1
|
Wang Y, Yan T, Cai J, Dou H, Zhu Y, Geng B, Pan D, Shen L. A heterojunction-engineering nanodrug with tumor microenvironment responsiveness for tumor-specific cuproptosis and chemotherapy amplified sono-immunotherapy. Biomaterials 2025; 321:123319. [PMID: 40187098 DOI: 10.1016/j.biomaterials.2025.123319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Cuproptosis has recently identified as a unique copper-dependent cell death mechanism that may provide new opportunities for improving the therapeutic effect of tumor therapy through triggering efficient adaptive immune responses. However, the poor delivery efficiency and non-tumor-specific release of Cu ions would restrict the potential clinical applications of cuproptosis inducers. Herein, we report for the first time the development of hollow Cu2-xSe nanocubes as the tumor microenvironment (TME)-responsive drug delivery systems and cuproptosis inducers for tumor-specific chemotherapy and cuproptosis. The presence of Cu vacancy endows Cu2-xSe with excellent sonodynamic and chemodynamic activity. The hollow Cu2-xSe nanocubes with TME-responsive degradation behaviors are further utilized to load graphene quantum dot (GQD) nanodrugs to form GQD/Cu2-xSe heterojunctions for achieving tumor-specific chemotherapy. The heterojunction-fabrication GQD/Cu2-xSe exhibits amplified ROS generation capabilities and improved TME regulation ability owing to the optimized electron-hole separation kinetics. More importantly, the significant increase in ROS levels and efficient cuproptosis could reverse the immunosuppressive TME and induce immunogenic cell death that stimulates strong systemic immune responses to eliminate tumors. Collectively, this work presents an innovative strategy for the utilization of TME-responsive cuproptosis inducers for tumor-specific chemotherapy and cuproptosis augmented sono-immunotherapy.
Collapse
Affiliation(s)
- Yang Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Tingting Yan
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jinming Cai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Zhu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Bijiang Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Dengyu Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Longxiang Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
2
|
Li J, Wang X, Zhao C, Wang H, Lv L, Li Z, Wang Z. Covalent organic frameworks (COFs)-mediated multimodal sonodynamic therapy for the anticancer applications. Colloids Surf B Biointerfaces 2025; 254:114822. [PMID: 40449334 DOI: 10.1016/j.colsurfb.2025.114822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/14/2025] [Accepted: 05/23/2025] [Indexed: 06/03/2025]
Abstract
As a promising anticancer modality, sonodynamic therapy (SDT) is becoming popular with the cooperative services of covalent organic frameworks (COFs). In this review, a comprehensive observation about the COFs-mediated SDT is preached by focusing on the fast-track advances in the cancer treatments. Here, the review not only systematically shows the theranostic applications of COFs-based nanodrugs, but also deeply describes the COFs-mediated SDT according to the Type-I and Type-II activation mechanisms. More importantly, the review hierarchically narrates many successes in the COFs-coordinated multimodal SDT/X platforms, highlighting their competitive superiority and improvements in the anticancer applications. In addition, the review also proposes some possible challenges of COFs-mediated SDT strategies. Accordingly, the development of COFs and SDT in the anticancer platform will promote the technological innovation of nanodrugs and facilitate the close exchange of cancer-related events.
Collapse
Affiliation(s)
- Jialu Li
- College of Chemistry and Chemical Engineering, Instrumental Analysis Center, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071, China
| | - Xueyan Wang
- College of Chemistry and Chemical Engineering, Instrumental Analysis Center, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071, China
| | - Chun Zhao
- College of Mechanical and Automotive Engineering, Qingdao Hengxing University of Science and Technology, Qingdao 266100, China
| | - Huiqi Wang
- College of Chemistry and Chemical Engineering, Instrumental Analysis Center, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071, China
| | - Lili Lv
- College of Chemistry and Chemical Engineering, Instrumental Analysis Center, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071, China.
| | - Zhanfeng Li
- College of Chemistry and Chemical Engineering, Instrumental Analysis Center, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071, China.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Instrumental Analysis Center, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071, China
| |
Collapse
|
3
|
Li M, Wei L, Liu W, Wang J, Lu Q, Chen X, Lim LY, Mo J. A ROS-responsive, aptamer-targeted graphene oxide nanocomposite for site-specific glutathione release in cerebral ischemia-reperfusion injury. Front Pharmacol 2025; 16:1543870. [PMID: 40438585 PMCID: PMC12116469 DOI: 10.3389/fphar.2025.1543870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/25/2025] [Indexed: 06/01/2025] Open
Abstract
Cerebral ischemia-reperfusion (I/R) injury is a major contributor to mortality and long-term disability worldwide, primarily due to excessive reactive oxygen species (ROS) generation after blood flow is restored. Although current treatments focus on reestablishing perfusion, they offer limited protection against the secondary ROS-mediated injury. Here, we report a multifunctional nanocomposite-graphene oxide loaded with glutathione (GSH) and functionalized with a fibrinogen-targeting aptamer (GO@GSH-FA)-capable of selectively releasing antioxidant cargo within the ischemic brain microenvironment. Characterization revealed a drug-loading capacity of 17.59% ± 3.74% and an entrapment efficiency of 78.78% ± 4.55%, highlighting the robust loading of GSH. The ROS-sensitive borate ester linker ensures that GSH is preferentially liberated in oxidative stress regions, while the fibrinogen aptamer actively targets fibrin-rich thrombotic sites. In vitro, GO@GSH-FA significantly restored viability in oxygen-glucose-deprived SH-SY5Y cells (from 31% up to near control levels), reduced inflammatory cytokines, and lowered intracellular ROS. In a Endothelin-1 (ET-1) induced cortical ischemia model, GO@GSH-FA led to a marked decrease in neurological deficit scores (from 7.20 ± 1.16 to 4.20 ± 0.98) and enhanced neuronal survival relative to untreated animals. Collectively, these findings underscore the promise of GO@GSH-FA as a targeted, ROS-responsive platform for mitigating cerebral I/R injury.
Collapse
Affiliation(s)
- Meiying Li
- Lab of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin, China
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Lili Wei
- Pharmaceutical Clinical Trial Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wenxu Liu
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Jiawen Wang
- Lab of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qiujie Lu
- School of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Xianjue Chen
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Lee Yong Lim
- School of Allied Health, University of Western Australia, Perth, WA, Australia
| | - Jingxin Mo
- Lab of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin, China
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Big Data Intelligent Cloud Management for Neurological Diseases, Guilin Medical University, Guilin, China
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, Guilin Medical University, Guilin, China
| |
Collapse
|
4
|
Liao H, Chen M, Liao Z, Luo Y, Chen S, Wang L, Wang Z, Niu C. MnO 2-based nanoparticles remodeling tumor micro-environment to augment sonodynamic immunotherapy against breast cancer. Biomater Sci 2025; 13:2767-2782. [PMID: 40202432 DOI: 10.1039/d5bm00189g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The tumor microenvironment (TME) is characterized by a complex array of factors, including aerobic conditions, high glutathione (GSH) levels, acidic pH, and elevated hydrogen peroxide (H2O2) content, all of which promote cancer progression and contribute to poor prognosis. Fortunately, these challenges can be addressed using MnO2-based nanomaterials. In this study, we have designed and synthesized a Curcumin/MnO2@PLGA@4T1 cell membrane (CMP@4T1m) system aimed at remodelling the TME and enhancing sonodynamic immunotherapy for breast cancer. Through the homologous targeting ability of 4T1m, CMP@4T1m efficiently accumulates at the tumor site. Upon ultrasound irradiation, curcumin (Cur) acts as a sonosensitizer, generating cytotoxic reactive oxygen species (ROS) that induce immunogenic cell death (ICD), activate T-cell responses, and repolarize protumoral M2-like macrophages to antitumoral M1-like macrophages. In the TME, which is mildly acidic and enriched with GSH and H2O2, MnO2 not only oxidizes GSH to glutathione disulfide (GSSG) but also reacts with H2O2 and H+ to produce oxygen, alleviating hypoxia and significantly enhancing the sonodynamic immunotherapy effect. Additionally, Mn2+ generated during this process converts H2O2 into cytotoxic hydroxyl radicals (˙OH). This study thus lays the foundation for advancing cancer nanomedicine, offering a novel approach that integrates TME remodelling with sonodynamic immunotherapy.
Collapse
Affiliation(s)
- Haiqin Liao
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Department of Ultrasound, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Clinical Research Center for Ultrasound and Treatment in Hunan Province, Hunan 410011, China
| | - Mingyu Chen
- Department of Ultrasound, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Clinical Research Center for Ultrasound and Treatment in Hunan Province, Hunan 410011, China
| | - Zhipeng Liao
- Department of Ultrasound, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Clinical Research Center for Ultrasound and Treatment in Hunan Province, Hunan 410011, China
| | - Yi Luo
- Department of Ultrasound, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Clinical Research Center for Ultrasound and Treatment in Hunan Province, Hunan 410011, China
| | - Sijie Chen
- Department of Ultrasound, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Clinical Research Center for Ultrasound and Treatment in Hunan Province, Hunan 410011, China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Zhigang Wang
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Chengcheng Niu
- Department of Ultrasound, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Clinical Research Center for Ultrasound and Treatment in Hunan Province, Hunan 410011, China
| |
Collapse
|
5
|
Zhao H, Du F, Huang J, Guo R, Feng Z, Wang Z, Qiu L. Biomimetic liposomal nanovesicles remodel the tumor immune microenvironment to augment sono-immunotherapy. J Control Release 2025; 383:113830. [PMID: 40355046 DOI: 10.1016/j.jconrel.2025.113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Sonodynamic therapy (SDT)-mediated immunogenic cell death and immune checkpoint blockade offer new opportunities for tumor treatment. However, challenges including immunosuppression, hypoxic tumor microenvironments, and inadequate drug delivery hinder therapeutic efficacy. Therefore, we developed a multifunctional biomimetic liposome microbubble named H-R@Lip@M, which is coated with melanoma cell membranes, contains perfluoropentane as its core, and is loaded with the sonosensitizer hematoporphyrin monomethyl ether and the immune adjuvant resiquimod. The targeting properties of melanoma cell membranes enable effective accumulation of nanoparticles (NPs) at tumor sites. Equipped with ultrasonic/photoacoustic imaging capabilities, these NPs allow precise control over the release of drugs and oxygen upon ultrasound stimulation. In vitro and in vivo results consistently showed that the NPs enhanced anti-tumor efficacy, halting primary tumor progression and preventing lung metastasis. Moreover, SDT increased reactive oxygen species levels within tumors, preferentially inducing apoptosis while maximizing immunogenic cell death. When combined with PD-L1 blockade, this synergy promotes dendritic cell maturation and alters various immune populations, boosting T-cell infiltration while enhancing M1 macrophage polarization and reducing regulatory T-cell presence. In summary, the proposed combination has the potential to synergistically enhance the efficacy of sono-immunotherapy by remodeling the immunosuppressive microenvironment, providing valuable insights for addressing challenges associated with SDT-based cancer therapy.
