1
|
Derakhshandeh N, Nazifi S, Mogheiseh A, Divar MR, Dadvand Z, Karimizadeh MS, Zeidabadi M. Oral nicotinic acid administration effect on lipids, thyroid hormones, and oxidative stress in intact adult dogs. BMC Vet Res 2025; 21:142. [PMID: 40038732 PMCID: PMC11881314 DOI: 10.1186/s12917-025-04597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/11/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Nicotinic acid (niacin, Vitamin B3) is one of the most effective medicines for improving high-density lipoprotein concentrations. Obesity and related diseases are life-threatening to dogs. This study investigated the niacin effect on triglyceride, cholesterol, lipoproteins, thyroid hormones, oxidative stress, and lipid peroxidation in intact adult dogs. Blood samples were taken from seven healthy, intact adult dogs as a control group (day 0). Then, the animals received 1000 mg/dog of oral nicotinic acid tab daily for 42 days, and blood sampling was performed on days 14, 28, 42, and 56. RESULT The results showed an increasing trend in high-density lipoprotein (HDL) concentration. The highest HDL concentration (138.85 ± 43.72 mg/dl) was related to day 56; the HDL level followed a statistically significant increase between day 14 and 56. Unlike HDL, there was a decreasing trend in low-density lipoprotein (LDL) concentration. The lowest LDL concentration (21.85 ± 18.60 mg/dl) was related to day 56. The concentration of apolipoprotein A-I (apoA1) was significantly increased during the study. The highest concentration of apoA1 (1.66 ± 0.06 g/l) was on day 42. There was a significant increase in apoA1 concentrations between days 0 and 14, 42, and 56. The apoA1 was significantly increased between days 14 and 42 and 56. The apoA1 followed a statistically significant increase between days 28 and 42. Changes in thyroid hormone levels did not show any constant increasing or decreasing trend. On day 14, a decreasing trend in the concentrations of TT4, FT4, and T3 was observed. However, an increasing trend was detected in the concentrations of TT4, FT4, and T3 on days 28 and 42. However, the increase in the concentrations of TT4 and FT4 was less than that on day 0. After treatment (day 56), a decreasing trend was observed in thyroid hormone concentrations. The negative correlation was detected between apoA1 and triiodothyronine (T3), total thyroxine T4 (TT4)), and free T4 (FT4) concentrations on day 42. Furthermore, a significant negative relationship was observed between HDL and T4 on day 42. However, the relationship between triglyceride and T3 was statistically positive on day 14. There was an increasing trend in serum total antioxidant capacity (TAC). The highest TAC concentration (3.83 ± 0.62 µmol /l) was on day 56; however, the malondialdehyde (MDA) concentration was decreased during the study. The total antioxidant level followed a statistically significant increase between days 0 and 56 compared to days 14 and 42. CONCLUSION The study demonstrated the efficacy of nicotinic acid in improving serum HDL, apoA1, and TAC, as well as decreasing serum MDA and LDL concentrations.
Collapse
Affiliation(s)
- Nooshin Derakhshandeh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O.Box: 7144169115, Shiraz, Fars, Iran.
| | - Saeed Nazifi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O.Box: 7144169115, Shiraz, Fars, Iran
| | - Asghar Mogheiseh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O.Box: 7144169115, Shiraz, Fars, Iran
| | - Mohammad Reza Divar
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O.Box: 7144169115, Shiraz, Fars, Iran
| | - Zahra Dadvand
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O.Box: 7144169115, Shiraz, Fars, Iran
| | - Mohammad Sadegh Karimizadeh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O.Box: 7144169115, Shiraz, Fars, Iran
| | - Mahboobeh Zeidabadi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O.Box: 7144169115, Shiraz, Fars, Iran
| |
Collapse
|
2
|
Galanty A, Prochownik E, Grudzińska M, Paśko P. Chickpea Sprouts as a Potential Dietary Support in Different Prostate Disorders-A Preliminary In Vitro Study. Molecules 2024; 29:1044. [PMID: 38474555 DOI: 10.3390/molecules29051044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Prostate cancer (PC) and benign prostatic hyperplasia (BPH) are common health problems in the aging male population. Due to the unexplored and unconfirmed impact of food containing isoflavones, like sprouts, on the development of the management of BPH and prostate cancer, we decided to extend the knowledge in this area. RESULTS We have demonstrated for the first time that chickpea sprouts may play an important role in the chemoprevention of prostate disorders. However, attention should be paid to the isoflavone content in the sprouts, as in our study, chickpea sprouts with a moderate concentration of the compounds, harvested in natural light conditions (CA10L) and blue LED light (CA7B), showed the best scores in terms of their potential towards prostate disorders. METHODS Chickpea seeds were grown in LED chambers. The methanol extracts from sprouts were quantitatively defined using the HPLC system. Experiments such as the determination of PSA, 5-α-reductase, and dihydrotestosterone were performed on PNT2 and LNCaP cells. For anti-inflammatory assays (determination of NO, IL-6, and TNF-alpha release), murine RAW264.7 macrophages were used. CONCLUSIONS The role of legume products as a diet element should be deeply evaluated for the development of future dietary recommendations for prostate cancer and BPH prevention.
