1
|
Bhati R, Saifi AP, Sangwan M, Mahur P, Sharma A, Singh AK, Muthukumaran J, Jain M. Computational insights into the inhibition of cell division in Staphylococcus aureus: Towards novel therapeutics. Comput Biol Chem 2025; 117:108391. [PMID: 40037019 DOI: 10.1016/j.compbiolchem.2025.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 03/06/2025]
Abstract
Staphylococcus aureus, a gram-positive bacterium, causes infective endocarditis, osteoarticular, skin, and respiratory infections. The emergence of multidrug-resistant strains, particularly Methicillin-resistant Staphylococcus aureus (MRSA), has caused a 21-35 % rise in bloodstream infections, complicating treatment strategies. Filamentous temperature-sensitive protein Z (FtsZ), a critical protein involved in bacterial cell division, forms a Z-ring at the division site, making it a key target for novel antibacterial therapies. In this study, 1165 phytochemicals were screened, and three lead molecules namely, Aromadendrin, Leucopelargonidin, and 7-Deacetoxy-7-oxogedunin were identified based on their favorable physicochemical properties, drug-likeness, and estimated binding affinities (- 11.73 kcal/mol, - 10.77 kcal/mol, and - 10.38 kcal/mol, respectively) against FtsZ. 100 ns Molecular dynamics simulations conducted in triplicates confirmed the stability of the FtsZ-ligand complexes.Binding free energy calculations revealed that IMPHY003535 (Leucopelargonidin) exhibited the most favorable binding free energy (-27.25 kcal/mol), followed by 7-Deacetoxy-7-oxogedunin (-15.31 kcal/mol) and Aromadendrin (-13.38 kcal/mol). Leucopelargonidin emerged as the most promising inhibitor, highlighting its potential as a lead compound for developing antibacterial agents targeting FtsZ. These findings demonstrate the significant role of phytochemicals in combating antibiotic resistance and the importance of further optimization, including in vivo studies, to assess their therapeutic potential, which could provide new treatment avenues to overcome bacterial resistance mechanisms.
Collapse
Affiliation(s)
- Roopali Bhati
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Ayesha Parvez Saifi
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Manisha Sangwan
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Pragati Mahur
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Abhishek Sharma
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Monika Jain
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
2
|
Zhang Y, Gong R, Liang M, Zhang L, Liu X, Zeng J, Yan M, Qiu D, Zhou R, Huang Q. Identification of essential genes by transposon insertion sequencing and genome-scale metabolic model construction in Streptococcus suis. Microbiol Spectr 2025; 13:e0279124. [PMID: 40162755 DOI: 10.1128/spectrum.02791-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Bacterial essential genes are indispensable for the survival of bacteria and therefore are attractive targets for novel anti-microbial drugs. Identifying essential genes provides a roadmap for developing novel antibiotics and anti-microbial therapies. In this study, combining high-throughput transposon sequencing (Tn-seq) and genome-scale metabolic model (GEM) construction, essential genes of Streptococcus suis, an important emerging zoonotic bacterial pathogen, were analyzed. A highly efficient transposon (Tn) mutagenesis system was developed in S. suis. This system facilitated the construction of a high-density library containing over 160,000 Tn mutants. By sequencing the library and data analysis, more than 21,000 insertion sites and 150 essential genes for growth in the rich medium were identified. Subsequently, a GEM of S. suis SC19 strain was constructed, and 165 essential genes were predicted via flux balance analysis (FBA). A total of 244 essential genes were obtained by combining the results of Tn-seq, and FBA performed. Gene identity analysis revealed 101 essential genes as potential anti-bacterial drug targets. Among them, apart from many known antibiotic targets, some interesting essential genes were also identified, including those involved in capsule biosynthesis, aminoacyl-tRNA biosynthesis, lipid biosynthesis, cell division, and cell signaling. This work identified essential genes of S. suis at the whole-genome level, providing a reference for the mining of novel anti-microbial drug targets. IMPORTANCE Anti-microbial resistance (AMR) presents an escalating challenge, making anti-microbial drug development an urgent need. Bacterial essential genes represent promising targets for anti-microbial drugs. However, conventional approaches to identifying bacterial essential genes are time and labor intensive. Techniques such as Tn-seq and GEM construction offer a high-throughput approach for this identification. Streptococcus suis is an emerging zoonotic bacterial pathogen, posing a big threat to public health as well as the pig industry, and the levels of AMR are increasing. Our study has successfully identified essential genes in S. suis, providing crucial insights for the discovery of new anti-microbial drug targets.
Collapse
Affiliation(s)
- Yongqing Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Ruotong Gong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Menglei Liang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Liangsheng Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Xiujian Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Jingzi Zeng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Mengli Yan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Dexin Qiu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- International Research Center for Animal Diseases, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qi Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- International Research Center for Animal Diseases, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
3
|
Roy A, Anbarasu A. Unveiling Berberine analogues as potential inhibitors of Escherichia coli FtsZ through machine learning molecular docking and molecular dynamics approach. Sci Rep 2025; 15:14668. [PMID: 40287515 PMCID: PMC12033256 DOI: 10.1038/s41598-025-98835-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
The bacterial cell division protein FtsZ, a crucial GTPase, plays a vital role in the formation of the contractile Z-ring, which is essential for bacterial cytokinesis. Consequently, inhibiting FtsZ could prevent the formation of proto-filaments and interfere with the cell division machinery. The remarkable conservation of FtsZ across diverse bacterial species makes it a promising drug target for combating drug resistance. In the present study, 1072 berberine analogues were screened for favorable pharmacokinetic properties. A total of 60 compounds that fulfilled the drug-likeliness criteria and were found to be non-toxic were selected for virtual screening against Escherichia coli FtsZ protein (PDB ID: 8GZY). Molecular docking revealed a strong binding affinity of ZINC000524729297 (- 8.73 kcal/mol) and ZINC000604405393 (and - 8.55 kcal/mol) with FtsZ by strong intermolecular hydrogen bonds and hydrophobic interactions. Subsequently, the docking profiles were validated through a 500 ns MD simulation and MMPBSA analysis of the FtsZ-ligand complexes. The analysis revealed the FtsZ- ZINC524729297 and FtsZ-ZINC000604405393 complexes had the lowest root-mean-square deviation with lowest binding energy and enhanced conformational stability in a dynamic environment. These findings suggest that ZINC524729297 and ZINC000604405393 are the potent lead compound that targets FtsZ and requires further experimental validation.
Collapse
Affiliation(s)
- Aditi Roy
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Biotechnology, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
4
|
Wen C, Zhang Y, Lai L, Zhang X, Liu Y, Guo Q, Peng R, Gao Y, Zhang X, He Y, Xu S, Qiao D, Zheng P, Pan Q, Zhu W. Photothermally Enhanced Cascaded Nanozyme-Functionalized Black Phosphorus Nanosheets for Targeted Treatment of Infected Diabetic Wounds. Adv Healthc Mater 2025; 14:e2302955. [PMID: 37975183 DOI: 10.1002/adhm.202302955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Indexed: 11/19/2023]
Abstract
Due to the limitations of H2O2 under physiological conditions and defective activity, nanozyme-catalyzed therapy for infected diabetic wound healing is still a huge challenge. Here, this work designs a novel multifunctional hybrid glucose oxidase (GOx)-CeO2@black phosphorus (BP)/Apt nanosheet that features GOx and CeO2 dual enzyme loading with photothermal enhancement effect and targeting ability for the treatment of infected wounds in type II diabetic mice. Combined with the photothermal properties of the BP nanosheets, the cascade nanozyme effect of GOx and CeO2 is extremely enhanced. The synergistic effect of peroxidase activity and photothermal therapy with targeting aptamer allows for overcoming the catalytic defects of nanozyme and significantly improving in vitro bacterial inhibition rate with 99.9% and 97.8% for Staphylococcus aureus and Escherichia coli, respectively, as well as enhancing in vivo antibacterial performance with the lowest wound remained (0.05%), reduction of infiltration inflammatory cells, and excellent biocompatibility. Overall, this work builds a nanodelivery system with a powerful therapeutic approach, incorporating self-supplying H2O2 synergistic photothermal and real-time wound monitoring effect, which holds profound potential as a clinical treatment for infected diabetic wounds.
Collapse
Affiliation(s)
- Chunping Wen
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Yan Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Luogen Lai
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Xuan Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Yijun Liu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Qiuyan Guo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Rujue Peng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Yating Gao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Xufei Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Yan He
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| |
Collapse
|
5
|
Wang YT, Liu LT, Hou B, Yao CM, Wang XF, Lu B. Recent advances in studies on FtsZ inhibitors. Biochem Pharmacol 2024; 230:116551. [PMID: 39307317 DOI: 10.1016/j.bcp.2024.116551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024]
Abstract
With the abuse of antibiotics, multidrug resistant strains continue to emerge and spread rapidly. Therefore, there is an urgent need to develop new antimicrobial drugs. As a highly conserved cell division protein in bacteria, filamenting temperature-sensitive mutant Z (FtsZ) has been identified as a potential antimicrobial target. This paper reviews the structure, function, and action mechanism of FtsZ and a variety of natural and synthetic compounds targeting FtsZ, including 3-MBA derivatives, taxane derivatives, cinnamaldehyde, curcumin, quinoline and quinazoline derivatives, aromatic compounds, purpurin, and totarol. From these studies, FtsZ has a clear supporting role in the field of antimicrobial drug discovery. The urgent need and interest of antibacterial drugs will contribute to the discovery of new clinical drugs targeting FtsZ.
Collapse
Affiliation(s)
- Yan-Ting Wang
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai 200433, PR China.
| | - Lan-Tian Liu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai 200433, PR China
| | - Bo Hou
- School of Life Science and Technology, Xidian University, Xi'an 710126, PR China
| | - Chun-Meng Yao
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai 200433, PR China
| | - Xu-Fang Wang
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai 200433, PR China
| | - Bin Lu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai 200433, PR China.
| |
Collapse
|
6
|
Lin HJ, Hsu PH, Lin TC, Lu WJ, Lin HTV. Solid- and Vapor-Phase Antibacterial Activities and Mechanisms of Essential Oils Against Fish Spoilage Bacteria. Antibiotics (Basel) 2024; 13:1137. [PMID: 39766527 PMCID: PMC11672770 DOI: 10.3390/antibiotics13121137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Essential oils (EOs), regarded as secondary metabolites from plants, possess effective antibacterial properties. This study investigates the antibacterial efficacy of seven citrus EOs against six spoilage bacteria: Vibrio parahaemolyticus, V. harveyi, Photobacterium damselae, Shewanella putrefaciens, Carnobacterium divergens, and Lactobacillus pentosus. The antibacterial activity of these EOs was evaluated using solid- and vapor-phase applications. All tested EOs demonstrated effective antibacterial activity at a concentration of 294 μL/L against Gram-negative bacteria. Notably, lemon and orange EOs exhibited dose-dependent inhibition in both solid- and vapor-phase applications, with minimum effective concentrations ranging from 29.4 to 58.8 μL/L. Following treatment with lemon and orange EOs for 6 h at 1/4 minimum inhibitory concentration, leakage of intracellular DNA and proteins was observed, indicating damage to the cell membrane/wall. Proteomic analysis revealed distinct mechanisms: lemon EO impaired bacterial antioxidant defenses, while orange EO disrupted cell division, leading to reduced bacterial viability. These findings provide valuable insights into the potential of different EO application forms in controlling spoilage bacteria.
Collapse
Affiliation(s)
- Hsuan-Ju Lin
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan; (H.-J.L.); (W.-J.L.)
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan;
- Center of Excellence for the Oceans, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, No. 155, Sec. 2, Linong Street, Taipei 112, Taiwan
| | - Tze-Chia Lin
- K. F. Lings Co., Ltd., No. 294, Furong Street, Taoyuan 334, Taiwan;
| | - Wen-Jung Lu
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan; (H.-J.L.); (W.-J.L.)
