of DSS-induced ulcerative colitis in mice. Int J Pharm 2025; 674:125428. [PMID: 40043963 DOI: 10.1016/j.ijpharm.2025.125428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 04/19/2025]
Abstract
Ulcerative colitis is an inflammatory disease that primarily involves intestinal inflammation and epithelial damage. The nano-targeted drug delivery system delivers drugs to the disease site, exerting effects such as inhibiting inflammatory response and reducing reactive oxygen species expression, thereby promoting recovery from ulcerative colitis. In this experiment, dextran sulfate-coated curcumin nanocrystals (NBD) were prepared for the oral treatment of ulcerative colitis (UC). NBD not only significantly enhances the water solubility and stability of curcumin but also possesses the ability of sustained release and targeting inflammatory macrophages. The sustained release effect of NBD was demonstrated by in vitro release experiments. In simulated gastric fluid, the cumulative release amount of NBD at 2 h was 21.99 ± 1.93 %, while in simulated colonic fluid, the cumulative release amount of NBD at 12 h was 84.98 ± 2.02 %. The ability of NBD to target inflammatory macrophages was verified through the transwell system, rat one-way intestinal perfusion experiment and in vivo imaging system. The in vitro and in vivo (mice) anti-inflammatory and antioxidant capacities of NBD were validated using immunofluorescence experiment, ELISA kits and reactive oxygen species-related detection kits. The results indicated that NBD could reduce inflammatory responses, promote macrophage polarization and inhibit oxidative stress. In addition, the therapeutic effect of NBD was further confirmed in this experiment by the clostridium perfringens-induced necrotizing enteritis model in chickens. In conclusion, NBD might be a potential pharmaceutical preparation for the treatment of UC.
Collapse
Affiliation(s)
- Yunmei Li
- Pharmacy School, Jinzhou Medical University, Jinzhou, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, China.
| | - Huilin Ma
- Pharmacy School, Jinzhou Medical University, Jinzhou, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, China.
| | - Huan Shi
- Pharmacy School, Jinzhou Medical University, Jinzhou, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, China.
| | - Biaobiao Wang
- Pharmacy School, Jinzhou Medical University, Jinzhou, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, China
| | - Desheng Li
- College of Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou, China.
| | - He Tian
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, China; School of Basic Medicine, Jinzhou Medical University, Jinzhou, China.
| | - Xifan Mei
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, China; Liaoning Province Key Laboratory of Medical Tissue Engineering, Jinzhou Medical University, Jinzhou, China; Liaoning Vocational College of Medicine, Shenyang, China.
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
6
|
Lin Y, Zhao L, Jin H, Gu Q, Lei L, Fang C, Pan X. Multifunctional applications of silk fibroin in biomedical engineering: A comprehensive review on innovations and impact. Int J Biol Macromol 2025; 309:143067. [PMID: 40222531 DOI: 10.1016/j.ijbiomac.2025.143067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Silk fibroin (SF) is a biomaterial naturally produced by certain insects (notably silkworms), animals such as spiders, or through recombinant methods in genetically modified organisms. Its exceptional mechanical properties, biocompatibility, degradability, and bioactivity have inspired extensive research. In biomedicine, SF has been utilized in various forms, including gels, membranes, microspheres, and more. It also demonstrates versatility for applications across medical devices, regenerative medicine, tissue engineering, and related fields. This review explores the current research status, advantages, limitations, and potential application pathways of SF in biomedical engineering. The objective is to stimulate innovative ideas and perspectives for research and applications involving silk.
Collapse
Affiliation(s)
- Yinglan Lin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China.; Ningxia Medical University, Yinchuan 750004, China
| | - Lifen Zhao
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Hairong Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China.; Ningxia Medical University, Yinchuan 750004, China
| | - Qiancheng Gu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China..
| | - Chunyan Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Xiaoyi Pan
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China..
| |
Collapse
|
7
|
Zhao X, Wang L, Fu YJ, Yu F, Li K, Wang YQ, Guo Y, Zhou S, Yang W. Inflammatory Microenvironment-Responsive Microsphere Vehicles Modulating Gut Microbiota and Intestinal Inflammation for Intestinal Stem Cell Niche Remodeling in Inflammatory Bowel Disease. ACS NANO 2025; 19:12063-12079. [PMID: 40125581 DOI: 10.1021/acsnano.4c17999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Intestinal stem cells (ISCs) engage in proliferation to maintain a stable stem cell population and differentiate into functional epithelial subpopulations. This intricate process is upheld by various signals derived from the host and gut microbiota, establishing an ISC niche. However, during inflammatory bowel disease (IBD), this signaling niche undergoes dramatic changes, leading to impaired ISC and hindered restoration of the damaged intestinal epithelial barrier. This study introduces intestinal inflammatory microenvironment-responsive microsphere vehicles designed to remodel the ISC niche, offering an approach to treat IBD. Using an advanced emulsion technique, these microsphere vehicles specifically target colonic inflammation sites, delivering a responsive release of MXene and l-arginine. This delivery system is formulated to modulate intestinal flora and immune responses effectively. l-arginine is converted into nitric oxide to regulate the gut microbiome, while MXene serves as a nanoimmunomodulator to stabilize immune homeostasis. Our findings demonstrate that the anti-inflammatory properties of the microspheres are key to promoting epithelial repair and remodeling of the ISC niche. This study highlights the role of antioxidant microspheres as anti-inflammatory agents that indirectly support ISC function and gut regeneration.
Collapse
Affiliation(s)
- Xing Zhao
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Liya Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ya-Jun Fu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Fei Yu
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610032, China
| | - Kai Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 , China
| | - Yu-Qiang Wang
- Department of Cardiovascular Surgery and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Gao S, Ge H, Gao L, Gao Y, Tang S, Li Y, Yuan Z, Chen W. Silk Fibroin Nanoparticles for Enhanced Cuproptosis and Immunotherapy in Pancreatic Cancer Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417676. [PMID: 40091480 DOI: 10.1002/advs.202417676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/16/2025] [Indexed: 03/19/2025]
Abstract
Cuproptosis is a newly discovered copper ion-dependent programmed cell death. Elesclomol (ES) is a Cu2+ transporter that delivers Cu2+ into tumor cells, causing cell death at toxic doses. However, ES has a short blood half-life, limiting its accumulation in tumors. This study introduces Tussah silk fibroin nanoparticles (TSF@ES-Cu NPs) to protect ES and Cu2+. TSF, with a stable structure, resists metabolism in circulation. Targeting tumors with natural RGD peptides and TSF's unique secondary structure, enhances drug enrichment and special release in pancreatic tumors, improving treatment efficacy. In vitro, TSF@ES-Cu induces tumor cell cuproptosis, releases DAMPs, promotes dendritic cells (DCs) maturation, and macrophage M1 polarization. In vivo, TSF@ES-Cu reshapes the tumor microenvironment (TME), increasing mature DCs from 22.7% to 43.3%, CD8+ T cells from 5.08% to 17.1%, and reducing M2 macrophages from 50.7% to 18.4%. Additionally, the combined anti-tumor efficacy of TSF@ES-Cu and αPDL-1 is 1.6 times higher than TSF@ES-Cu alone and 2.5 times higher than αPDL-1 alone. In summary, this study reports that the combination of TSF@ES-Cu and αPDL-1 effectively induces cuproptosis and reshapes the TME, offering a new approach for copper nanomaterial-based tumor immunotherapy.
Collapse
Affiliation(s)
- Si Gao
- Department of Biliary-pancreatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Haodong Ge
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China
| | - Lili Gao
- Department of Pathology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, Shanghai, 200092, China
| | - Ying Gao
- School of Stomatology, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, 010030, China
| | - Shuibin Tang
- Department of Biliary-pancreatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Yiming Li
- Department of Biliary-pancreatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
- Department of Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Zhiqing Yuan
- Department of Biliary-pancreatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Wei Chen
- Department of Biliary-pancreatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
9
|
Tang X, Wang K, Liu Z, Luo X, Wu M, Ding H, Liu G, Du Q. Functional chitosan/HP-β-CD hydrogel for targeted co-delivery of Rhubarb-derived nanovesicles and kaempferol for alleviating ulcerative colitis. Carbohydr Polym 2025; 352:123206. [PMID: 39843107 DOI: 10.1016/j.carbpol.2024.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/06/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025]
Abstract
Ulcerative colitis (UC) remains a major challenge in clinical treatment due to its multivariate pathology. Developing an oral formulation that encapsulates and delivers multiple active ingredients to target colon tissues by suppressing intestinal inflammation and restoring the intestinal barrier is crucial for effectively treating UC. Here, we developed rhubarb-derived nanovesicles (RNs) and a supramolecular hydrogel platform formed by furfural-functionalized chitosan-mannose polymer and synthesized 3-maleimide HP-β-CD, with kaempferol (Kae) integrated into the hydrophobic cavity. The hydrogel's cross-linking network effectively encapsulates RNs, forming the Kae/CMCHD@RNs system. Rheology, SEM, TGA, degradation behavior, in vitro drug release, and a macrophage-targeted permeability test were performed. The results indicate that the hydrogel utilizes pH/enzyme sensitivity to ensure sustained release in the colon, while also facilitating targeted delivery to macrophages. In vivo imaging further reveals a prolonged local drug retention time in the colon. Moreover, both in vitro and in vivo studies demonstrate RNs and Kae exhibit synergistic therapeutic effects for UC, including inflammation reduction, oxidative stress alleviation, M1-to-M2 macrophage repolarization, and restoration of the intestinal barrier. Consequently, this study underscores the potential of Kae/CMCHD@RNs as a promising therapeutic approach for managing UC.