Collapse
Affiliation(s)
- Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Ewelina Prochownik
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Marta Grudzińska
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza Str., 31-530 Cracow, Poland
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
3
|
Nazari-Serenjeh M, Baluchnejadmojarad T, Hatami-Morassa M, Fahanik-Babaei J, Mehrabi S, Tashakori-Miyanroudi M, Ramazi S, Mohamadi-Zarch SM, Nourabadi D, Roghani M. Kolaviron neuroprotective effect against okadaic acid-provoked cognitive impairment. Heliyon 2024; 10:e25564. [PMID: 38356522 PMCID: PMC10864987 DOI: 10.1016/j.heliyon.2024.e25564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/25/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is acknowledged as the main causative factor of dementia that affects millions of people around the world and is increasing at increasing pace. Okadaic acid (OA) is a toxic compound with ability to inhibit protein phosphatases and to induce tau protein hyperphosphorylation and Alzheimer's-like phenotype. Kolaviron (KV) is a bioflavonoid derived from Garcinia kola seeds with anti-antioxidative and anti-inflammation properties. The main goal of this study was to assess whether kolaviron can exert neuroprotective effect against okadaic acid-induced cognitive deficit. Rats had an intracerebroventricular (ICV) injection of OA and pretreated with KV at 50 or 100 mg/kg and examined for cognition besides histological and biochemical factors. OA group treated with KV at 100 mg/kg had less memory deficit in passive avoidance and novel object discrimination (NOD) tasks besides lower hippocampal levels of caspases 1 and 3, tumor necrosis factor α (TNFα) and interleukin 6 (IL-6) as inflammatory factors, reactive oxygen species (ROS), protein carbonyl, malondialdehyde (MDA), and phosphorylated tau (p-tau) and higher level of acetylcholinesterase (AChE) activity, mitochondrial integrity index, superoxide dismutase (SOD), and glutathione (GSH). Moreover, KV pretreatment at 100 mg/kg attenuated hippocampal CA1 neuronal loss and glial fibrillary acidic protein (GFAP) reactivity as a factor of astrogliosis. In summary, KV was able to attenuate cognitive fall subsequent to ICV OA which is partly mediated through its neuroprotective potential linked to mitigation of tau hyperphosphorylation, apoptosis, pyroptosis, neuroinflammation, and oxidative stress and also improvement of mitochondrial health.
Collapse
Affiliation(s)
- Morteza Nazari-Serenjeh
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Masoud Hatami-Morassa
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Tashakori-Miyanroudi
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samira Ramazi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed-Mahdi Mohamadi-Zarch
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Davood Nourabadi
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
4
|
Tauchen J, Frankova A, Manourova A, Valterova I, Lojka B, Leuner O. Garcinia kola: a critical review on chemistry and pharmacology of an important West African medicinal plant. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023:1-47. [PMID: 37359709 PMCID: PMC10205037 DOI: 10.1007/s11101-023-09869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/03/2023] [Indexed: 06/28/2023]
Abstract
Garcinia kola Heckel (Clusiaceae) is a tree indigenous to West and Central Africa. All plant parts, but especially the seeds, are of value in local folklore medicine. Garcinia kola is used in treatment of numerous diseases, including gastric disorders, bronchial diseases, fever, malaria and is used to induce a stimulating and aphrodisiac effect. The plant is now attracting considerable interest as a possible source of pharmaceutically important drugs. Several different classes of compounds such as biflavonoids, benzophenones, benzofurans, benzopyran, vitamin E derivatives, xanthones, and phytosterols, have been isolated from G. kola, of which many appears to be found only in this species, such as garcinianin (found in seeds and roots), kolanone (fruit pulp, seeds, roots), gakolanone (stem bark), garcinoic acid, garcinal (both in seeds), garcifuran A and B, and garcipyran (all in roots). They showed a wide range of pharmacological activities (e.g. analgesic, anticancer, antidiabetic, anti-inflammatory, antimalarial, antimicrobial, hepatoprotective and neuroprotective effects), though this has only been confirmed in animal models. Kolaviron is the most studied compound and is perceived by many studies as the active principle of G. kola. However, its research is associated with significant flaws (e.g. too high doses tested, inappropriate positive control). Garcinol has been tested under better conditions and is perhaps showing more promising results and should attract deeper research interest (especially in the area of anticancer, antimicrobial, and neuroprotective activity). Human clinical trials and mechanism-of-action studies must be carried out to verify whether any of the compounds present in G. kola may be used as a lead in the drug development.
Collapse
Affiliation(s)
- Jan Tauchen
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Adela Frankova
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Anna Manourova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Irena Valterova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Bohdan Lojka
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Buț MG, Jîtcă G, Imre S, Vari CE, Ősz BE, Jîtcă CM, Tero-Vescan A. The Lack of Standardization and Pharmacological Effect Limits the Potential Clinical Usefulness of Phytosterols in Benign Prostatic Hyperplasia. PLANTS (BASEL, SWITZERLAND) 2023; 12:1722. [PMID: 37111945 PMCID: PMC10142909 DOI: 10.3390/plants12081722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
The prevalence of benign prostatic hyperplasia (BPH) markedly increases with age. Phytotherapeutic approaches have been developed over time owing to the adverse side effects of conventional medications such as 5-reductase inhibitors and α1-adrenergic receptor antagonists. Therefore, dietary supplements (DS) containing active compounds that benefit BPH are widely available. Phytosterols (PSs) are well recognized for their role in maintaining blood cholesterol levels; however, their potential in BPH treatment remains unexplored. This review aims to provide a general overview of the available data regarding the clinical evidence and a good understanding of the detailed pharmacological roles of PSs-induced activities at a molecular level in BPH. Furthermore, we will explore the authenticity of PSs content in DS used by patients with BPH compared to the current legislation and appropriate analytical methods for tracking DS containing PSs. The results showed that PSs might be a useful pharmacological treatment option for men with mild to moderate BPH, but the lack of standardized extracts linked with the regulation of DS containing PSs and experimental evidence to elucidate the mechanisms of action limit the use of PSs in BPH. Moreover, the results suggest multiple research directions in this field.
