1
|
Qi S, Meng X, Cui B, Liu T, Yang L, Cai G, Gong K, Miao S. Drimane-type sesquiterpenoids and triterpenoids from the whole plant of Limonium sinense with their antiproliferative and anti-inflammatory activities. RSC Adv 2025; 15:1220-1229. [PMID: 39816173 PMCID: PMC11733673 DOI: 10.1039/d4ra06721e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/21/2024] [Indexed: 01/18/2025] Open
Abstract
Saline-tolerant medicinal plants possess novel chemical constituents with high bioactivity because of their unique secondary metabolic pathways. Limonium sinense, an aquatic plant found in the coastal wetlands of the Yellow River Delta, was collected and studied in the present work. Ten drimane-type sesquiterpenoids and four triterpenoids, including six new ones (sinenseines A-F), were isolated from a whole plant of L. sinense for the first time. Their structures, including the absolute configurations, were determined by analyzing the comprehensive spectroscopic data. In addition, twelve terpenoids, including nine sesquiterpenoids, were identified using UPLC-MS/MS and GNPS methods. All isolates were evaluated for their antiproliferative and anti-inflammatory activities. Compounds 2-4, 6, 13, and 14 showed moderate anti-tumor effects on A549, H1299, HepG2 and A2780 cells with IC50 values ranging from 35.2 ± 2.0 to 90.5 ± 3.1 μM. Furthermore, compound 1 exhibited significant anti-inflammatory activity with an IC50 value of 8.3 ± 1.2 μM against NO production in LPS-induced RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Shizhou Qi
- Department of Pharmacy, Binzhou Medical University Hospital Binzhou 256603 China
- Medical Research Center, Binzhou Medical University Hospital Binzhou 256603 China
| | - Xinyu Meng
- Department of Pharmacy, Binzhou Medical University Hospital Binzhou 256603 China
| | - Bingjie Cui
- Medical Research Center, Binzhou Medical University Hospital Binzhou 256603 China
| | - Tingting Liu
- Medical Research Center, Binzhou Medical University Hospital Binzhou 256603 China
| | - Lijuan Yang
- Medical Research Center, Binzhou Medical University Hospital Binzhou 256603 China
| | - Guowei Cai
- National Drug Clinical Experimental Organization, Binzhou Medical University Hospital Binzhou 256603 China
| | - Kaikai Gong
- Medical Research Center, Binzhou Medical University Hospital Binzhou 256603 China
| | - Shuang Miao
- Medical Research Center, Binzhou Medical University Hospital Binzhou 256603 China
| |
Collapse
|
2
|
Pan Y, Xiao F, Pan C, Song H, Zhao P, Chen M, Huang L, Yang J, Hao X. Nootkatone Derivative Nootkatone-(E)-2-iodobenzoyl hydrazone Promotes Megakaryocytic Differentiation in Erythroleukemia by Targeting JAK2 and Enhancing JAK2/STAT3 and PKCδ/MAPK Crosstalk. Cells 2024; 14:10. [PMID: 39791711 PMCID: PMC11720125 DOI: 10.3390/cells14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Erythroleukemia, a complex myeloproliferative disorder presenting as acute or chronic, is characterized by aberrant proliferation and differentiation of erythroid cells. Although nootkatone, a sesquiterpene derived from grapefruit peel and Alaska yellow cedar, has shown anticancer activity predominantly in solid tumors, its effects in erythroleukemia remain unexplored. This study aimed to investigate the impact of nootkatone and its derivatives on erythroleukemia. Our results demonstrate that the nootkatone derivative nootkatone-(E)-2-iodobenzoyl hydrazone (N2) significantly inhibited erythroleukemia cell proliferation in a concentration- and time-dependent manner. More importantly, N2 induced megakaryocytic differentiation, as evidenced by significant morphological changes, and upregulation of megakaryocytic markers CD41 and CD61. In vivo, N2 treatment led to a marked increase in platelet counts and megakaryocytic cell counts. Mechanistically, N2 activated a crosstalk between the JAK2/STAT3 and PKCδ/MAPK signaling pathways, enhancing transcriptional regulation of key factors like GATA1 and FOS. Network pharmacology and experimental validation confirmed that N2 targeted JAK2, and knockdown of JAK2 abolished N2-induced megakaryocytic differentiation, underscoring JAK2's critical role in erythroleukemia differentiation. In conclusion, N2 shows great promise as a differentiation therapy for erythroleukemia, offering a novel approach by targeting JAK2-mediated signaling pathways to induce megakaryocytic differentiation.