Collapse
Affiliation(s)
- Xiao Tang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Kun Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Zihan Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xu Luo
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Ming Wu
- Institute of Pediatrics, Xuzhou Medical University, Xuzhou 221004, China
| | - Hui Ding
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Gang Liu
- Department of Neonatology, Xuzhou Children's Hospital, Xuzhou 221004, China
| | - Qian Du
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
10
|
Yang J, Lin J, Chen X, Li C, Wang Y, Xie J. Tailored strategies based on polysaccharide structural and functional properties for nutrients delivery in inflammatory bowel disease. Carbohydr Polym 2025; 351:123129. [PMID: 39779033 DOI: 10.1016/j.carbpol.2024.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025]
Abstract
Many food nutrients suffer from a series of limitations such as poor water solubility, low stability and inadequate bioavailability. These challenges can be effectively improved by food-based delivery systems (FDSs). FDSs are a series of functional carriers developed based on food-borne macromolecules. Natural polysaccharides are widely used in FDSs due to their good bioactivity, functional properties, and biocompatibility. The complex structural and physicochemical properties of polysaccharides have led to the extremely diverse development of FDSs based on polysaccharides. This review summarizes the application of natural polysaccharides from different sources in the development of different types of FDSs and their functional properties. It also emphasizes the feasibility and theoretical strategies to tailor satisfactory properties (shape, size, surface charge and targeting properties) of polysaccharides-based oral delivery systems (PODS) based on the diverse structural characteristics (e.g., solubility, ion type, molecular weight) and bioactivities of polysaccharides. PODS are designed to meet the diverse requirements in term of stability, toxicity, adhesion, cellular uptake, retention time and release behavior. This review also discusses the advantages of PODS in addressing nutrient deficiencies in gastrointestinal environment, with a focus on their role in nutritional interventions for inflammatory bowel disease. This review contributed to the development for novel PODS with specific demand.
Collapse
Affiliation(s)
- Jun Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Jieqiong Lin
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Yuanxing Wang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
11
|
Zhang X, Yang H, He Y, Zhang D, Lu G, Ren M, Lyu Y, Yuan Z, He S. Yeast-Inspired Orally-Administered Nanocomposite Scavenges Oxidative Stress and Restores Gut Immune Homeostasis for Inflammatory Bowel Disease Treatment. ACS NANO 2025; 19:7350-7369. [PMID: 39943645 DOI: 10.1021/acsnano.4c18099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Excessive oxidative stress, dysregulated immune homeostasis, and disruption of the intestinal epithelial barrier are crucial features of inflammatory bowel disease (IBD). Traditional treatments focusing solely on inflammation resolution remain unsatisfactory. Herein, a yeast-inspired orally administered nanocomposite was developed. First, the MD@MPDA core was fabricated by integrating manganese dioxide (MnO2) nanozymes onto diallyl trisulfide (H2S prodrug)-loaded mesoporous polydopamine nanoparticles (MPDA). Then, yeast cell wall (YCW) was chosen to encapsulate MD@MPDA, namely, YMD@MPDA. The β-glucan embedded in the YCW shell not only protected the nanocomposite from the harsh gastrointestinal environment but also allowed the targeting enrichment in the inflamed colon. Furthermore, M1 macrophages triggered the intracellular GSH-responsive H2S release in the pathological microenvironment. MD@MPDA effectively alleviated inflammatory responses by MnO2-mediated ROS-scavenging and H2S-participated immunomodulation. The synergistic action contributed to macrophage mitochondrial function restoration and M2 polarization by suppressing NOX4 signaling and p38 MAPK pro-inflammatory signaling. In the mice model of dextran sulfate sodium (DSS)-induced IBD, the multipronged manner of scavenging oxidative stress, remodeling innate and adaptive immune homeostasis, and reshaping gut microbiota caused by YMD@MPDA effectively ameliorated inflammation and restored intestinal barrier functions. Overall, the YMD@MPDA nanocomposite provides a promising codelivery strategy of antioxidative nanozymes and gas prodrugs for the comprehensive management of IBD.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| | - Huan Yang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Dan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| | - Guifang Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| | - Mudan Ren
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| | - Yi Lyu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an 710061, P. R. China
| | - Zhang Yuan
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| |
Collapse
|
12
|
Tian Z, Chen H, Zhao P. Compliant immune response of silk-based biomaterials broadens application in wound treatment. Front Pharmacol 2025; 16:1548837. [PMID: 40012629 PMCID: PMC11861559 DOI: 10.3389/fphar.2025.1548837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025] Open
Abstract
The unique properties of sericin and silk fibroin (SF) favor their widespread application in biopharmaceuticals, particularly in wound treatment and bone repair. The immune response directly influences wound healing cycle, and the extensive immunomodulatory functions of silk-based nanoparticles and hydrogels have attracted wide attention. However, different silk-processing methods may trigger intense immune system resistance after implantation into the body. In this review, we elaborate on the inflammation and immune responses caused by the implantation of sericin and SF and also explore their anti-inflammatory properties and immune regulatory functions. More importantly, we describe the latest research progress in enhancing the immunotherapeutic and anti-inflammatory effects of composite materials prepared from silk from a mechanistic perspective. This review will provide a useful reference for using the correct processes to exploit silk-based biomaterials in different wound treatments.
Collapse
Affiliation(s)
- Zhiqiang Tian
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
| | - Hong Chen
- Department of Orthopedics, 903 Hospital of Joint Logistic Support Force of The People’s Liberation Army, Hangzhou, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Ren Y, Mao S, Chen P, Tan W, Ye X, Tian J. Protocatechuic acid/sodium alginate multilayer coating induced by metal ion enhanced the ulcerative colitis alleviations of Lactiplantibacillus plantarum. Int J Biol Macromol 2025; 284:138122. [PMID: 39608540 DOI: 10.1016/j.ijbiomac.2024.138122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Oral intake of probiotics is a promising approach to alleviate colitis. However, environmental sensitivity of the gastrointestinal tract and poor adhesion of probiotics to the intestine hamper the remedial effects. In this study, a simple yet effective novel probiotic multilayer coating consisting of Fe3+-protocatechuic acid (PCA) crosslinked network and Ca2+-induced sodium alginate (SA) for arming Lactiplantibacillus plantarum (LP) was developed. In the dextran sulfate sodium-induced colitis mouse model, SA-PCA-LP effectively alleviated colitis by regulating the expression of inflammatory cytokines, and repairing gut barriers. In addition, SA-PCA-LP regulated the gut microbiota and promoted the production of short-chain fatty acids, which further promoted the remission of colitis. Untargeted metabolomics also revealed that the scymnol, adenosine 5'-monophosphat, guanidylic acid, and 9H-purine-9-ol were significantly up-regulated in SA-PCA-LP group. In general, the novel coating strategies developed in the present study will motivate researchers to arm probiotics with various prebiotics to effectively alleviate colitis.
Collapse
Affiliation(s)
- Yanming Ren
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Shuifang Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Pin Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Wen Tan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China.
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University-Wuxi Xishan Modern Agriculture Joint Research Center, Wuxi 214117, China; Zhejiang University-Wuxi Xishan Modern Agriculture Joint Research Center, Wuxi 214117, China.
| |
Collapse
|
14
|
Wang X, Zhang Z, Lei H, Zhu C, Fu R, Ma X, Duan Z, Fan D. Treatment of ulcerative colitis via the in situ restoration of local immune and microbial homeostasis by oral administration of Tremella polysaccharide drug-carrying hydrogel. Int J Biol Macromol 2024; 285:138223. [PMID: 39626817 DOI: 10.1016/j.ijbiomac.2024.138223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/16/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
Ulcerative colitis (UC) is a prevalent inflammatory bowel disease, and conventional treatments, such as anti-inflammatory medications and surgery, often prove inadequate due to frequent recurrences and various complications. To alleviate patient suffering, there is an urgent need for a therapeutic system that specifically delivers drugs to the colon for wound healing, inflammation relief, and restoration of microbial homeostasis. In this paper, we developed a Tremella polysaccharide drug-carrying hydrogel that adheres to the inflamed colonic mucosa, forming an effective artificial barrier and releasing the drug in situ to restore local immune and microbial balance. The hydrogel backbone was synthesized through the chemical cross-linking of Tremella polysaccharide with 1,4-butanediol diglycidyl ether in an alkaline environment. During this process, Soluplus® and TPGS-encapsulated ginsenoside compound K adhered to the hydrogel backbone due to electrostatic attraction. The enhanced adhesion following cross-linking enables the hydrogel to stably attach to the inflamed colonic mucosa, releasing mixed micelles that improve drug penetration and absorption by inhibiting the cellular efflux protein P-glycoprotein. This mechanism promotes local immune recovery and eliminates harmful intestinal flora, providing significant relief from UC symptoms. This natural polysaccharide-based hydrogel represents a highly effective oral treatment for UC.
Collapse
Affiliation(s)
- Xue Wang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Zhuo Zhang
- Plastic and Cosmetic Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710069, Shaanxi, China.
| | - Huan Lei
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China.
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China.
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China.
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China.
| |
Collapse
|
15
|
Zhu J, Zhang K, Zhang Y, Zhou C, Cui Z, Li W, Wang Y, Qin J. Antioxidant hydrogel from poly(aspartic acid) and carboxymethylcellulose with quercetin loading as burn wound dressing. Int J Biol Macromol 2024; 282:137323. [PMID: 39521215 DOI: 10.1016/j.ijbiomac.2024.137323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Susceptibility to infection and excessive accumulation of reactive oxygen species (ROS) are the greatest obstacles for burn wound healing. In this research, the 5-aminosalicylic acid (ASA) grafted poly(aspartic hydrazide) (PASH) was synthesized by successive ploysuccinimide (PSI) ring opening reaction and reacted with oxidized carboxymethyl cellulose (DCMC) to fabricate biodegradable hydrogel through Schiff-base cross-linking. Moreover, the hydrogel was loaded with quercetin (QT) to enhance its anti-inflammatory performance. The ASA moiety endowed the hydrogel with the free radical scavenging ability and mussel inspired tissue adhesion to maintain the healing bioenvironment of the wound. The loading of QT gave the hydrogel more phenolic hydroxy group and further enhanced the antioxidant capacity of the hydrogel. The in vitro experiment revealed the grafted ASA moiety and the loaded QT greatly enhanced the ROS elimination property and antibacterial property. Moreover, the QT loaded hydrogel accelerated the burn wound repairing rate in the in vivo mice model. Based on above result, the PASH/DCMC could act as a new platform for QT loading to promote the burn wound repairing.
Collapse
Affiliation(s)
- Jingjing Zhu
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Kaiyue Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yu Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Chengyan Zhou
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Zhe Cui
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Wenjuan Li
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yong Wang
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China.
| | - Jianglei Qin
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China; Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China.
| |
Collapse
|
16
|
Zhao X, Zhang Y, Wang P, Liu K, Zheng Y, Wen J, Wang K, Wen X. Layer by layer self-assembled hyaluronic acid nanoarmor for the treatment of ulcerative colitis. J Nanobiotechnology 2024; 22:633. [PMID: 39420343 PMCID: PMC11488142 DOI: 10.1186/s12951-024-02933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024] Open
Abstract
Natural compound-based treatments provide innovative ways for ulcerative colitis therapy. However, poor targeting and rapid degradation curtail its application, which needs to be addressed. Inspired by biomacromolecule-based materials, we have developed an orally administrated nanoparticle (GBP@HA NPs) using bovine serum albumin as a carrier for polyphenol delivery. The system synergizes galactosylated bovine serum albumin with two polyphenols, epigallocatechin gallate and tannic acid, which is then encased in "nanoarmor" of ε-Polylysine and hyaluronic acid to boost its stability and targeting. Remarkably, the nanoarmor demonstrated profound therapeutic effects in both acute and chronic mouse models of ulcerative colitis, mitigating disease symptoms via multiple mechanisms, regulating inflammation related factors and exerting a modulatory impact on gut microbiota. Further mechanistic investigations indicate that GBP@HA NPs may act through several pathways, including modulation of Keap1-Nrf2 and NF-κB signaling, as well as Caspase-1-dependent pyroptosis. Consequently, this novel armored nanotherapy promotes the way for enhanced polyphenol utilization in ulcerative colitis treatment research.