- School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Hong-Ting Victor Lin
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan; (H.-J.L.); (W.-J.L.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan
| |
Collapse
|
7
|
Liang YC, Sun Z, Lu C, Lupien A, Xu Z, Berton S, Xu P, Behr MA, Yang W, Sun J. Discovery of benzo[c]phenanthridine derivatives with potent activity against multidrug-resistant Mycobacterium tuberculosis. Microbiol Spectr 2024; 12:e0124624. [PMID: 39361873 PMCID: PMC11537118 DOI: 10.1128/spectrum.01246-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/17/2024] [Indexed: 10/05/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb), the pathogen responsible for tuberculosis (TB), is the leading cause of bacterial disease-related death worldwide. Current antibiotic regimens for the treatment of TB remain dated and suffer from long treatment times as well as the development of drug resistance. As such, the search for novel chemical modalities that have selective or potent anti-Mtb properties remains an urgent priority, particularly against multidrug-resistant (MDR) Mtb strains. Herein, we design and synthesize 35 novel benzo[c]phenanthridine derivatives (BPDs). The two most potent compounds, BPD-6 and BPD-9, accumulated within the bacterial cell and exhibited strong inhibitory activity (MIC90 ~2 to 10 µM) against multiple Mycobacterium strains while remaining inactive against a range of other Gram-negative and Gram-positive bacteria. BPD-6 and BPD-9 were also effective in reducing Mtb survival within infected macrophages, and BPD-9 reduced the burden of Mycobacterium bovis BCG in the lungs of infected mice. The two BPD compounds displayed comparable efficacy to rifampicin (RIF) against non-replicating Mtb (NR-Mtb). Importantly, BPD-6 and BPD-9 inhibited the growth of multiple MDR Mtb clinical isolates. Generation of BPD-9-resistant mutants identified the involvement of the Mmr efflux pump as an indirect resistance mechanism. The unique specificity of BPDs to Mycobacterium spp. and their efficacy against MDR Mtb isolates suggest a potential novel mechanism of action. The discovery of BPDs provides novel chemical scaffolds for anti-TB drug discovery.IMPORTANCEThe emergence of drug-resistant tuberculosis (TB) is a serious global health threat. There remains an urgent need to discover new antibiotics with unique mechanisms of action that are effective against drug-resistant Mycobacterium tuberculosis (Mtb). This study shows that novel semi-synthetic compounds can be derived from natural compounds to produce potent activity against Mtb. Importantly, the identified compounds have narrow spectrum activity against Mycobacterium species, including clinical multidrug-resistant (MDR) strains, are effective in infected macrophages and against non-replicating Mtb (NR-Mtb), and show anti-mycobacterial activity in mice. These new compounds provide promising chemical scaffolds to develop potent anti-Mtb drugs of the future.
Collapse
Affiliation(s)
- Yi Chu Liang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Zhiqi Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Chen Lu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Andréanne Lupien
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, Montréal, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
- Department of Medicine, McGill University Health Centre, Montréal, Canada
| | - Zhongliang Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Stefania Berton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Peng Xu
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Marcel A. Behr
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, Montréal, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
- Department of Medicine, McGill University Health Centre, Montréal, Canada
| | - Weibo Yang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Jim Sun
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
8
|
Brdová D, Ruml T, Viktorová J. Mechanism of staphylococcal resistance to clinically relevant antibiotics. Drug Resist Updat 2024; 77:101147. [PMID: 39236354 DOI: 10.1016/j.drup.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Staphylococcus aureus, a notorious pathogen with versatile virulence, poses a significant challenge to current antibiotic treatments due to its ability to develop resistance mechanisms against a variety of clinically relevant antibiotics. In this comprehensive review, we carefully dissect the resistance mechanisms employed by S. aureus against various antibiotics commonly used in clinical settings. The article navigates through intricate molecular pathways, elucidating the mechanisms by which S. aureus evades the therapeutic efficacy of antibiotics, such as β-lactams, vancomycin, daptomycin, linezolid, etc. Each antibiotic is scrutinised for its mechanism of action, impact on bacterial physiology, and the corresponding resistance strategies adopted by S. aureus. By synthesising the knowledge surrounding these resistance mechanisms, this review aims to serve as a comprehensive resource that provides a foundation for the development of innovative therapeutic strategies and alternative treatments for S. aureus infections. Understanding the evolving landscape of antibiotic resistance is imperative for devising effective countermeasures in the battle against this formidable pathogen.
Collapse
Affiliation(s)
- Daniela Brdová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| |
Collapse
|
9
|
Morigi R, Esposito D, Calvaresi M, Marforio TD, Gentilomi GA, Bonvicini F, Locatelli A. Isatin Bis-Imidathiazole Hybrids Identified as FtsZ Inhibitors with On-Target Activity Against Staphylococcus aureus. Antibiotics (Basel) 2024; 13:992. [PMID: 39452258 PMCID: PMC11505029 DOI: 10.3390/antibiotics13100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
In the present study, a series of isatin bis-imidathiazole hybrids was designed and synthesized to develop a new class of heterocyclic compounds with improved antimicrobial activity against pathogens responsible for hospital- and community-acquired infections. A remarkable inhibitory activity against Staphylococcus aureus was demonstrated for a subset of compounds (range: 13.8-90.1 µM) in the absence of toxicity towards epithelial cells and human red blood cells. The best performing derivative was further investigated to measure its anti-biofilm potential and its effectiveness against methicillin-resistant Staphylococcus aureus strains. A structure-activity relationship study of the synthesized molecules led to the recognition of some important structural requirements for the observed antibacterial activity. Molecular docking followed by molecular dynamics (MD) simulations identified the binding site of the active compound FtsZ, a key protein in bacterial cell division, and the mechanism of action, i.e., the inhibition of its polymerization. The overall results may pave the way for a further rational development of isatin hybrids as FtsZ inhibitors, with a broader spectrum of activity against human pathogens and higher potency.
Collapse
Affiliation(s)
- Rita Morigi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (R.M.); (D.E.); (A.L.)
| | - Daniele Esposito
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (R.M.); (D.E.); (A.L.)
| | - Matteo Calvaresi
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.C.); (T.D.M.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Tainah Dorina Marforio
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.C.); (T.D.M.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Alessandra Locatelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (R.M.); (D.E.); (A.L.)
| |
Collapse
|
10
|
Shinde Y, Pathan A, Chinnam S, Rathod G, Patil B, Dhangar M, Mathew B, Kim H, Mundada A, Kukreti N, Ahmad I, Patel H. Mycobacterial FtsZ and inhibitors: a promising target for the anti-tubercular drug development. Mol Divers 2024; 28:3457-3478. [PMID: 38010605 DOI: 10.1007/s11030-023-10759-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
The emergence of multidrug-resistant tuberculosis (MDR-TB) strains has rendered many anti-TB drugs ineffective. Consequently, there is an urgent need to identify new drug targets against Mycobacterium tuberculosis (Mtb). Filament Forming Temperature Sensitive Gene Z (FtsZ), a member of the cytoskeletal protein family, plays a vital role in cell division by forming a cytokinetic ring at the cell's center and coordinating the division machinery. When FtsZ is depleted, cells are unable to divide and instead elongate into filamentous structures that eventually undergo lysis. Since the inactivation of FtsZ or alterations in its assembly impede the formation of the Z-ring and septum, FtsZ shows promise as a target for the development of anti-mycobacterial drugs. This review not only discusses the potential role of FtsZ as a promising pharmacological target for anti-tuberculosis therapies but also explores the structural and functional aspects of the mycobacterial protein FtsZ in cell division. Additionally, it reviews various inhibitors of Mtb FtsZ. By understanding the importance of FtsZ in cell division, researchers can explore strategies to disrupt its function, impeding the growth and proliferation of Mtb. Furthermore, the investigation of different inhibitors that target Mtb FtsZ expands the potential for developing effective treatments against tuberculosis.
Collapse
Affiliation(s)
- Yashodeep Shinde
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Asama Pathan
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Sampath Chinnam
- Department of Chemistry, M. S. Ramaiah Institute of Technology (Autonomous Institute, Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Gajanan Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Mohali, Punjab, 160062, India
| | - Bhatu Patil
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Mayur Dhangar
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 690525, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Anand Mundada
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University-Dehradun, Dehradun, Uttarakhand, 248002, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India.
| |
Collapse
|
11
|
Mendes CR, Zortea AVL, de Souza Laurentino G, de Lima GHT, de Freitas PLCC, Dilarri G, Bidoia ED, Montagnolli RN. Anise essential oil immobilized in chitosan microparticles: a novel bactericidal material for food protection. Int Microbiol 2024:10.1007/s10123-024-00594-8. [PMID: 39316255 DOI: 10.1007/s10123-024-00594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 08/20/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Foodborne infections in humans are one of the major concerns of the food industries, especially for minimally processed foods (MPF). Thereby, the packaging industry applies free chlorine in the sanitization process, ensuring the elimination of any fecal coliforms or pathogenic microorganisms. However, free chlorine's propensity to react with organic matter, forming toxic compounds such as trihalomethanes and haloacetic acid. Therefore, the present work aimed to synthesize a novel organic biomaterial as an alternative to free chlorine. Chitosan microparticles were produced, with Pimpinella anisum (anise) essential oil immobilized in the biopolymer matrix (MPsQTO). The characterization of this biomaterial was done through GC-MS/MS, FT-IR, and SEM. Antimicrobial assays proved that the MPsQTO presented antibacterial activity for Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa, and Bacillus subtilis at 300 µL mL-1 of concentration. The fluorescence microscope also showed the MPsQTO targets the cytoplasmatic membrane, which is responsible for cell death in the first minutes of contact. Studies with the mutant B. subtilis (amy::pspac-ftsZ-gfpmut1) and the Saccharomyces cerevisiae D7 also proved that the biomaterial did not affect the genetic material and did not have any mutagenic/carcinogenic effect on the cells. The sanitization assays with pumpkin MPF proved that the MPsQTO is more effective than free chlorine, increasing the shelf-life of the MPF. Consequently, the novel biomaterial proposed in this work is a promising alternative to traditional chemical sanitizers.
Collapse
Affiliation(s)
- Carolina Rosai Mendes
- Department of General and Applied Biology, Sao Paulo State University (UNESP), Avenida 24-A 1515, Rio Claro-SP, Postal Code 13506-900, Brazil
| | - Antonella Valentina Lazzari Zortea
- Department of Fisheries Engineering and Biological Sciences, Santa Catarina State University (UDESC), Rua Coronel Fernandes Martins 270, Laguna-SC, Postal Code 88790-000, Brazil
| | - Gabriel de Souza Laurentino
- Department of Fisheries Engineering and Biological Sciences, Santa Catarina State University (UDESC), Rua Coronel Fernandes Martins 270, Laguna-SC, Postal Code 88790-000, Brazil
| | - Guilherme Henrique Teixeira de Lima
- Department of Fisheries Engineering and Biological Sciences, Santa Catarina State University (UDESC), Rua Coronel Fernandes Martins 270, Laguna-SC, Postal Code 88790-000, Brazil
| | - Pietro Luis Coletti Casemiro de Freitas
- Department of Fisheries Engineering and Biological Sciences, Santa Catarina State University (UDESC), Rua Coronel Fernandes Martins 270, Laguna-SC, Postal Code 88790-000, Brazil
| | - Guilherme Dilarri
- Department of Fisheries Engineering and Biological Sciences, Santa Catarina State University (UDESC), Rua Coronel Fernandes Martins 270, Laguna-SC, Postal Code 88790-000, Brazil.