Collapse
Affiliation(s)
- Yang Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.P.); (F.X.); (C.P.); (P.Z.); (M.C.); (L.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Feng Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.P.); (F.X.); (C.P.); (P.Z.); (M.C.); (L.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Chaolan Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.P.); (F.X.); (C.P.); (P.Z.); (M.C.); (L.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Hui Song
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550044, China;
| | - Peng Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.P.); (F.X.); (C.P.); (P.Z.); (M.C.); (L.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Meijun Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.P.); (F.X.); (C.P.); (P.Z.); (M.C.); (L.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Liejun Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.P.); (F.X.); (C.P.); (P.Z.); (M.C.); (L.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.P.); (F.X.); (C.P.); (P.Z.); (M.C.); (L.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.P.); (F.X.); (C.P.); (P.Z.); (M.C.); (L.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
3
|
Ly TTB, Thi Mai TT, Raffaele A, Urlacher VB, Nguyen TT, Hutter MC, Thi Vu HN, Thuy Le DT, Quach TN, Phi QT. New CYP154C4 from Streptomyces cavourensis YBQ59 performs regio- and stereo- selective 3β-hydroxlation of nootkatone. Arch Biochem Biophys 2024; 762:110192. [PMID: 39481744 DOI: 10.1016/j.abb.2024.110192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Nootkatone, a sesquiterpenoid widely used in the food and cosmetics industries, exhibits diverse biological activities and pharmaceutical prospects. Modification of nootkatone to create new derivatives with desirable activities has attracted significant attention. For this purpose, cytochrome P450 monooxygenases (P450 or CYP) are attractive candidates due to their ability to perform regio- and stereoselective hydroxylation at allylic C-H bonds. In this study, CYP154C4 from Streptomyces cavourensis YBQ59 was cloned and expressed in Escherichia coli. By screening 64 candidate substrates, this P450 was found to catalyze the regio- and stereoselective hydroxylation of nootkatone, yielding a single product, 3β-hydroxynootkatone. Using a whole-cell E. coli system expressing CYP154C4, supported by the heterologous redox partners YkuN from Bacillus subtilis and FdR from E. coli, 3β-hydroxynootkatone was produced on a preparative scale. The structure of this compound was determined by 1H NMR, 13C NMR, NOESY, HMBC, and HSQC. The kinetics of product formation were analyzed using HPLC, and the Km and Kcat values were calculated. Furthermore, structural insights into the selective hydroxylation of nootkatone were elucidated by molecular docking. 3β-Hydroxynootkatone, recently synthesized semi-synthetically from nootkatone, has been reported to exhibit a higher insecticidal activity than its parent compound. Additionally, the functionalization of nootkatone with N-acyl-2-aminothiazole at the C3 and C2 positions, yielding an α-glucosidase inhibitor, has also been previously described. Therefore, 3β-hydroxynootkatone has great potential for further research and for synthesizing new derivatives with valuable biological activities for agricultural and medicinal applications.