Collapse
Affiliation(s)
- Xinxin Zhao
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuchen Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Pengchong Wang
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an Shaanxi, 710068, China
| | - Kailai Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yunhe Zheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jinpeng Wen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ke Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Xiaopeng Wen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
17
|
Zu M, Liu G, Xu H, Zhu Z, Zhen J, Li B, Shi X, Shahbazi MA, Reis RL, Kundu SC, Nie G, Xiao B. Extracellular Vesicles from Nanomedicine-Trained Intestinal Microbiota Substitute for Fecal Microbiota Transplant in Treating Ulcerative Colitis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409138. [PMID: 39073205 DOI: 10.1002/adma.202409138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Indexed: 07/30/2024]
Abstract
The biosafety concerns associated with fecal microbiota transplant (FMT) limit their clinical application in treating ulcerative colitis (UC). Gut microbiota secrete abundant extracellular vesicles (Gm-EVs), which play a critical role in bacteria-to-bacteria and bacteria-to-host communications. Herein, intestinal microbiota are trained using tea leaf lipid/pluronic F127-coated curcumin nanocrystals (CN@Lp127s), which can maintain stability during transit through the gastrointestinal tract. Compared with FMT, Gm-EVs derived from healthy mice significantly improve treatment outcomes against UC by reducing colonic inflammatory responses, restoring colonic barrier function, and rebalancing intestinal microbiota. Strikingly, Gm-EVs obtained from CN@Lp127-trained healthy mice exhibit a superior therapeutic effect on UC compared to groups receiving FMT from healthy mice, Gm-EVs from healthy mice, and FMT from CN@Lp127-trained healthy mice. Oral administration of Gm-EVs from CN@Lp127-trained healthy mice not only alleviates colonic inflammation, promotes mucosal repair, and regulates gut microbiota but also regulates purine metabolism to decrease the uric acid level, resulting in a robust improvement in the UC. This study demonstrates the UC therapeutic efficacy of Gm-EVs derived from nanomedicine-trained gut microbiota in regulating the immune microenvironment, microbiota, and purine metabolism of the colon. These EVs provide an alternative platform to replace FMT as a treatment for UC.
Collapse
Affiliation(s)
- Menghang Zu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Ga Liu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Haiting Xu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Zhenhua Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Junfeng Zhen
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Baoyi Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaoxiao Shi
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, Netherlands
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, 4800-058, Braga, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, 4800-058, Braga, Portugal
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Bo Xiao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
18
|
Zhang Q, Deng H, Luo R, Qi H, Lei Y, Yang L, Pang H, Fu C, Liu F. Oral food-derived whey protein isolate-Tremella fuciformis polysaccharides pickering emulsions with adhesive ability to delivery magnolol for targeted treatment of ulcerative colitis. Int J Biol Macromol 2024:135585. [PMID: 39270912 DOI: 10.1016/j.ijbiomac.2024.135585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Magnolol (Mag) is a promising natural compound with therapeutic potential for ulcerative colitis (UC). Here we designed and fabricated an oral food-grade whey protein isolate-Tremella fuciformis polysaccharides (WPI-TFPS) stabilized pickering emulsions to encapsulate Mag (Mag-WPI-TFPS) for targeted treatment of UC. With the assistance of the WPI-TFPS, pickering emulsions were well encapsulated and formed stable microparticles with a particle size of approximately 9.49 ± 0.047 μm, a 93.63 ± 0.21 % encapsulation efficiency and a loading efficiency of 21.53 ± 0.01 %. In vitro, the formulation exhibited sustained-release properties in simulated colon fluid with a cumulative release rate of 60.78 % at 48 h. In vivo, the Mag-WPI-TFPS specifically accumulated in the colon tissue for 24 h with stronger fluorescence intensity, which demonstrated that TFPS and WPI had a good adherence ability to inflamed mucosa by electrostatic attraction and ligand-receptor interactions. As expected, compared with Free-Mag, the oral administration of Mag-WPI-TFPS remarkably alleviated the symptoms of UC and protected the colon tissue in DSS-induced UC mice. More importantly, WPI-TFPS enhanced gut microbiota balance by increasing the diversity and relative abundances of Lactobacillaceae and Firmicutes. Overall, this study presents a convenient, eco-friendly, food-derived oral formulation with potential as a dietary supplement for targeted UC treatment.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongdan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macau
| | - Hu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yicheng Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luping Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
19
|
Pan Q, Xie L, Cai P, Wu D, Zhu H, Xu L, Liu R, Luo K, He B, Pu Y. Acid-Resistant Nano-antioxidants Based on Epigallocatechin Gallate Alleviate Acute Intestinal and Kidney Inflammation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46090-46101. [PMID: 39174346 DOI: 10.1021/acsami.4c09901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Epigallocatechin gallate (EGCG)-based nanosystems have garnered significant attention for their ability to alleviate inflammation due to their excellent anti-inflammatory properties and enhanced drug delivery capabilities. However, the degradation of EGCG in strongly acidic environments poses a challenge for potential administration, particularly in oral formulations, where gastric resistance is essential. In this study, we develop a "disintegration and reorganization" strategy to create acid-resistant antioxidant nanoparticles (EGA NPs) based on EGCG and 5-aminosalicylic acid (5-ASA) for mitigating inflammation in colitis and acute kidney injury. At acidic pH, the ester bond in EGCG breaks down, producing two building blocks. These, together with 5-ASA and formaldehyde, form oligomers through a combination of phenol-aldehyde condensation and the Mannich reaction. The resulting oligomers self-assemble into EGA NPs, which exhibit significant stability under both acidic and neutral pH conditions. This stability makes them suitable for oral administration, allowing them to withstand harsh gastric conditions, as well as for intravenous injection. Importantly, these oligomers retain the antioxidant and anti-inflammatory properties of EGCG, effectively scavenging reactive oxygen species and reducing intracellular oxidative stress. Additionally, EGA shows potential as a drug carrier, efficiently loading the anti-inflammatory agent curcumin (Cur) to form Cur@EGA NPs. In vivo studies demonstrate the efficacy of Cur@EGA and EGA in alleviating acute colitis and kidney injury following oral and intravenous administration, respectively. These nanoparticulate formulations exhibit superior inflammation reduction compared to free Cur in vivo. Overall, our findings introduce a novel acid-resistant nanoplatform based on EGCG for the treatment of acute inflammation.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Pingyang Cai
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Huang Zhu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Long Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Kui Luo
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
20
|
Weng MT, Hsiung CY, Wei SC, Chen Y. Nanotechnology for Targeted Inflammatory Bowel Disease Therapy: Challenges and Opportunities. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1999. [PMID: 39439396 DOI: 10.1002/wnan.1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
Inflammatory bowel disease (IBD) is a complex and recurring inflammatory disorder that affects the gastrointestinal tract and is influenced by genetic predisposition, immune dysregulation, the gut microbiota, and environmental factors. Advanced therapies, such as biologics and small molecules, target diverse immune pathways to manage IBD. Nanoparticle (NP)-based drugs have emerged as effective tools, offering controlled drug release and targeted delivery. This review highlights NP modifications for anti-inflammatory purposes, utilizing changes such as those in size, charge, redox reactions, and ligand-receptor interactions in drug delivery systems. By using pathological and microenvironmental cues to guide NP design, precise targeting can be achieved. In IBD, a crucial aspect of NP intervention is targeting specific types of cells, such as immune and epithelial cells, to address compromised intestinal barrier function and reduce overactive immune responses. This review also addresses current challenges and future prospects, with the goal of advancing the development of NP-mediated strategies for IBD treatment.
Collapse
Affiliation(s)
- Meng-Tzu Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan
| | - Chia-Yueh Hsiung
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
21
|
Tian Y, Hu Q, Sun Z, Yu Y, Li X, Tian T, Bi X, Li Y, Niu B, Zhang Z. Colon Targeting pH-Responsive Coacervate Microdroplets for Treatment of Ulcerative Colitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311890. [PMID: 38577919 DOI: 10.1002/smll.202311890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Indexed: 04/06/2024]
Abstract
Ulcerative colitis (UC), an immune-mediated chronic inflammatory disease, drastically impacts patients' quality of life and increases their risk of colorectal cancer worldwide. However, effective oral targeted delivery and retention of drugs in colonic lesions are still great challenges in the treatment of UC. Coacervate microdroplets, formed by liquid-liquid phase separation, are recently explored in drug delivery as the simplicity in fabrication, spontaneous enrichment on small molecules and biological macromolecules, and high drug loading capacity. Herein, in this study, a biocompatible diethylaminoethyl-dextran hydrochloride/sodium polyphenylene sulfonate coacervates, coated with eudragit S100 to improve the stability and colon targeting ability, named EU-Coac, is developed. Emodin, an active ingredient in traditional Chinese herbs proven to alleviate UC symptoms, is loaded in EU-Coac (EMO@EU-Coac) showing good stability in gastric acid and pepsin and pH-responsive release behavior. After oral administration, EMO@EU-Coac can effectively target and retain in the colon, displaying good therapeutic effects on UC treatment through attenuating inflammation and oxidative stress response, repairing colonic epithelia, as well as regulating intestinal flora balance. In short, this study provides a novel and facile coacervate microdroplet delivery system for UC treatment.