- Multicentric Graduate Program in Biochemistry and Molecular Biology (PMBqBM), Santa Catarina State University (UDESC), Avenida Luiz de Camões 2090, Lages-SC, Postal Code 88520-000, Brazil.
| | - Ederio Dino Bidoia
- Department of General and Applied Biology, Sao Paulo State University (UNESP), Avenida 24-A 1515, Rio Claro-SP, Postal Code 13506-900, Brazil
| | - Renato Nallin Montagnolli
- Department of Natural Sciences, Mathematics and Education, Federal University of Sao Carlos (UFSCar), SP-330 Km 174, Araras-SP, Brazil
| |
Collapse
|
12
|
Poddar SM, Chakraborty J, Gayathri P, Srinivasan R. Disruption of salt bridge interactions in the inter-domain cleft of the tubulin-like protein FtsZ of Escherichia coli makes cells sensitive to the cell division inhibitor PC190723. Cytoskeleton (Hoboken) 2024. [PMID: 39230425 DOI: 10.1002/cm.21924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
FtsZ forms a ring-like assembly at the site of division in bacteria. It is the first protein involved in the formation of the divisome complex to split the cell into two halves, indicating its importance in bacterial cell division. FtsZ is an attractive target for developing new anti-microbial drugs to overcome the challenges of antibiotic resistance. The most potent inhibitor against FtsZ is PC190723, which is effective against all strains and species of Staphylococcus, including the methicillin- and multi-drug-resistant Staphylococcus aureus and strains of Bacillus. However, FtsZs from bacteria such as E. coli, Streptococcus, and Enterococcus were shown to be resistant to this inhibitor. In this study, we provide further evidence that the three pairwise bridging interactions, between residues S227 and G191, R307 and E198 and D299 and R202, between S7, S9, S10 β-strands and the H7 helix occlude the inhibitor from binding to E. coli FtsZ. We generated single, double and triple mutations to disrupt those bridges and tested the effectiveness of PC190723 directly on Z-ring assembly in vivo. Our results show that the disruption of S227-G191 and R307-E198 bridges render EcFtsZ highly sensitive to PC190723 for Z-ring assembly. Ectopic expression of the double mutants, FtsZ S227I R307V results in hypersensitivity of the susceptible E. coli imp4213 strain to PC190723. Our studies could further predict the effectiveness of PC190723 or its derivatives towards FtsZs of other bacterial genera.
Collapse
Affiliation(s)
- Sakshi Mahesh Poddar
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes (HBNI), Training School Complex, Mumbai, India
| | | | - Pananghat Gayathri
- Biology, Indian Institute of Science Education and Research, Pune, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes (HBNI), Training School Complex, Mumbai, India
| |
Collapse
|
13
|
Espino IN, Drolet J, Jones TN, Uwechue A, Koehler B, Beaird R, Maione S, Darrah C, Hijazi R, James C, Dupre A, Koscinski E, Creft L, Giampaolo M, Bernier A, Theisen KE. Computational docking of FtsZ: Survey of promising antibiotic compounds. Biochem Biophys Rep 2024; 39:101796. [PMID: 39687410 PMCID: PMC11647940 DOI: 10.1016/j.bbrep.2024.101796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 12/18/2024] Open
Abstract
The bacterial cell-division protein FtsZ has been a promising antibiotic target for over a decade now, but there is still a need for more work in this area. So far there are no FtsZ targeting drugs commercially available. We have analyzed a wide variety of prospective drugs and their interactions with multiple FtsZ species using both free and directed docking simulations. Our goal is to present a standardized computational screening method for potential drug compounds targeting FtsZ. Our work is an example of a way to compare many proposed drugs and FtsZ species combinations relatively quickly. A common method for comparison can yield new results that individual studies and varying methods might not show, as we demonstrate here. To our knowledge this is one of the first, if not the first, computational docking study on the new E. coli FtsZ structures obtained in 2020.
Collapse
Affiliation(s)
- Ileini N. Espino
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Julia Drolet
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Ty-niquia Jones
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Antonette Uwechue
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Brittany Koehler
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Raquel Beaird
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Sanni Maione
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Christine Darrah
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Rana Hijazi
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Christopher James
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Annabelle Dupre
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Ewa Koscinski
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Leilani Creft
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Michael Giampaolo
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Alexandre Bernier
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Kelly E. Theisen
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| |
Collapse
|
14
|
Li T, Zhou Y, Fu X, Yang L, Liu H, Zhou X, Liu L, Wu Z, Yang S. Identification of novel 4-substituted 7H-pyrrolo[2,3-d]pyrimidine derivatives as new FtsZ inhibitors: Bioactivity evaluation and computational simulation. Bioorg Chem 2024; 150:107534. [PMID: 38896935 DOI: 10.1016/j.bioorg.2024.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Bacterial infections and the consequent outburst of bactericide-resistance issues are fatal menace to both global health and agricultural produce. Hence, it is crucial to explore candidate bactericides with new mechanisms of action. The filamenting temperature-sensitive mutant Z (FtsZ) protein has been recognized as a new promising and effective target for new bactericide discovery. Hence, using a scaffold-hopping strategy, we designed new 7H-pyrrolo[2,3-d]pyrimidine derivatives, evaluated their antibacterial activities, and investigated their structure-activity relationships. Among them, compound B6 exhibited the optimal in vitro bioactivity (EC50 = 4.65 µg/mL) against Xanthomonas oryzae pv. oryzae (Xoo), which was superior to the references (bismerthiazol [BT], EC50 = 48.67 µg/mL; thiodiazole copper [TC], EC50 = 98.57 µg/mL]. Furthermore, the potency of compound B6 in targeting FtsZ was validated by GTPase activity assay, FtsZ self-assembly observation, fluorescence titration, Fourier-transform infrared spectroscopy (FT-IR) assay, molecular dynamics simulations, and morphological observation. The GTPase activity assay showed that the final IC50 value of compound B6 against XooFtsZ was 235.0 μM. Interestingly, the GTPase activity results indicated that the B6-XooFtsZ complex has an excellent binding constant (KA = 103.24 M-1). Overall, the antibacterial behavior suggests that B6 can interact with XooFtsZ and inhibit its GTPase activity, leading to bacterial cell elongation and even death. In addition, compound B6 showed acceptable anti-Xoo activity in vivo and low toxicity, and also demonstrated a favorable pharmacokinetic profile predicted by ADMET analysis. Our findings provide new chemotypes for the development of FtsZ inhibitors as well as insights into their underlying mechanisms of action.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ya Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xichun Fu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Linli Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongwu Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Liwei Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
15
|
Zhu J, Liang Z, Yao H, Wu Z. Identifying Cell-Penetrating Peptides for Effectively Delivering Antimicrobial Molecules into Streptococcus suis. Antibiotics (Basel) 2024; 13:725. [PMID: 39200025 PMCID: PMC11350675 DOI: 10.3390/antibiotics13080725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Cell-penetrating peptides (CPPs) are promising carriers to effectively transport antisense oligonucleotides (ASOs), including peptide nucleic acids (PNAs), into bacterial cells to combat multidrug-resistant bacterial infections, demonstrating significant therapeutic potential. Streptococcus suis, a Gram-positive bacterium, is a major bacterial pathogen in pigs and an emerging zoonotic pathogen. In this study, through the combination of super-resolution structured illumination microscopy (SR-SIM), flow cytometry analysis, and toxicity analysis assays, we investigated the suitability of four CPPs for delivering PNAs into S. suis cells: HIV-1 TAT efficiently penetrated S. suis cells with low toxicity against S. suis; (RXR)4XB had high penetration efficiency with inherent toxicity against S. suis; (KFF)3K showed lower penetration efficiency than HIV-1 TAT and (RXR)4XB; K8 failed to penetrate S. suis cells. HIV-1 TAT-conjugated PNA specific for the essential gyrase A subunit gene (TAT-anti-gyrA PNA) effectively inhibited the growth of S. suis. TAT-anti-gyrA PNA exhibited a significant bactericidal effect on serotypes 2, 4, 5, 7, and 9 strains of S. suis, which are known to cause human infections. Our study demonstrates the potential of CPP-ASO conjugates as new antimicrobial compounds for combating S. suis infections. Furthermore, our findings demonstrate that applying SR-SIM and flow cytometry analysis provides a convenient, intuitive, and cost-effective approach to identifying suitable CPPs for delivering cargo molecules into bacterial cells.
Collapse
Affiliation(s)
- Jinlu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; (J.Z.); (Z.L.); (H.Y.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Zijing Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; (J.Z.); (Z.L.); (H.Y.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; (J.Z.); (Z.L.); (H.Y.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; (J.Z.); (Z.L.); (H.Y.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
- Guangdong Provincial Key Laboratory of Research on the Technology of Pig-Breeding and Pig-Disease Prevention, Guangzhou 511400, China
| |
Collapse
|
16
|
Meng J, Li M, Zheng Z, Sun Z, Yang S, Ouyang G, Wang Z, Zhou X. Application of natural-products repurposing strategy to discover novel FtsZ inhibitors: Bactericidal evaluation and the structure-activity relationship of sanguinarine and its analogs. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106016. [PMID: 39084807 DOI: 10.1016/j.pestbp.2024.106016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
The novel bactericidal target-filamentous temperature-sensitive protein Z (FtsZ)-has drawn the attention of pharmacologists to address the emerging issues with drug/pesticide resistance caused by pathogenic bacteria. To enrich the structural diversity of FtsZ inhibitors, the antibacterial activity and structure-activity relationship (SAR) of natural sanguinarine and its analogs were investigated by using natural-products repurposing strategy. Notably, sanguinarine and chelerythrine exerted potent anti-Xanthomonas oryzae pv. oryzae (Xoo) activity, with EC50 values of 0.96 and 0.93 mg L-1, respectively, among these molecules. Furthermore, these two compounds could inhibit the GTPase activity of XooFtsZ, with IC50 values of 241.49 μM and 283.14 μM, respectively. An array of bioassays including transmission electron microscopy (TEM), fluorescence titration, and Fourier transform infrared spectroscopy (FT-IR) co-verified that sanguinarine and chelerythrine were potential XooFtsZ inhibitors that could interfere with the assembly of FtsZ filaments by inhibiting the GTPase hydrolytic ability of XooFtsZ protein. Additionally, the pot experiment suggested that chelerythrine and sanguinarine demonstrated excellent curative activity with values of 59.52% and 54.76%, respectively. Excitedly, these two natural compounds also showed outstanding druggability, validated by acceptable drug-like properties and low toxicity on rice. Overall, the results suggested that chelerythrine was a new and potential XooFtsZ inhibitor to develop new bactericide and provided important guiding values for rational drug design of FtsZ inhibitors. Notably, our findings provide a novel strategy to discover novel, promising and green bacterial compounds for the management of plant bacterial diseases.
Collapse
Affiliation(s)
- Jiao Meng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Mei Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhicheng Zheng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhaoju Sun
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Guiping Ouyang
- School of Pharmaceutical Sciences, Guizhou University, Huaxi District, Guiyang, 550025, China.
| | - Zhenchao Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; School of Pharmaceutical Sciences, Guizhou University, Huaxi District, Guiyang, 550025, China.
| | - Xiang Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
17
|
Xie Z, Ruan W, Guo J, Li Y, Zhou S, Zhao J, Wan L, Xu S, Tang Q, Zheng P, Wang L, Zhu W. T5S1607 identified as a antibacterial FtsZ inhibitor:Virtual screening combined with bioactivity evaluation for the drug discovery. Comput Biol Chem 2024; 108:108006. [PMID: 38142532 DOI: 10.1016/j.compbiolchem.2023.108006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
Due to antibiotic overuse, many bacteria have developed resistance, creating an urgent need for novel antimicrobial agents. It has been established that the filamentous temperature-sensitive mutant Z (FtsZ) of the bacterial cell division protein is an effective and promising antibacterial target. In this study, the optimal proteins were assessed by early recognition ability and the processed compound libraries were virtually screened using Vina. This effort resulted in the identification of 14 potentially active antimicrobial compounds. Among them, the compound T5S1607 demonstrated remarkable antibacterial efficacy against Bacillus subtilis ATCC9732 (MIC = 1 μg/mL) and Staphylococcus aureus ATC5C6538 (MIC = 4 μg/mL). Furthermore, in vitro experiments demonstrated that the selected compound T5S1607 rapidly killed bacteria and induced FtsZ protein aggregation, preventing bacterial division and leading to bacterial death. Additionally, cell toxicity and hemolysis experiments indicate that compound T5S1607 exhibits minimal toxicity to LO2 cells and shows no significant hemolytic effects on mammalian cells in vitro at the MIC concentration range. All the results indicate that compound T5S1607 is a promising antibacterial agent and a potential FtsZ inhibitor. In conclusion, this work successfully discovered FtsZ inhibitors with good activity through the virtual screening drug discovery process.