Collapse
Affiliation(s)
- Thuy T B Ly
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam; Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Thu-Thuy Thi Mai
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Alessandra Raffaele
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Thi Thao Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Michael C Hutter
- Center for Bioinformatic, Saarland University, Campus E2.1, D-66123, Saarbrücken, Germany
| | - Hanh-Nguyen Thi Vu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Duong Thi Thuy Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Tung Ngoc Quach
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Quyet-Tien Phi
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| |
Collapse
|
4
|
Sajid R, Abbas Z, Nazir M, Saleem M, Riaz N, Tousif MI, Tauseef S, Zengin G, Uba AI, Hussain AI, Ali MS, Hashem A, Almutairi KF, Avila-Quezada GD, Abd Allah EF. Valorization of hydro-distillate of fruit peels of Citrus paradisi macfad. Cultivar. Foster: Chemical profiling, antioxidant evaluation and in vitro and in silico enzyme inhibition studies. Heliyon 2024; 10:e36226. [PMID: 39281520 PMCID: PMC11400606 DOI: 10.1016/j.heliyon.2024.e36226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
The major commercial crops in Pakistan are citrus fruit trees, which are farmed extensively and serve as the country's principal source of foreign exchange. A local citrus plant, Citrus paradisi, variety Foster is famous for its valuable fruit and fruit juice, however, tons of peels of this fruit are thrown as waste, which otherwise can be utilized in formulating nutraceutical and cosmetics. In the present study, essential oil of fruit peels was obtained through hydro-distillation, which was then analyzed through GC-MS analysis and studied for its antioxidant and enzyme inhibition potential. GCMS analysis revealed the presence of several components; major were found to be limonene, α-terpineol, caryophyllene, δ-amorphene, elemol, γ-eudesoml, nootkatone and di-isooctyl phthalate. Although, the oil showed weak free radical inhibition, it was potentially active in CUPRAC, FRAP, phosphomolybdenum and metal chelating antioxidant assays. The oil also exhibited anti-glucosidase, anti-amylase activities and also exhibited potent inhibition of the enzyme tyrosinase, which makes it strong candidate for nutraceuticals and skin care products. The docking studies also substantiate our results and caryophyllene, γ-eudesoml and nootkatone showed good binding affinity α-glucosidase and α-amylase and all tested compounds showed the higher binding affinity towards the enzyme tyrosinase.
Collapse
Affiliation(s)
- Rameen Sajid
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Zaheer Abbas
- Department of Botany, Division of Science and Technology, University of Education Lahore, Pakistan
| | - Mamona Nazir
- Department of Chemistry, Government Sadiq College Women University Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Muhammad Saleem
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Naheed Riaz
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Muhammad Imran Tousif
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, Pakistan
| | - Saba Tauseef
- Dr. Panjwani Center for Molecular Medicine and Drug Research., International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, 34537 Istanbul, Turkey
| | | | - Muhammad Shaiq Ali
- International Center of Chemical and Biological Sciences, University of Karachi, 75270 Karachi, Pakistan
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | - Khalid F Almutairi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | | | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Kothari M, Kannan K, Sahadevan R, Sadhukhan S. Novel molecular hybrids of EGCG and quinoxaline: Potent multi-targeting antidiabetic agents that inhibit α-glucosidase, α-amylase, and oxidative stress. Int J Biol Macromol 2024; 263:130175. [PMID: 38360242 DOI: 10.1016/j.ijbiomac.2024.130175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Diabetes mellitus is a multifactorial disease and its effective therapy often demands several drugs with different modes of action. Herein, we report a rational design and synthesis of multi-targeting novel molecular hybrids comprised of EGCG and quinoxaline derivatives that can effectively inhibit α-glucosidase, α-amylase as well as control oxidative stress by scavenging ROS. The hybrids showed superior inhibition of α-glucosidase along with similar α-amylase inhibition as compared to standard drug, acarbose. Most potent compound, 15c showed an IC50 of 0.50 μM (IC50 of acarbose 190 μM) against α-glucosidase. Kinetics studies with 15c revealed a competitive inhibition against α-glucosidase. Binding affinity of 15c (-9.5 kcal/mol) towards α-glucosidase was significantly higher than acarbose (-7.7 kcal/mol). 15c exhibited remarkably high antioxidant activity (IC50 = 18.84 μM), much better than vitamin C (IC50 = 33.04 μM). Of note, acarbose shows no antioxidant activity. Furthermore, α-amylase activity was effectively inhibited by 15c with an IC50 value of 16.35 μM. No cytotoxicity was observed for 15c (up to 40 μM) in MCF-7 cells. Taken together, we report a series of multi-targeting molecular hybrids capable of inhibiting carbohydrate hydrolysing enzymes as well as reducing oxidative stress, thus representing an advancement towards effective and novel therapeutic approaches for diabetes.