Collapse
Affiliation(s)
- Yinmei Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Hu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhengjun Sun
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yulin Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaonan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tianyi Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinying Bi
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Boning Niu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Engineering Research Centre for Novel Drug Delivery System, Wuhan, 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
22
|
Gazzi R, Gelli R, Aleandri S, Carone M, Luciani P. Bioinspired and bioderived nanomedicine for inflammatory bowel disease. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1986. [PMID: 39140489 DOI: 10.1002/wnan.1986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024]
Abstract
Due to its chronic nature and complex pathophysiology, inflammatory bowel disease (IBD) poses significant challenges for treatment. The long-term therapies for patients, often diagnosed between the ages of 20 and 40, call for innovative strategies to target inflammation, minimize systemic drug exposure, and improve patients' therapeutic outcomes. Among the plethora of strategies currently pursued, bioinspired and bioderived nano-based formulations have garnered interest for their safety and versatility in the management of IBD. Bioinspired nanomedicine can host and deliver not only small drug molecules but also biotherapeutics, be made gastroresistant and mucoadhesive or mucopenetrating and, for these reasons, are largely investigated for oral administration, while surprisingly less for rectal delivery, recommended first-line treatment approach for several IBD patients. The use of bioderived nanocarriers, mostly extracellular vesicles (EVs), endowed with unique homing abilities, is still in its infancy with respect to the arsenal of nanomedicine under investigation for IBD treatment. An emerging source of EVs suited for oral administration is ingesta, that is, plants or milk, thanks to their remarkable ability to resist the harsh environment of the upper gastrointestinal tract. Inspired by the unparalleled properties of natural biomaterials, sophisticated avenues for enhancing therapeutic efficacy and advancing precision medicine approaches in IBD care are taking shape, although bottlenecks arising either from the complexity of the nanomedicine designed or from the lack of a clear regulatory pathway still hinder a smooth and efficient translation to the clinics. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Rafaela Gazzi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Marianna Carone
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Xiao B, Liang Y, Liu G, Wang L, Zhang Z, Qiu L, Xu H, Carr S, Shi X, Reis RL, Kundu SC, Zhu Z. Gas-propelled nanomotors alleviate colitis through the regulation of intestinal immunoenvironment-hematopexis-microbiota circuits. Acta Pharm Sin B 2024; 14:2732-2747. [PMID: 38828144 PMCID: PMC11143748 DOI: 10.1016/j.apsb.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 06/05/2024] Open
Abstract
The progression of ulcerative colitis (UC) is associated with immunologic derangement, intestinal hemorrhage, and microbiota imbalance. While traditional medications mainly focus on mitigating inflammation, it remains challenging to address multiple symptoms. Here, a versatile gas-propelled nanomotor was constructed by mild fusion of post-ultrasonic CaO2 nanospheres with Cu2O nanoblocks. The resulting CaO2-Cu2O possessed a desirable diameter (291.3 nm) and a uniform size distribution. It could be efficiently internalized by colonic epithelial cells and macrophages, scavenge intracellular reactive oxygen/nitrogen species, and alleviate immune reactions by pro-polarizing macrophages to the anti-inflammatory M2 phenotype. This nanomotor was found to penetrate through the mucus barrier and accumulate in the colitis mucosa due to the driving force of the generated oxygen bubbles. Rectal administration of CaO2-Cu2O could stanch the bleeding, repair the disrupted colonic epithelial layer, and reduce the inflammatory responses through its interaction with the genes relevant to blood coagulation, anti-oxidation, wound healing, and anti-inflammation. Impressively, it restored intestinal microbiota balance by elevating the proportions of beneficial bacteria (e.g., Odoribacter and Bifidobacterium) and decreasing the abundances of harmful bacteria (e.g., Prevotellaceae and Helicobacter). Our gas-driven CaO2-Cu2O offers a promising therapeutic platform for robust treatment of UC via the rectal route.
Collapse
Affiliation(s)
- Bo Xiao
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yuqi Liang
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Ga Liu
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Lingshuang Wang
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zhan Zhang
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Libin Qiu
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Haiting Xu
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Sean Carr
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Surgery, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Xiaoxiao Shi
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Rui L. Reis
- 3Bs Research Group, I3Bs — Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimaraes 4805-017, Portugal
| | - Subhas C. Kundu
- 3Bs Research Group, I3Bs — Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimaraes 4805-017, Portugal
| | - Zhenghua Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
24
|
Kan L, Zheng Z, Fu W, Ma Y, Wang W, Qian H, Xu L. Recent progress on engineered micro/nanomaterials mediated modulation of gut microbiota for treating inflammatory bowel disease. J Control Release 2024; 370:43-65. [PMID: 38608876 DOI: 10.1016/j.jconrel.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Inflammatory bowel disease (IBD) is a type of chronic recurrent inflammation disease that mainly includes Crohn's disease and ulcerative colitis. Currently, the treatments for IBD remain highly challenging, with clinical treatment drugs showing limited efficacy and adverse side effects. Thus, developing drug candidates with comprehensive therapeutic effects, high efficiency, and low toxicity is urgently needed. Recently, micro/nanomaterials have attracted considerable interest because of their bioavailability, multitarget and efficient effects on IBD. In addition, gut modulation plays a substantial role in restoring intestinal homeostasis. Therefore, efficient microbiota-based strategies modulating gut microenvironment have great potential in remarkably treating IBD. With the development of micro- and nanomaterials for the treatment of IBD and more in-depth studies of their therapeutic mechanisms, it has been found that these treatments also have a tendency to positively regulate the intestinal flora, resulting in an increase in the beneficial flora and a decrease in the level of pathogenic bacteria, thus regulating the composition of the intestinal flora to a normal state. In this review, we first present the interactions among the immune system, intestinal barrier, and gut microbiome. In addition, recent advances in administration routes and methods that positively arouse the regulation of intestinal flora for IBD using probiotics, prebiotics, and redox-active micro/nanomaterials have been reviewed. Finally, the key challenges and critical perspectives of gut microbiota-based micro/nanomaterial treatment are also discussed.
Collapse
Affiliation(s)
- Lingling Kan
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Ziwen Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| |
Collapse
|
25
|
Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol 2024; 15:1395479. [PMID: 38835782 PMCID: PMC11148235 DOI: 10.3389/fimmu.2024.1395479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The skin, being a multifaceted organ, performs a pivotal function in the complicated wound-healing procedure, which encompasses the triggering of several cellular entities and signaling cascades. Aberrations in the typical healing process of wounds may result in atypical scar development and the establishment of a persistent condition, rendering patients more vulnerable to infections. Chronic burns and wounds have a detrimental effect on the overall quality of life of patients, resulting in higher levels of physical discomfort and socio-economic complexities. The occurrence and frequency of prolonged wounds are on the rise as a result of aging people, hence contributing to escalated expenditures within the healthcare system. The clinical evaluation and treatment of chronic wounds continue to pose challenges despite the advancement of different therapeutic approaches. This is mainly owing to the prolonged treatment duration and intricate processes involved in wound healing. Many conventional methods, such as the administration of growth factors, the use of wound dressings, and the application of skin grafts, are used to ease the process of wound healing across diverse wound types. Nevertheless, these therapeutic approaches may only be practical for some wounds, highlighting the need to advance alternative treatment modalities. Novel wound care technologies, such as nanotherapeutics, stem cell treatment, and 3D bioprinting, aim to improve therapeutic efficacy, prioritize skin regeneration, and minimize adverse effects. This review provides an updated overview of recent advancements in chronic wound healing and therapeutic management using innovative approaches.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
26
|
Fu YJ, Zhao X, Wang LY, Li K, Jiang N, Zhang ST, Wang RK, Zhao YF, Yang W. A Gas Therapy Strategy for Intestinal Flora Regulation and Colitis Treatment by Nanogel-Based Multistage NO Delivery Microcapsules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309972. [PMID: 38324725 DOI: 10.1002/adma.202309972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Current approaches to treating inflammatory bowel disease focus on the suppression of overactive immune responses, the removal of reactive intestinal oxygen species, and regulation of the intestinal flora. However, owing to the complex structure of the gastrointestinal tract and the influence of mucus, current small-molecule and biologic-based drugs for treating colitis cannot effectively act at the site of colon inflammation, and as a result, they tend to exhibit low efficacies and toxic side effects. In this study, nanogel-based multistage NO delivery microcapsules are developed to achieve NO release at the inflammation site by targeting the inflammatory tissues using the nanogel. Surprisingly, oral administration of the microcapsules suppresses the growth of pathogenic bacteria and increases the abundance of probiotic bacteria. Metabolomics further show that an increased abundance of intestinal probiotics promotes the production of metabolites, including short-chain fatty acids and indole derivatives, which modulate the intestinal immunity and restore the intestinal barrier via the interleukin-17 and PI3K-Akt signaling pathways. This work reveals that the developed gas therapy strategy based on multistage NO delivery microcapsules modulates the intestinal microbial balance, thereby reducing inflammation and promoting intestinal barrier repair, ultimately providing a new therapeutic approach for the clinical management of colitis.
Collapse
Affiliation(s)
- Ya-Jun Fu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xing Zhao
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Li-Ya Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Kai Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Niu Jiang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Shu-Ting Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Rao-Kaijuan Wang
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610032, China
| | - Yi-Fan Zhao
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610032, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
27
|
Zhang L, Ye P, Zhu H, Zhu L, Ren Y, Lei J. Bioinspired and biomimetic strategies for inflammatory bowel disease therapy. J Mater Chem B 2024; 12:3614-3635. [PMID: 38511264 DOI: 10.1039/d3tb02995f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic chronic inflammatory bowel disease with high morbidity and an increased risk of cancer or death, resulting in a heavy societal medical burden. While current treatment modalities have been successful in achieving long-term remission and reducing the risk of complications, IBD remains incurable. Nanomedicine has the potential to address the high toxic side effects and low efficacy in IBD treatment. However, synthesized nanomedicines typically exhibit some degree of immune rejection, off-target effects, and a poor ability to cross biological barriers, limiting the development of clinical applications. The emergence of bionic materials and bionic technologies has reshaped the landscape in novel pharmaceutical fields. Biomimetic drug-delivery systems can effectively improve biocompatibility and reduce immunogenicity. Some bioinspired strategies can mimic specific components, targets or immune mechanisms in pathological processes to produce targeting effects for precise disease control. This article highlights recent research on bioinspired and biomimetic strategies for the treatment of IBD and discusses the challenges and future directions in the field to advance the treatment of IBD.