Collapse
Affiliation(s)
- Mădălina-Georgiana Buț
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (M.-G.B.); (C.-M.J.)
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania;
| | - George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (C.E.V.); (B.E.Ő.)
| | - Silvia Imre
- Department of Analytical Chemistry and Drug Analysis, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania;
| | - Camil Eugen Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (C.E.V.); (B.E.Ő.)
| | - Bianca Eugenia Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (C.E.V.); (B.E.Ő.)
| | - Carmen-Maria Jîtcă
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (M.-G.B.); (C.-M.J.)
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania;
| |
Collapse
|
6
|
Farombi EO, Ajayi BO, Opata EK, Fafioye AO, Akinade AT. Kolaviron modulates angiogenesis, apoptosis and inflammatory signaling in rat model of testosterone propionate-induced benign prostate hyperplasia. Inflammopharmacology 2023:10.1007/s10787-023-01171-7. [PMID: 36881348 DOI: 10.1007/s10787-023-01171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/19/2023] [Indexed: 03/08/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a non-malignant disease of the prostate characterized by uncontrolled proliferation of the prostate gland. Inflammation and oxidative stress have been reported to play a role in the development of BPH. Kolaviron, a bioflavonoid complex of Garcinia kola seed, has been shown to possess anti-inflammatory effect. In this study, we investigated the effect of Kolaviron on testosterone propionate (TP)-induced BPH in rats. Fifty male rats were assigned in 5 groups. Groups 1 and 2 were orally exposed to corn oil (2 ml/kg) and Kolaviron (200 mg/kg/day, p.o) for 28 days. Group 3 rats received TP (3 mg/kg/day, s.c) for 14 days while Groups 4 and 6 were treated with Kolaviron (200 mg/kg/day, p.o) and Finasteride (5 mg/kg/day, p.o), respectively, for 14 days prior to TP (3 mg/kg, s.c) co-exposure for the remaining 14 days. Administration of Kolaviron to TP-treated rats reverted histological alteration and significantly decreased prostate weight, prostate index, 5α-reductase, dihydrotestosterone, androgen receptor expression, tumor necrosis factor α, interleukin-1β, cyclooxygenase-2, prostaglandin E2, 5-lipoxygenase leukotriene B4, inducible nitric oxide synthase and nitric oxide concentration. In addition, Kolaviron alleviated TP-induced oxidative stress and reduced the expression of Ki-67, VEGF, and FGF to almost control levels. Furthermore, Kolaviron promoted apoptosis in TP-treated rats through downregulation of BCL-2 and upregulation of P53 and Caspase 3 expressions. Overall, Kolaviron prevented BPH via regulation of androgen/androgen receptor signaling, anti-oxidative and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Ebenezer O Farombi
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Babajide O Ajayi
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Edward K Opata
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Abisoye O Fafioye
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adetomilola T Akinade
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
7
|
Naiyila X, Li J, Huang Y, Chen B, Zhu M, Li J, Chen Z, Yang L, Ai J, Wei Q, Liu L, Cao D. A Novel Insight into the Immune-Related Interaction of Inflammatory Cytokines in Benign Prostatic Hyperplasia. J Clin Med 2023; 12:jcm12051821. [PMID: 36902608 PMCID: PMC10003138 DOI: 10.3390/jcm12051821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/26/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common male condition that impacts many men's quality of life by generating lower urinary tract symptoms (LUTS). In recent years, inflammation has become very common in the prostate, and BPH with inflammation has a higher International Prostate Symptom Score (IPSS) score and an enlarged prostate. Chronic inflammation leads to tissue damage and the release of pro-inflammatory cytokines, which play an important role in the pathogenesis of BPH. We will focus on current advancements in pro-inflammatory cytokines in BPH, as well as the future of pro-inflammatory cytokine research.
Collapse
Affiliation(s)
- Xiaokaiti Naiyila
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Jinze Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Yin Huang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Bo Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Mengli Zhu
- Research Core Facility, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Zeyu Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liangren Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (L.L.); (D.C.); Tel./Fax: +86-28-8542-2451 (L.L. & D.C.)
| | - Dehong Cao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (L.L.); (D.C.); Tel./Fax: +86-28-8542-2451 (L.L. & D.C.)
| |
Collapse
|
8
|
Immune System and Epidemics: The Role of African Indigenous Bioactive Substances. Nutrients 2023; 15:nu15020273. [PMID: 36678143 PMCID: PMC9864875 DOI: 10.3390/nu15020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
With over 6 million coronavirus pandemic deaths, the African continent reported the lowest death rate despite having a high disease burden. The African community's resilience to the pandemic has been attributed to climate and weather conditions, herd immunity, repeated exposure to infectious organisms that help stimulate the immune system, and a disproportionately large youth population. In addition, functional foods, herbal remedies, and dietary supplements contain micronutrients and bioactive compounds that can help boost the immune system. This review identified significant traditional fermented foods and herbal remedies available within the African continent with the potential to boost the immune system in epidemics and pandemics. Methodology: Databases, such as PubMed, the Web of Science, and Scopus, were searched using relevant search terms to identify traditional African fermented foods and medicinal plants with immune-boosting or antiviral capabilities. Cereal-based fermented foods, meat-, and fish-based fermented foods, and dairy-based fermented foods containing antioxidants, immunomodulatory effects, probiotics, vitamins, and peptides were identified and discussed. In addition, nine herbal remedies and spices belonging to eight plant families have antioxidant, immunomodulatory, anti-inflammatory, neuroprotective, hepatoprotective, cardioprotective, and antiviral properties. Peptides, flavonoids, alkaloids, sterols, ascorbic acid, minerals, vitamins, and saponins are some of the bioactive compounds in the remedies. Bioactive compounds in food and plants significantly support the immune system and help increase resistance against infectious diseases. The variety of food and medicinal plants found on the African continent could play an essential role in providing community resilience against infectious diseases during epidemics and pandemics. The African continent should investigate nutritional, herbal, and environmental factors that support healthy living and longevity.