Collapse
Affiliation(s)
- Manan Kothari
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India
| | - Karthika Kannan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India
| | - Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India; Physical & Chemical Biology Laboratory and Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Kerala 678 623, India.
| |
Collapse
|
6
|
Yu X, Sui Y, Xi Y, Zhang Y, Luo G, Long Y, Yang W. Semisynthesis, Biological Evaluation and Molecular Docking Studies of Barbatic Acid Derivatives as Novel Diuretic Candidates. Molecules 2023; 28:molecules28104010. [PMID: 37241751 DOI: 10.3390/molecules28104010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Barbatic acid, a compound isolated from lichen, has demonstrated a variety of biological activities. In this study, a series of esters based on barbatic acid (6a-q') were designed, synthesized, and evaluated for their diuretic and litholytic activity at a concentration of 100 μmol/L in vitro. All target compounds were characterized using 1H NMR, 13C NMR, and HRMS, and the spatial structure of compound 6w was confirmed using X-ray crystallography. The biological results showed that some derivatives, including 6c, 6b', and 6f', exhibited potent diuretic activity, and 6j and 6m displayed promising litholytic activity. Molecular docking studies further suggested that 6b' had an optimal binding affinity to WNK1 kinases related to diuresis, while 6j could bind to the bicarbonate transporter CaSR through a variety of forces. These findings indicate that some barbatic acid derivatives could be further developed into novel diuretic agents.
Collapse
Affiliation(s)
- Xiang Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Guizhou Joint Laboratory for International Cooperation in Ethnic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yi Sui
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yinkai Xi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Guoyong Luo
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yi Long
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Wude Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Guizhou Joint Laboratory for International Cooperation in Ethnic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
7
|
Zhang LL, Chen Y, Li ZJ, Fan G, Li X. Production, Function, and Applications of the Sesquiterpenes Valencene and Nootkatone: a Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:121-142. [PMID: 36541855 DOI: 10.1021/acs.jafc.2c07543] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Valencene and nootkatone, two sesquiterpenes, extracted from natural sources, have great market potential with diverse applications. This paper aims to comprehensively review the recent advances in valencene and nootkatone, including source, production, physicochemical and biological properties, safety and pharmacokinetics evaluation, potential uses, and their industrial applications as well as future research directions. Microbial biosynthesis offers a promising alternative approach for sustainable production of valencene and nootkatone. Both compounds exert various beneficial activities, including antimicrobial, insecticidal, antioxidant, anti-inflammatory, anticancer, cardioprotective, neuroprotective, hepatoprotective, and nephroprotective and other activities. However, most of the studies are performed in animals and in vitro, making it difficult to give a conclusive description about their health benefits and extend their application. Hence, more attention should be paid to in vivo and long-term clinical studies in the future. Moreover, valencene and nootkatone are considered safe for consumption and show great promise in the applications of food, cosmetic, pharmaceutical, chemical, and agricultural industries.