Collapse
Affiliation(s)
- Limei Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Peng Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Huatai Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Liyu Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Yuting Ren
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
28
|
Ma Y, Gou S, Zhu Z, Sun J, Shahbazi MA, Si T, Xu C, Ru J, Shi X, Reis RL, Kundu SC, Ke B, Nie G, Xiao B. Transient Mild Photothermia Improves Therapeutic Performance of Oral Nanomedicines with Enhanced Accumulation in the Colitis Mucosa. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309516. [PMID: 38085512 DOI: 10.1002/adma.202309516] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/29/2023] [Indexed: 01/12/2024]
Abstract
The treatment outcomes of oral medications against ulcerative colitis (UC) have long been restricted by low drug accumulation in the colitis mucosa and subsequent unsatisfactory therapeutic efficacy. Here, high-performance pluronic F127 (P127)-modified gold shell (AuS)-polymeric core nanotherapeutics loading with curcumin (CUR) is constructed. Under near-infrared irradiation, the resultant P127-AuS@CURs generate transient mild photothermia (TMP; ≈42 °C, 10 min), which facilitates their penetration through colonic mucus and favors multiple cellular processes, including cell internalization, lysosomal escape, and controlled CUR release. This strategy relieves intracellular oxidative stress, improves wound healing, and reduces immune responses by polarizing the proinflammatory M1-type macrophages to the anti-inflammatory M2-type. Upon oral administration of hydrogel-encapsulating P127-AuS@CURs plus intestinal intralumen TMP, their therapeutic effects against acute and chronic UC are demonstrated to be superior to those of a widely used clinical drug, dexamethasone. The treatment of P127-AuS@CURs (+ TMP) elevates the proportions of beneficial bacteria (e.g., Lactobacillus and Lachnospiraceae), whose metabolites can also mitigate colitis symptoms by regulating genes associated with antioxidation, anti-inflammation, and wound healing. Overall, the intestinal intralumen TMP offers a promising approach to enhance the therapeutic outcomes of noninvasive medicines against UC.
Collapse
Affiliation(s)
- Ya Ma
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Shuangquan Gou
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Zhenhua Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jianfeng Sun
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, Netherlands
| | - Tieyan Si
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Cheng Xu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jinlong Ru
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Xiaoxiao Shi
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimaraes, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimaraes, 4800-058, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimaraes, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimaraes, 4800-058, Portugal
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
29
|
Yang D, Feng Y, Yuan Y, Zhang L, Zhou Y, Midgley AC, Wang Y, Liu N, Li G, Yao X, Liu D. Protein Coronas Derived from Mucus Act as Both Spear and Shield to Regulate Transferrin Functionalized Nanoparticle Transcellular Transport in Enterocytes. ACS NANO 2024; 18:7455-7472. [PMID: 38417159 DOI: 10.1021/acsnano.3c11315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
The epithelial mucosa is a key biological barrier faced by gastrointestinal, intraoral, intranasal, ocular, and vaginal drug delivery. Ligand-modified nanoparticles demonstrate excellent ability on this process, but their efficacy is diminished by the formation of protein coronas (PCs) when they interact with biological matrices. PCs are broadly implicated in affecting the fate of NPs in vivo and in vitro, yet few studies have investigated PCs formed during interactions of NPs with the epithelial mucosa, especially mucus. In this study, we constructed transferrin modified NPs (Tf-NPs) as a model and explored the mechanisms and effects that epithelial mucosa had on PCs formation and the subsequent impact on the transcellular transport of Tf-NPs. In mucus-secreting cells, Tf-NPs adsorbed more proteins from the mucus layers, which masked, displaced, and dampened the active targeting effects of Tf-NPs, thereby weakening endocytosis and transcellular transport efficiencies. In mucus-free cells, Tf-NPs adsorbed more proteins during intracellular trafficking, which enhanced transcytosis related functions. Inspired by soft coronas and artificial biomimetic membranes, we used mucin as an "active PC" to precoat Tf-NPs (M@Tf-NPs), which limited the negative impacts of "passive PCs" formed during interface with the epithelial mucosa and improved favorable routes of endocytosis. M@Tf-NPs adsorbed more proteins associated with endoplasmic reticulum-Golgi functions, prompting enhanced intracellular transport and exocytosis. In summary, mucus shielded against the absorption of Tf-NPs, but also could be employed as a spear to break through the epithelial mucosa barrier. These findings offer a theoretical foundation and design platform to enhance the efficiency of oral-administered nanomedicines.
Collapse
Affiliation(s)
- Dan Yang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
- Xi'an Key Laboratory of Antiviral and Antimicrobial Resistant Bacteria Therapeutics Research, Xi'an, 710021, China
| | - Yuqi Feng
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Ying Yuan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Linxuan Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yao Zhou
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials (MoE), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yanrong Wang
- Key Laboratory of Bioactive Materials (MoE), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ning Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Xiaolin Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Dechun Liu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
30
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
31
|
Fan X, Zhang Z, Gao W, Pan Q, Luo K, He B, Pu Y. An Engineered Butyrate-Derived Polymer Nanoplatform as a Mucosa-Healing Enhancer Potentiates the Therapeutic Effect of Magnolol in Inflammatory Bowel Disease. ACS NANO 2024; 18:229-244. [PMID: 38112525 DOI: 10.1021/acsnano.3c05732] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Colonic epithelial damage and dysregulated immune response are crucial factors in the progression and exacerbation of inflammatory bowel disease (IBD). Nanoenabled targeted drug delivery to the inflamed intestinal mucosa has shown promise in inducing and maintaining colitis remission, while minimizing side effects. Inspired by the excellent antioxidative and anti-inflammatory efficacy of naturally derived magnolol (Mag) and gut homeostasis regulation of microbiota-derived butyrate, we developed a pH/redox dual-responsive butyrate-rich polymer nanoparticle (PSBA) as an oral Mag delivery system for combinational therapy of IBD. PSBA showed a high butyrate content of 22% and effectively encapsulated Mag. The Mag-loaded nanoparticles (PSBA@Mag) demonstrated colonic pH and reduction-responsive drug release, ensuring efficient retention and adhesion in the colon of colitis mice. PSBA@Mag not only normalized the level of reactive oxygen species and inflammatory effectors in inflamed colonic mucosa but also restored the epithelial barrier function in both ulcerative colitis and Crohn's disease mouse models. Importantly, PSBA promoted the migration and healing ability of intestinal epithelial cells in vitro and in vivo, sensitizing the therapeutic efficacy of Mag in animal models. Moreover, transcriptomics and metabolism analyses revealed that PSBA@Mag mitigated inflammation by suppressing the production of pro-inflammatory cytokines and chemokines and restoring the lipid metabolism. Additionally, this nanomedicine modulated the gut microbiota by inhibiting pathogenic Proteus and Escherichia-Shigella and promoting the proliferation of beneficial probiotics, including Lachnoclostridium, Lachnospiraceae_NK4A136_group and norank_f_Ruminococcaceae. Overall, our findings highlight the potential of butyrate-functionalized polymethacrylates as versatile and effective nanoplatforms for colonic drug delivery and mucosa repair in combating IBD and other gastrointestinal disorders.
Collapse
Affiliation(s)
- Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
32
|
Gao Q, Chen N, Li B, Zu M, Ma Y, Xu H, Zhu Z, Reis RL, Kundu SC, Xiao B. Natural lipid nanoparticles extracted from Morus nigra L. leaves for targeted treatment of hepatocellular carcinoma via the oral route. J Nanobiotechnology 2024; 22:4. [PMID: 38169394 PMCID: PMC10763359 DOI: 10.1186/s12951-023-02286-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
The clinical application of conventional medications for hepatocellular carcinoma treatment has been severely restricted by their adverse effects and unsatisfactory therapeutic effectiveness. Inspired by the concept of 'medicine food homology', we extracted and purified natural exosome-like lipid nanoparticles (LNPs) from black mulberry (Morus nigra L.) leaves. The obtained MLNPs possessed a desirable hydrodynamic particle size (162.1 nm), a uniform size distribution (polydispersity index = 0.025), and a negative surface charge (-26.6 mv). These natural LNPs were rich in glycolipids, functional proteins, and active small molecules (e.g., rutin and quercetin 3-O-glucoside). In vitro experiments revealed that MLNPs were preferentially internalized by liver tumor cell lines via galactose receptor-mediated endocytosis, increased intracellular oxidative stress, and triggered mitochondrial damage, resulting in suppressing the viability, migration, and invasion of these cells. Importantly, in vivo investigations suggested that oral MLNPs entered into the circulatory system mainly through the jejunum and colon, and they exhibited negligible adverse effects and superior anti-liver tumor outcomes through direct tumor killing and intestinal microbiota modulation. These findings collectively demonstrate the potential of MLNPs as a natural, safe, and robust nanomedicine for oral treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Qiang Gao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Nanxi Chen
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Baoyi Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Menghang Zu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Ya Ma
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Haiting Xu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Zhenhua Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, AvePark, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, AvePark, Braga, Guimarães, Portugal
| | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
33
|
Zhang J, Wang L, Xu C, Cao Y, Liu S, Reis RL, Kundu SC, Yang X, Xiao B, Duan L. Transparent silk fibroin film-facilitated infected-wound healing through antibacterial, improved fibroblast adhesion and immune modulation. J Mater Chem B 2024; 12:475-488. [PMID: 38099432 DOI: 10.1039/d3tb02146g] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The clinical application of regenerated silk fibroin (RSF) films for wound treatment is restricted by its undesirable mechanical properties and lack of antibacterial activity. Herein, different pluronic polymers were introduced to optimize their mechanical properties and the RSF film with 2.5% pluronic F127 (RSFPF127) stood out to address the above issues owing to its satisfactory mechanical properties, hydrophilicity, and transmittance. Diverse antibacterial agents (curcumin, Ag nanoparticles, and antimicrobial peptide KR-12) were separately encapsulated in RSFPF127 to endow it with antibacterial activity. In vitro experiments revealed that the medicated RSFPF127 could persistently release drugs and had desirable bioactivities toward killing bacteria, promoting fibroblast adhesion, and modulating macrophage polarization. In vivo experiments revealed that medicated RSFPF127 not only eradicated methicillin-resistant Staphylococcus aureus in the wound area and inhibited inflammatory responses, but also facilitated angiogenesis and re-epithelialization, regardless of the types of antibacterial agents, thus accelerating the recovery of infected wounds. These results demonstrate that RSFPF127 is an ideal matrix platform to load different types of drugs for application as wound dressings.