Collapse
|
9
|
Eleazu K, Maduabuchi Aja P, Eleazu CO. Cocoyam ( Colocasia esculenta) modulates some parameters of testosterone propionate-induced rat model of benign prostatic hyperplasia. Drug Chem Toxicol 2022; 45:1923-1933. [PMID: 33641553 DOI: 10.1080/01480545.2021.1892956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The increased global prevalence of benign prostatic hyperplasia (BPH) and the promising potentials of functional foods in ameliorating it led to this study which reported the effect of aqueous ethanol extract of cocoyam (Colocasia esculenta) tuber on some biochemical indices in testosterone propionate (TP) induced benign prostatic hyperplasia (BPH) rats. Thirty male albino rats were randomly assigned into 6 groups of 5 rats each. Group 1 (negative control) received 3 mg/kg of TP and normal saline, group 2 (positive control) received 3 mg/kg of TP and 5 mg/kg of finasteride; groups 3, 4, and 6 rats received 3 mg/kg of TP and 100, 200 and 400 mg/kg of ethanol extracts of cocoyam respectively while group 5 (normal control) received olive oil + normal saline. The study lasted for 28 days. The negative control had increased prostate weight (p < 0.05), decreased body weight gain, prostatic superoxide dismutase, catalase and glutathione concentrations; no differences (p > 0.05) in the serum total cholesterol, triacylglycerol, Very Low Density Lipoprotein, High Density Lipoprotein, Low Density Lipoprotein concentration but increased (p < 0.05) prostate levels of interleukin 10, prostate specific antigen, testosterone, total proteins and malondialdehyde relative to the normal control. Finasteride or the C. esculenta tuber extract modulated most of these parameters as corroborated by histology of the prostate. The percentage yield of the C. esculenta tuber extract was 1.56% and 23 phenolic compounds were characterized in the tuber. The study showed the potentials of C. esculenta tuber in the management of BPH.
Collapse
Affiliation(s)
- Kate Eleazu
- Department of Biochemistry, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria
| | | | - Chinedum Ogbonnaya Eleazu
- Department of Chemistry, Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| |
Collapse
|
10
|
Eleazu C, Suleiman JB, Othman ZA, Zakaria Z, Nna VU, Hussain NHN, Mohamed M. Bee bread attenuates high fat diet induced renal pathology in obese rats via modulation of oxidative stress, downregulation of NF-kB mediated inflammation and Bax signalling. Arch Physiol Biochem 2022; 128:1088-1104. [PMID: 32319823 DOI: 10.1080/13813455.2020.1752258] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/21/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
CONTEXT Global prevalence of obesity is increasing. OBJECTIVE To study the effect of bee bread (BB) on serum renal function parameters, oxidative stress, inflammatory and B-cell associated protein X (Bax) in the kidneys of high fat diet (HFD) obese rats. METHODS Thirty-six male Sprague Dawley rats were used. Control: received rat diet and water (1 mL/kg); HFD group: received HFD and water (1 mL/kg): bee bread (BB) preventive or orlistat preventive: received HFD and BB (0.5 g/kg) or HFD and orlistat (10 mg/kg); BB or orlistat treatment: received BB (0.5 g/kg) or orlistat (10 mg/kg). RESULTS HFD group had increased body weight, Body Mass Index, Lee Obesity Indices, kidney weights, malondialdehyde, inflammatory markers, Bax; decreased glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, total antioxidant activity, no differences (p > .05) in food intakes, serum creatinine, sodium, potassium, chloride, catalase compared to control. CONCLUSION BB modulated most of these parameters, as corroborated by histology.
Collapse
Affiliation(s)
- Chinedum Eleazu
- Department of Chemistry, Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Joseph Bagi Suleiman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Department of Science Laboratory Technology, Akanu Ibiam Federal Polytechnic, Unwana, Ebonyi State, Nigeria
| | - Zaidatul Akmal Othman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Terengganu, Malaysia
| | - Zaida Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Victor Udo Nna
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Nik Hazlina Nik Hussain
- Women's Health Development Unit, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
11
|
Anyanwu-Azuka SI, Aloh GS, Kalu WO, Eleazu C. Phytochemical screening and evaluation of the anti-diarrhoea properties of Diodia sarmentosa leaves in castor oil-induced diarrhoea in albino rats. NUTRITION & FOOD SCIENCE 2022; 52:255-269. [DOI: 10.1108/nfs-03-2021-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose
This study aims to report the phytochemical screening and anti-diarrhoea properties of methanol extract of Diodia sarmentosa Swartz (DSS) leave (at 200, 400 and 600 mg/kg) in albino rats.
Design/methodology/approach
Three types of diarrhoea models (castor oil-induced diarrhoea, castor oil-induced gastrointestinal motility and castor oil-induced enteropooling), as well as an assay for serum and faecal electrolyte concentrations, were used. Acute toxicity study and phytochemical screening of the extract were carried out using standard techniques.