Collapse
Affiliation(s)
- Lu-Lu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Yan Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Zhi-Jian Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
8
|
Chu J, Yang R, Cheng W, Cui L, Pan H, Liu J, Guo Y. Semisynthesis, biological activities, and mechanism studies of Mannich base analogues of magnolol/honokiol as potential α-glucosidase inhibitors. Bioorg Med Chem 2022; 75:117070. [PMID: 36327695 DOI: 10.1016/j.bmc.2022.117070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Magnolol and honokiol, derived from a Magnolia officinalis Rehd. et Wils, are a class of natural biphenolic lignans. Currently, the discovery of new α-glucosidase inhibitors from natural analogues is of interest. Here, four series of thirty new Mannich base analogues of magnolol/honokiol were prepared and evaluated for their α-glucosidase inhibitory activities. Among these Mannich base analogues of magnolol/honokiol, 3k and 3l exhibited more potent inhibitory effects on α-glucosidase than the reference drug acarbose, and their IC50 values were 14.94 ± 0.17 µM and 13.78 ± 1.42 µM, respectively. Some interesting structure-activity relationships (SARs) were also analyzed. The enzyme inhibition kinetics indicated that 3k and 3l were noncompetitive inhibitors. This result was in agreement with molecular docking studies, where the binding sites of 3k and 3l to α-glucosidase were different from that of the competitive inhibitor acarbose to α-glucosidase. Moverover, compounds 3k and 3l exhibited low toxicity to normal cells (LO2). Thus, analogues 3k and 3l could be deeply developed for the discovery of natural products based antidiabetic candidates.
Collapse
Affiliation(s)
- Junyan Chu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Ruige Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Wanqing Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Liping Cui
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Hanchen Pan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China.
| | - Yong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China.
| |
Collapse
|
9
|
Xu T, Meng JR, Cheng W, Liu JZ, Chu J, Zhang Q, Ma N, Bai LP, Guo Y. Discovery of honokiol thioethers containing 1,3,4-oxadiazole moieties as potential α-glucosidase and SARS-CoV-2 entry inhibitors. Bioorg Med Chem 2022; 67:116838. [PMID: 35617790 PMCID: PMC9123836 DOI: 10.1016/j.bmc.2022.116838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
Abstract
Honokiol, isolated from a traditional Chinese medicine (TCM) Magnolia officinalis, is a biphenolic compound with several biological activities. To improve and broaden its biological activity, herein, two series of honokiol thioethers bearing 1,3,4-oxadiazole moieties were prepared and assessed for their α-glucosidase and SARS-CoV-2 entry inhibitory activities. Among all the honokiol thioethers, compound 7l exhibited the strongest α-glucosidase inhibitory effect with an IC50 value of 18.9 ± 2.3 µM, which was superior to the reference drug acarbose (IC50 = 24.4 ± 0.3 µM). Some interesting results of structure–activity relationships (SARs) have also been discussed. Enzyme kinetic study demonstrated that 7l was a noncompetitive α-glucosidase inhibitor, which was further supported by the results of molecular docking. Moreover, honokiol thioethers 7e, 9a, 9e, and 9r exhibited potent antiviral activity against SARS-CoV-2 pseudovirus entering into HEK-293 T-ACE2h. Especially 9a displayed the strongest inhibitory activity against SARS-CoV-2 pseudovirus entry with an IC50 value of 16.96 ± 2.45 μM, which was lower than the positive control Evans blue (21.98 ± 1.98 μM). Biolayer interferometry (BLI) binding and docking studies suggested that 9a and 9r may effectively block the binding of SARS-CoV-2 to the host ACE2 receptor through dual recognition of SARS-CoV-2 spike RBD and human ACE2. Additionally, the potent honokiol thioethers 7l, 9a, and 9r displayed relatively no cytotoxicity to normal cells (LO2). These findings will provide a theoretical basis for the discovery of honokiol derivatives as potential both α-glucosidase and SARS-CoV-2 entry inhibitors.