Collapse
Affiliation(s)
- Jiamei Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Lingshuang Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Cheng Xu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Yingui Cao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Shengsheng Liu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Rui L Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco 4805-017, Guimaraes, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco 4805-017, Guimaraes, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Xiao Yang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Lian Duan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
34
|
Chen T, Chen L, Luo F, Xu Y, Wu D, Li Y, Zhao R, Hua Z, Hu J. Efficient oral delivery of resveratrol-loaded cyclodextrin-metal organic framework for alleviation of ulcerative colitis. Int J Pharm 2023; 646:123496. [PMID: 37806504 DOI: 10.1016/j.ijpharm.2023.123496] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/14/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Developing innovative strategies for the oral administration of phytochemicals presents a promising approach to addressing intestinal diseases. However, numerous challenges persist, including limited therapeutic efficacy, poor bioavailability, and inadequate biocompatibility. In this study, we employed a cross-linked cyclodextrin-metal organic framework (CDF) to encapsulate resveratrol (Res), generating Res-CDF, which was subsequently incorporated into natural polysaccharide hydrogel microspheres (Res-CDF in MPs) for targeted oral delivery to alleviate ulcerative colitis (UC). The underlying adsorption mechanism of Res by γ-CD elucidated by molecular dynamics simulations. Importantly, the Res-CDF in MPs formulation protected against gastric acid degradation while preserving the bioactivity of Res. Moreover, the design enabled specific release of Res-CDF in response to the mildly alkaline environment of the intestinal tract, followed by sustained Res release. In UC mice model, Res-CDF in MPs demonstrated potent anti-inflammatory effects by attenuating pro-inflammatory cytokine production and exhibited antioxidant properties. Additionally, Res-CDF in MPs enhanced the expression of tight junction proteins ZO-1, Occludin, and mucin-2 (Muc-2), thereby maintaining normal intestinal barrier function. This innovative oral delivery strategy capitalizes on the advantageous properties of polysaccharide hydrogel and CDF to augment bioavailability of phytochemicals, laying the groundwork for developing novel oral interventions employing natural phytochemicals to address intestinal-related diseases.
Collapse
Affiliation(s)
- Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lihang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Fengxian Luo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Xu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yanfei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Runan Zhao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Hua
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
35
|
Wang Y, Chen L, Wang Y, Wang X, Qian D, Yan J, Sun Z, Cui P, Yu L, Wu J, He Z. Marine biomaterials in biomedical nano/micro-systems. J Nanobiotechnology 2023; 21:408. [PMID: 37926815 PMCID: PMC10626837 DOI: 10.1186/s12951-023-02112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Marine resources in unique marine environments provide abundant, cost-effective natural biomaterials with distinct structures, compositions, and biological activities compared to terrestrial species. These marine-derived raw materials, including polysaccharides, natural protein components, fatty acids, and marine minerals, etc., have shown great potential in preparing, stabilizing, or modifying multifunctional nano-/micro-systems and are widely applied in drug delivery, theragnostic, tissue engineering, etc. This review provides a comprehensive summary of the most current marine biomaterial-based nano-/micro-systems developed over the past three years, primarily focusing on therapeutic delivery studies and highlighting their potential to cure a variety of diseases. Specifically, we first provided a detailed introduction to the physicochemical characteristics and biological activities of natural marine biocomponents in their raw state. Furthermore, the assembly processes, potential functionalities of each building block, and a thorough evaluation of the pharmacokinetics and pharmacodynamics of advanced marine biomaterial-based systems and their effects on molecular pathophysiological processes were fully elucidated. Finally, a list of unresolved issues and pivotal challenges of marine-derived biomaterials applications, such as standardized distinction of raw materials, long-term biosafety in vivo, the feasibility of scale-up, etc., was presented. This review is expected to serve as a roadmap for fundamental research and facilitate the rational design of marine biomaterials for diverse emerging applications.
Collapse
Affiliation(s)
- Yanan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Long Chen
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China
| | - Yuanzheng Wang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China.
| | - Xinyuan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Deyao Qian
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Jiahui Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Zeyu Sun
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China
| | - Pengfei Cui
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China.
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Jun Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China.
| | - Zhiyu He
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China.
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China.
| |
Collapse
|
36
|
Wang M, Cha R, Hao W, Jiang X. Nanocrystalline Cellulose Modulates Dysregulated Intestinal Barriers in Ulcerative Colitis. ACS NANO 2023; 17:18965-18978. [PMID: 37747898 DOI: 10.1021/acsnano.3c04569] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Ulcerative colitis (UC) is a recurrent chronic inflammation of the colon with increasing incidence and prevalence, which could increase the risk of colorectal cancer. It is urgent to find an effective method with few side effects. Nanocrystalline cellulose (NCC), which is from plant fibers, has a good biocompatibility and high biosafety. Herein, we used NCC to treat UC and evaluated its treatment effect by the disease activity index, intestinal pathology, inflammatory cytokines, tight junction proteins, and mucins. We studied the impact of NCC on mucin expression and gut microbiota to discuss the therapeutic mechanism. NCC can effectively treat UC by regulating the MAPK pathway of mucin 2 and the relative abundance of Akkermansia and Odoribacter, which could not cause the body damage. NCC could not cause body damage compared to the medications, while it had a better effect on the regulation of MUC2 compared to the present drug substitutes. NCC is a practical alternative for the treatment of UC.
Collapse
Affiliation(s)
- Mingzheng Wang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Wenshuai Hao
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
37
|
Sun LF, Li MM, Chen Y, Lu WJ, Zhang Q, Wang N, Fang WY, Gao S, Chen SQ, Hu RF. pH/enzyme dual sensitive Gegenqinlian pellets coated with Bletilla striata polysaccharide membranes for the treatment of ulcerative colitis. Colloids Surf B Biointerfaces 2023; 229:113453. [PMID: 37454443 DOI: 10.1016/j.colsurfb.2023.113453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Gegen Qinlian Decoction, derived from Zhang Zhongjing's Treatise on Typhoid Fever, has been widely used in the treatment of various common diseases, frequently-occurring diseases and difficult and complicated diseases, such as ulcerative colitis. In this study, Bletilla striata polysaccharide (BSP) was innovatively used as a film coating material to prepare Gegen Qinlian pellets with dual sensitivity of pH enzyme for the treatment of ulcerative colitis. BSP has the ability to repair the inflamed colon mucosa and can produce synergistic effects, while avoiding the adverse therapeutic effects caused by the early release of drugs from a single pH-sensitive pellets in the small intestine. The prepared pellets have a uniform particle size, good roundness, a particle size range from 0.8 mm to 1.0 mm, and a particle yield is 85.6 %. The results of in vitro release showed that ES-BSP pellets hardly released drugs in the pH range of 1.2-6.8. However, in the colon mimic fluid containing specific enzymes, the drug release was significantly accelerated, demonstrating the sensitivity of the pellets to pH enzymes. In vivo and ex vivo fluorescence imaging of small animals showed that Gegen Qinlian pellets with dual sensitivity of pH enzyme remained longer in the colon compared with pH-sensitive pellets. In vivo pharmacodynamics study showed that the Gegen Qinlian pellets with dual sensitivity of pH enzyme had a better therapeutic effect in the rat model of the ulcerative colon than the commercially available Gegenqinlian pellets in the control group.
Collapse
Affiliation(s)
- Ling Feng Sun
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China
| | - Man Man Li
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China
| | - Yuan Chen
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China
| | - Wen Jie Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Qing Zhang
- Department of Pharmacy, School of Pharmacy, Nanjing Medical University Nanjing, Jiangsu, 210009, China
| | - Nan Wang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China
| | - Wen You Fang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China
| | - Song Gao
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China.
| | - Sheng Qi Chen
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China.
| | - Rong Feng Hu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China.
| |
Collapse
|
38
|
Li D, Li J, Chen T, Qin X, Pan L, Lin X, Liang W, Wang Q. Injectable Bioadhesive Hydrogels Scavenging ROS and Restoring Mucosal Barrier for Enhanced Ulcerative Colitis Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38273-38284. [PMID: 37530040 DOI: 10.1021/acsami.3c06693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Despite the progress in the therapy of ulcerative colitis (UC), long-lasting UC remission can hardly be achieved in the majority of UC patients. The key pathological characteristics of UC include an impaired mucosal barrier and local inflammatory infiltration. Thus, a two-pronged approach aiming at repairing damaged mucosal barrier and scavenging inflammatory mediators simultaneously might hold great potential for long-term remission of UC. A rectal formulation can directly offer preferential and effective drug delivery to inflamed colon. However, regular intestinal peristalsis and frequent diarrhea in UC might cause transient drug retention. Therefore, a bioadhesive hydrogel with strong interaction with intestinal mucosa might be preferable for rectal administration to prolong drug retention. Here, we designed a bioadhesive hydrogel formed by the cross-linking of sulfhydryl chondroitin sulfate and polydopamine (CS-PDA). The presence of PDA would ensure the mucosa-adhesive behavior, and the addition of CS in the hydrogel network was expected to achieve the restoration of the intestinal epithelial barrier. To scavenge the key player (excessive reactive oxygen species, ROS) in inflamed colon, sodium ferulic (SF), a potent ROS inhibitor, was incorporated into the CS-PDA hydrogel. After rectal administration, the SF-loaded CS-PDA hydrogel could adhere to the colonic mucosa to allow prolonged drug retention. Subsequently, sustained SF release could be achieved to persistently scavenge ROS in inflammatory areas. Meanwhile, the presence of CS would promote the restoration of the mucosal barrier. Ultimately, scavenging ROS and restoring the mucosal barrier could be simultaneously achieved via this SF-loaded bioadhesive hydrogel scaffold. Our two-pronged approach might provide new insight for effective UC treatment.
Collapse
Affiliation(s)
- Daming Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiao Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xianyan Qin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lihua Pan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Lin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenlang Liang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Qin Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
39
|
Fan Z, Liu H, Ding Z, Xiao L, Lu Q, Kaplan DL. Simulation of Cortical and Cancellous Bone to Accelerate Tissue Regeneration. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2301839. [PMID: 37601745 PMCID: PMC10437128 DOI: 10.1002/adfm.202301839] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 08/22/2023]
Abstract
Different tissues have complex anisotropic structures to support biological functions. Mimicking these complex structures in vitro remains a challenge in biomaterials designs in support of tissue regeneration. Here, inspired by different types of silk nanofibers, a composite materials strategy was pursued towards this challenge. A combination of fabrication methods was utilized to achieve separate control of amorphous and beta-sheet rich silk nanofibers in the same solution. Aqueous solutions containing these two structural types of silk nanofibers were then simultaneously treated with an electric field and with ethylene glycol diglycidyl ether (EGDE). Under these conditions, the beta-sheet rich silk nanofibers in the mixture responded to the electric field while the amorphous nanofibers were active in the crosslinking process with the EGDE. As a result, cryogels with anisotropic structures were prepared, including mimics for cortical- and cancellous-like bone biomaterials as a complex osteoinductive niche. In vitro studies revealed that mechanical cues of the cryogels induced osteodifferentiation of stem cells while the anisotropy inside the cryogels influenced immune reactions of macrophages. These bioactive cryogels also stimulated improved bone regeneration in vivo through modulation of inflammation, angiogenesis and osteogenesis responses, suggesting an effective strategy to develop bioactive matrices with complex anisotropic structures beneficial to tissue regeneration.