Collapse
Affiliation(s)
- Hongxin Zhao
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fangxue Du
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianbo Huang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruiqian Guo
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyan Feng
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyao Wang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Qiu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Yan S, Gan Y, Xu H, Piao H. Bacterial carrier-mediated drug delivery systems: a promising strategy in cancer therapy. Front Bioeng Biotechnol 2025; 12:1526612. [PMID: 39845371 PMCID: PMC11750792 DOI: 10.3389/fbioe.2024.1526612] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Cancer is a major killer threatening modern human health and a leading cause of death worldwide. Due to the heterogeneity and complexity of cancer, traditional treatments have limited effectiveness. To address this problem, an increasing number of researchers and medical professionals are working to develop new ways to treat cancer. Bacteria have chemotaxis that can target and colonize tumor tissue, as well as activate anti-tumor immune responses, which makes them ideal for biomedical applications. With the rapid development of nanomedicine and synthetic biology technologies, bacteria are extensively used as carriers for drug delivery to treat tumors, which holds the promise of overcoming the limitations of conventional cancer treatment regimens. This paper summarizes examples of anti-cancer drugs delivered by bacterial carriers, and their strengths and weaknesses. Further, we emphasize the promise of bacterial carrier delivery systems in clinical translation.
Collapse
Affiliation(s)
- Sizuo Yan
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Shenyang, China
| | - Yu Gan
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Shenyang, China
| | - Huizhe Xu
- Institute of Cancer Medicine, Dalian University of Technology, Dalian, China
- Central Laboratory, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Shenyang, China
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Shenyang, China
- Institute of Cancer Medicine, Dalian University of Technology, Dalian, China
| |
Collapse
|
7
|
Huang Y, Jia L, Zhang S, Yan L, Li L. Bimetallic doped carbon dot nanozymes for enhanced sonodynamic and nanocatalytic therapy. J Mater Chem B 2025; 13:588-598. [PMID: 39575676 DOI: 10.1039/d4tb01916d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Conventional inorganic semiconductors are not suitable for acting as nanozymes or sonosensitizers for in vivo therapeutic nanomedicine owing to the lack of excellent biocompatibility. Biocompatible carbon dots (CDs) exhibit a variety of biological activities due to their adjustable size and surface chemical modification; however, the simultaneous sonodynamic activity and multiple enzyme-mimicking catalytic activity of a single CD have not been reported. Herein, we report the development of bimetallic doped CDs as a high-efficiency nanozyme and sonosensitizer for enhanced sonodynamic therapy (SDT) and nanocatalytic therapy (NCT). By selecting metal-organic complexes like EDTA-FeNa as the carbon source, we ensure that the coordination environments of metal atoms are preserved throughout the low-temperature calcination process. Compared with the single metal doped CDs including Fe-CDs or Ni-CDs, the obtained Fe and Ni co-doped CDs (Fe-Ni-CDs) not only exhibit enhanced sonodynamic activity owing to the decreased bandgap, but also possess augmented dual enzyme-mimicking catalytic activities due to the synergistic effect of bimetallic ions. The Fe-Ni-CD-mediated cascade amplification of ROS generation could lead to the production of 1O2 and O2˙- through SDT, the generation of ˙OH through POD-mimicking catalytic activity, and the provision of more O2 for SDT through CAT-mimicking catalytic activity. Through the integrated multifunctionality of Fe-Ni-CDs, we successfully enhanced the effectiveness of antitumor treatment with a single drug injection and a single US irradiation for enhanced SDT and NCT. This work provides a distinct paradigm of endowing CDs with sonodynamic and multiple enzyme-mimicking catalytic activities for enhanced SDT and NCT through bimetallic ion doping.
Collapse
Affiliation(s)
- Yandong Huang
- Department of Ultrasound, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Lanting Jia
- Department of Ultrasound, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Shiqi Zhang
- Department of Ultrasound, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China.
| | - Lei Li
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
8
|
Shi Y, Li C, Li L, He Q, Zhu Q, Xu Z, Liu Y, Zhang N, Zhang M, Jiao J, Zheng R. Electronic band structure modulation for sonodynamic therapy. J Mater Chem B 2024; 12:12470-12488. [PMID: 39533888 DOI: 10.1039/d4tb01679c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Sonodynamic therapy (SDT) is a burgeoning and newfangled therapy modality with great application potential. Sonosensitizers are essential factors used to ensure the effectiveness of SDT. For the past few years, a lot of scientists have discovered many valid ways to refine and improve the performance of SDT. Among these methods, modulating the electronic band structure of sonosensitizers is one of the eminent measures to improve SDT, but relevant research studies on this are still unsatisfactory for actual transformation. Herein, this review provides a brief and comprehensive introduction of common ways to modulate electronic band structure, such as forming defects, doping, piezoelectric effect and heterostructure. Then, some nanomaterials with excellent properties that can be used as a sonosensitizer to enhance the SDT effect by modulating electronic band structure are overviewed, such as Ti-based, Zn-based, Bi-based, noble metal-based and MOF-based nanomaterials. At the same time, this paper also discusses the problems and challenges that may be encountered in the future application progress of SDT. In conclusion, the strategy of enhancing SDT through modulating electronic band structure will promote the rapid development of nanomedicine and provide a great research direction for SDT.
Collapse
Affiliation(s)
- Yafang Shi
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
- College of Life and Health Science, Northeastern University, Shenyang 110000, China
| | - Chengzhilin Li
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Linquan Li
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Qingbin He
- Medical Engineering and Technology Research Center, School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Qingyi Zhu
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Ziang Xu
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Yanzi Liu
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Nianlei Zhang
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Meng Zhang
- Medical Engineering and Technology Research Center, School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Jianwei Jiao
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runxiao Zheng
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| |
Collapse
|
9
|
Yue Z, Zhao Q, Wang S, Yao S, Wan X, Hu Q, Wen K, Zhao Y, Li L. Manganese Dioxide Coated Piezoelectric Nanosonosensitizer for Cancer Therapy with Tumor Microenvironment Remodeling and Multienzyme-Like Catalysis. SMALL METHODS 2024; 8:e2400018. [PMID: 38558511 DOI: 10.1002/smtd.202400018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Sonodynamic therapy (SDT) as an emerging method for cancer therapy has encountered difficulty in insufficient production of reactive oxygen species (ROS), especially in tumor microenvironment (TME) with elevated antioxidants and hypoxic conditions. In this work, the authors have fabricated heterostructured manganese dioxide (MnO2)-coated BaTiO3 nanoparticles (BTO@M NPs) as a piezoelectric sonosensitizer, which exhibits the capacity of remodeling TME and multienzyme-like catalysis for boosting SDT. Benefitting from the piezotronic effect, the formation of a p-n junction between MnO2 and piezoelectric BTO with a built-in electric field and band bending efficiently promotes the separation of charge carriers, facilitating the generation of superoxide anion (•O2 -) and hydroxyl radical (•OH) under ultrasound (US) stimulation. Moreover, BTO@M NPs can catalyze the overexpressed hydrogen peroxide (H2O2) in TME to produce oxygen for replenishing the gas source in SDT, and also deplete antioxidant glutathione (GSH), realizing TME remodeling. During this process, the reduced Mn(II) can convert H2O2 into •OH, further amplifying cellular oxidative damage. With these combination effects, the versatile BTO@M NPs exhibit prominent cytotoxicity and tumor growth inhibition against 4T1 breast cancer. This work provides a feasible strategy for constructing high-efficiency sonosensitizers for cancer SDT.
Collapse
Affiliation(s)
- Zhaoyang Yue
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Qinyu Zhao
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Shaobo Wang
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Quanhong Hu
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Kaikai Wen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Yunchao Zhao
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Linlin Li
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Xu K, Zou Y, Lin C, Zhang L, Tan M, Li M, Wu J, Li X, He Y, Liu P, Li K, Cai K. Cascade catalysis nanozyme for interfacial functionalization in combating implant infections associated with diabetes via sonodynamic therapy and adaptive immune activation. Biomaterials 2024; 311:122649. [PMID: 38850718 DOI: 10.1016/j.biomaterials.2024.122649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Innovative solutions are required for the intervention of implant associated infections (IAIs), especially for bone defect patients with chronic inflammatory diseases like diabetes mellitus (DM). The complex immune microenvironment of infections renders implants with direct antibacterial ability inadequate for the prolonged against of bacterial infections. Herein, a synergistic treatment strategy was presented that combined sonodynamic therapy (SDT) with adaptive immune modulation to treat IAIs in diabetes patients. A multifunctional coating was created on the surface of titanium (Ti) implants, consisting of manganese dioxide nanoflakes (MnO2 NFs) with cascade catalytic enzyme activity and a responsive degradable hydrogel containing a sonosensitizer. The reactive oxygen species (ROS) generated by glucose-hydrogen peroxide (H2O2) cascade catalysis and ultrasound (US) activation sonosensitizer helped kill bacteria and release bacterial antigens. Meanwhile, Mn2+ facilitated dendritic cells (DCs) maturation, enhancing antigen presentation to activate both cellular and humoral adaptive immunity against bacterial infections. This approach effectively eliminated bacteria in established diabetic IAIs model and activated systemic antibacterial immunity, providing long-term antibacterial protection. This study presents a non-antibiotic immunotherapeutic strategy for fighting IAIs in chronic diseases.