Findings
The percentage inhibition of diarrhoea by DSS 200, 400 and 600 mg/kg was obtained as 25.7%, 55% and 84.6%, respectively, compared with loperamide that had 87.6% inhibition. DSS dose dependently modulated the number and frequency of defecation, the weight of the faeces of the diarrhoea rats, the distance that was travelled by charcoal meal, mean differences in the full lengths of the intestines and the distance travelled by charcoal meal, weight and volume of intestinal contents, serum and faecal concentrations of potassium, sodium, chloride, magnesium, bicarbonate, iron and zinc relative to the negative control and in a manner akin to loperamide (for the extract at 600 mg/kg). DSS or loperamide attenuated the loss of calcium in the faeces of the rats. DSS possesses anti-diarrhoea properties, which may be attributed to the phytochemicals in it. Finally, the study showed the safety in the usage of DSS.
Originality/value
DSS exerted its anti-diarrhoea action in castor oil-induced diarrhoea rats, by modulating their intestinal secretory and motile activity in a manner akin to loperamide (for DSS at 600 mg/kg).
Collapse
|
12
|
Alrazi IMD, Ogunwa TH, Kolawole AO, Elekofehinti OO, Omotuyi OI, Miyanishi T, Maruta S. Kolaflavanone, a biflavonoid derived from medicinal plant Garcinia, is an inhibitor of mitotic kinesin Eg5. J Biochem 2021; 170:611-622. [PMID: 34264310 DOI: 10.1093/jb/mvab083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/05/2021] [Indexed: 11/14/2022] Open
Abstract
Mitotic kinesin Eg5 remains a validated target in antimitotic therapy because of its essential role in the formation and maintenance of bipolar mitotic spindles. Although numerous Eg5 inhibitors of synthetic origin are known, only a few inhibitors derived from natural products have been reported. In our study, we focused on identifying novel Eg5 inhibitors from medicinal plants, particularly Garcinia species. Herein, we report the inhibitory effect of kolaflavanone (KLF), a Garcinia biflavonoid, on the ATPase and microtubule-gliding activities of mitotic kinesin Eg5. Additionally, we showed the interaction mechanism between Eg5 and KLF via in vitro and in silico analyses. The results revealed that KLF inhibited both the basal and microtubule-activated ATPase activities of Eg5. The inhibitory mechanism is allosteric, without a direct competition with adenosine-5'-diphosphate for the nucleotide-binding site. KLF also suppressed the microtubule gliding of Eg5 in vitro. The Eg5-KLF model obtained from molecular docking showed that the biflavonoid exists within the α2/α3/L5 (α2: Lys111-Glu116 and Ile135-Asp149, α3: Asn206-Thr226; L5: Gly117-Gly134) pocket, with a binding pose comparable to known Eg5 inhibitors. Overall, our data suggest that KLF is a novel allosteric inhibitor of mitotic kinesin Eg5.
Collapse
Affiliation(s)
- Islam M D Alrazi
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Tomisin H Ogunwa
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Ayodele O Kolawole
- Department of Biochemistry, The Federal University of Technology, Akure, Ondo State, PMB 704, Nigeria
| | - Olusola O Elekofehinti
- Department of Biochemistry, The Federal University of Technology, Akure, Ondo State, PMB 704, Nigeria
| | - Olaposi I Omotuyi
- Centre for Biocomputing and Drug Design, Biochemistry Department, Adekunle Ajasin University, Akungba-Akoko, Ondo State, PMB 001, Nigeria
| | - Takayuki Miyanishi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Shinsaku Maruta
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
13
|
Salau VF, Erukainure OL, Bharuth V, Ibeji CU, Olasehinde TA, Islam MS. Kolaviron stimulates glucose uptake with concomitant modulation of metabolic activities implicated in neurodegeneration in isolated rat brain, without perturbation of tissue ultrastructural morphology. Neurosci Res 2021; 169:57-68. [PMID: 32645363 DOI: 10.1016/j.neures.2020.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Reduced glucose uptake usually occurs in type 2 diabetes due to down-regulation of brain glucose transporters. The potential of kolaviron, a biflavonoid from Garcinia kola to stimulate glucose uptake and suppress glucose-induced oxidative toxicity were investigated in rat brain. Its molecular interactions with the target proteins were investigated in silico. Kolaviron was incubated with excised rat brain in the presence of glucose for 2 h, with metformin serving as a positive control. Kolaviron caused a significant (p < 0.05) increase in glucose uptake, glutathione level, superoxide dismutase, catalase, ATPase, ENTPDase and 5'-nucleotidase activities, while concomitantly depleting malondialdehyde level, acetylcholinesterase and butyrylcholinesterase activities compared to brains incubated with glucose only. Electron microscopy (SEM and TEM) analysis revealed kolaviron had little or no effect on the ultrastructural morphology of brain tissues as evidenced by the intact dendritic and neuronal network, blood vessels, mitochondria, synaptic vesicles, and pre-synaptic membrane. SEM-EDX analysis revealed a restorative effect of glucose-induced alteration in brain elemental concentrations, with total depletion of aluminum and zinc. MTT analysis revealed kolaviron had no cytotoxic effect on HT-22 cells. Molecular docking revealed a potent interaction between kolaviron and catalase at the SER114 and MET350 residues, with a binding energy of 12 kcal/mol. Taken together, these results portray the potential of kolaviron to stimulate glucose uptake while concomitantly coffering a neuroprotective effect.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa; Department of Biochemistry, Veritas University, Bwari, Abuja, Nigeria
| | - Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa; Department of Pharmacology, University of the Free State, Bloemfontein, 9300, South Africa
| | - Vishal Bharuth
- Microscopy and Microanalysis Unit, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Collins U Ibeji
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Tosin A Olasehinde
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape 5700, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.