Collapse
Affiliation(s)
- Zhihai Fan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People’s Republic of China
| | - Hongxiang Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People’s Republic of China
| | - Zhaozhao Ding
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People’s Republic of China
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Liying Xiao
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People’s Republic of China
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People’s Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
40
|
Ge X, Wen H, Fei Y, Xue R, Cheng Z, Li Y, Cai K, Li L, Li M, Luo Z. Structurally dynamic self-healable hydrogel cooperatively inhibits intestinal inflammation and promotes mucosal repair for enhanced ulcerative colitis treatment. Biomaterials 2023; 299:122184. [PMID: 37276796 DOI: 10.1016/j.biomaterials.2023.122184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Hydrogels are a class of biocompatible materials with versatile functions that have been increasing explored for the localized treatment of ulcerative colitis (UC), but various mechanical stimuli may cause premature hydrogel breakage and detachment, impeding their further clinical translation. Here we report a multifunctional mechanically-resilient self-healing hydrogel for effective UC treatment, which is synthesized through the host-guest interaction between dopamine/β-cyclodextrin-modified hyaluronic acid (HA-CD-DA) and amantadine-modified carboxymethyl chitosan (CMCS-AD). The excessive β-CD cavities allow the incorporation of dexamethasone (DEX), while the porous hydrogel network potentiates the encapsulation of basic fibroblast growth factor (bFGF) and L-alanyl-l-glutamine (ALG). DA moieties in HA components allow firm adhesion of the hydrogel to the ulcerative lesions after in-situ implantation, while the reversible host-guest interaction between CD and AD could enhance the persistence of hydrogel. The hydrogel demonstrated favorable biocompatibility and could continuously release DEX to induce M1-to-M2 repolarization of mucosal macrophages through inhibiting the toll-like receptor 4 (TLR4)-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) axis. Furthermore, the co-delivered bFGF and ALG facilitates the regeneration of ulcerative mucosa and restore its barrier functions to ameliorate UC symptoms. The mechanically resilient hydrogel offers an integrative approach for UC therapy in the clinics.
Collapse
Affiliation(s)
- Xinyue Ge
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Hong Wen
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Yang Fei
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Rui Xue
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Zhuo Cheng
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Yanan Li
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Liqi Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
41
|
Yang W, Ma Y, Xu H, Zhu Z, Wu J, Xu C, Sun W, Zhao E, Wang M, Reis RL, Kundu SC, Shi X, Xiao B. Mulberry Biomass-Derived Nanomedicines Mitigate Colitis through Improved Inflamed Mucosa Accumulation and Intestinal Microenvironment Modulation. RESEARCH (WASHINGTON, D.C.) 2023; 6:0188. [PMID: 37426473 PMCID: PMC10328391 DOI: 10.34133/research.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
The therapeutic outcomes of conventional oral medications against ulcerative colitis (UC) are restricted by inefficient drug delivery to the colitis mucosa and weak capacity to modulate the inflammatory microenvironment. Herein, a fluorinated pluronic (FP127) was synthesized and employed to functionalize the surface of mulberry leaf-derived nanoparticles (MLNs) loading with resveratrol nanocrystals (RNs). The obtained FP127@RN-MLNs possessed exosome-like morphologies, desirable particle sizes (around 171.4 nm), and negatively charged surfaces (-14.8 mV). The introduction of FP127 to RN-MLNs greatly improved their stability in the colon and promoted their mucus infiltration and mucosal penetration capacities due to the unique fluorine effect. These MLNs could efficiently be internalized by colon epithelial cells and macrophages, reconstruct disrupted epithelial barriers, alleviate oxidative stress, provoke macrophage polarization to M2 phenotype, and down-regulate inflammatory responses. Importantly, in vivo studies based on chronic and acute UC mouse models demonstrated that oral administration of chitosan/alginate hydrogel-embedding FP127@RN-MLNs achieved substantially improved therapeutic efficacies compared with nonfluorinated MLNs and a first-line UC drug (dexamethasone), as evidenced by decreased colonic and systemic inflammation, integrated colonic tight junctions, and intestinal microbiota balance. This study brings new insights into the facile construction of a natural, versatile nanoplatform for oral treatment of UC without adverse effects.
Collapse
Affiliation(s)
- Wenjing Yang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Faculty of Materials and Energy,
Southwest University, Chongqing 400715, China
| | - Ya Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Haiting Xu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Zhenhua Zhu
- Department of Gastroenterology,
The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiaxue Wu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Cheng Xu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Wei Sun
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Min Wang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Faculty of Materials and Energy,
Southwest University, Chongqing 400715, China
| | - Rui L. Reis
- 3Bs Research Group, I3Bs — Research Institute on Biomaterials, Biodegradables and Biomimetics,
University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco 4805-017, Guimaraes, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C. Kundu
- 3Bs Research Group, I3Bs — Research Institute on Biomaterials, Biodegradables and Biomimetics,
University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco 4805-017, Guimaraes, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Xiaoxiao Shi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| |
Collapse
|
42
|
Wu C, Lu N, Peng L, Lin M, Bai Y, Lu M, Deng J, Wang J. Regulation of inflammatory macrophages by oral mineralized metal-organic framework nanoparticles for the synergistic treatment of ulcerative colitis and liver injury. CHEMICAL ENGINEERING JOURNAL 2023; 468:143655. [DOI: 10.1016/j.cej.2023.143655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
|
43
|
Xiong M, Li Y, He H, Hao S, Fang P, Xu M, Chen Y, Chen Y, Yu S, Hu H. Cyclosporine A-loaded colon-targeted oral nanomicelles self-assembly by galactosylated carboxymethyl chitosan for efficient ulcerative colitis therapy. Eur J Pharm Biopharm 2023:S0939-6411(23)00163-7. [PMID: 37336365 DOI: 10.1016/j.ejpb.2023.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
An oral galactosylated carboxymethyl chitosan polymeric nanomicelles (Gal-N-CMCS NPs) embedded in chitosan-alginate hydrogel (CA-Gel) was developed to load cyclosporine A (CyA) as therapeutic agents against ulcerative colitis (UC). Galactose modified CMCS with macrophage targeting characteristic and CyA via a simple ultrasonication method to form Gal-N-CMCS/CyA NPs, and mixed CA-Gel to acquire the final formulation (Gal-N-CMCS/CyA Gel). The generated Gal-N-CMCS/CyA NPs displayed a desirable particle size (206.8 nm), negative surface charge (-19.5 mV), and high encapsulating efficiency (89.6%). The morphology and release profiles were also charactered by transmission electron microscope [1] and dialysis method, respectively. Strikingly, the mucus penetration of Gal-N-CMCS/CyA NPs exceeded 90% within 90 min. The Gal-N-CMCS NPs internalized by macrophages were 3.3-fold higher than CMCS-N NPs, thereby, enhancing the anti-inflammatory activities of NPs. Meanwhile, these NPs exhibited excellent biocompatibility, reduced the toxic effect of CyA, and targeting ability on inflammatory macrophages both in vitro and in vivo. Most importantly, in vivo studies revealed that CyA NPs could efficiently target the inflamed colon, remarkably alleviate inflammation, repair mucosal and reconstructed colonic epithelial barriers in UC mice induced by dextran sulfate sodium (DSS) via Toll-like receptor 4 -Nuclear factor kappa-B (TLR4-NF-κB) pathway. Our findings suggest that these high-performance and facilely fabricated Gal-N-CMCS/CyA NPs could be developed as a promising drug carrier for oral UC treatment.
Collapse
Affiliation(s)
- Mengting Xiong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyuan Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haonan He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Suqi Hao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pengchao Fang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yujun Chen
- The First Affiliated Hospital of Guangxi Medical University, Guangxi 530000, China
| | - Shihui Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China.
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
44
|
Sang S, Wang S, Wu J, Zhang X. Sprayable Berberine-Silk Fibroin Microspheres with Extracellular Matrix Anchoring Function Accelerate Infected Wound Healing through Antibacterial and Anti-inflammatory Effects. ACS Biomater Sci Eng 2023. [PMID: 37142304 DOI: 10.1021/acsbiomaterials.3c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The conventional method of applying local medications for treating wound infections is often ineffective because of the dilution of drugs by the excess wound exudate. In addition, there have been insufficient studies investigating the adhesion between drug-loaded nanomaterials and cells or tissue. To address this intractable problem, berberine-silk fibroin microspheres (Ber@MPs) with an extracellular matrix-anchoring function were developed in this study. The microspheres were prepared from silk fibroin using the polyethylene glycol emulsion precipitation method. Subsequently, berberine was loaded onto the microspheres. Our results revealed that Ber@MPs firmly anchored to cells, continuously releasing berberine in the microenvironment. Moreover, both Ber@MPs and Ber@MPs-cell complexes exerted a strong and long-lasting antibacterial effect against Staphylococcus aureus and Staphylococcus epidermidis in the microenvironment, despite the large amount of wound exudate. In addition, Ber@MPs effectively resisted the inflammatory response induced by lipopolysaccharides and accelerated the migration of fibroblasts and neovascularization of endothelial cells cultured in inflammation-induced media. Finally, the in vivo experiments confirmed that the Ber@MP spray accelerated the healing of infected wounds via its antibacterial and anti-inflammatory effects. Therefore, this study provides a novel strategy for treating infected wounds in the presence of excess exudate.
Collapse
Affiliation(s)
- Shang Sang
- Department of Orthopaedics, Shanghai Sixth People' Hospital, Shanghai 200233, China
| | - Shengjie Wang
- Department of Orthopaedics, Shanghai Sixth People' Hospital, Shanghai 200233, China
| | - Jianbing Wu
- College of Textile, Garment and Design, Changshu Institute of Technology, Suzhou 215500, China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Sixth People' Hospital, Shanghai 200233, China
| |
Collapse
|
45
|
Lin X, Cai L, Cao X, Zhao Y. Stimuli-responsive silk fibroin for on-demand drug delivery. SMART MEDICINE 2023; 2:e20220019. [PMID: 39188280 PMCID: PMC11235688 DOI: 10.1002/smmd.20220019] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 08/28/2024]
Abstract
Stimuli-responsive "smart" hydrogel biomaterials have attracted great attention in the biomedical field, especially in designing novel on-demand drug delivery systems. As a handful natural biomaterial approved by US Food and Drug Administration, silk fibroin (SF) has unique high temperature resistance as well as tunable structural composition. These properties make it one of the most ideal candidates for on-demand drug delivery. Meanwhile, recent advances in polymer modification and nanomaterials have fostered the development of various stimuli-responsive delivery systems. Here, we first review the recent advance in designing responsive SF-based delivery systems in different stimulus sources. These systems are able to release mediators in a desired manner in response to specific stimuli in active or passive manners. We then describe applications of these specially designed responsive delivery systems in wound healing, tumor therapy, as well as immunomodulation. We also discuss the future challenges and prospects of stimuli-responsive SF-based delivery systems.