Collapse
Affiliation(s)
- Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yanan Zou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chuanchuan Lin
- Department of Blood Transfusion, Laboratory of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Liangshuai Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Meijun Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Meng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jing Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Ke Li
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
11
|
Chen J, Duan Z, Zhan Q, Li Q, Qu J, Liu R. Nucleus-Targeted Sonosensitizer Activates the cGAS-STING Pathway for Tumor Sonodynamic Immunotherapy. ACS APPLIED BIO MATERIALS 2024; 7:7183-7193. [PMID: 39505828 DOI: 10.1021/acsabm.4c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
A nucleus is crucial for both sonodynamic therapy (SDT) and antitumor immunity. However, how to burst ROS generation in situ, accurately damage a nucleus, and meanwhile activate a cGAS-STING pathway-induced innate immune response are still a great challenge. Here, we present TBzT-CPi, a small molecule with a D-A-π-A1 structure that simultaneously amplifies nucleus-targeted SDT and cGAS-STING pathway-dependent immune stimulation. TBzT-CPi could accumulate in the nucleus upon ultrasound irradiation and generate ROS in situ, which damages DNA and simultaneously triggers immunogenic cell death (ICD). Stirringly, nucleus-targeting SDT not only efficiently induces apoptosis in tumor cells but also modifies the immunosuppressive tumor microenvironment by activating cytotoxic T lymphocytes, maturing dendritic cells, and secreting cytokines. These findings pave the way for developing nucleus-targeting sonosensitizers for sonodynamic immunotherapy of cancer.
Collapse
Affiliation(s)
- Jian Chen
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Zeyu Duan
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Qiyu Zhan
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Qiyan Li
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Jinqing Qu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Ruiyuan Liu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| |
Collapse
|
12
|
Yang F, Lv J, Ma W, Yang Y, Hu X, Yang Z. Engineering Sonosensitizer-Derived Nanotheranostics for Augmented Sonodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402669. [PMID: 38970544 DOI: 10.1002/smll.202402669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Indexed: 07/08/2024]
Abstract
Sonodynamic therapy (SDT), featuring noninvasive, deeper penetration, low cost, and repeatability, is a promising therapy approach for deep-seated tumors. However, the general or only utilization of SDT shows low efficiency and unsatisfactory treatment outcomes due to the complicated tumor microenvironment (TME) and SDT process. To circumvent the issues, three feasible approaches for enhancing SDT-based therapeutic effects, including sonosensitizer optimization, strategies for conquering hypoxia TME, and combinational therapy are summarized, with a particular focus on the combination therapy of SDT with other therapy modalities, including chemodynamic therapy, photodynamic therapy, photothermal therapy, chemotherapy, starvation therapy, gas therapy, and immunotherapy. In the end, the current challenges in SDT-based therapy on tumors are discussed and feasible approaches for enhanced therapeutic effects are provided. It is envisioned that this review will provide new insight into the strategic design of high-efficiency sonosensitizer-derived nanotheranostics, thereby augmenting SDT and accelerating the potential clinical transformation.
Collapse
Affiliation(s)
- Fuhong Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Jingqi Lv
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Wen Ma
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yanling Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Xiaoming Hu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
13
|
McHale AP, Nomikou N. Nanotechnology-based platforms for effective and versatile sonodynamic therapy in cancer treatment. Nanomedicine (Lond) 2024; 19:2251-2255. [PMID: 39404050 PMCID: PMC11488090 DOI: 10.1080/17435889.2024.2396274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 10/20/2024] Open
Affiliation(s)
| | - Nikolitsa Nomikou
- Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, UK
| |
Collapse
|
14
|
Nejabat M, Samie A, Khojastehnezhad A, Hadizadeh F, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM, Siaj M. Stimuli-Responsive Covalent Organic Frameworks for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51837-51859. [PMID: 39163539 DOI: 10.1021/acsami.4c07040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Chemotherapy as a common anticancer therapeutic modality is often challenged by various obstacles such as poor stability, low solubility, and severe side effects of chemotherapeutic agents as well as multidrug resistance of cancerous cells. Nanoparticles in the role of carriers for chemotherapeutic drugs and platforms for combining different therapeutic approaches have effectively participated in overcoming such drawbacks. In particular, nanoparticles able to induce their therapeutic effect in response to specific stimuli like tumor microenvironment characteristics (e.g., hypoxia, acidic pH, high levels of glutathione, and overexpressed hydrogen peroxide) or extrinsic stimulus of laser light bring about more precise and selective treatments. Among them, nanostructures of covalent organic frameworks (COFs) have drawn great interest in biomedical fields during recent years. Possessing large surface area, high porosity, structural stability, and customizable architecture, these biocompatible porous crystalline polymers properly translate to promising platforms for drug delivery and induction of combination therapies. With the focus on stimuli-responsive characteristics of nanoscale COFs, this study aims to propose an overview of their potentiality in cancer treatment on the basis of chemotherapy alone or in combination with sonodynamic, chemodynamic, photodynamic, and photothermal therapies.
Collapse
Affiliation(s)
- Masoud Nejabat
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Ali Samie
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Amir Khojastehnezhad
- Department of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mohamed Siaj
- Department of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
15
|
Bai Q, Wang M, Wang K, Liu J, Qu F, Lin H. CuPc-Fe@BSA nanocomposite: Intracellular acid-sensitive aggregation for enhanced sonodynamic and chemo-therapy. J Colloid Interface Sci 2024; 671:577-588. [PMID: 38820842 DOI: 10.1016/j.jcis.2024.05.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/02/2024]
Abstract
Due to their rigid π-conjugated macrocyclic structure, organic sonosensitizers face significant aggregation in physiological conditions, hindering the production of reactive oxygen species (ROS). An acid-sensitive nanoassembly was developed to address this issue and enhance sonodynamic therapy (SDT) and emission. Initially, copper phthalocyanine (CuPc) was activated using a H2SO4-assisted hydrothermal method to introduce multiple functional groups (-COOH, -OH, and -SO3H), disrupting strong π-π stacking and promoting ROS generation and emission. Subsequently, negatively charged CuPc-SO4 was incorporated into bovine serum albumin (BSA) to form CuPc-Fe@BSA nanoparticles (10 nm) with Fe3+ ions serving as linkers. In acidic conditions, protonation of CuPc-SO4 and BSA weakened the interactions, leading to Fe3+ release and nanostructure dissociation. Protonated CuPc-SO4 tended to self-aggregate into nanorods. This acidity-sensitive aggregation is vital for achieving specific accumulation within the tumor microenvironment (TME), thereby enhancing retention and SDT efficacy. Prior to this, the nanocomposites demonstrated cycling stability under neutral conditions. Additionally, the released Fe ions exhibited mimicry of glutathione peroxidase and peroxidase activity for chemotherapy (CDT). The synergistic effect of SDT and CDT increased intracellular oxidative stress, causing mitochondrial injury and ferroptosis. Furthermore, the combined therapy induced immunogenic cell death (ICD), effectively activating anticancer immune responses and suppressing metastasis and recurrence.
Collapse
Affiliation(s)
- Qingchen Bai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Miao Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Kai Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China; Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin 150028, China.
| | - Jingwei Liu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China; Laboratory for Photon and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
16
|
Wu X, Chen F, Zhang Q, Tu J. What Is the Magical Cavitation Bubble: A Holistic Perspective to Trigger Advanced Bubbles, Nano-Sonocatalysts, and Cellular Sonosensitizers. BME FRONTIERS 2024; 5:0067. [PMID: 39301016 PMCID: PMC11411164 DOI: 10.34133/bmef.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Sonodynamic therapy (SDT) has emerged as a novel and highly researched advancement in the medical field. Traditional ultrasound contrast agents and novel bubble-shaped agents are used to stimulate cavitation and enhance SDT efficiency. However, the impact of artificially modified shell structures on the acoustic properties of microbubbles remains to be explored. Alternatively, in the absence of bubble-shaped agents, some clinically available organic sonosensitizers and advanced inorganic materials are also used to enhance the efficacy of SDT. Diagnostic and therapeutic ultrasound can also activate cavitation bubbles, which supply energy to sonosensitive agents, leading to the production of cytotoxic free radicals to achieve therapeutic effects. While inorganic materials often spark controversy in clinical applications, their relatively simple structure enables researchers to gain insight into the mechanism by which SDT produces various free radicals. Some organic-inorganic hybrid sonosensitive systems have also been reported, combining the benefits of inorganic and organic sonosensitive agents. Alternatively, by employing cell surface modification engineering to enable cells to perform functions such as immune escape, drug loading, gas loading, and sonosensitivity, cellular sonosensitizers have also been developed. However, further exploration is needed on the acoustic properties, ability to generate reactive oxygen species (ROS), and potential clinical application of this cellular sonosensitizer. This review offers a comprehensive analysis of vesical microbubbles and nanoscale sonocatalysts, including organic, inorganic, combined organic-inorganic sonosensitizers, and cellular sonosensitizers. This analysis will enhance our understanding of SDT and demonstrate its important potential in transforming medical applications.
Collapse
Affiliation(s)
- Xiaoge Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Fulong Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Qi Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
17
|
Zhang J, Zhang A, Liu S, Dong Z, Zhao J, Sun Y, Wei Q, Wang D, Wang S, Yu A, Li ZR, Yan R, Wang Y. Nanosized Porphyrin-Containing Covalent Organic Polymer to Enhance Ferroptosis in Photodynamic Treatment of Tumor Cells via Glutathione Depletion. Bioconjug Chem 2024; 35:1450-1458. [PMID: 39213480 DOI: 10.1021/acs.bioconjchem.4c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A porphyrin-containing nanoscale covalent organic polymer (COP) was fabricated from 5,10,15,20-tetra(4-carboxyphenyl)porphyrin (TCPP) and cystamine via an acylation reaction. On the one hand, TCPP can induce tumor cell death by laser irradiation. Due to the presence of disulfide bonds of cystamine which can react with glutathione, it exhibits depletion of glutathione and accumulation of peroxides in tumor cells. Ultimately by the hyaluronic acid to encapsulate the COP to get S-COP@HA, the nanoparticle with a size of 168.6 nm also exhibits good tumor accumulation and biosafety. Significant inhibition of tumor cell growth was observed after two consecutive doses of S-COP@HA at relatively low laser densities. This combination therapy was proved to reduce the level of reduced glutathione in tumor cells, where ferroptosis occurs after photodynamic treatment. Overall, this study presents a potent, good therapeutic option for the effective enhancement of photodynamic therapy by glutathione depletion.