Collapse
Affiliation(s)
- Ting Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau
| | - Jie-Ru Meng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau
| | - Wanqing Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Jia-Zheng Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau
| | - Junyan Chu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Qian Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Nannan Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau.
| | - Yong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China.
| |
Collapse
|
10
|
Nguyen YTK, To NB, Truong VNP, Kim HY, Ediriweera MK, Lim Y, Cho SK. Impairment of Glucose Metabolism and Suppression of Stemness in MCF-7/SC Human Breast Cancer Stem Cells by Nootkatone. Pharmaceutics 2022; 14:pharmaceutics14050906. [PMID: 35631492 PMCID: PMC9145028 DOI: 10.3390/pharmaceutics14050906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
Targeting cancer stem cell metabolism has emerged as a promising therapeutic strategy for cancer treatment. Breast cancer stem cells (BCSCs) exert distinct metabolism machinery, which plays a major role in radiation and multidrug resistance. Therefore, exploring the mechanisms involved in energy utilization of BCSCs could improve the effectiveness of therapeutic strategies aimed at their elimination. This study was conducted to clarify the glucose metabolism machinery and the function of nootkatone, a bioactive component of grapefruit, in regulating glucose metabolism and stemness characteristics in human breast carcinoma MCF-7 stem cells (MCF-7SCs). In vivo experiments, transcriptomic analysis, seahorse XF analysis, MTT assay, Western blotting, mammosphere formation, wound healing, invasion assay, flow cytometric analysis, reverse transcription-quantitative polymerase chain reaction, and in silico docking experiments were performed. MCF-7SCs showed a greater tumorigenic capacity and distinct gene profile with enrichment of the genes involved in stemness and glycolysis signaling pathways compared to parental MCF-7 cells, indicating that MCF-7SCs use glycolysis rather than oxidative phosphorylation (OXPHOS) for their energy supply. Nootkatone impaired glucose metabolism through AMPK activation and reduced the stemness characteristics of MCF-7SCs. In silico docking analysis demonstrated that nootkatone efficiently bound to the active site of AMPK. Therefore, this study indicates that regulation of glucose metabolism through AMPK activation could be an attractive target for BCSCs.
Collapse
Affiliation(s)
- Yen Thi-Kim Nguyen
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (Y.T.-K.N.); (N.B.T.); (V.N.-P.T.); (H.Y.K.)
| | - Ngoc Bao To
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (Y.T.-K.N.); (N.B.T.); (V.N.-P.T.); (H.Y.K.)
| | - Vi Nguyen-Phuong Truong
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (Y.T.-K.N.); (N.B.T.); (V.N.-P.T.); (H.Y.K.)
| | - Hee Young Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (Y.T.-K.N.); (N.B.T.); (V.N.-P.T.); (H.Y.K.)
| | - Meran Keshawa Ediriweera
- Subtropical—Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea;
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 00300, Sri Lanka
| | - Yoongho Lim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea;
| | - Somi Kim Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (Y.T.-K.N.); (N.B.T.); (V.N.-P.T.); (H.Y.K.)
- Subtropical—Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea;
- Correspondence: ; Tel.: +82-10-8660-1842
| |
Collapse
|
11
|
Xu Y, Zhang M, Yang W, Xia B, Wang W, Pan X. Nootkatone protects cartilage against degeneration in mice by inhibiting NF-κB signaling pathway. Int Immunopharmacol 2021; 100:108119. [PMID: 34492535 DOI: 10.1016/j.intimp.2021.108119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/31/2022]
Abstract
Osteoarthritis is a common chronic disease associated with chondrocyte inflammation and cartilage matrix hydrolyzation. Studies report that IL-1β plays a critical role in osteoarthritis. Anti-inflammatory effect of nootkatone has been explored in acute and chronic inflammatory disease, thus the current study sought to explore its therapeutic effect in osteoarthritis. Notably, the effect of nootkatone in osteoarthritis has not been elucidated. Therefore, murine primary chondrocytes were extracted and ACLT induced OA mouse model was established in the current study to explore the therapeutic effect of nootkatone in OA both in vitro and in vivo. The findings showed that nootkatone inhibited inflammatory response and protected cartilage balance in murine primary chondrocyte. Further analysis showed that nootkatone suppressed inflammation and protected cartilage against degeneration induced by ACLT surgery in mice. The cellular mechanism of the protective effect of nootkatone in osteoarthritis and associated signaling pathway was identified as the NF-κB signaling pathway. In summary, the findings of the current study indicated that nootkatone is a potential therapeutic agent for OA.