Collapse
Affiliation(s)
- Zhouling Xie
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Wei Ruan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Jiaojiao Guo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Yan Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Siqi Zhou
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Jing Zhao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Li Wan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Qidong Tang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Linxiao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China.
| |
Collapse
|
18
|
Guo J, Xie Z, Ruan W, Tang Q, Qiao D, Zhu W. Thiazole-based analogues as potential antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA) and their SAR elucidation. Eur J Med Chem 2023; 259:115689. [PMID: 37542993 DOI: 10.1016/j.ejmech.2023.115689] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
In recent years, the overuse of antibiotics has resulted in the emergence of antibiotic resistance, which is a serious global health problem. Methicillin-resistant Staphylococcus aureus (MRSA) is a common and virulent bacterium in clinical practice. Numerous researchers have focused on developing new candidate drugs that are effective, less toxic, and can overcome MRSA resistance. Thiazole derivatives have been found to exhibit antibacterial activity against drug-sensitive and drug-resistant pathogens. By hybridizing thiazole with other antibacterial pharmacophores, it is possible to obtain more effective antibacterial candidate drugs. Thiazole derivatives have shown potential in developing new drugs that can overcome drug resistance, reduce toxicity, and improve pharmacokinetic characteristics. This article reviews the recent progress of thiazole compounds as potential antibacterial compounds and examines the structure-activity relationship (SAR) in various directions. It covers articles published from 2018 to 2023, providing a comprehensive platform to plan and develop new thiazole-based small MRSA growth inhibitors with minimal side effects.
Collapse
Affiliation(s)
- Jiaojiao Guo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Zhouling Xie
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Wei Ruan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Qidong Tang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
19
|
Nakazawa H, Katsuki T, Matsui T, Tsugita A, Yokoyama T, Ito T, Kawada S, Tanaka Y, Umetsu M. Synthesis of epitope-targeting nanobody based on native protein-protein interactions for FtsZ filamentation suppressor. Biotechnol J 2023; 18:e2300039. [PMID: 37458140 DOI: 10.1002/biot.202300039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Phage display and biopanning are powerful tools for generating binding molecules for a specific target. However, the selection process based only on binding affinity provides no assurance for the antibody's affinity to the target epitope. In this study, we propose a molecular-evolution approach guided by native protein-protein interactions to generate epitope-targeting antibodies. The binding-site sequence in a native protein was grafted into a complementarity-determining region (CDR) in the nanobody, and a nonrelated CDR loop (in the grafted nanobody) was randomized to create a phage display library. In this construction of nanobodies by integrating graft and evolution technology (CAnIGET method), suitable grafting of the functional sequence added functionality to the nanobody, and the molecular-evolution approach enhanced the binding function to inhibit the native protein-protein interactions. To apply for biological tool with growth screening, model nanobodies with an affinity for filamenting temperature-sensitive mutant Z (FtsZ) from Staphylococcus aureus were constructed and completely inhibited the polymerization of FtsZ as a function. Consequently, the expression of these nanobodies drastically decreased the cell division rate. We demonstrate the potential of the CAnIGET method with the use of native protein-protein interactions for steady epitope-specific evolutionary engineering.
Collapse
Affiliation(s)
- Hikaru Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Taiji Katsuki
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Takashi Matsui
- Department of Physics, School of Science, Kitasato University, Sagamihara, Japan
| | - Atsushi Tsugita
- Department of Applied Biological Molecular Science, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takeshi Yokoyama
- Department of Applied Biological Molecular Science, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tomoyuki Ito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Sakiya Kawada
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Yoshikazu Tanaka
- Department of Applied Biological Molecular Science, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
20
|
Alotaibi BS. Targeting Filamenting temperature-sensitive mutant Z (FtsZ) with bioactive phytoconstituents: An emerging strategy for antibacterial therapy. PLoS One 2023; 18:e0290852. [PMID: 37647309 PMCID: PMC10468062 DOI: 10.1371/journal.pone.0290852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
The rise and widespread occurrence of bacterial resistance has created an evident need for novel antibacterial drugs. Filamenting temperature-sensitive mutant Z (FtsZ) is a crucial bacterial protein that forms a ring-like structure known as the Z-ring, playing a significant role in cell division. Targeting FtsZ is an effective approach for developing antibiotics that disrupt bacterial cell division and halt growth. This study aimed to use a virtual screening approach to search for bioactive phytoconstituents with the potential to inhibit FtsZ. The screening process proceeded with the filtering compounds from the IMPPAT library of phytochemicals based on their physicochemical properties using the Lipinski rule of five. This was followed by molecular docking, Pan-assay interference compounds (PAINS) filter, absorption, distribution, metabolism, excretion, and toxicity (ADMET), prediction of activity spectra for biologically active substances (PASS), and molecular dynamics (MD) simulations. These filters ensured that any adverse effects that could impede the identification of potential inhibitors of FtsZ were eliminated. Following this, two phytocompounds, Withaperuvin C and Trifolirhizin, were selected after the screening, demonstrating noteworthy binding potential with FtsZ's GTP binding pocket, acting as potent GTP-competitive inhibitors of FtsZ. The study suggested that these compounds could be further investigated for developing a novel class of antibiotics after required studies.
Collapse
Affiliation(s)
- Bader Saud Alotaibi
- Department of Laboratories Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah, Saudi Arabia
| |
Collapse
|
21
|
Cui L, Ma Z, Li W, Ma H, Guo S, Wang D, Niu Y. Inhibitory activity of flavonoids fraction from Astragalus membranaceus Fisch. ex Bunge stems and leaves on Bacillus cereus and its separation and purification. Front Pharmacol 2023; 14:1183393. [PMID: 37538180 PMCID: PMC10395332 DOI: 10.3389/fphar.2023.1183393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/13/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction: Astragalus membranaceus Fisch. ex Bunge is a traditional botanical drug with antibacterial, antioxidant, antiviral, and other biological activities. In the process of industrialization of A. membranaceus, most of the aboveground stems and leaves are discarded without resource utilization except for a small amount of low-value applications such as composting. This study explored the antibacterial activity of A. membranaceus stem and leaf extracts to evaluate its potential as a feed antibiotic substitute. Materials and methods: The antibacterial activity of the flavonoid, saponin, and polysaccharide fractions in A. membranaceus stems and leaves was evaluated by the disk diffusion method. The inhibitory activity of the flavonoid fraction from A. membranaceus stems and leaves on B. cereus was explored from the aspects of the growth curve, cell wall, cell membrane, biofilm, bacterial protein, and virulence factors. On this basis, the flavonoid fraction in A. membranaceus stems and leaves were isolated and purified by column chromatography to determine the main antibacterial components. Results: The flavonoid fraction in A. membranaceus stems and leaves had significant inhibitory activity against B. cereus, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 1.5625 and 6.25 mg/mL, respectively. A. membranaceus stem and leaf flavonoid fraction can induce death of B. cereus in many ways, such as inhibiting growth, destroying cell wall and cell membrane integrity, inhibiting biofilm formation, inhibiting bacterial protein synthesis, and downregulating virulence factor expression. In addition, it was clear that the main flavonoid with antibacterial activity in A. membranaceus stems and leaves was isoliquiritigenin. Molecular docking showed that isoliquiritigenin could form a hydrogen bonding force with FtsZ. Conclusion: A. membranaceus stem and leaf flavonoid fractions had significant inhibitory activity against B. cereus, and the main chemical composition was isoliquiritigenin.
Collapse
Affiliation(s)
- Liyan Cui
- College of Grassland Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Zhennan Ma
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Wenhui Li
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Haihui Ma
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Shang Guo
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Defu Wang
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yanbing Niu
- College of Grassland Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
22
|
Douglas EJA, Wulandari SW, Lovell SD, Laabei M. Novel antimicrobial strategies to treat multi-drug resistant Staphylococcus aureus infections. Microb Biotechnol 2023; 16:1456-1474. [PMID: 37178319 PMCID: PMC10281381 DOI: 10.1111/1751-7915.14268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Antimicrobial resistance is a major obstacle for the treatment of infectious diseases and currently represents one of the most significant threats to global health. Staphylococcus aureus remains a formidable human pathogen with high mortality rates associated with severe systemic infections. S. aureus has become notorious as a multidrug resistant bacterium, which when combined with its extensive arsenal of virulence factors that exacerbate disease, culminates in an incredibly challenging pathogen to treat clinically. Compounding this major health issue is the lack of antibiotic discovery and development, with only two new classes of antibiotics approved for clinical use in the last 20 years. Combined efforts from the scientific community have reacted to the threat of dwindling treatment options to combat S. aureus disease in several innovative and exciting developments. This review describes current and future antimicrobial strategies aimed at treating staphylococcal colonization and/or disease, examining therapies that show significant promise at the preclinical development stage to approaches that are currently being investigated in clinical trials.
Collapse
|
23
|
Qian M, Ismail BB, He Q, Zhang X, Yang Z, Ding T, Ye X, Liu D, Guo M. Inhibitory mechanisms of promising antimicrobials from plant byproducts: A review. Compr Rev Food Sci Food Saf 2023; 22:2523-2590. [PMID: 37070214 DOI: 10.1111/1541-4337.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 04/19/2023]
Abstract
Plant byproducts and waste present enormous environmental challenges and an opportunity for valorization and industrial application. Due to consumer demands for natural compounds, the evident paucity of novel antimicrobial agents against foodborne pathogens, and the urgent need to improve the arsenal against infectious diseases and antimicrobial resistance (AMR), plant byproduct compounds have attracted significant research interest. Emerging research highlighted their promising antimicrobial activity, yet the inhibitory mechanisms remain largely unexplored. Therefore, this review summarizes the overall research on the antimicrobial activity and inhibitory mechanisms of plant byproduct compounds. A total of 315 natural antimicrobials from plant byproducts, totaling 1338 minimum inhibitory concentrations (MIC) (in μg/mL) against a broad spectrum of bacteria, were identified, and a particular emphasis was given to compounds with high or good antimicrobial activity (typically <100 μg/mL MIC). Moreover, the antimicrobial mechanisms, particularly against bacterial pathogens, were discussed in-depth, summarizing the latest research on using natural compounds to combat pathogenic microorganisms and AMR. Furthermore, safety concerns, relevant legislation, consumer perspective, and current gaps in the valorization of plant byproducts-derived compounds were comprehensively discussed. This comprehensive review covering up-to-date information on antimicrobial activity and mechanisms represents a powerful tool for screening and selecting the most promising plant byproduct compounds and sources for developing novel antimicrobial agents.
Collapse
Affiliation(s)
- Mengyan Qian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Department of Food Science and Technology, Bayero University Kano, Kano, Nigeria
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
24
|
Kifayat S, Yele V, Ashames A, Sigalapalli DK, Bhandare RR, Shaik AB, Nasipireddy V, Sanapalli BKR. Filamentous temperature sensitive mutant Z: a putative target to combat antibacterial resistance. RSC Adv 2023; 13:11368-11384. [PMID: 37057268 PMCID: PMC10089256 DOI: 10.1039/d3ra00013c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
In the pre-antibiotic era, common bacterial infections accounted for high mortality and morbidity. Moreover, the discovery of penicillin in 1928 marked the beginning of an antibiotic revolution, and this antibiotic era witnessed the discovery of many novel antibiotics, a golden era. However, the misuse or overuse of these antibiotics, natural resistance that existed even before the antibiotics were discovered, genetic variations in bacteria, natural selection, and acquisition of resistance from one species to another consistently increased the resistance to the existing antibacterial targets. Antibacterial resistance (ABR) is now becoming an ever-increasing concern jeopardizing global health. Henceforth, there is an urgent unmet need to discover novel compounds to combat ABR, which act through untapped pathways/mechanisms. Filamentous Temperature Sensitive mutant Z (FtsZ) is one such unique target, a tubulin homolog involved in developing a cytoskeletal framework for the cytokinetic ring. Additionally, its pivotal role in bacterial cell division and the lack of homologous structural protein in mammals makes it a potential antibacterial target for developing novel molecules. Approximately 2176 X-crystal structures of FtsZ were available, which initiated the research efforts to develop novel antibacterial agents. The literature has reported several natural, semisynthetic, peptides, and synthetic molecules as FtsZ inhibitors. This review provides valuable insights into the basic crystal structure of FtsZ, its inhibitors, and their inhibitory activities. This review also describes the available in vitro detection and quantification methods of FtsZ-drug complexes and the various approaches for determining drugs targeting FtsZ polymerization.