Collapse
Affiliation(s)
- Jiahao Zhang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Anna Zhang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Siyu Liu
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Zhipeng Dong
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Junkai Zhao
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Yufeng Sun
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Qiuxian Wei
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Dan Wang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Saifei Wang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Anping Yu
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Zhong Rui Li
- Electron Microbeam Analysis Laboratory University of Michigan Ann Arbor, Michigan 48109, United States
| | - Ran Yan
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Wang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
18
|
Li XP, Hou DY, Wu JC, Zhang P, Wang YZ, Lv MY, Yi Y, Xu W. Stimuli-Responsive Nanomaterials for Tumor Immunotherapy. ACS Biomater Sci Eng 2024; 10:5474-5495. [PMID: 39171865 DOI: 10.1021/acsbiomaterials.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Cancer remains a significant challenge in extending human life expectancy in the 21st century, with staggering numbers projected by the International Agency for Research on Cancer for upcoming years. While conventional cancer therapies exist, their limitations, in terms of efficacy and side effects, demand the development of novel treatments that selectively target cancer cells. Tumor immunotherapy has emerged as a promising approach, but low response rates and immune-related side effects present significant clinical challenges. Researchers have begun combining immunotherapy with nanomaterials to optimize tumor-killing effects. Stimuli-responsive nanomaterials have become a focus of cancer immunotherapy research due to their unique properties. These nanomaterials target specific signals in the tumor microenvironment, such as pH or temperature changes, to precisely deliver therapeutic agents and minimize damage to healthy tissue. This article reviews the recent developments and clinical applications of endogenous and exogenous stimuli-responsive nanomaterials for tumor immunotherapy, analyzing the advantages and limitations of these materials and highlighting their potential for enhancing the immune response to cancer and improving patient outcomes.
Collapse
Affiliation(s)
- Xiang-Peng Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, 150001, P. R. China
| | - Da-Yong Hou
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Jiong-Cheng Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Peng Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Yue-Ze Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Mei-Yu Lv
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Yu Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Wanhai Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| |
Collapse
|
19
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
20
|
Rix A, Heinrichs H, Porte C, Leenaars C, Bleich A, Kiessling F. Ultrasound-induced immune responses in tumors: A systematic review and meta-analysis. J Control Release 2024; 371:146-157. [PMID: 38777126 DOI: 10.1016/j.jconrel.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Ultrasound is widely used in the diagnosis and therapy of cancer. Tumors can be treated by thermal or mechanical tissue ablation. Furthermore, tumors can be manipulated by hyperthermia, sonodynamic therapy and sonoporation, e.g., by increasing tumor perfusion or the permeability of biological barriers to enhance drug delivery. These treatments induce various immune responses in tumors. However, conflicting data and high heterogeneity between experimental settings make it difficult to generalize the effects of ultrasound on tumor immunity. Therefore, we performed a systematic review to answer the question: "Does ultrasound alter the immune reaction of peripheral solid tumors in humans and animals compared to control conditions without ultrasound?" A systematic literature search was performed in PubMed, EMBASE, and Web of Science and 24,401 potentially relevant publications were identified. Of these, 96 publications were eligible for inclusion in the systematic review. Experiments were performed in humans, rats, and mice and focused on different tumor types, primarily breast and melanoma. We collected data on thermal and non-thermal ultrasound settings, the use of sono-sensitizers or sono-enhancers, and anti-tumor therapies. Six meta-analyses were performed to quantify the effect of ultrasound on tumor infiltration by T cells (cytotoxic, helper, and regulatory T cells) and on blood cytokines (interleukin-6, interferon-γ, tumor necrosis factor-α). We provide robust scientific evidence that ultrasound alters T cell infiltration into tumors and increases blood cytokine concentrations. Furthermore, we identified significant differences in immune cell infiltration based on tumor type, ultrasound settings, and mouse age. Stronger effects were observed using hyperthermia in combination with sono-sensitizers and in young mice. The latter may impair the translational impact of study results as most cancer patients are older. Thus, our results may help refining ultrasound parameters to enhance anti-tumor immune responses for therapeutic use and to minimize immune effects in diagnostic applications.
Collapse
Affiliation(s)
- Anne Rix
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Helen Heinrichs
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Céline Porte
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Cathalijn Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany; Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.
| |
Collapse
|
21
|
Li M, Liu Z, Tang J, Cheng L, Xue Y, Liu Y, Liu J. Facile Synthesis of a Multifunctional Porous Organic Polymer Nanosonosensitizer (mHM@HMME) for Enhanced Cancer Sonodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28104-28117. [PMID: 38769350 DOI: 10.1021/acsami.4c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Sonodynamic therapy (SDT), which involves the activation of sonosensitizers to generate cytotoxic reactive oxygen species under ultrasound irradiation, is a promising noninvasive modality for cancer treatment. However, the clinical translational application of SDT is impeded by the lack of efficient sonosensitizers, the inefficient accumulation of sonosensitizers at tumor sites, and the complicated immunosuppressive tumor microenvironment. Herein, we developed a facilely synthesized multifunctional porous organic polymer nanosonosensitizer (mHM@HMME) for enhanced SDT. Specifically, mHM@HMME nanosonosensitizers were prepared by incorporating chemotherapeutic mitoxantrone into the one-step synthesis process of disulfide bond containing porous organic polymers, followed by loading with organic sonosensitizer (HMME) and camouflaging with a cancer cell membrane. Due to the cancer cell membrane camouflage, this multifunctional mHM@HMME nanosonosensitizer showed prolonged blood circulation and tumor targeting aggregation. Under ultrasound irradiation, the mHM@HMME nanosonosensitizer exhibited a satisfactory SDT performance both in vitro and in vivo. Moreover, the potent SDT combined with glutathione-responsive drug release in tumor cells induced robust immunogenic cell death to enhance the antitumor effect of SDT in turn. Overall, this facilely synthesized multifunctional mHM@HMME nanosonosensitizer shows great potential application in enhanced SDT.
Collapse
Affiliation(s)
- Meiting Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| | - Zhuoyin Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| | - Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| | - LiLi Cheng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| | - Yifan Xue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| | - Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| |
Collapse
|
22
|
Zhou Y, Li Q, Wu Y, Zhang W, Ding L, Ji C, Li P, Chen T, Feng L, Tang BZ, Huang X. Synergistic Brilliance: Engineered Bacteria and Nanomedicine Unite in Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313953. [PMID: 38400833 DOI: 10.1002/adma.202313953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Engineered bacteria are widely used in cancer treatment because live facultative/obligate anaerobes can selectively proliferate at tumor sites and reach hypoxic regions, thereby causing nutritional competition, enhancing immune responses, and producing anticancer microbial agents in situ to suppress tumor growth. Despite the unique advantages of bacteria-based cancer biotherapy, the insufficient treatment efficiency limits its application in the complete ablation of malignant tumors. The combination of nanomedicine and engineered bacteria has attracted increasing attention owing to their striking synergistic effects in cancer treatment. Engineered bacteria that function as natural vehicles can effectively deliver nanomedicines to tumor sites. Moreover, bacteria provide an opportunity to enhance nanomedicines by modulating the TME and producing substrates to support nanomedicine-mediated anticancer reactions. Nanomedicine exhibits excellent optical, magnetic, acoustic, and catalytic properties, and plays an important role in promoting bacteria-mediated biotherapies. The synergistic anticancer effects of engineered bacteria and nanomedicines in cancer therapy are comprehensively summarized in this review. Attention is paid not only to the fabrication of nanobiohybrid composites, but also to the interpromotion mechanism between engineered bacteria and nanomedicine in cancer therapy. Additionally, recent advances in engineered bacteria-synergized multimodal cancer therapies are highlighted.
Collapse
Affiliation(s)
- Yaofeng Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Qianying Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Yuhao Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Wan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China
| | - Lu Ding
- Department of Cardiology, Jiangxi Hypertension Research Institute, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China
| | - Chenlin Ji
- School of Engineering, Westlake University, Hangzhou, 310030, P. R. China
| | - Ping Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330036, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| |
Collapse
|
23
|
Xiang Y, Wang B, Yang W, Zheng X, Chen R, Gong Q, Gu Z, Liu Y, Luo K. Mitocytosis Mediated by an Enzyme-Activable Mitochondrion-Disturbing Polymer-Drug Conjugate Enhances Active Penetration in Glioblastoma Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311500. [PMID: 38299748 DOI: 10.1002/adma.202311500] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Indexed: 02/02/2024]
Abstract
The application of nanomedicines for glioblastoma (GBM) therapy is hampered by the blood-brain barrier (BBB) and the dense glioblastoma tissue. To achieve efficient BBB crossing and deep GBM penetration, this work demonstrates a strategy of active transcellular transport of a mitochondrion-disturbing nanomedicine, pGBEMA22-b-pSSPPT9 (GBEPPT), in the GBM tissue through mitocytosis. GBEPPT is computer-aided designed and prepared by self-assembling a conjugate of an amphiphilic block polymer and a drug podophyllotoxin (PPT). When GBEPPT is delivered to the tumor site, overexpressed γ-glutamyl transpeptidase (GGT) on the brain-blood endothelial cell, or the GBM cell triggered enzymatic hydrolysis of γ-glutamylamide on GBEPPT to reverse its negative charge to positive. Positively charged GBEPPT rapidly enter into the cell and target the mitochondria. These GBEPPT disturb the homeostasis of mitochondria, inducing mitocytosis-mediated extracellular transport of GBEPPT to the neighboring cells via mitosomes. This intracellular-to-intercellular delivery cycle allows GBEPPT to penetrate deeply into the GBM parenchyma, and exert sustainable action of PPT released from GBEPPT on the tumor cells along its penetration path at the tumor site, thus improving the anti-GBM effect. The process of mitocytosis mediated by the mitochondrion-disturbing nanomedicine may offer great potential in enhancing drug penetration through malignant tissues, especially poorly permeable solid tumors.
Collapse
Affiliation(s)
- Yufan Xiang
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bing Wang
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wanchun Yang
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiuli Zheng
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Qiyong Gong
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, China
| | - Zhongwei Gu
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanhui Liu
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
24
|
Liu B, Du F, Feng Z, Xiang X, Guo R, Ma L, Zhu B, Qiu L. Ultrasound-augmented cancer immunotherapy. J Mater Chem B 2024; 12:3636-3658. [PMID: 38529593 DOI: 10.1039/d3tb02705h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Cancer is a growing worldwide health problem with the most broadly studied treatments, in which immunotherapy has made notable advancements in recent years. However, innumerable patients have presented a poor response to immunotherapy and simultaneously experienced immune-related adverse events, with failed therapeutic results and increased mortality rates. Consequently, it is crucial to develop alternate tactics to boost therapeutic effects without producing negative side effects. Ultrasound is considered to possess significant therapeutic potential in the antitumor field because of its inherent characteristics, including cavitation, pyrolysis, and sonoporation. Herein, this timely review presents the comprehensive and systematic research progress of ultrasound-enhanced cancer immunotherapy, focusing on the various ultrasound-related mechanisms and strategies. Moreover, this review summarizes the design and application of current sonosensitizers based on sonodynamic therapy, with an attempt to provide guidance on new directions for future cancer therapy.