| |
Collapse
|
14
|
Quintal Martínez JP, Segura Campos MR. Cnidoscolus Aconitifolius (Mill.) I.M. Johnst.: A Food Proposal Against Thromboembolic Diseases. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Adeleye OA, Femi-Oyewo MN, Bamiro OA, Bakre LG, Alabi A, Ashidi JS, Balogun-Agbaje OA, Hassan OM, Fakoya G. Ethnomedicinal herbs in African traditional medicine with potential activity for the prevention, treatment, and management of coronavirus disease 2019. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:72. [PMID: 33778086 PMCID: PMC7980728 DOI: 10.1186/s43094-021-00223-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ethnomedicine, a study of traditional medicine, is significant in drug discovery and development. African traditional medicine has been in existence for several thousands of years, and several drugs have been discovered and developed from it. MAIN TEXT The deadly coronavirus disease 2019 (COVID-19) caused by a novel coronavirus known as SARS-CoV-2 has widely spread globally with high mortality and morbidity. Its prevention, treatment and management still pose a serious challenge. A drug for the cure of this disease is yet to be developed. The clinical management at present is based on symptomatic treatment as presented by individuals infected and this is by combination of more than two drugs such as antioxidants, anti-inflammatory, anti-pyretic, and anti-microbials. Literature search was performed through electronic searches of PubMed, Google Scholar, and several research reports including WHO technical documents and monographs. CONCLUSION Drug discovery from herbs is essential and should be exploited for the discovery of drugs for the management of COVID-19. This review is aimed at identifying ethnomedicinal herbs available in Africa that could be used for the discovery and development of a drug for the prevention, treatment, and management of the novel coronavirus disease 2019.
Collapse
Affiliation(s)
- Olutayo Ademola Adeleye
- Department of Pharmaceutics and Pharmaceutical Technology, Federal University Oye Ekiti, Oye-Ekiti, Ekiti State Nigeria
| | - Mbang Nyong Femi-Oyewo
- Department of Pharmaceutics and Pharmaceutical Technology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | - Oluyemisi Adebowale Bamiro
- Department of Pharmaceutics and Pharmaceutical Technology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | - Lateef Gbenga Bakre
- Department of Pharmaceutics and Pharmaceutical Technology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | - Akinyinka Alabi
- Department of Pharmacology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | - Joseph Senu Ashidi
- Department of Plant Science, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | | | - Oluwakemi Mary Hassan
- Department of Pharmaceutical Microbiology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | - Gbemisola Fakoya
- Department of Pharmacology, University of Lagos, Lagos, Lagos State Nigeria
| |
Collapse
|
16
|
Ogbu PN, Ugota EO, Onwuka RU, Ogbu IM, Aloke C. Effect of acetogenin fraction of Annona muricata leaves on antioxidant status and some indices of benign prostatic hyperplasia in rats. Redox Rep 2020; 25:80-86. [PMID: 32878595 PMCID: PMC7733915 DOI: 10.1080/13510002.2020.1804711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objectives: This work investigated the effect of acetogenin-rich fraction of Annona muricata leaves (AFAL) on antioxidant status and some markers of benign prostatic hyperplasia (BPH) in rats. Methods: BPH was experimentally induced in the rats by subcutaneous injection of testosterone propionate (TP, 3 mg/kg) for 28 consecutive days. The rats were administered orally different doses of AFAL (100 and 200 mg/kg) for 7 days. Prostate-specific antigen (PSA), prostate weight, relative prostate weight, prostate protein content and oxidative stress indices of the rats were evaluated. Results: It was observed that 200 mg/kg AFAL significantly reduced the PSA level, mean prostate weights and mean relative prostate weights of the test rats compared to the TP group, and the values were not significantly different from the normal control and group treated with a standard drug. The plant extract also significantly enhanced the antioxidant capacity of the test rats which were evidently compromised in the group that received the exogenous hormone alone. Histopathology of the prostate showed a marked recovery for the test rats after treatment with AFAL. Conclusion: Oral administration of acetogenin-rich fraction of Annona muricata leaves ameliorated TP-induced BPH in rats and significantly enhanced the antioxidant capacity of the rats.