Collapse
Affiliation(s)
- Sumaiya Kifayat
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan Jaipur 303121 India +91-9291661992
| | - Vidyasrilekha Yele
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University Rajasthan Jaipur 303121 India
| | - Akram Ashames
- College of Pharmacy & Health Sciences, Ajman University PO Box 340 Ajman United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University PO Box 340 Ajman United Arab Emirates +97167056240
| | - Dilep Kumar Sigalapalli
- Department of Pharmaceutical Chemistry, Vignan Pharmacy College, Jawaharlal Nehru Technological University Vadlamudi 522213 Andhra Pradesh India
| | - Richie R Bhandare
- College of Pharmacy & Health Sciences, Ajman University PO Box 340 Ajman United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University PO Box 340 Ajman United Arab Emirates +97167056240
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada Chebrolu Guntur 522212 Andhra Pradesh India
| | | | - Bharat Kumar Reddy Sanapalli
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan Jaipur 303121 India +91-9291661992
| |
Collapse
|
25
|
Kocabas BB, Attar A, Yuka SA, Yapaoz MA. Biogenic synthesis, molecular docking, biomedical and environmental applications of multifunctional CuO nanoparticles mediated Phragmites australis. Bioorg Chem 2023; 133:106414. [PMID: 36774691 DOI: 10.1016/j.bioorg.2023.106414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
The demand for metal nanoparticles is increasing with the widening application areas while causing environmental impact including pollution, toxic byproduct generation and depletion of natural resources. Incorporating natural materials in nanoparticle synthesis can contribute toward environmental sustainability. This paper is concerned with the biogenic synthesis of copper oxide nanoparticles (CuONPs) mediated by the plant species Phragmites australis. UV-vis, FT-IR, TEM and SEM studies were used to characterize the obtained CuONPs. The synthesized nanoparticles' antibacterial efficacy against Escherichia coli and Staphylococcus aureus was assessed. The CuONPs' reducing power, total phenolic component content, and flavonoid content were all calculated. Additionally, the dye removal abilities of copper oxide nanoparticles using Brilliant Blue R-250 were studied. The CuONP synthesis was assessed morphological by change of color and in the UV-vis analysis by the SPR band around 320 and 360 nm. FT-IR was used to monitor the functional groups present in the synthesized CuONPs. The obtained CuONPs were spherical and between 70 and 142 nm in size, according to the SEM data and TEM analyses were in accordance with SEM results. Using disk diffusion, the CuONPs demonstrated substantial antibacterial efficacy against S. aureus and E. coli, with inhibition zones of 18.5 ± 0.8 and 12.7 ± 0.6 mm, respectively. The MBC and MIC values were 62.5 μg/mL against S. aureus and 125 μg/mL against E. coli. The antioxidant abilities of P. australis and CuONPs were also confirmed. The CuONP solution's total phenolic substance content was 9.44 μg of pyrocathecol equivalent per milligram of nanoparticle, and its total flavonoid content was 16.24 μg of catechin equivalent per milligram of nanoparticle. Additionally, the synthesized CuONPs were found to be well effective on industrial dye removal by demonstrating high decolorization of 98 %. Also, the antibacterial activity of CuONPs was investigated through the interactions with S. aureus FtsZ, dihydropteroate synthase and thymidylate kinase. In silico molecular docking analysis was applied in the confirmation of the binding sites and interactions of active sites. CuONP showed -9.067, -8,048, and -7.349 kcal/mol of binding energies in molecular docking analysis of FtsZ, dihydropteroate synthase and thymidylate kinase proteins respectively. The results of this study suggested the antimicrobial, antioxidant and decolorative effect of synthesized CuONPs that can be apply in multiple areas of R&D and industry.
Collapse
Affiliation(s)
- Buket Bulut Kocabas
- Yildiz Technical University, Faculty of Science and Letters, Department of Chemistry, Davutpasa Campus, 34220 Istanbul, Turkey
| | - Azade Attar
- Yildiz Technical University, Faculty of Chemical & Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34220 Istanbul, Turkey.
| | - Selcen Ari Yuka
- Yildiz Technical University, Faculty of Chemical & Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34220 Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey
| | - Melda Altikatoglu Yapaoz
- Yildiz Technical University, Faculty of Science and Letters, Department of Chemistry, Davutpasa Campus, 34220 Istanbul, Turkey
| |
Collapse
|
26
|
Elsbroek L, Amiteye D, Schreiber S, Herrmann F. Molecular Imaging of Isolated Escherichia coli DH5α Peptidoglycan Sacculi Identifies the Mechanism of Action of Cell Wall-Inhibiting Antibiotics. ACS Chem Biol 2023; 18:848-860. [PMID: 36893440 DOI: 10.1021/acschembio.2c00945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Antibiotic resistance of pathogenic bacteria needs to be urgently addressed by the development of new antibacterial entities. Although the prokaryotic cell wall comprises a valuable target for this purpose, development of novel cell wall-active antibiotics is mostly missing today. This is mainly caused by hindrances in the assessment of isolated enzymes of the co-dependent murein synthesis machineries, e.g., the elongasome and divisome. We therefore present imaging methodologies to evaluate inhibitors of bacterial cell wall synthesis by high-resolution atomic force microscopy on isolated Escherichia coli murein sacculi. With the ability to elucidate the peptidoglycan ultrastructure of E. coli cells, unprecedented molecular insights into the mechanisms of antibiotics were established. The nanoscopic impairments introduced by ampicillin, amoxicillin, and fosfomycin were not only identified by AFM but readily correlated with their known mechanism of action. These valuable in vitro capabilities will facilitate the identification and evaluation of new antibiotic leads in the future.
Collapse
Affiliation(s)
- Leonardo Elsbroek
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, D-48149 Münster, Germany
| | - Daniel Amiteye
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, D-48149 Münster, Germany
| | - Sebastian Schreiber
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, D-48149 Münster, Germany
| | - Fabian Herrmann
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, D-48149 Münster, Germany
| |
Collapse
|
27
|
Sharma AK, Poddar SM, Chakraborty J, Nayak BS, Kalathil S, Mitra N, Gayathri P, Srinivasan R. A mechanism of salt bridge-mediated resistance to FtsZ inhibitor PC190723 revealed by a cell-based screen. Mol Biol Cell 2023; 34:ar16. [PMID: 36652338 PMCID: PMC10011733 DOI: 10.1091/mbc.e22-12-0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Bacterial cell division proteins, especially the tubulin homologue FtsZ, have emerged as strong targets for developing new antibiotics. Here, we have utilized the fission yeast heterologous expression system to develop a cell-based assay to screen for small molecules that directly and specifically target the bacterial cell division protein FtsZ. The strategy also allows for simultaneous assessment of the toxicity of the drugs to eukaryotic yeast cells. As a proof-of-concept of the utility of this assay, we demonstrate the effect of the inhibitors sanguinarine, berberine, and PC190723 on FtsZ. Though sanguinarine and berberine affect FtsZ polymerization, they exert a toxic effect on the cells. Further, using this assay system, we show that PC190723 affects Helicobacter pylori FtsZ function and gain new insights into the molecular determinants of resistance to PC190723. On the basis of sequence and structural analysis and site-specific mutations, we demonstrate that the presence of salt bridge interactions between the central H7 helix and β-strands S9 and S10 mediates resistance to PC190723 in FtsZ. The single-step in vivo cell-based assay using fission yeast enabled us to dissect the contribution of sequence-specific features of FtsZ and cell permeability effects associated with bacterial cell envelopes. Thus, our assay serves as a potent tool to rapidly identify novel compounds targeting polymeric bacterial cytoskeletal proteins like FtsZ to understand how they alter polymerization dynamics and address resistance determinants in targets.
Collapse
Affiliation(s)
- Ajay Kumar Sharma
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Sakshi Mahesh Poddar
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Joyeeta Chakraborty
- Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Bhagyashri Soumya Nayak
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Srilakshmi Kalathil
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Nivedita Mitra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Pananghat Gayathri
- Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
28
|
Antibacterial Activity of an FtsZ Inhibitor Celastrol and Its Synergistic Effect with Vancomycin against Enterococci In Vitro and In Vivo. Microbiol Spectr 2023; 11:e0369922. [PMID: 36622182 PMCID: PMC9927571 DOI: 10.1128/spectrum.03699-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Enterococci can cause various infectious diseases, including urinary tract infection, wound infection, and life-threatening endocarditis and meningitis. The emergence and transmission of vancomycin-resistant enterococci (VRE) have presented a challenge to clinical treatment. There is an urgent need to develop new strategies to fight against this pathogen. This study investigated the antibacterial and anti-biofilm activity of celastrol (CEL), a natural product originating from Tripterygium wilfordii Hook F, against enterococci, and its adjuvant capacity of restoring the susceptibility of VRE to vancomycin in vitro and in vivo. CEL inhibited all enterococcus strains tested, with MICs ranging from 0.5 to 4 μg/mL. More than 50% of biofilm was eliminated by CEL at 16 μg/mL after 24 h of exposure. The combination of CEL and vancomycin showed a synergistic effect against all 23 strains tested in checkerboard assays. The combination of sub-MIC levels of CEL and vancomycin showed a synergistic effect in a time-kill assay and exhibited significant protective efficacy in Galleria mellonella larval infection model compared with either drug used alone. The underlying mechanisms of CEL were explored by conducting biomolecular binding interactions and an enzyme inhibition assay of CEL on bacterial cell-division protein FtsZ. CEL presented strong binding and suppression ability to FtsZ, with Kd and IC50 values of 2.454 μM and 1.04 ± 0.17 μg/mL, respectively. CEL exhibits a significant antibacterial and synergic activity against VRE in vitro and in vivo and has the potential to be a new antibacterial agent or adjuvant to vancomycin as a therapeutic option in combating VRE. IMPORTANCE The emergence and transmission of VRE pose a significant medical and public health challenge. CEL, well-known for a wide range of biological activities, has not previously been investigated for its synergistic effect with vancomycin against VRE. In the present study, CEL exhibited antibacterial activity against enterococci, including VRE strains, and restored the activity of vancomycin against VRE in vitro and in vivo. Hence, CEL has the potential to be a new antibacterial adjuvant to vancomycin and could provide a promising therapeutic option in combating VRE.
Collapse
|
29
|
Identification of anti-Mycobacterium tuberculosis agents targeting the interaction of bacterial division proteins FtsZ and SepF. Acta Pharm Sin B 2023; 13:2056-2070. [PMID: 37250168 PMCID: PMC10213792 DOI: 10.1016/j.apsb.2023.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 01/08/2023] [Indexed: 02/05/2023] Open
Abstract
Tuberculosis (TB) is one of the deadly diseases caused by Mycobacterium tuberculosis (Mtb), which presents a significant public health challenge. Treatment of TB relies on the combination of several anti-TB drugs to create shorter and safer regimens. Therefore, new anti-TB agents working by different mechanisms are urgently needed. FtsZ, a tubulin-like protein with GTPase activity, forms a dynamic Z-ring in cell division. Most of FtsZ inhibitors are designed to inhibit GTPase activity. In Mtb, the function of Z-ring is modulated by SepF, a FtsZ binding protein. The FtsZ/SepF interaction is essential for FtsZ bundling and localization at the site of division. Here, we established a yeast two-hybrid based screening system to identify inhibitors of FtsZ/SepF interaction in M. tuberculosis. Using this system, we found compound T0349 showing strong anti-Mtb activity but with low toxicity to other bacteria strains and mice. Moreover, we have demonstrated that T0349 binds specifically to SepF to block FtsZ/SepF interaction by GST pull-down, fluorescence polarization (FP), surface plasmon resonance (SPR) and CRISPRi knockdown assays. Furthermore, T0349 can inhibit bacterial cell division by inducing filamentation and abnormal septum. Our data demonstrated that FtsZ/SepF interaction is a promising anti-TB drug target for identifying agents with novel mechanisms.