Collapse
Affiliation(s)
- Bingjie Liu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Fangxue Du
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Ziyan Feng
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xi Xiang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Ruiqian Guo
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lang Ma
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bihui Zhu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Li Qiu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
25
|
Wang Y, Wang L, Li T, Ouyang M, Xiong H, Zhou D. Bimetallic nanoparticles as cascade sensitizing amplifiers for low-dose and robust cancer radio-immunotherapy. Acta Pharm Sin B 2024; 14:1787-1800. [PMID: 38572091 PMCID: PMC10985033 DOI: 10.1016/j.apsb.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 04/05/2024] Open
Abstract
Radiotherapy (RT) is one of the most feasible and routinely used therapeutic modalities for treating malignant tumors. In particular, immune responses triggered by RT, known as radio-immunotherapy, can partially inhibit the growth of distantly spreading tumors and recurrent tumors. However, the safety and efficacy of radio-immunotherapy is impeded by the radio-resistance and poor immunogenicity of tumor. Herein, we report oxaliplatin (IV)-iron bimetallic nanoparticles (OXA/Fe NPs) as cascade sensitizing amplifiers for low-dose and robust radio-immunotherapy. The OXA/Fe NPs exhibit tumor-specific accumulation and activation of OXA (II) and Fe2+ in response to the reductive and acidic microenvironment within tumor cells. The cascade reactions of the released metallic drugs can sensitize RT by inducing DNA damage, increasing ROS and O2 levels, and amplifying the immunogenic cell death (ICD) effect after RT to facilitate potent immune activation. As a result, OXA/Fe NPs-based low-dose RT triggered a robust immune response and inhibited the distant and metastatic tumors effectively by a strong abscopal effect. Moreover, a long-term immunological memory effect to protect mice from tumor rechallenging is observed. Overall, the bimetallic NPs-based cascade sensitizing amplifier system offers an efficient radio-immunotherapy regimen that addresses the key challenges.
Collapse
Affiliation(s)
- Yupeng Wang
- Department of Ultrasonic Diagnosis, Zhujiang Hospital, Key Laboratory of Mental Health of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lina Wang
- Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024, China
| | - Tao Li
- Department of Ultrasonic Diagnosis, Zhujiang Hospital, Key Laboratory of Mental Health of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Min Ouyang
- Department of Ultrasonic Diagnosis, Zhujiang Hospital, Key Laboratory of Mental Health of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hejian Xiong
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Dongfang Zhou
- Department of Ultrasonic Diagnosis, Zhujiang Hospital, Key Laboratory of Mental Health of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
26
|
Liang J, Qiao X, Qiu L, Xu H, Xiang H, Ding H, Chen Y. Engineering Versatile Nanomedicines for Ultrasonic Tumor Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305392. [PMID: 38041509 PMCID: PMC10797440 DOI: 10.1002/advs.202305392] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/15/2023] [Indexed: 12/03/2023]
Abstract
Due to the specific advantages of ultrasound (US) in therapeutic disease treatments, the unique therapeutic US technology has emerged. In addition to featuring a low-invasive targeted cancer-cell killing effect, the therapeutic US technology has been demonstrated to modulate the tumor immune landscape, amplify the therapeutic effect of other antitumor therapies, and induce immunosensitization of tumors to immunotherapy, shedding new light on the cancer treatment. Tremendous advances in nanotechnology are also expected to bring unprecedented benefits to enhancing the antitumor efficiency and immunological effects of therapeutic US, as well as therapeutic US-derived bimodal and multimodal synergistic therapies. This comprehensive review summarizes the immunological effects induced by different therapeutic US technologies, including ultrasound-mediated micro-/nanobubble destruction (UTMD/UTND), sonodynamic therapy (SDT), and focused ultrasound (FUS), as well as the main underlying mechanisms involved. It is also discussed that the recent research progress of engineering intelligent nanoplatform in improving the antitumor efficiency of therapeutic US technologies. Finally, focusing on clinical translation, the key issues and challenges currently faced are summarized, and the prospects for promoting the clinical translation of these emerging nanomaterials and ultrasonic immunotherapy in the future are proposed.
Collapse
Affiliation(s)
- Jing Liang
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Xiaohui Qiao
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Luping Qiu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Huning Xu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Huijing Xiang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| | - Hong Ding
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| |
Collapse
|
27
|
Wang W, Zhang Y, Jian Y, He S, Liu J, Cheng Y, Zheng S, Qian Z, Gao X, Wang X. Sensitizing chemotherapy for glioma with fisetin mediated by a microenvironment-responsive nano-drug delivery system. NANOSCALE 2023; 16:97-109. [PMID: 38087978 DOI: 10.1039/d3nr05195a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Drug resistance has become an obstacle to successful cancer chemotherapies, with therapeutic agents effectively traversing the blood-brain barrier (BBB) remaining a great challenge. A microenvironment responsive and active targeting nanoparticle was constructed to enhance the penetration of drugs, leading to improved therapeutic effects. Dynamic light scattering demonstrated that the prepared nanoparticle had a uniform size. The cRGD modification renders the nanoparticle with active targeting capabilities to traverse the BBB for chemotherapy. The disulfide-bond-containing nanoparticle can be disintegrated in response to a high concentration of endogenous glutathione (GSH) within the tumor microenvironment (TME) for tumor-specific drug release, resulting in more effective accumulation. Notably, the released fisetin further increased the uptake of doxorubicin by glioma cells and exerted synergistic effects to promote apoptosis, induce cellular G2/M cycle arrest, and inhibit cell proliferation and migration in vitro. Moreover, the nanoparticle showed favorable anti-glioma effects in vivo. Our study provides a new strategy to overcome drug resistance by utilizing a natural product to sensitize conventional chemotherapeutics with well-designed targeted nanodelivery systems for cancer treatment.
Collapse
Affiliation(s)
- Wanyu Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Yuanyuan Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yue Jian
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Shi He
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Jiagang Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Yongzhong Cheng
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Songping Zheng
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Zhiyong Qian
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Xiang Gao
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Xiang Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
28
|
Zhang C, Pu K. Organic Sonodynamic Materials for Combination Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303059. [PMID: 37263297 DOI: 10.1002/adma.202303059] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Sonodynamic therapy (SDT) is a promising non-invasive therapeutic modality to treat deep-seated tumors owing to the good tissue penetration ability and spatiotemporal controllability of ultrasound (US); however, the low sonodynamic activity and potential side effects greatly limit its clinical translation. Cancer immunotherapy that leverages the immune system to fight against cancer has great potential to synergize with SDT for the treatment of cancer with high efficiency and safety. In this review, the convergence of SDT with cancer immunotherapy to exert their merits and break through the limitations of combination cancer sono-immunotherapy are discussed. The focus is on the development and construction of organic materials with high sonodynamic activity and immunotherapeutic efficiency. These organic materials not only induce immunogenic cell death to improve tumor immunogenicity via SDT but also activate antitumor immunity via immuno-oncology drug-mediated immune pathway modulation. The combination of various immuno-oncology drugs with organic sonosensitizers is categorized and discussed along with the prospects and challenges for clinical translation.
Collapse
Affiliation(s)
- Chi Zhang
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
29
|
Dai X, Du Y, Li Y, Yan F. Nanomaterials-based precision sonodynamic therapy enhancing immune checkpoint blockade: A promising strategy targeting solid tumor. Mater Today Bio 2023; 23:100796. [PMID: 37766898 PMCID: PMC10520454 DOI: 10.1016/j.mtbio.2023.100796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Burgeoning is an evolution from conventional photodynamic therapy (PDT). Thus, sonodynamic therapy (SDT) regulated by nanoparticles (NPs) possesses multiple advantages, including stronger penetration ability, better biological safety, and not reactive oxygen species (ROS)-dependent tumor-killing effect. However, the limitation to tumor inhibition instead of shrinkage and the incapability of eliminating metastatic tumors hinder the clinical potential for SDT. Fortunately, immune checkpoint blockade (ICB) can revive immunological function and induce a long-term immune memory against tumor rechallenges. Hence, synergizing NPs-based SDT with ICB can provide a promising therapeutic outcome for solid tumors. Herein, we briefly reviewed the progress in NPs-based SDT and ICB therapy. We highlighted the synergistic anti-tumor mechanisms and summarized the representative preclinical trials on SDT-assisted immunotherapy. Compared to other reviews, we provided comprehensive and unique perspectives on the innovative sonosensitizers in each trial. Moreover, we also discussed the current challenges and future corresponding solutions.
Collapse
Affiliation(s)
- Xinlun Dai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Yangyang Du
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yumei Li
- Department of Pediatric Intensive Care Unit, First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
30
|
Ma T, Li W, Ye J, Huang C, Li Y, Qiu H, Yin S. GSH/pH dual response drug delivery system for photothermal enhanced gene-immunotherapy. NANOSCALE 2023; 15:16947-16958. [PMID: 37779508 DOI: 10.1039/d3nr03881e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Breast cancer has emerged as a leading cause of mortality among women. Photothermal therapy represents a recent therapeutic modality for eradicating localized tumors, albeit hindered by its limited penetration into tumor tissues. Recognizing the potential of photothermal therapy to induce immunogenic cell death in tumor cells, we explored a gene delivery approach utilizing small interfering RNA targeting programmed death ligand 1 (PD-L1), abbreviated as siPD-L1, to bolster the anti-tumor immune response elicited by this therapy. Nonetheless, the suboptimal release efficiency and inherent instability of RNA molecules have posed challenges to their therapeutic efficacy. In this study, we designed a glutathione (GSH)/pH-responsive micelle system, employing biocompatible and low-toxicity polyethyleneimine in conjunction with structurally robust pluronic P123, to encapsulate both indocyanine green (ICG) and siPD-L1 for precise targeting in breast cancer treatment. The resulting PSP/ICG/siPD-L1 nanocarrier demonstrated admirable biocompatibility and stability. Upon internalization into tumor cells, this nanocarrier exhibited rapid release of both ICG and siPD-L1, responding to the acidic tumor microenvironment and GSH conditions. The inclusion of siPD-L1 effectively downregulated the expression of PD-L1 on the tumor cell surface, thereby impeding tumor growth. Additionally, ICG demonstrated a photothermal effect when exposed to near-infrared light. Both in vitro and in vivo investigations substantiated the nanocarrier's efficacy against tumor cells, culminating in the complete ablation of 4T1 tumors in situ. Consequently, PSP/ICG/siPD-L1 emerges as a promising nanocarrier candidate for augmenting anti-tumor immunity through the synergistic combination of photothermal therapy and gene-based intervention.