Collapse
Affiliation(s)
- Patience N Ogbu
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ikwo, Nigeria
| | - Evelyn O Ugota
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ikwo, Nigeria
| | - Rita U Onwuka
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ikwo, Nigeria
| | - Ikechukwu M Ogbu
- Department of Chemistry/Biochemistry, Faculty of Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ikwo, Nigeria
| | - Chinyere Aloke
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ikwo, Nigeria
| |
Collapse
|
17
|
Yang T, Huang Y, Zhou Y, Chen S, Wang H, Hu Y, Liu J, Jiang Z, Lu Q, Yin X. Simultaneous quantification of oestrogens and androgens in the serum of patients with benign prostatic hyperplasia by liquid chromatography-Tandem mass spectrometry. Andrologia 2020; 52:e13611. [PMID: 32441855 DOI: 10.1111/and.13611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Benign prostate hyperplasia (BPH) is a common disease in elderly men. It has been found that the occurrence of BPH was closely related to dysregulated steroid hormones. Here, a rapid, sensitive, accurate and specific method for the quantitative profiling of five androgens in man serum was developed and validated by the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS). Using this method, dehydroepiandrosterone (DHEA), androstenedione (A4), testosterone (T), androsterone (A), dihydrotestosterone (DHT), oestrone (E1) and oestradiol (E2) were quantified in serum from man with and without BPH. BPH patients were characterised by the decreases in DHEA, A4 and T as well as increases in DHT, E2 and E1 in serum. Meanwhile, DHEA and DHT in serum were screened as sensitive biomarkers of BPH patients. This study will provide a new perspective of dysregulated steroid hormones for the diagnosis and prevention of BPH.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuhan Huang
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yi Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Shangxiu Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Haiyan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yinlu Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Junjie Liu
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
18
|
Dearakhshandeh N, Mogheiseh A, Nazifi S, Ahrari Khafi MS, Abbaszadeh Hasiri M, Golchin-Rad K. Changes in the oxidative stress factors and inflammatory proteins following the treatment of BPH-induced dogs with an anti-proliferative agent called tadalafil. J Vet Pharmacol Ther 2019; 42:665-672. [PMID: 31410874 DOI: 10.1111/jvp.12805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/11/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Finding a medical treatment which can combat cell proliferation and relax smooth muscles in canine benign prostatic hyperplasia (BPH) appears to be imperative. AIMS This study aimed to evaluate the oxidative stress and inflammatory proteins following the treatment of dogs induced for BPH with an anti-proliferative agent called tadalafil. MATERIALS AND METHODS Twenty-five adult intact male dogs were randomly designated into five groups (n = 5): Control group was not induced for BPH and not treated with tadalafil; dogs induced for BPH by testosterone enanthate and estradiol benzoate and treated with tadalafil (5 mg/day P.O.); dogs which received tadalafil (5 mg/day P.O.); dogs induced for BPH and treated with castration; and dogs induced for BPH. Oxidative stress factors (glutathione peroxidase [GPX], superoxide dismutase [SOD], catalase) and inflammatory proteins (haptoglobin, serum amyloid A [SAA], malondialdehyde [MDA]) were measured in the blood serum for four sequential weeks. RESULTS Glutathione peroxidase and SOD serum levels declined in dogs in the BPH-induced group compared to those in the control group. Those levels diminished in BPH-induced castrated and tadalafil-treated groups. The changes in the GPX and SOD serum concentrations were not significant between the BPH-induced castrated group and BPH-induced tadalafil-treated group. Moreover, MDA concentration increased slightly in groups with BPH and groups which were castrated. Generally, however, there were no significant differences in the MDA serum concentrations between other groups. Haptoglobin and SAA concentrations increased in BPH-castrated group. Also, the differences in haptoglobin and SAA were not significant between the groups. CONCLUSION Tadalafil could not control oxidative stress and inflammatory mediators which happened during BPH in dogs.
Collapse
Affiliation(s)
- Nooshin Dearakhshandeh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Fars, Iran
| | - Asghar Mogheiseh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Fars, Iran
| | - Saeed Nazifi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Fars, Iran
| | | | | | - Kamran Golchin-Rad
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Fars, Iran
| |
Collapse
|
19
|
Medicinal Potential, Utilization and Domestication Status of Bitter Kola (Garcinia kola Heckel) in West and Central Africa. FORESTS 2019. [DOI: 10.3390/f10020124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Garcinia kola Heckel (Clusiaceae), known as bitter kola, is a multipurpose tree indigenous to West and Central Africa. This highly preferred species is called “wonder plant” because all of its parts can be used as medicine. Its seeds, the most valued product of the tree, are commonly eaten to prevent/cure gastric disorders and for their typical astringent taste. There is a vast evidence that bioactive components of the seeds can serve as alternative medicine to treat/prevent severe illnesses such as malaria, hepatitis and immune-destructive diseases. Despite the species’ pharmaceutical potential and its high preference by West and Central African communities, G. kola is still at the beginning of its domestication process. Even though, there are numerous scientific articles published on species‘ biological activities, it is a difficult task to find basic information on its diversity, distribution, genetics, silvicultural management or botany. Therefore, in this very first review published on G. kola, we summarize all relevant information known about the species, target some of the challenges connected with its cultivation and propose a leading direction for future research and domestication process.
Collapse
|
20
|
Akinmoladun AC, Saliu IO, Olowookere BD, Ojo OB, Olaleye MT, Farombi EO, Akindahunsi AA. Improvement of 2-Vessel Occlusion Cerebral Ischaemia/Reperfusion-Induced Corticostriatal Electrolyte and Redox Imbalance, Lactic Acidosis and Modified Acetylcholinesterase Activity by Kolaviron Correlates with Reduction in Neurobehavioural Deficits. Ann Neurosci 2017; 25:53-62. [PMID: 29887685 DOI: 10.1159/000484517] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/19/2017] [Indexed: 01/30/2023] Open
Abstract
Background Disruption of electrolyte, redox and neurochemical homeostasis alongside cellular energy crisis is a hallmark of cerebral ischaemia and reperfusion injury. Purpose This study investigated the effect of kolaviron (KV) on cortical and striatal cation imbalance, oxidative stress and neurochemical disturbances as well as neurobehavioural deficits in animals subjected to bilateral common carotid artery occlusion (BCCAO)-induced ischaemia/reperfusion injury. Methods KV was administered at a dose of 100 or 200 mg/kg to male Wistar rats 1 h before a 30 min BCCAO/4 h reperfusion (I/R). This was followed by neurobehavioral assessment and biochemical evaluations of cation levels, oxidative stress indicators, lactate dehydrogenase activity and acetylcholinesterase (AChE) activity in the brain of animals. Conclusion KV significantly restored altered cortical and striatal Ca2+, Na+, K+ and Mg2+ levels, ameliorated redox imbalance, lactic acidosis and modified AChE activity caused by I/R injury. The favourable neurobehavioural effects of KV correlated with biochemical outcomes. The pharmacological potential of KV in the treatment and management of ischemic stroke and allied pathological conditions via multiple targets (neurotransmitter metabolism, bioenergetic failure and ionic homeostasis) is highlighted by the study.