Collapse
|
30
|
Obtainment of Threo and Erythro Isomers of the 6-Fluoro-3-(2,3,6,7,8,9-hexahydronaphtho[2,3-b][1,4]dioxin-2-yl)-2,3-dihydrobenzo[b][1,4]dioxine-5-carboxamide. MOLBANK 2023. [DOI: 10.3390/m1559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
2,6-difluorobenzamides have been deeply investigated as antibacterial drugs in the last few decades. Several 3-substituted-2,6-difluorobenzamides have proved their ability to interfere with the bacterial cell division cycle by inhibiting the protein FtsZ, the key player of the whole process. Recently, we developed a novel family of 1,4-tetrahydronaphthodioxane benzamides, having an ethoxy linker, which reached sub-micromolar MICs towards Gram-positive Staphylococcus aureus and Bacillus subtilis. A further investigation of their mechanism of action should require the development of a fluorescent probe, and the consequent definition of a synthetic pathway for its obtainment. In the present work, we report the obtainment of an unexpected bicyclic side product, 6-fluoro-3-(2,3,6,7,8,9-hexahydronaphtho[2,3-b][1,4]dioxin-2-yl)-2,3-dihydrobenzo[b][1,4]dioxine-5-carboxamide, coming from the substitution of one aromatic fluorine by the in situ formed alkoxy group, in the final opening of an epoxide intermediate. This side product was similarly achieved, in good yields, by opening the ring of both erythro and threo epoxides, and the two compounds were fully characterized using HRMS, 1H-NMR, 13C-NMR, HPLC and DSC.
Collapse
|
31
|
Du RL, Chow HY, Chen YW, Chan PH, Daniel RA, Wong KY. Gossypol acetate: A natural polyphenol derivative with antimicrobial activities against the essential cell division protein FtsZ. Front Microbiol 2023; 13:1080308. [PMID: 36713210 PMCID: PMC9878342 DOI: 10.3389/fmicb.2022.1080308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Antimicrobial resistance has attracted worldwide attention and remains an urgent issue to resolve. Discovery of novel compounds is regarded as one way to circumvent the development of resistance and increase the available treatment options. Gossypol is a natural polyphenolic aldehyde, and it has attracted increasing attention as a possible antibacterial drug. In this paper, we studied the antimicrobial properties (minimum inhibitory concentrations) of gossypol acetate against both Gram-positive and Gram-negative bacteria strains and dig up targets of gossypol acetate using in vitro assays, including studying its effects on functions (GTPase activity and polymerization) of Filamenting temperature sensitive mutant Z (FtsZ) and its interactions with FtsZ using isothermal titration calorimetry (ITC), and in vivo assays, including visualization of cell morphologies and proteins localizations using a microscope. Lastly, Bacterial membrane permeability changes were studied, and the cytotoxicity of gossypol acetate was determined. We also estimated the interactions of gossypol acetate with the promising target. We found that gossypol acetate can inhibit the growth of Gram-positive bacteria such as the model organism Bacillus subtilis and the pathogen Staphylococcus aureus [both methicillin-sensitive (MSSA) and methicillin-resistant (MRSA)]. In addition, gossypol acetate can also inhibit the growth of Gram-negative bacteria when the outer membrane is permeabilized by Polymyxin B nonapeptide (PMBN). Using a cell biological approach, we show that gossypol acetate affects cell division in bacteria by interfering with the assembly of the cell division FtsZ ring. Biochemical analysis shows that the GTPase activity of FtsZ was inhibited and polymerization of FtsZ was enhanced in vitro, consistent with the block to cell division in the bacteria tested. The binding mode of gossypol acetate in FtsZ was modeled using molecular docking and provides an understanding of the compound mode of action. The results point to gossypol (S2303) as a promising antimicrobial compound that inhibits cell division by affecting FtsZ polymerization and has potential to be developed into an effective antimicrobial drug by chemical modification to minimize its cytotoxic effects in eukaryotic cells that were identified in this work.
Collapse
Affiliation(s)
- Ruo-Lan Du
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Ho-Yin Chow
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yu Wei Chen
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Pak-Ho Chan
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Richard A. Daniel
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom,Richard A. Daniel,
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China,*Correspondence: Kwok-Yin Wong,
| |
Collapse
|
32
|
Vemula D, Maddi DR, Bhandari V. Homology modeling, virtual screening, molecular docking, and dynamics studies for discovering Staphylococcus epidermidis FtsZ inhibitors. Front Mol Biosci 2023; 10:1087676. [PMID: 36936991 PMCID: PMC10020519 DOI: 10.3389/fmolb.2023.1087676] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Staphylococcus epidermidis is the most common cause of medical device-associated infections and is an opportunistic biofilm former. Among hospitalized patients, S. epidermidis infections are the most prevalent, and resistant to most antibiotics. In order to overcome this resistance, it is imperative to treat the infection at a cellular level. The present study aims to identify inhibitors of the prokaryotic cell division protein FtsZ a widely conserved component of bacterial cytokinesis. Two substrate binding sites are present on the FtsZ protein; the nucleotide-binding domain and the inter-domain binding sites. Molecular modeling was used to identify potential inhibitors against the binding sites of the FtsZ protein. One hundred thirty-eight chemical entities were virtually screened for the binding sites and revealed ten molecules, each with good binding affinities (docking score range -9.549 to -4.290 kcal/mol) compared to the reference control drug, i.e., Dacomitinib (-4.450 kcal/mol) and PC190723 (-4.694 kcal/mol) at nucleotide and inter-domain binding sites respectively. These top 10 hits were further analyzed for their ADMET properties and molecular dynamics simulations. The Chloro-derivative of GTP, naphthalene-1,3-diyl bis(3,4,5-trihydroxybenzoate), Guanosine triphosphate (GTP), morpholine and methylpiperazine derivative of GTP were identified as the lead molecules for nucleotide binding site whereas for inter-domain binding site, 1-(((amino(iminio)methyl)amino)methyl)-3-(3-(tert-butyl)phenyl)-6,7-dimethoxyisoquinolin-2-ium, and Chlorogenic acidwere identified as lead molecules. Molecular dynamics simulation and post MM/GBSA analysis of the complexes revealed good protein-ligand stability predicting them as potential inhibitors of FtsZ (Figure 1). Thus, identified FtsZ inhibitors are a promising lead compounds for S. epidermidis related infections.
Collapse
|
33
|
Structural Variations in the Central Heterocyclic Scaffold of Tripartite 2,6-Difluorobenzamides: Influence on Their Antibacterial Activity against MDR Staphylococcus aureus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196619. [PMID: 36235156 PMCID: PMC9573484 DOI: 10.3390/molecules27196619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Five series of heterocyclic tripartite 2,6-difluorobenzamides, namely 1,2,3-triazoles, 1,2,4- and 1,3,4-oxadiazoles, analogs of reported model anti-staphylococcal compounds, were prepared. The purpose was to investigate the influence of the nature of the heterocyclic central scaffold on the biological activity against three strains of S. aureus, including two drug-resistant ones. Among the 15 compounds of the new collection, a 3-(4-tert-butylphenyl)-1,2,4-oxadiazole linked via a methylene group with a 2,6-difluorobenzamide moiety (II.c) exhibited a minimal inhibitory concentration between 0.5 and 1 µg/mL according to the strain. Subsequent studies on II.c demonstrated no human cytotoxicity, while targeting the bacterial divisome.
Collapse
|
34
|
Jiménez MC, Kowalski L, Souto RB, Alves IA, Viana MD, Aragón DM. New drugs against multidrug-resistant Gram-negative bacteria: a systematic review of patents. Future Microbiol 2022; 17:1393-1408. [PMID: 36169345 DOI: 10.2217/fmb-2022-0104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Antimicrobial resistance has been a threat to human health ever since the accelerated consumption of antibiotics began. Materials & methods: The present systematic review was carried out using a free and specialized online database - Espacenet - and a survey for patents of antimicrobial agents from 2010 to 2021, selecting 33 recent patents that claimed compounds with antimicrobial activity against resistant strains of Gram-negative bacteria. Results: Some different and new approaches to the development of the patented antibacterial agents were identified, such as antimicrobial peptides, nanomaterials and natural extracts. Conclusion: Some alternatives to modern antibiotics with diminished effectiveness due to antimicrobial resistance were spotted. Nevertheless, many challenges remain to establish a robust and sustainable antibacterial R&D pipeline.
Collapse
Affiliation(s)
- María C Jiménez
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Layza Kowalski
- Department of Health Sciences, Faculty of Pharmacy, Universidade Regional Integrada do Alto Uruguai e das Missões, Santo Ângelo, RS, Brazil
| | - Ricardo B Souto
- Department of Medicines, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | - Izabel A Alves
- Department of Medicines, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil.,Program of Post-graduation in Pharmaceutical Sciences, State University of Bahia, Salvador, BA, Brazil
| | - Max Dm Viana
- Department of Medicines, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | - Diana M Aragón
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| |
Collapse
|
35
|
Screening of plant-based natural compounds as an inhibitor of FtsZ from Salmonella Typhi using the computational, biochemical and in vitro cell-based studies. Int J Biol Macromol 2022; 219:428-437. [PMID: 35932806 DOI: 10.1016/j.ijbiomac.2022.07.241] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/22/2022]
Abstract
Salmonella Typhi is emerging as a drug-resistant pathogen, particularly in developing countries. Hence, the progressive development of new antibiotics against novel drug targets is essential to prevent the spread of infections and mortality. The cell division protein FtsZ is an ideal drug target as the cell wall synthesis in bacteria is driven by the dynamic treadmilling nature of the FtsZ. The polymerization of the FtsZ provides the essential mechanical constricting force and flexibility to modulate the cell wall synthesis. Any alteration in FtsZ polymerization leads to the bactericidal or bacteriostatic effect. In this study, we have evaluated the secondary metabolites of natural compounds berberine chloride, cinnamaldehyde, scopoletin, quercetin and eugenol as potential inhibitors of FtsZ from Salmonella Typhi (stFtsZ) using computational, biochemical, and in vivo cell-based assays. Out of these five compounds, berberine chloride and cinnamaldehyde exhibited the best binding affinity of Kd = 7 μM and 10 μM, respectively and inhibit stFtsZ GTPase activity and polymerization by 70 %. The compound berberine chloride showed the best MIC of 500 μg/mL and 175 μg/mL against gram-negative and gram-positive bacterial strains. The findings support that these natural compounds can be used as a backbone structure to develop a broad spectrum of antibacterial agents.
Collapse
|
36
|
Dhanoa GK, Kushnir I, Qimron U, Roper DI, Sagona AP. Investigating the effect of bacteriophages on bacterial FtsZ localisation. Front Cell Infect Microbiol 2022; 12:863712. [PMID: 35967845 PMCID: PMC9372555 DOI: 10.3389/fcimb.2022.863712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli is one of the most common Gram-negative pathogens and is responsible for infection leading to neonatal meningitis and sepsis. The FtsZ protein is a bacterial tubulin homolog required for cell division in most species, including E. coli. Several agents that block cell division have been shown to mislocalise FtsZ, including the bacteriophage λ-encoded Kil peptide, resulting in defective cell division and a filamentous phenotype, making FtsZ an attractive target for antimicrobials. In this study, we have used an in vitro meningitis model system for studying the effect of bacteriophages on FtsZ using fluorescent E. coli EV36/FtsZ-mCherry and K12/FtsZ-mNeon strains. We show localisation of FtsZ to the bacterial cell midbody as a single ring during normal growth conditions, and mislocalisation of FtsZ producing filamentous multi-ringed bacterial cells upon addition of the known inhibitor Kil peptide. We also show that when bacteriophages K1F-GFP and T7-mCherry were applied to their respective host strains, these phages can inhibit FtsZ and block bacterial cell division leading to a filamentous multi-ringed phenotype, potentially delaying lysis and increasing progeny number. This occurs in the exponential growth phase, as actively dividing hosts are needed. We present that ZapA protein is needed for phage inhibition by showing a phenotype recovery with a ZapA mutant strain, and we show that FtsI protein is also mislocalised upon phage infection. Finally, we show that the T7 peptide gp0.4 is responsible for the inhibition of FtsZ in K12 strains by observing a phenotype recovery with a T7Δ0.4 mutant.