Collapse
Affiliation(s)
- Tiantian Ma
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou 311121, Zhejiang Province, P. R. China.
| | - Wen Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou 311121, Zhejiang Province, P. R. China.
| | - Jingtao Ye
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou 311121, Zhejiang Province, P. R. China.
| | - Chenchen Huang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou 311121, Zhejiang Province, P. R. China.
| | - Yang Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou 311121, Zhejiang Province, P. R. China.
| | - Huayu Qiu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou 311121, Zhejiang Province, P. R. China.
| | - Shouchun Yin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou 311121, Zhejiang Province, P. R. China.
| |
Collapse
|
31
|
Chen Z, Yue Z, Yang K, Shen C, Cheng Z, Zhou X, Li S. Four Ounces Can Move a Thousand Pounds: The Enormous Value of Nanomaterials in Tumor Immunotherapy. Adv Healthc Mater 2023; 12:e2300882. [PMID: 37539730 DOI: 10.1002/adhm.202300882] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/17/2023] [Indexed: 08/05/2023]
Abstract
The application of nanomaterials in healthcare has emerged as a promising strategy due to their unique structural diversity, surface properties, and compositional diversity. In particular, nanomaterials have found a significant role in improving drug delivery and inhibiting the growth and metastasis of tumor cells. Moreover, recent studies have highlighted their potential in modulating the tumor microenvironment (TME) and enhancing the activity of immune cells to improve tumor therapy efficacy. Various types of nanomaterials are currently utilized as drug carriers, immunosuppressants, immune activators, immunoassay reagents, and more for tumor immunotherapy. Necessarily, nanomaterials used for tumor immunotherapy can be grouped into two categories: organic and inorganic nanomaterials. Though both have shown the ability to achieve the purpose of tumor immunotherapy, their composition and structural properties result in differences in their mechanisms and modes of action. Organic nanomaterials can be further divided into organic polymers, cell membranes, nanoemulsion-modified, and hydrogel forms. At the same time, inorganic nanomaterials can be broadly classified as nonmetallic and metallic nanomaterials. The current work aims to explore the mechanisms of action of these different types of nanomaterials and their prospects for promoting tumor immunotherapy.
Collapse
Affiliation(s)
- Ziyin Chen
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Ziqi Yue
- Department of Forensic Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Kaiqi Yang
- Clinical Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Congrong Shen
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Zhe Cheng
- Department of Forensic Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Xiaofeng Zhou
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 110042, Shenyang, P. R. China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, 110042, China
| |
Collapse
|
32
|
Zhong T, Yu J, Pan Y, Zhang N, Qi Y, Huang Y. Recent Advances of Platinum-Based Anticancer Complexes in Combinational Multimodal Therapy. Adv Healthc Mater 2023; 12:e2300253. [PMID: 37097737 DOI: 10.1002/adhm.202300253] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/19/2023] [Indexed: 04/26/2023]
Abstract
Platinum drugs with manifest therapeutic effects are widely used, but their systemic toxicity and the drug resistance acquired by cancer cells limit their clinical applications. Thus, the exploration on appropriate methods and strategies to overcome the limitations of traditional platinum drugs becomes extremely necessary. Combination therapy of platinum drugs can inhibit tumor growth and metastasis in an additive or synergistic manner, and can potentially reduce the systemic toxicity of platinum drugs and overcome platinum-resistance. This review summarizes the various modalities and current progress in platinum-based combination therapy. The synthetic strategies and therapeutic effects of some platinum-based anticancer complexes in the combination of platinum drugs with gene editing, ROS-based therapy, thermal therapy, immunotherapy, biological modelling, photoactivation, supramolecular self-assembly and imaging modality are briefly described. Their potential challenges and prospects are also discussed. It is hoped that this review will inspire researchers to have more ideas for the future development of highly effective platinum-based anti-cancer complexes.
Collapse
Affiliation(s)
- Tianyuan Zhong
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Jie Yu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Yong Pan
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Ning Zhang
- The Second Affiliated Hospital of Harbin Medical University, Department of Orthopedics, Harbin, 150000, China
| | - Yanxin Qi
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
33
|
Chen Z, Sun Y, Wang J, Zhou X, Kong X, Meng J, Zhang X. Dual-Responsive Triple-Synergistic Fe-MOF for Tumor Theranostics. ACS NANO 2023; 17:9003-9013. [PMID: 37116070 DOI: 10.1021/acsnano.2c10310] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The intelligent responsive drug delivery system has great application potential in cancer precision therapy. Although many antitumor methods have been developed based on drug delivery systems, most of them yet suffer from poor antitumor efficiency. In this project, a near-infrared and pH dual-response multimodal collaborative platform for diagnosis and treatment (PCN-DOX@PDA) was constructed. We used PCN-600 as a vehicle loaded with antineoplastic drugs and polydopamine (PDA). Under 633 nm laser irradiation, the ligand tetrakis(4-carboxyphenyl)porphyrin (TCPP) in PCN-600 can generate singlet oxygen (1O2) and kill tumor cells. PDA is used as photothermal agent of PTT. PCN-DOX@PDA achieves the intelligent release of antitumor drugs by responding to the weak acidity of the tumor microenvironment and thermal stimulation generated by NIR irradiation. In addition, since the central ion of PCN is Fe3+, PCN-DOX@PDA realizes the diagnosis and treatment of tumors through magnetic resonance imaging-mediated tumor chemotherapy and photothermal and photodynamic synergistic therapy. This triple synergistic strategy showed excellent biocompatibility and antitumor ability in in vivo experiments on a 4T1 tumor-bearing mouse model, indicating that PCN-DOX@PDA has a good development prospect in the field of precision cancer therapy and diversified biomedical applications.
Collapse
Affiliation(s)
- Zhiwei Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yaoji Sun
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jiawei Wang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xi Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiangjian Kong
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jiashen Meng
- School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xingcai Zhang
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
34
|
Yuan H, Ma J, Huang W, Gong P, Shi F, Xu X, Fu C, Wang X, Wong YK, Long Y, Sun X, Li W, Li Z, Wang J. Antitumor Effects of a Distinct Sonodynamic Nanosystem through Enhanced Induction of Immunogenic Cell Death and Ferroptosis with Modulation of Tumor Microenvironment. JACS AU 2023; 3:1507-1520. [PMID: 37234112 PMCID: PMC10206594 DOI: 10.1021/jacsau.3c00156] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Sonodynamic therapy (SDT) holds great promise to be applied for cancer therapy in clinical settings. However, its poor therapeutic efficacy has limited its applications owing to the apoptosis-resistant mechanism of cancer cells. Moreover, the hypoxic and immunosuppressive tumor microenvironment (TME) also weakens the efficacy of immunotherapy in solid tumors. Therefore, reversing TME remains a formidable challenge. To circumvent these critical issues, we developed an ultrasound-augmented strategy to regulate the TME by utilizing an HMME-based liposomal nanosystem (HB liposomes), which can synergistically promote the induction of ferroptosis/apoptosis/immunogenic cell death (ICD) and initiate the reprograming of TME. The RNA sequencing analysis demonstrated that apoptosis, hypoxia factors, and redox-related pathways were modulated during the treatment with HB liposomes under ultrasound irradiation. The in vivo photoacoustic imaging experiment showed that HB liposomes enhanced oxygen production in the TME, alleviated TME hypoxia, and helped to overcome the hypoxia of the solid tumors, consequently improving the SDT efficiency. More importantly, HB liposomes extensively induced ICD, resulting in enhanced T-cell recruitment and infiltration, which normalizes the immunosuppressive TME and facilitates antitumor immune responses. Meanwhile, the HB liposomal SDT system combined with PD1 immune checkpoint inhibitor achieves superior synergistic cancer inhibition. Both in vitro and in vivo results indicate that the HB liposomes act as a sonodynamic immune adjuvant that is able to induce ferroptosis/apoptosis/ICD via generated lipid-reactive oxide species during the SDT and reprogram TME due to ICD induction. This sonodynamic nanosystem integrating oxygen supply, reactive oxygen species generation, and induction of ferroptosis/apoptosis/ICD is an excellent strategy for effective TME modulation and efficient tumor therapy.
Collapse
Affiliation(s)
- Haitao Yuan
- Department
of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical
Engineering Technology Research and Development Center, and Shenzhen
Clinical Research Centre for Geriatrics, Shenzhen People’s
Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Jingbo Ma
- Department
of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical
Engineering Technology Research and Development Center, and Shenzhen
Clinical Research Centre for Geriatrics, Shenzhen People’s
Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Wei Huang
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Ping Gong
- Department
of Emergency, Shenzhen People’s Hospital, The First Affiliated
Hospital, Southern University of Science
and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Fei Shi
- Department
of Infectious Disease, Shenzhen People’s Hospital, The First
Affiliated Hospital, Southern University
of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Xiaolong Xu
- Department
of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical
Engineering Technology Research and Development Center, and Shenzhen
Clinical Research Centre for Geriatrics, Shenzhen People’s
Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Chunjin Fu
- Artemisinin
Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Xiaoxian Wang
- Department
of Hyperbaric Oxygen Medicine, People’s Hospital, The First
Affiliated Hospital, Southern University
of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Yin Kwan Wong
- Department
of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Ying Long
- Department
of Hyperbaric Oxygen Medicine, People’s Hospital, The First
Affiliated Hospital, Southern University
of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Xin Sun
- Department
of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical
Engineering Technology Research and Development Center, and Shenzhen
Clinical Research Centre for Geriatrics, Shenzhen People’s
Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Weihua Li
- Medical
Imaging Department, Shenzhen Second People’s
Hospital/the First Affiliated Hospital of Shenzhen University Health
Science Center, Shenzhen 518035, P. R. China
| | - Zhijie Li
- Department
of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical
Engineering Technology Research and Development Center, and Shenzhen
Clinical Research Centre for Geriatrics, Shenzhen People’s
Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Jigang Wang
- Department
of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical
Engineering Technology Research and Development Center, and Shenzhen
Clinical Research Centre for Geriatrics, Shenzhen People’s
Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
- Artemisinin
Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| |
Collapse
|
35
|
Wang F, Pu K, Li J. Activating Nanomedicines with Electromagnetic Energy for Deep-Tissue Induction of Immunogenic Cell Death in Cancer Immunotherapy. SMALL METHODS 2023; 7:e2201083. [PMID: 36316270 DOI: 10.1002/smtd.202201083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/12/2022] [Indexed: 05/17/2023]
Abstract
Immunotherapy is an attractive approach for cancer therapy, while its antitumor efficacy is still limited, especially for non-immunogenic tumors. Nanomedicines can be utilized to convert the non-immunogenic "cold" tumors to immunogenic "hot" tumors via inducing immunogenic cell death (ICD), thereby promoting the antitumor immune response. Some nanomedicines that can produce local heat and reactive oxygen species upon the stimulation of electromagnetic energy are the main candidates for inducing the ICD effect. However, their applications are often restricted due to the poor tissue penetration depths of electromagnetic energy, such as light. By contrast, ultrasound, X-ray, alternating magnetic field, and microwave show excellent tissue penetration depths and thereby can be used for sonodynamic therapy, radiotherapy, magnetic hyperthermia therapy, and microwave ablation therapy, all of which can effectively induce ICD. Herein, the combination of deep-tissue electromagnetic energy with nanomedicines for inducing ICD and cancer immunotherapy are summarized. In particular, the designs of nanomedicines to amplify ICD effect in the presence of deep-tissue electromagnetic energy and sensitize tumors to various immunotherapies will be discussed. At the end of this review, a brief conclusion and discussion of current challenges and further perspectives in this subfield are provided.