Collapse
Affiliation(s)
- Xiang Lin
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
| | - Lijun Cai
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
| | - Xinyue Cao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| |
Collapse
|
46
|
Huang Q, Yang Y, Zhu Y, Chen Q, Zhao T, Xiao Z, Wang M, Song X, Jiang Y, Yang Y, Zhang J, Xiao Y, Nan Y, Wu W, Ai K. Oral Metal-Free Melanin Nanozymes for Natural and Durable Targeted Treatment of Inflammatory Bowel Disease (IBD). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207350. [PMID: 36760016 DOI: 10.1002/smll.202207350] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Indexed: 05/11/2023]
Abstract
Oral antioxidant nanozymes bring great promise for inflammatory bowel disease (IBD) treatment. To efficiently eliminate reactive oxygen species (ROS), various metal-based nanozymes have been developed for the treatment of IBD but their practical applications are seriously impaired by unstable ROS-eliminating properties and potential metal ion leakage in the digestive tract. Here, the authors for the first time propose metal-free melanin nanozymes (MeNPs) with excellent gastrointestinal stability and biocompatibility as a favorable therapy strategy for IBD. Moreover, MeNPs have extremely excellent natural and long-lasting characteristics of targeting IBD lesions. In view of the dominant role of ROS in IBD, the authors further reveal that oral administration of MeNPs can greatly alleviate the six major pathological features of IBD: oxidative stress, endoplasmic reticulum stress, apoptosis, inflammation, gut barrier disruption, and gut dysbiosis. Overall, this strategy highlights the great clinical application prospects of metal-free MeNPs via harnessing ROS scavenging at IBD lesions, offering a paradigm for antioxidant nanozyme in IBD or other inflammatory diseases.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuqi Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Zhu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Mingyuan Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiangping Song
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yunrong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jinping Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Xiao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Wei Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
47
|
Siddiqui SA, Li C, Aidoo OF, Fernando I, Haddad MA, Pereira JA, Blinov A, Golik A, Câmara JS. Unravelling the potential of insects for medicinal purposes - A comprehensive review. Heliyon 2023; 9:e15938. [PMID: 37206028 PMCID: PMC10189416 DOI: 10.1016/j.heliyon.2023.e15938] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023] Open
Abstract
Entomotherapy, the use of insects for medicinal purposes, has been practised for centuries in many countries around the world. More than 2100 edible insect species are eaten by humans, but little is known about the possibility of using these insects as a promising alternative to traditional pharmaceuticals for treating diseases. This review offers a fundamental understanding of the therapeutic applications of insects and how they might be used in medicine. In this review, 235 insect species from 15 orders are reported to be used as medicine. Hymenoptera contains the largest medicinal insect species, followed by Coleoptera, Orthoptera, Lepidoptera, and Blattodea. Scientists have examined and validated the potential uses of insects along with their products and by-products in treating various diseases, and records show that they are primarily used to treat digestive and skin disorders. Insects are known to be rich sources of bioactive compounds, explaining their therapeutic features such as anti-inflammatory, antimicrobial, antiviral, and so on. Challenges associated with the consumption of insects (entomophagy) and their therapeutic uses include regulation barriers and consumer acceptance. Moreover, the overexploitation of medicinal insects in their natural habitat has led to a population crisis, thus necessitating the investigation and development of their mass-rearing procedure. Lastly, this review suggests potential directions for developing insects used in medicine and offers advice for scientists interested in entomotherapy. In future, entomotherapy may become a sustainable and cost-effective solution for treating various ailments and has the potential to revolutionize modern medicine.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 D-Quakenbrück, Germany
- Corresponding author. Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany.
| | - Chujun Li
- Guangzhou Unique Biotechnology Co., Ltd, 510663, Guangzhou, China
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Owusu Fordjour Aidoo
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, 00233, Somanya, Ghana
| | - Ito Fernando
- Department of Plant Pest and Diseases, Faculty of Agriculture, Universitas Brawijaya, Malang, 65145, East Java, Indonesia
| | - Moawiya A. Haddad
- Department of Nutrition and Food Processing, Faculty of Agricultural Technology, Al-Balqa Applied University, 19117, Al-Salt, Jordan
| | - Jorge A.M. Pereira
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Andrey Blinov
- North Caucasus Federal University, Pushkina Street 1, 355009, Stavropol, Russia
| | - Andrey Golik
- North Caucasus Federal University, Pushkina Street 1, 355009, Stavropol, Russia
| | - José S. Câmara
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Corresponding author. CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
48
|
Jiang D, Xia X, He Z, Xue Y, Xiang X. Hyaluronic acid-functionalized redox-responsive organosilica nanoparticles for targeted resveratrol delivery to attenuate acrylamide-induced toxicity. Int J Biol Macromol 2023; 232:123463. [PMID: 36716846 DOI: 10.1016/j.ijbiomac.2023.123463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
The purpose of this study is to construct a redox-responsive and targeted nanoparticle to effectively deliver resveratrol (Res) for alleviating acrylamide (ACR) toxicity. Here, Res-loaded tetrasulfide-containing organosilica nanoparticles (DSMSNs) functionalized with hyaluronic acid on the surface (DSMSNs@Res@HA) were prepared. The DSMSNs@Res@HA nanoparticles were spherical with an encapsulation efficiency of 46.68 ± 1.64 % and a hydrated particle size of about 237.73 nm. As expected, DSMSNs@Res@HA were capable of significantly protecting PC12 cells against ACR-induced damage in oxidative stress, mitochondrial membrane potential decrease, and cell apoptosis compared with free Res and DSMSNs@Res at the equivalent dose. Moreover, DSMSNs@Res@HA could be biodegraded and released Res in response to GSH stimulus. In vivo experiments suggested that DSMSNs@Res@HA significantly reduced histological damage in the brain, liver, and kidney of rats compared with free Res and DSMSNs@Res. After oral administration of DSMSNs@Res@HA, the intestinal flora of ACR-treated rats could be effectively regulated by improving the species uniformity and abundance as well as recovering the species diversity. According to these findings, DSMSNs@Res@HA is worth further investigation as a potential therapeutic nanomedicine to alleviate ACR toxicity and restore gut microbiota diversity.
Collapse
Affiliation(s)
- Dan Jiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiaoyang Xia
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Zhixiong He
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanan Xue
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Xia Xiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China.
| |
Collapse
|
49
|
Chai Q, Xu H, Xu X, Li Z, Bao W, Man Z, Li W. Mussel-inspired alkaline phosphatase-specific coating on orthopedic implants for spatiotemporal modulating local osteoimmune microenvironment to facilitate osseointegration. Colloids Surf B Biointerfaces 2023; 225:113284. [PMID: 37003248 DOI: 10.1016/j.colsurfb.2023.113284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Inadequate initial osseointegration and consequent prosthesis loosening are the most severe complications after artificial arthroplasty. Proper immune responses are crucial for the successful implantation of artificial prostheses. Macrophages are central in osteoimmunomodulation because they exert distinct functions with highly plasticity. Herein, we developed an alkaline phosphatase (ALP) sensitive mussel-inspired coating on orthopedic implants for promoting osseointegration. First, the resveratrol-alendronate complexes were deposited on titanium implant surface through mussel-inspired interfacial interactions. Upon prosthesis implantation, macrophages first polarized towards M1 type to initiate inflammatory responses and bone regeneration. As osteogenesis progresses, increasing amounts of ALP secreted by osteoblasts was cleaved the resveratrol-alendronate complexes. Then, the released resveratrol further promoted osteogenic differentiation of BMSCs and induced locoregional macrophages M2 polarization. Our results demonstrated that the bioinspired osteoimmunomodulation coating remarkably facilitated the prosthesis-bone integration by spatiotemporally modulating macrophages switching from M1 to M2 polarization in response to a real-time healing signal during osteogenesis. In summary, the mussel-inspired osteoimmunomodulation coating technology may provide a new approach for promoting osseointegration after artificial arthroplasty.
Collapse
Affiliation(s)
- Qihao Chai
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, PR China; Department of Orthopedic Surgery, the 903rd Hospital of PLA, Hangzhou, Zhejiang Province 310009, PR China
| | - Hailun Xu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, PR China
| | - Xianxing Xu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, PR China
| | - Ziyang Li
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, PR China
| | - Wenfei Bao
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, PR China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, PR China; Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, PR China; Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong Province 250062, PR China.
| | - Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, PR China; Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, PR China.
| |
Collapse
|
50
|
Fabrication of Silk Hydrogel Scaffolds with Aligned Porous Structures and Tunable Mechanical Properties. Gels 2023; 9:gels9030181. [PMID: 36975630 PMCID: PMC10048404 DOI: 10.3390/gels9030181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
The effectiveness of cell culture and tissue regeneration largely depends on the structural and physiochemical characteristics of tissue-engineering scaffolds. Hydrogels are frequently employed in tissue engineering because of their high-water content and strong biocompatibility, making them the ideal scaffold materials for simulating tissue structures and properties. However, hydrogels created using traditional methods have low mechanical strength and a non-porous structure, which severely restrict their application. Herein, we successfully developed silk fibroin glycidyl methacrylate (SF-GMA) hydrogels with oriented porous structures and substantial toughness through directional freezing (DF) and in situ photo-crosslinking (DF-SF-GMA). The oriented porous structures in the DF-SF-GMA hydrogels were induced by directional ice templates and maintained after photo-crosslinking. The mechanical properties, particularly the toughness, of these scaffolds were enhanced compared to the traditional bulk hydrogels. Interestingly, the DF-SF-GMA hydrogels exhibit fast stress relaxation and variable viscoelasticity. The remarkable biocompatibility of the DF-SF-GMA hydrogels was further demonstrated in cell culture. Accordingly, this work reports a method to prepare tough SF hydrogels with aligned porous structures, which can be extensively applied to cell culture and tissue engineering.
Collapse
|