Collapse
Affiliation(s)
- Yue Xu
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pediatric Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Jinan, Shandong 250012, China
| | - Minfa Zhang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Wanliang Yang
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Bowei Xia
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenhan Wang
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xin Pan
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
12
|
Kasali FM, Kadima JN, Peter EL, Mtewa AG, Ajayi CO, Tusiimire J, Tolo CU, Ogwang PE, Weisheit A, Agaba AG. Antidiabetic Medicinal Plants Used in Democratic Republic of Congo: A Critical Review of Ethnopharmacology and Bioactivity Data. Front Pharmacol 2021; 12:757090. [PMID: 34776975 PMCID: PMC8579071 DOI: 10.3389/fphar.2021.757090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Several studies have been conducted and published on medicinal plants used to manage Diabetes Mellitus worldwide. It is of great interest to review available studies from a country or a region to resort to similarities/discrepancies and data quality. Here, we examined data related to ethnopharmacology and bioactivity of antidiabetic plants used in the Democratic Republic of Congo. Data were extracted from Google Scholar, Medline/PubMed, Scopus, ScienceDirect, the Wiley Online Library, Web of Science, and other documents focusing on ethnopharmacology, pharmacology, and phytochemistry antidiabetic plants used in the Democratic Republic of Congo from 2005 to September 2021. The Kew Botanic Royal Garden and Plants of the World Online web databases were consulted to verify the taxonomic information. CAMARADES checklist was used to assess the quality of animal studies and Jadad scores for clinical trials. In total, 213 plant species belonging to 72 botanical families were reported. Only one plant, Droogmansia munamensis, is typically native to the DRC flora; 117 species are growing in the DRC and neighboring countries; 31 species are either introduced from other regions, and 64 are not specified. Alongside the treatment of Diabetes, about 78.13% of plants have multiple therapeutic uses, depending on the study sites. Experimental studies explored the antidiabetic activity of 133 plants, mainly in mice, rats, guinea pigs, and rabbits. Several chemical classes of antidiabetic compounds isolated from 67 plant species have been documented. Rare phase II clinical trials have been conducted. Critical issues included poor quality methodological protocols, author name incorrectly written (16.16%) or absent (14.25%) or confused with a synonym (4.69%), family name revised (17.26%) or missing (1.10%), voucher number not available 336(92.05%), ecological information not reported (49.59%). Most plant species have been identified and authenticated (89.32%). Hundreds of plants are used to treat Diabetes by traditional healers in DRC. However, most plants are not exclusively native to the local flora and have multiple therapeutic uses. The analysis showed the scarcity or absence of high-quality, in-depth pharmacological studies. There is a need to conduct further studies of locally specific species to fill the gap before their introduction into the national pharmacopeia.
Collapse
Affiliation(s)
- Félicien Mushagalusa Kasali
- Pharm-Bio Technology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu, Democratic Republic of Congo
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Justin Ntokamunda Kadima
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu, Democratic Republic of Congo
- Department of Pharmacology, School of Medicine and Pharmacy, University of Rwanda, Huye, Rwanda
| | - Emanuel L. Peter
- Pharm-Bio Technology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Innovation, Technology Transfer and Commercialization, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Andrew G. Mtewa
- Pharm-Bio Technology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
- Chemistry Section, Department of Applied Studies, Institute of Technology, Malawi University of Science and Technology, Limbe, Malawi
| | - Clement Olusoji Ajayi
- Pharm-Bio Technology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jonans Tusiimire
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Casim Umba Tolo
- Pharm-Bio Technology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Patrick Engeu Ogwang
- Pharm-Bio Technology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Anke Weisheit
- Pharm-Bio Technology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Amon Ganafa Agaba
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|