Collapse
Affiliation(s)
- Gurneet K. Dhanoa
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Inbar Kushnir
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David I. Roper
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Antonia P. Sagona
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- *Correspondence: Antonia P. Sagona,
| |
Collapse
|
37
|
Deng J, Zhang T, Li B, Xu M, Wang Y. Design, synthesis and biological evaluation of biphenyl-benzamides as potent FtsZ inhibitors. Eur J Med Chem 2022; 239:114553. [PMID: 35763867 DOI: 10.1016/j.ejmech.2022.114553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/04/2022]
Abstract
The rapid emergence of antibiotic resistance has become a prevalent threat to public health, thereby development of new antibacterial agents having novel mechanisms of action is in an urgent need. Targeting at the cytoskeletal cell division protein filamenting temperature-sensitive mutant Z (FtsZ) has been validated as an effective and promising approach for antibacterial drug discovery. In this study, a series of novel biphenyl-benzamides as FtsZ inhibitors has been rationally designed, synthesized and evaluated for their antibacterial activities against various Gram-positive bacteria strains. In particular, the most promising compound 30 exhibited excellent antibacterial activities, especially against four different Bacillus subtilis strains, with an MIC range of 0.008 μg/mL to 0.063 μg/mL. Moreover, compound 30 also showed good pharmaceutical properties with low cytotoxicity (CC50 > 20 μg/mL), excellent human metabolic stability (T1/2 = 111.98 min), moderate pharmacokinetics (T1/2 = 2.26 h, F = 61.2%) and in vivo efficacy, which can be identified as a promising FtsZ inhibitor worthy of further profiling.
Collapse
Affiliation(s)
- Jingjing Deng
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Tao Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory),Guangzhou, 510530, PR China
| | - Baiqing Li
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory),Guangzhou, 510530, PR China
| | - Mingyuan Xu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory),Guangzhou, 510530, PR China
| | - Yuanze Wang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory),Guangzhou, 510530, PR China.
| |
Collapse
|
38
|
Abstract
With the overmining of actinomycetes for compounds acting against Gram-negative pathogens, recent efforts to discover novel antibiotics have been focused on other groups of bacteria. Teixobactin, the first antibiotic without detectable resistance that binds lipid II, comes from an uncultured Eleftheria terra, a betaproteobacterium; odilorhabdins, from Xenorhabdus, are broad-spectrum inhibitors of protein synthesis, and darobactins from Photorhabdus target BamA, the essential chaperone of the outer membrane of Gram-negative bacteria. Xenorhabdus and Photorhabdus are symbionts of the nematode gut microbiome and attractive producers of secondary metabolites. Only small portions of their biosynthetic gene clusters (BGC) are expressed in vitro. To access their silent operons, we first separated extracts from a small library of isolates into fractions, resulting in 200-fold concentrated material, and then screened them for antimicrobial activity. This resulted in a hit with selective activity against Escherichia coli, which we identified as a novel natural product antibiotic, 3′-amino 3′-deoxyguanosine (ADG). Mutants resistant to ADG mapped to gsk and gmk, kinases of guanosine. Biochemical analysis shows that ADG is a prodrug that is converted into an active ADG triphosphate (ADG-TP), a mimic of GTP. ADG incorporates into a growing RNA chain, interrupting transcription, and inhibits cell division, apparently by interfering with the GTPase activity of FtsZ. Gsk of the purine salvage pathway, which is the first kinase in the sequential phosphorylation of ADG, is restricted to E. coli and closely related species, explaining the selectivity of the compound. There are probably numerous targets of ADG-TP among GTP-dependent proteins. The discovery of ADG expands our knowledge of prodrugs, which are rare among natural compounds.
Collapse
|
39
|
Juskewitz E, Mishchenko E, Dubey VK, Jenssen M, Jakubec M, Rainsford P, Isaksson J, Andersen JH, Ericson JU. Lulworthinone: In Vitro Mode of Action Investigation of an Antibacterial Dimeric Naphthopyrone Isolated from a Marine Fungus. Mar Drugs 2022; 20:md20050277. [PMID: 35621928 PMCID: PMC9147123 DOI: 10.3390/md20050277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 01/27/2023] Open
Abstract
Treatment options for infections caused by antimicrobial-resistant bacteria are rendered ineffective, and drug alternatives are needed—either from new chemical classes or drugs with new modes of action. Historically, natural products have been important contributors to drug discovery. In a recent study, the dimeric naphthopyrone lulworthinone produced by an obligate marine fungus in the family Lulworthiaceae was discovered. The observed potent antibacterial activity against Gram-positive bacteria, including several clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates, prompted this follow-up mode of action investigation. This paper aimed to characterize the antibacterial mode of action (MOA) of lulworthinone by combining in vitro assays, NMR experiments and microscopy. The results point to a MOA targeting the bacterial membrane, leading to improper cell division. Treatment with lulworthinone induced an upregulation of genes responding to cell envelope stress in Bacillus subtilis. Analysis of the membrane integrity and membrane potential indicated that lulworthinone targets the bacterial membrane without destroying it. This was supported by NMR experiments using artificial lipid bilayers. Fluorescence microscopy revealed that lulworthinone affects cell morphology and impedes the localization of the cell division protein FtsZ. Surface plasmon resonance and dynamic light scattering assays showed that this activity is linked with the compound‘s ability to form colloidal aggregates. Antibacterial agents acting at cell membranes are of special interest, as the development of bacterial resistance to such compounds is deemed more difficult to occur.
Collapse
Affiliation(s)
- Eric Juskewitz
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (E.M.); (V.K.D.)
- Correspondence: (E.J.); (J.U.E.)
| | - Ekaterina Mishchenko
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (E.M.); (V.K.D.)
| | - Vishesh K. Dubey
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (E.M.); (V.K.D.)
| | - Marte Jenssen
- Marbio, The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (M.J.); (J.H.A.)
| | - Martin Jakubec
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (M.J.); (P.R.); (J.I.)
| | - Philip Rainsford
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (M.J.); (P.R.); (J.I.)
| | - Johan Isaksson
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (M.J.); (P.R.); (J.I.)
| | - Jeanette H. Andersen
- Marbio, The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (M.J.); (J.H.A.)
| | - Johanna U. Ericson
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (E.M.); (V.K.D.)
- Correspondence: (E.J.); (J.U.E.)
| |
Collapse
|
40
|
Gurnani M, Chauhan A, Ranjan A, Tuli HS, Alkhanani MF, Haque S, Dhama K, Lal R, Jindal T. Filamentous Thermosensitive Mutant Z: An Appealing Target for Emerging Pathogens and a Trek on Its Natural Inhibitors. BIOLOGY 2022; 11:624. [PMID: 35625352 PMCID: PMC9138142 DOI: 10.3390/biology11050624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
Abstract
Antibiotic resistance is a major emerging issue in the health care sector, as highlighted by the WHO. Filamentous Thermosensitive mutant Z (Fts-Z) is gaining significant attention in the scientific community as a potential anti-bacterial target for fighting antibiotic resistance among several pathogenic bacteria. The Fts-Z plays a key role in bacterial cell division by allowing Z ring formation. Several in vitro and in silico experiments have demonstrated that inhibition of Fts-Z can lead to filamentous growth of the cells, and finally, cell death occurs. Many natural compounds that have successfully inhibited Fts-Z are also studied. This review article intended to highlight the structural-functional aspect of Fts-Z that leads to Z-ring formation and its contribution to the biochemistry and physiology of cells. The current trend of natural inhibitors of Fts-Z protein is also covered.
Collapse
Affiliation(s)
- Manisha Gurnani
- Amity Institute of Environmental Science, Amity University, Noida 201301, India;
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India;
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India;
| | - Mustfa F. Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Faculty of Medicine, Görükle Campus, Bursa Uludağ University, Nilüfer, Bursa 16059, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR—Indian Veterinary Research Institute, Bareilly 243122, India;
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi 110021, India;
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India;
| |
Collapse
|
41
|
Ma Y, Zhang S, Zhou L, Zhang L, Zhang P, Ma S. Exploration of the inhibitory mechanism of PC190723 on FtsZ protein by molecular dynamics simulation. J Mol Graph Model 2022; 114:108189. [DOI: 10.1016/j.jmgm.2022.108189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022]
|
42
|
Gurnani M, Rath P, Chauhan A, Ranjan A, Ghosh A, Lal R, Mukerjee N, Aljarba NH, Alkahtani S, Rajput VD, Sushkova S, Prazdnova EV, Minkina T, Jindal T. Inhibition of Filamentous Thermosensitive Mutant-Z Protein in Bacillus subtilis by Cyanobacterial Bioactive Compounds. Molecules 2022; 27:1907. [PMID: 35335270 PMCID: PMC8948890 DOI: 10.3390/molecules27061907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 01/13/2023] Open
Abstract
Antibiotic resistance is one of the major growing concerns for public health. Conventional antibiotics act on a few predefined targets and, with time, several bacteria have developed resistance against a large number of antibiotics. The WHO has suggested that antibiotic resistance is at a crisis stage and identification of new antibiotics and targets could be the only approach to bridge the gap. Filamentous Temperature Sensitive-Mutant Z (Fts-Z) is one of the promising and less explored antibiotic targets. It is a highly conserved protein and plays a key role in bacterial cell division by introducing a cytokinetic Z-ring formation. In the present article, the potential of over 165 cyanobacterial compounds with reported antibiotic activity against the catalytic core domain in the Fts-Z protein of the Bacillus subtilis was studied. The identified cyanobacterial compounds were screened using the GLIDE module of Maestro v-2019-2 followed by 100-ns molecular dynamics (MD) simulation. Ranking of the potential compound was performed using dock score and MMGBSA based free energy. The study reported that the docking score of aphanorphine (-6.010 Kcalmol-1) and alpha-dimorphecolic acid (ADMA) (-6.574 Kcalmol-1) showed significant role with respect to the reported potential inhibitor PC190723 (-4.135 Kcalmol-1). A 100 ns MD simulation infers that Fts-Z ADMA complex has a stable conformation throughout the progress of the simulation. Both the compounds, i.e., ADMA and Aphanorphine, were further considered for In-vitro validation by performing anti-bacterial studies against B. subtilis by agar well diffusion method. The results obtained through In-vitro studies confirm that ADMA, a small molecule of cyanobacterial origin, is a potential compound with an antibacterial activity that may act by inhibiting the novel target Fts-Z and could be a great drug candidate for antibiotic development.
Collapse
Affiliation(s)
- Manisha Gurnani
- Amity Institute of Environmental Sciences, Amity University, Noida 201301, India; (M.G.); (P.R.)
| | - Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201301, India; (M.G.); (P.R.)
| | - Abhishek Chauhan
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida 201303, India;
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.D.R.); (S.S.); (E.V.P.); (T.M.)
| | - Arabinda Ghosh
- Department of Botany, Microbiology Division, Guwahati University, Guwahati 781014, India;
| | - Rup Lal
- Department of Zoology, University of Delhi, New Delhi 110007, India;
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata 700118, India;
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Nada H. Aljarba
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.D.R.); (S.S.); (E.V.P.); (T.M.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.D.R.); (S.S.); (E.V.P.); (T.M.)
| | - Evgenya V. Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.D.R.); (S.S.); (E.V.P.); (T.M.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.D.R.); (S.S.); (E.V.P.); (T.M.)
| | - Tanu Jindal
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida 201303, India;
| |
Collapse
|
43
|
Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci Rep 2022; 12:2658. [PMID: 35173244 PMCID: PMC8850488 DOI: 10.1038/s41598-022-06657-y] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/24/2022] [Indexed: 12/17/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of action (MOA) has not been fully elucidated. This study characterized ZnO NPs by using X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Antimicrobial activity of ZnO NPs against the clinically relevant bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and the Gram-positive model Bacillus subtilis was evaluated by performing resazurin microtiter assay (REMA) after exposure to the ZnO NPs at concentrations ranging from 0.2 to 1.4 mM. Sensitivity was observed at 0.6 mM for the Gram-negative and 1.0 mM for the Gram-positive cells. Fluorescence microscopy was used to examine the interference of ZnO NPs on the membrane and the cell division apparatus of B. subtilis (amy::pspac-ftsZ-gfpmut1) expressing FtsZ-GFP. The results showed that ZnO NPs did not interfere with the assembly of the divisional Z-ring. However, 70% of the cells exhibited damage in the cytoplasmic membrane after 15 min of exposure to the ZnO NPs. Electrostatic forces, production of Zn2+ ions and the generation of reactive oxygen species were described as possible pathways of the bactericidal action of ZnO. Therefore, understanding the bactericidal MOA of ZnO NPs can potentially help in the construction of predictive models to fight bacterial resistance.