Collapse
Affiliation(s)
- Fengshuo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
36
|
Zuo L, Nie W, Yu S, Zhuang WR, Liang C, Li S, Shi D, Wu G, Sui X, Li Y, Xie HY. Biomimetic Nanovesicle with Mitochondria-Synthesized Sonosensitizer and Mitophagy Inhibition for Cancer Sono-Immunotherapy. NANO LETTERS 2023; 23:3005-3013. [PMID: 36988626 DOI: 10.1021/acs.nanolett.3c00383] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mitochondria are crucial for both sonodynamic therapy and antitumor immunity. However, how to accurately damage mitochondria and meanwhile prevent the mitophagy and immune checkpoint inhibition is still a great challenge. Herein, hexyl 5-aminolevulinate hydrochloride (HAL) and 3-methyladenine (3MA) are loaded into the tumor cell-derived microparticle (X-MP), which can direct the target delivery of the prepared HAL/3MA@X-MP to the tumor cells. HAL induces the confined biosynthesis and accumulation of sonosensitizer PpIX in mitochondria, leading to the localized generation of reactive oxygen species (ROS) upon ultrasound irradiation and, thus, the efficient mitochondrial damage. Meanwhile, 3MA not only inhibits mitophagy but also down-regulates the PD-L1 expression, promoting the immunogenic cell death (ICD) while blocking the immune checkpoint recognition. The smart synergism of precise mitochondrial damage, mitophagy inhibition and antitumor immunity results in potent therapeutic efficacy without obvious side effects.
Collapse
Affiliation(s)
- Liping Zuo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, P. R. China
| | - Weidong Nie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Songmao Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, P. R. China
| | - Wan-Ru Zhuang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Sucheng Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Danshu Shi
- Shimadzu (China) Co., LTD, Beijing Branch, Beijing 100020, PR China
| | - Guanghao Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xin Sui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, P. R. China
| | - Yongheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, P. R. China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
37
|
Du JR, Wang Y, Yue ZH, Zhang HY, Wang H, Sui GQ, Sun ZX. Recent advances in sonodynamic immunotherapy. J Cancer Res Clin Oncol 2023; 149:1645-1656. [PMID: 35831762 DOI: 10.1007/s00432-022-04190-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/06/2022] [Indexed: 12/07/2022]
Abstract
Tumor immunotherapy has become an important means of tumor therapy by enhancing the immune response and triggering the activation of immune cells. However, currently, only a small number of patients respond to immunotherapy alone, and patients may experience immune-related adverse events (irAEs) during the course of treatment. Sonodynamic therapy (SDT) can produce cytotoxic substances to tumor tissue, induce apoptosis and enhance immunity. SDT combined with immunotherapy is considered a promising strategy for cancer treatment. In this mini review, we summarize the role of SDT in immunotherapy in recent years, including the application of SDT-triggered immunotherapy and the combination of SDT and immunotherapy.
Collapse
Affiliation(s)
- Jia-Rui Du
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China
| | - Yang Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China
| | - Zong-Hua Yue
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China
| | - Han-Yu Zhang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China
| | - Hui Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China.
| | - Guo-Qing Sui
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China.
| | - Zhi-Xia Sun
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China.
| |
Collapse
|
38
|
Singh N, Kim J, Kim J, Lee K, Zunbul Z, Lee I, Kim E, Chi SG, Kim JS. Covalent organic framework nanomedicines: Biocompatibility for advanced nanocarriers and cancer theranostics applications. Bioact Mater 2023; 21:358-380. [PMID: 36185736 PMCID: PMC9483748 DOI: 10.1016/j.bioactmat.2022.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Nanomedicines for drug delivery and imaging-guided cancer therapy is a rapidly growing research area. The unique properties of nanomedicines have a massive potential in solving longstanding challenges of existing cancer drugs, such as poor localization at the tumor site, high drug doses and toxicity, recurrence, and poor immune response. However, inadequate biocompatibility restricts their potential in clinical translation. Therefore, advanced nanomaterials with high biocompatibility and enhanced therapeutic efficiency are highly desired to fast-track the clinical translation of nanomedicines. Intrinsic properties of nanoscale covalent organic frameworks (nCOFs), such as suitable size, modular pore geometry and porosity, and straightforward post-synthetic modification via simple organic transformations, make them incredibly attractive for future nanomedicines. The ability of COFs to disintegrate in a slightly acidic tumor microenvironment also gives them a competitive advantage in targeted delivery. This review summarizes recently published applications of COFs in drug delivery, photo-immuno therapy, sonodynamic therapy, photothermal therapy, chemotherapy, pyroptosis, and combination therapy. Herein we mainly focused on modifications of COFs to enhance their biocompatibility, efficacy and potential clinical translation. This review will provide the fundamental knowledge in designing biocompatible nCOFs-based nanomedicines and will help in the rapid development of cancer drug carriers and theranostics.
Collapse
Affiliation(s)
- Nem Singh
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jungryun Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jaewon Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Kyungwoo Lee
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Zehra Zunbul
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Injun Lee
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Eunji Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Sung-Gil Chi
- Department of Life Science, Korea University, Seoul, 02841, South Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
39
|
Xie Z, Wang J, Luo Y, Qiao B, Jiang W, Zhu L, Ran H, Wang Z, Zhu W, Ren J, Zhou Z. Tumor-penetrating nanoplatform with ultrasound "unlocking" for cascade synergistic therapy and visual feedback under hypoxia. J Nanobiotechnology 2023; 21:30. [PMID: 36698190 PMCID: PMC9878980 DOI: 10.1186/s12951-023-01765-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Combined therapy based on the effects of cascade reactions of nanoplatforms to combat specific solid tumor microenvironments is considered a cancer treatment strategy with transformative clinical value. Unfortunately, an insufficient O2 supply and the lack of a visual indication hinder further applications of most nanoplatforms for solid tumor therapy. RESULTS A visualizable nanoplatform of liposome nanoparticles loaded with GOD, H(Gd), and PFP and grafted with the peptide tLyP-1, named tLyP-1H(Gd)-GOD@PFP, was constructed. The double-domain peptide tLyP-1 was used to specifically target and penetrate the tumor cells; then, US imaging, starvation therapy and sonodynamic therapy (SDT) were then achieved by the ultrasound (US)-activated cavitation effect under the guidance of MR/PA imaging. GOD not only deprived the glucose for starvation therapy but also produced H2O2, which in coordination with 1O2 produced by H(Gd), enable the effects of SDT to achieve a synergistic therapeutic effect. Moreover, the synergistic therapy was enhanced by O2 from PFP and low-intensity focused ultrasound (LIFU)-accelerated redox effects of the GOD. The present study demonstrated that the nanoplatform could generate a 3.3-fold increase in ROS, produce a 1.5-fold increase in the maximum rate of redox reactions and a 2.3-fold increase in the O2 supply in vitro, and achieve significant tumor inhibition in vivo. CONCLUSION We present a visualizable nanoplatform with tumor-penetrating ability that can be unlocked by US to overcome the current treatment problems by improving the controllability of the O2 supply, which ultimately synergistically enhanced cascade therapy.
Collapse
Affiliation(s)
- Zhuoyan Xie
- Department of Ultrasound, Chongqing General Hospital, Chongqing, 401147 China ,grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Junrui Wang
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China ,grid.412461.40000 0004 9334 6536Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Yuanli Luo
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Bin Qiao
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Weixi Jiang
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Leilei Zhu
- Department of Ultrasound, Chongqing General Hospital, Chongqing, 401147 China ,grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Haitao Ran
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Zhigang Wang
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Wei Zhu
- grid.440771.10000 0000 8820 2504Depatment of Medical College, Hubei University for Nationalities, Enshi, 445000 Hubei China
| | - Jianli Ren
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Zhiyi Zhou
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China ,Depatment of General Practice, Chongqing General Hospital, Chongqing, 401147 China
| |
Collapse
|
40
|
Chen H, Zhang S, Fang Q, He H, Ren J, Sun D, Lai J, Ma A, Chen Z, Liu L, Liang R, Cai L. Biomimetic Nanosonosensitizers Combined with Noninvasive Ultrasound Actuation to Reverse Drug Resistance and Sonodynamic-Enhanced Chemotherapy against Orthotopic Glioblastoma. ACS NANO 2023; 17:421-436. [PMID: 36573683 DOI: 10.1021/acsnano.2c08861] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Glioblastoma (GBM) is the most devastating brain tumor and highly resistant to conventional chemotherapy. Herein, we introduce biomimetic nanosonosensitizer systems (MDNPs) combined with noninvasive ultrasound (US) actuation for orthotopic GBM-targeted delivery and sonodynamic-enhanced chemotherapy. MDNPs were fabricated with biodegradable and pH-sensitive polyglutamic acid (PGA) and the chemotherapeutic agent and sonosensitizer doxorubicin (DOX), camouflaged with human GBM U87 cell membranes. MDNPs presented homologous targeting accumulation and in vivo long-term circulation ability. They effectively passed through the blood-brain barrier (BBB) under US assistance and reached the orthotopic GBM site. MDNPs exhibited controllable US-elicited sonodynamic effect by generation of reactive oxygen species (ROS). ROS not only induced cancer cell apoptosis but also downregulated drug-resistance-related factors to disrupt chemoresistance and increase sensitivity to chemotherapy. The in vivo study of orthotopic GBM treatments further proved that MDNPs exhibited US-augmented synergistic antitumor efficacy and strongly prolonged the survival rate of mice. The use of low-dose DOX and the safety of US enabled repeated treatment (4 times) without obvious cardiotoxicity. This effective and safe US-enhanced chemotherapy strategy with the advantages of noninvasive brain delivery and high drug sensitivity holds great promise for deep-seated and drug-resistant tumors.