Collapse
Affiliation(s)
- Afolabi Clement Akinmoladun
- Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Ibrahim Olabayode Saliu
- Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Boyede Dele Olowookere
- Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Olubukola Benedicta Ojo
- Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Mary Tolulope Olaleye
- Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Ebenezer Olatunde Farombi
- Drug Metabolism and Molecular Toxicology Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Afolabi Akintunde Akindahunsi
- Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| |
Collapse
|
21
|
Eleazu C, Eleazu K, Kalu W. Management of Benign Prostatic Hyperplasia: Could Dietary Polyphenols Be an Alternative to Existing Therapies? Front Pharmacol 2017; 8:234. [PMID: 28503148 PMCID: PMC5408066 DOI: 10.3389/fphar.2017.00234] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/12/2017] [Indexed: 02/05/2023] Open
Abstract
The incidence of benign prostatic hyperplasia (BPH) is gradually on the increase. While conventional drugs such as the α1-adrenergic receptor antagonists and 5α-reductase inhibitors have been found to be useful in the treatment of BPH, the adverse side effects associated with their usage, have led to increased search for alternative means of managing this disease. Furthermore, although surgery has also been suggested to be a sure method, the cost and risks associated with it excludes it as a routine treatment. Dietary polyphenols have gained public interest in recent times due to their roles in the prevention of various diseases that implicate free radicals/reactive oxygen species. However, their roles in the management of BPH have not been explored. Hence, this review on their prospects in the management of BPH and their mechanisms of action. Literature search was carried out in several electronic data bases such as PubMed, Google Scholar, Medline, Agora, and Hinari from1970 to 2017 to identify the current status of knowledge on this concept. The findings from these data bases suggest that while dietary polyphenols may not replace the need for the existing therapies in the management of BPH, they hold promise in BPH management which could be explored by researchers working in this field.
Collapse
Affiliation(s)
- Chinedum Eleazu
- Department of Chemistry/Biochemistry, Federal University Ndufu-Alike, IkwoAbakaliki, Nigeria
| | - Kate Eleazu
- Department of Biochemistry, Ebonyi State UniversityAbakaliki, Nigeria
| | - Winner Kalu
- Department of Biochemistry, Michael Okpara University of AgricultureUmudike, Nigeria
| |
Collapse
|
22
|
Virgin coconut oil supplementation attenuates acute chemotherapy hepatotoxicity induced by anticancer drug methotrexate via inhibition of oxidative stress in rats. Biomed Pharmacother 2017; 87:437-442. [DOI: 10.1016/j.biopha.2016.12.123] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 11/20/2022] Open
|
23
|
Achi NK, Ohaeri OC, Ijeh II, Eleazu C. Modulation of the lipid profile and insulin levels of streptozotocin induced diabetic rats by ethanol extract of Cnidoscolus aconitifolius leaves and some fractions: Effect on the oral glucose tolerance of normoglycemic rats. Biomed Pharmacother 2017; 86:562-569. [PMID: 28024293 DOI: 10.1016/j.biopha.2016.11.133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND No study to date has investigated the effect of different polar solvent extracts from Cnidoscolus aconitifolius leaves on glycemic control as used in folk medicine. Hence this study which investigated the effect of ethanol extract and fractions of C. aconitifolius leaves on body weights, relative organ weights, serum levels of glucose, lipid profiles and insulin in streptozotocin induced diabetic rats and on oral glucose tolerance of normoglycemic rats. METHODS The ethanol extract was partitioned using methanol, hexane and chloroform to obtain different fractions. RESULTS The ethanol extract, fractions or glibenclamide demonstrated hypoglycemic/therapeutic actions as seen from the reduction of serum glucose but increase in serum insulin and body weights of the diabetic rats at the end of experimentation following their administration, unlike the diabetic control that had significant alteration of these parameters with respect to the normal control. Whereas the diabetic control had significant increase in pancreatic weights with no alteration in the heart weights, the ethanol extract, fractions or glibenclamide had no effect on these organs. The ethanol extract, methanol fractions or glibenclamide showed better hypoglycemic actions than the n-hexane or chloroform fractions at the doses used and results obtained were corroborated by histology. Furthermore, the ethanol extract, n-hexane (at 250mg/kg) and methanol fractions or glibenclamide improved glucose tolerance in glucose loaded normal rats. The methanol fraction (500mg/kg) demonstrated anti-hypercholesterolemic, anti-hypertriglyceridemic and insulin modulatory properties in a manner akin to glibenclamide. Acute toxicity study revealed the non toxicity of the plant CONCLUSION: The study justifies the use of polar solvent extracts of this plant in the management of diabetes mellitus.
Collapse
Affiliation(s)
- N K Achi
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria.
| | - O C Ohaeri
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - I I Ijeh
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - C Eleazu
- Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| |
Collapse
|
24
|
Winner K, Polycarp O, Ifeoma I, Chinedum E. Effect of fractions of kolaviron on some indices of benign prostatic hyperplasia in rats: identification of the constituents of the bioactive fraction using GC-MS. RSC Adv 2016; 6:94352-94360. [DOI: 10.1039/c6ra18266f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study investigated the effect of fractions of kolaviron on some biochemical parameters in benign prostatic hyperplasia (BPH) rats and also characterized the most active fraction (F1) using GC-MS.
Collapse
Affiliation(s)
- Kalu Winner
- Department of Biochemistry
- Michael Okpara University of Agriculture
- Umudike
- Nigeria
| | - Okafor Polycarp
- Department of Biochemistry
- Michael Okpara University of Agriculture
- Umudike
- Nigeria
| | - Ijeh Ifeoma
- Department of Biochemistry
- Michael Okpara University of Agriculture
- Umudike
- Nigeria
| | | |
Collapse
|