Collapse
|
44
|
Privalsky TM, Soohoo AM, Wang J, Walsh CT, Wright GD, Gordon EM, Gray NS, Khosla C. Prospects for Antibacterial Discovery and Development. J Am Chem Soc 2021; 143:21127-21142. [PMID: 34860516 PMCID: PMC8855840 DOI: 10.1021/jacs.1c10200] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rising prevalence of multidrug-resistant bacteria is an urgent health crisis that can only be countered through renewed investment in the discovery and development of antibiotics. There is no panacea for the antibacterial resistance crisis; instead, a multifaceted approach is called for. In this Perspective we make the case that, in the face of evolving clinical needs and enabling technologies, numerous validated antibacterial targets and associated lead molecules deserve a second look. At the same time, many worthy targets lack good leads despite harboring druggable active sites. Creative and inspired techniques buoy discovery efforts; while soil screening efforts frequently lead to antibiotic rediscovery, researchers have found success searching for new antibiotic leads by studying underexplored ecological niches or by leveraging the abundance of available data from genome mining efforts. The judicious use of "polypharmacology" (i.e., the ability of a drug to alter the activities of multiple targets) can also provide new opportunities, as can the continued search for inhibitors of resistance enzymes with the capacity to breathe new life into old antibiotics. We conclude by highlighting available pharmacoeconomic models for antibacterial discovery and development while making the case for new ones.
Collapse
Affiliation(s)
- Thomas M. Privalsky
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
| | - Alexander M. Soohoo
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 United States
| | - Christopher T. Walsh
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States
| | - Gerard D. Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Eric M. Gordon
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Nathanael S. Gray
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, United States
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States
| |
Collapse
|
45
|
Thirapanmethee K, Kanathum P, Khuntayaporn P, Huayhongthong S, Surassmo S, Chomnawang MT. Cinnamaldehyde: A plant-derived antimicrobial for overcoming multidrug-resistant Acinetobacter baumannii infection. Eur J Integr Med 2021. [DOI: 10.1016/j.eujim.2021.101376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
46
|
Mahanty S, Rathinasamy K. The natural anthraquinone dye purpurin exerts antibacterial activity by perturbing the FtsZ assembly. Bioorg Med Chem 2021; 50:116463. [PMID: 34700238 DOI: 10.1016/j.bmc.2021.116463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022]
Abstract
There is an increasing demand to discover novel antibacterial drugs to counter the ever-evolving genetic machinery of bacteria. The cell division protein FtsZ plays a vital role in bacterial cytokinesis and has been recognized as an effective antibacterial drug target. In this study, we have shown that the madder dye purpurin inhibited bacterial cytokinesis through perturbation of FtsZ assembly. Purpurin inhibited the growth of bacterial cells in a concentration-dependent manner and induced bacterial cell filamentation. Microscopy studies showed that it inhibited the localization of the Z ring at the midcell, and FtsZ was dispersed throughout the cells. Further, purpurin bound firmly to FtsZ with a dissociation constant of 11 µM and inhibited its assembly in vitro. It reduced the GTP hydrolysis by binding closer to the nucleotide-binding site of FtsZ. Purpurin inhibited the proliferation of mammalian cancer cells at higher concentrations without disturbing the polymerization of tubulin. The results collectively suggest that the natural anthraquinone purpurin can potently inhibit the growth of bacteria and serve as a lead molecule for the development of antibacterial agents.
Collapse
Affiliation(s)
- Susobhan Mahanty
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India.
| |
Collapse
|
47
|
Pradhan P, Margolin W, Beuria TK. Targeting the Achilles Heel of FtsZ: The Interdomain Cleft. Front Microbiol 2021; 12:732796. [PMID: 34566937 PMCID: PMC8456036 DOI: 10.3389/fmicb.2021.732796] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023] Open
Abstract
Widespread antimicrobial resistance among bacterial pathogens is a serious threat to public health. Thus, identification of new targets and development of new antibacterial agents are urgently needed. Although cell division is a major driver of bacterial colonization and pathogenesis, its targeting with antibacterial compounds is still in its infancy. FtsZ, a bacterial cytoskeletal homolog of eukaryotic tubulin, plays a highly conserved and foundational role in cell division and has been the primary focus of research on small molecule cell division inhibitors. FtsZ contains two drug-binding pockets: the GTP binding site situated at the interface between polymeric subunits, and the inter-domain cleft (IDC), located between the N-terminal and C-terminal segments of the core globular domain of FtsZ. The majority of anti-FtsZ molecules bind to the IDC. Compounds that bind instead to the GTP binding site are much less useful as potential antimicrobial therapeutics because they are often cytotoxic to mammalian cells, due to the high sequence similarity between the GTP binding sites of FtsZ and tubulin. Fortunately, the IDC has much less sequence and structural similarity with tubulin, making it a better potential target for drugs that are less toxic to humans. Over the last decade, a large number of natural and synthetic IDC inhibitors have been identified. Here we outline the molecular structure of IDC in detail and discuss how it has become a crucial target for broad spectrum and species-specific antibacterial agents. We also outline the drugs that bind to the IDC and their modes of action.
Collapse
Affiliation(s)
- Pinkilata Pradhan
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, United States
| | | |
Collapse
|
48
|
Li Y, Qiao D, Zhang Y, Hao W, Xi Y, Deng X, Ge X, Xu M. MapZ deficiency leads to defects in the envelope structure and changes stress tolerance of Streptococcus mutans. Mol Oral Microbiol 2021; 36:295-307. [PMID: 34463029 DOI: 10.1111/omi.12352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 11/26/2022]
Abstract
Cell division is a central process in bacteria and a prerequisite for pathogenicity. Several proteins are involved in this process to ensure the accurate localization and proper function of the division machinery. In Streptococcus mutans, MapZ marks the division sites and position of the Z-ring to regulate cell division; however, whether MapZ deficiency can impair the cariogenic virulence of S. mutans remains unclear. Here, using a phenotypic assay and RNA-seq, we investigated the role of MapZ in cell envelope maintenance, biofilm formation, and stress tolerance in S. mutans. The results show that MapZ is important for normal cell shape and envelope structure, and its deletion causes abnormal septum structure and a thin cell wall. Subsequently, we found that the absence of MapZ leads to a greater level of cell death within 12 h biofilms, but it does not seem to affect biofilm architecture and accumulation. mapZ deletion also results in a decreased acid and osmotic stress tolerance. Furthermore, RNA-seq data reveal that MapZ deficiency causes changes in the expression levels of genes involved in transport systems, sugar metabolism, nature competence, and bacteriocin synthesis. Interestingly, we found that mapZ mutation renders S. mutans more sensitive to chlorhexidine. Taken together, our study suggests that MapZ plays a role in maintaining cell envelope structure and stress tolerance in S. mutans, showing a potential application as a drug target for caries prevention.
Collapse
Affiliation(s)
- Yongliang Li
- Department of Geriatric Dentistry, Peking University Hospital of Stomatology, Beijing, P. R. China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University Hospital of Stomatology, Beijing, P. R. China
| | - Dan Qiao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, P. R. China
| | - Yifei Zhang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University Hospital of Stomatology, Beijing, P. R. China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P. R. China
| | - Weifeng Hao
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University Hospital of Stomatology, Beijing, P. R. China
| | - Yue Xi
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University Hospital of Stomatology, Beijing, P. R. China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University Hospital of Stomatology, Beijing, P. R. China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University Hospital of Stomatology, Beijing, P. R. China
| | - Xuejun Ge
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, P. R. China
| | - Mingming Xu
- Department of Geriatric Dentistry, Peking University Hospital of Stomatology, Beijing, P. R. China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University Hospital of Stomatology, Beijing, P. R. China
| |
Collapse
|
49
|
Yang L, Wang Y, He X, Xiao Q, Han S, Jia Z, Li S, Ding W. Discovery of a novel plant-derived agent against Ralstonia solanacearum by targeting the bacterial division protein FtsZ. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 177:104892. [PMID: 34301354 DOI: 10.1016/j.pestbp.2021.104892] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/16/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Ralstonia solanacearum (R. solanacearum) is one of the most devastating bacterial pathogens and leads to serious economic losses in crops worldwide. In this study, the antibacterial activities of novel plant-derived coumarins against R. solanacearum and their underlying mechanisms were initially investigated. The bioactivity assay results showed that certain coumarins had significant in vitro inhibitory effects against R. solanacearum. Notably, 6-methylcoumarin showed the best in vitro antibacterial activity with 76.79%. Interestingly, 6-methylcoumarin was found to cause cell elongation, disrupt cell division, and suppress the expression of the bacterial division protein coding genes ftsZ. Compared with the control treatment, the ∆ftsZ mutant inhibited bacterial growth and caused the bacteria to be more sensitive to 6-methylcoumarin. The application of 6-methylcoumarin effectively suppressed the development of tobacco bacterial wilt in pot and field experiments, and significantly reduced the bacterial population in tobacco stems. The control efficiency of 6-methylcoumarin treatment was 35.76%, 40.51%, 38.99% at 10, 11, and 12 weeks after tobacco transplantation in field condition. All of these results demonstrate that 6-methylcoumarin has potential as an eco-friendly and target specificity agent for controlling tobacco bacterial wilt.
Collapse
Affiliation(s)
- Liang Yang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yao Wang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Xiaobin He
- Chongqing Tobacco Industry Co., Ltd., Chongqing 400060, China
| | - Qingli Xiao
- Chongqing Tobacco Industry Co., Ltd., Chongqing 400060, China
| | - Songting Han
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Zhou Jia
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Shili Li
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
50
|
Impact of FtsZ Inhibition on the Localization of the Penicillin Binding Proteins in Methicillin-Resistant Staphylococcus aureus. J Bacteriol 2021; 203:e0020421. [PMID: 34031040 DOI: 10.1128/jb.00204-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant pathogen of acute clinical importance. Combination treatment with an FtsZ inhibitor potentiates the activity of penicillin binding protein (PBP)-targeting β-lactam antibiotics against MRSA. To explore the mechanism underlying this synergistic behavior, we examined the impact of treatment with the FtsZ inhibitor TXA707 on the spatial localization of the five PBP proteins expressed in MRSA. In the absence of drug treatment, PBP1, PBP2, PBP3, and PBP4 colocalize with FtsZ at the septum, contributing to new cell wall formation. In contrast, PBP2a localizes to distinct foci along the cell periphery. Upon treatment with TXA707, septum formation becomes disrupted, and FtsZ relocalizes away from midcell. PBP1 and PBP3 remain significantly colocalized with FtsZ, while PBP2, PBP4, and PBP2a localize away from FtsZ to specific sites along the periphery of the enlarged cells. We also examined the impact on PBP2a and PBP2 localization of treatment with β-lactam antibiotic oxacillin alone and in synergistic combination with TXA707. Significantly, PBP2a localizes to the septum in approximately 15% of the oxacillin-treated cells, a behavior that likely contributes to the β-lactam resistance of MRSA. Combination treatment with TXA707 causes both PBP2a and PBP2 to localize in malformed septum-like structures. Our collective results suggest that PBP2, PBP4, and PBP2a may function collaboratively in peripheral cell wall repair and maintenance in response to FtsZ inhibition by TXA707. Cotreatment with oxacillin appears to reduce the availability of PBP2a to assist in this repair, thereby rendering the MRSA cells more susceptible to the β-lactam. IMPORTANCE MRSA is a multidrug-resistant bacterial pathogen of acute clinical importance, infecting many thousands of individuals globally each year. The essential cell division protein FtsZ has been identified as an appealing target for the development of new drugs to combat MRSA infections. Through synergistic actions, FtsZ-targeting agents can sensitize MRSA to antibiotics like the β-lactams that would otherwise be ineffective. This study provides key insights into the mechanism underlying this synergistic behavior as well as MRSA resistance to β-lactam drugs. The results of this work will help guide the identification and optimization of combination drug regimens that can effectively treat MRSA infections and reduce the potential for future resistance.
Collapse
|