Collapse
Affiliation(s)
- Huaqing Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P.R. China
| | - Shengping Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Quan Fang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Huamei He
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Jian Ren
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Da Sun
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Jiazheng Lai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Aiqing Ma
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan 523808, P.R. China
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Lanlan Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ruijing Liang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, P.R. China
| |
Collapse
|
41
|
Yang Y, Huang J, Liu M, Qiu Y, Chen Q, Zhao T, Xiao Z, Yang Y, Jiang Y, Huang Q, Ai K. Emerging Sonodynamic Therapy-Based Nanomedicines for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204365. [PMID: 36437106 PMCID: PMC9839863 DOI: 10.1002/advs.202204365] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/25/2022] [Indexed: 05/08/2023]
Abstract
Cancer immunotherapy effect can be greatly enhanced by other methods to induce immunogenic cell death (ICD), which has profoundly affected immunotherapy as a highly efficient paradigm. However, these treatments have significant limitations, either by causing damage of the immune system or limited to superficial tumors. Sonodynamic therapy (SDT) can induce ICD to promote immunotherapy without affecting the immune system because of its excellent spatiotemporal selectivity and low side effects. Nevertheless, SDT is still limited by low reactive oxygen species yield and the complex tumor microenvironment. Recently, some emerging SDT-based nanomedicines have made numerous attractive and encouraging achievements in the field of cancer immunotherapy due to high immunotherapeutic efficiency. However, this cross-cutting field of research is still far from being widely explored due to huge professional barriers. Herein, the characteristics of the tumor immune microenvironment and the mechanisms of ICD are firstly systematically summarized. Subsequently, the therapeutic mechanism of SDT is fully summarized, and the advantages and limitations of SDT are discussed. The representative advances of SDT-based nanomedicines for cancer immunotherapy are further highlighted. Finally, the application prospects and challenges of SDT-based immunotherapy in future clinical translation are discussed.
Collapse
Affiliation(s)
- Yunrong Yang
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Jia Huang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Min Liu
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Yige Qiu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yuqi Yang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Qiong Huang
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| |
Collapse
|
42
|
Li W, Wang Y, Xue D, Jin L, Liu Y, Lv Z, Cao Y, Niu R, Zhang H, Zhang S, Xu B, Yin N, Zhang S, Zhang H. A Novel Biodegradable Nanoplatform for Tumor Microenvironments Responsive Bimodal Magnetic Resonance Imaging and Sonodynamic/Ion Interference Cascade Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50616-50625. [PMID: 36332001 DOI: 10.1021/acsami.2c15806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The unsatisfactory therapeutic effect and long-term adverse effect markedly prevent inorganic nanomaterials from clinical transformation. In light of this, we developed a novel biodegradable theranostic agent (MnCO3:Ho3+@DOX/Ca3(PO4)2@BSA, HMCDB) based on the sonosensitizer manganese carbonate (MnCO3) coating with calcium phosphate (Ca3(PO4)2) and simultaneously loaded it with the chemotherapeutic drug doxorubicin (DOX). Due to the mild acidity of the tumor microenvironment (TME), the Ca3(PO4)2 shell degraded first, releasing substantial quantities of calcium ions (Ca2+) and DOX. Meanwhile, with the ultrasound (US) irradiation, MnCO3 produced enough reactive oxygen species (ROS) to cause oxidative stress in the cells, resulting in accumulation of Ca2+. Consequently, the cascade effect significantly amplified the therapeutic effect. Importantly, the nanocomposite can be completely degraded and cleared from the body, demonstrating that it was a promising theranostic agent for tumor therapy. Furthermore, the doped holmium ions (Ho3+) and in situ generation of manganese ions (Mn2+) in TME endow the nanoagent with the ability for tumor-specific bimodality T1/T2-weighted magnetic resonance imaging (MRI). This novel nanoplatform with low toxicity and biodegradability holds great potential for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Wanying Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China
| | - Dongzhi Xue
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Longhai Jin
- Department of Radiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhijia Lv
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yue Cao
- The First Hospital of Jilin University, Changchun 130041, China
| | - Rui Niu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shuai Zhang
- The First Hospital of Jilin University, Changchun 130041, China
| | - Bo Xu
- The First Hospital of Jilin University, Changchun 130041, China
| | - Na Yin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Songtao Zhang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
43
|
Li M, Zhang Y, Zhang X, Liu Z, Tang J, Feng M, Chen B, Wu D, Liu J. Degradable Multifunctional Porphyrin-Based Porous Organic Polymer Nanosonosensitizer for Tumor-Specific Sonodynamic, Chemo- and Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48489-48501. [PMID: 36281484 DOI: 10.1021/acsami.2c14776] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sonodynamic therapy (SDT) benefiting from its intrinsic merits, such as noninvasiveness and deep tissue penetrability, is receiving increasing considerable attention in reactive oxygen species (ROS)-based tumor treatment. However, current sonosensitizers usually suffer from low tumor lesion accumulation, insufficient ROS generation efficiency under ultrasound, and non-biodegradability, which seriously impede the therapeutic outcomes. Additionally, it is difficult that SDT alone can completely eradicate tumors because of the complex and immunosuppressive tumor microenvironment (TME). Herein, we simultaneously employ sonosensitive porphyrin building blocks and glutathione (GSH)-responsive disulfide bonds to construct a novel degradable multifunctional porphyrin-based hollow porous organic polymer (POP) nanosonosensitizer (H-Pys-HA@M/R), which combine SDT, "on-demand" chemotherapy, and immunotherapy. Taking the unique advantages of POPs with designable structures and high specific surface area, this H-Pys-HA@M/R nanosonosensitizer can achieve tumor target accumulation, GSH-triggered drug release, and low-frequency ultrasound-activating ROS generation with encouraging results. Furthermore, this multifunctional nanosonosensitizer can effectively evoke immunogenic cell death (ICD) response through the combination of SDT and chemotherapy for both primary and distal tumor growth suppression. Meanwhile, H-Pys-HA@M/R exhibits favorable biodegradation and biosafety. Therefore, this study provides a new strategy for reasonably designing and constructing POP-related sonosensitizers combining SDT/chemotherapy/immunotherapy triple treatment modalities to eradicate malignant tumors.
Collapse
Affiliation(s)
- Meiting Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Yaqian Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Xiaoge Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Zhuoyin Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Miao Feng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Baizhu Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| |
Collapse
|
44
|
Liu Q, Zhang W, Jiao R, Lv Z, Lin X, Xiao Y, Zhang K. Rational Nanomedicine Design Enhances Clinically Physical Treatment-Inspired or Combined Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203921. [PMID: 36002305 PMCID: PMC9561875 DOI: 10.1002/advs.202203921] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Indexed: 05/19/2023]
Abstract
Independent of tumor type and non-invasive or minimally-invasive feature, current physical treatments including ultrasound therapy, microwave ablation (MWA), and radiofrequency ablation (RFA) are widely used as the local treatment methods in clinics for directly killing tumors and activating systematic immune responses. However, the activated immune responses are inadequate and incompetent for tumor recession, and the incomplete thermal ablation even aggravates the immunosuppressive tumor microenvironment (ITM), resulting in the intractable tumor recurrence and metastasis. Intriguingly, nanomedicine provides a powerful platform as they can elevate energy utilization efficiency and augment oncolytic effects for mitigating ITM and potentiating the systematic immune responses. Especially after combining with clinical immunotherapy, the anti-tumor killing effect by activating or enhancing the human anti-tumor immune system is reached, enabling the effective prevention against tumor recurrence and metastasis. This review systematically introduces the cutting-edge progress and direction of nanobiotechnologies and their corresponding nanomaterials. Moreover, the enhanced physical treatment efficiency against tumor progression, relapse, and metastasis via activating or potentiating the autologous immunity or combining with exogenous immunotherapeutic agents is exemplified, and their rationales are analyzed. This review offers general guidance or directions to enhance clinical physical treatment from the perspectives of immunity activation or magnification.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- Department of RadiologyLiuzhou People's Hospital Affiliated to Guangxi Medical UniversityNo. 8 Wenchang RoadLiuzhou545006P. R. China
- Central LaboratoryShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072P. R. China
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Key Laboratory of Bio‐targeting TheranosticsGuangxi Medical UniversityNo. 22 Shuangyong Road 22Nanning530021P. R. China
| | - Wei Zhang
- Department of RadiologyLiuzhou People's Hospital Affiliated to Guangxi Medical UniversityNo. 8 Wenchang RoadLiuzhou545006P. R. China
| | - Rong Jiao
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Key Laboratory of Bio‐targeting TheranosticsGuangxi Medical UniversityNo. 22 Shuangyong Road 22Nanning530021P. R. China
| | - Zheng Lv
- Department of RadiologyLiuzhou People's Hospital Affiliated to Guangxi Medical UniversityNo. 8 Wenchang RoadLiuzhou545006P. R. China
- Central LaboratoryShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072P. R. China
| | - Xia Lin
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Key Laboratory of Bio‐targeting TheranosticsGuangxi Medical UniversityNo. 22 Shuangyong Road 22Nanning530021P. R. China
| | - Yunping Xiao
- Department of RadiologyLiuzhou People's Hospital Affiliated to Guangxi Medical UniversityNo. 8 Wenchang RoadLiuzhou545006P. R. China
| | - Kun Zhang
- Department of RadiologyLiuzhou People's Hospital Affiliated to Guangxi Medical UniversityNo. 8 Wenchang RoadLiuzhou545006P. R. China
- Central LaboratoryShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072P. R. China
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Key Laboratory of Bio‐targeting TheranosticsGuangxi Medical UniversityNo. 22 Shuangyong Road 22Nanning530021P. R. China
| |
Collapse
|