1
|
Tesvichian S, Sangtanoo P, Srimongkol P, Saisavoey T, Buakeaw A, Puthong S, Thitiprasert S, Mekboonsonglarp W, Liangsakul J, Sopon A, Prawatborisut M, Reamtong O, Karnchanatat A. Sulfated polysaccharides from Caulerpa lentillifera: Optimizing the process of extraction, structural characteristics, antioxidant capabilities, and anti-glycation properties. Heliyon 2024; 10:e24444. [PMID: 38293411 PMCID: PMC10826829 DOI: 10.1016/j.heliyon.2024.e24444] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
The polysaccharides found in Caulerpa lentillifera (sea grape algae) are potentially an important bioactive resource. This study makes use of RSM (response surface methodology) to determine the optimal conditions for the extraction of valuable SGP (sea grape polysaccharides). The findings indicated that a water/raw material ratio of 10:1 mL/g, temperature of 90 °C, and extraction time of 45 min would maximize the yield, with experimentation achieving a yield of 21.576 %. After undergoing purification through DEAE-52 cellulose and Sephacryl S-100 column chromatography, three distinct fractions were obtained, namely SGP11, SGP21, and SGP31, each possessing average molecular weights of 38.24 kDa, 30.13 kDa, and 30.65 kDa, respectively. Following characterization, the fractions were shown to comprise glucose, galacturonic acid, xylose, and mannose, while the sulfate content was in the range of 12.2-21.8 %. Using Fourier transform infrared spectroscopy (FT-IR) it was possible to confirm with absolute certainty the sulfate polysaccharide attributes of SGP11, SGP21, and SGP31. NMR (nuclear magnetic resonance) findings made it clear that SGP11 exhibited α-glycosidic configurations, while the configurations of SGP21 and SGP31 were instead β-glycosidic. The in vitro antioxidant assays which were conducted revealed that each of the fractions was able to demonstrate detectable scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cations. All fractions were also found to exhibit the capacity to scavenge NO radicals in a dose-dependent manner. SGP11, SGP21, and SGP31 were also able to display cellular antioxidant activity (CAA) against the human adenocarcinoma colon (Caco-2) cell line when oxidative damage was induced. The concentration levels were found to govern the extent of such activity. Moreover, purified SGP were found to exert strong inhibitory effects upon glycation, with the responses dependent upon dosage, thus confirming the potential for SGP to find a role as a natural resource for the production of polysaccharide-based antioxidant drugs, or products to promote improved health.
Collapse
Affiliation(s)
- Suphaporn Tesvichian
- Program in Biotechnology, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Papassara Sangtanoo
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Piroonporn Srimongkol
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Tanatorn Saisavoey
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Anumart Buakeaw
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Songchan Puthong
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Sitanan Thitiprasert
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Wanwimon Mekboonsonglarp
- Scientific and Technological Research Equipment Centre, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Jatupol Liangsakul
- Scientific and Technological Research Equipment Centre, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Anek Sopon
- Aquatic Resources Research Institute, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Mongkhol Prawatborisut
- Bruker Switzerland AG, 175, South Sathorn Road, 10th Floor, Sathorn City Tower, Thungmahamek, Sathorn, Bangkok, 10120, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Aphichart Karnchanatat
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
2
|
Trigui E, Ben Hassen H, Zaghden H, Trigui M, Achour S. A Bioinformatic Study on the Potential Anti-Vitiligo Activity of a Carpobrotus edulis Compound. Molecules 2023; 28:7545. [PMID: 38005266 PMCID: PMC10673461 DOI: 10.3390/molecules28227545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The plant Carpobrotus edulis has traditionally been known for its wide applications in diseases, especially vitiligo, which is characterized by patches and white macules caused by the loss of melanocytes. One of the chemical treatments for vitiligo consists mainly of skin repigmentation and usually leads to a non-durable effect by inhibiting the Janus kinase (JAK) signal transduction (STAT pathway). JAK inhibitors generally block multiple JAK tyrosine kinases, which leads to secondary effects. In this study, natural molecules from Carpobrotus edulis were extracted and tested using a structure-based drug-design approach and pharmacophore modeling. The best-fit candidate from the extracted molecules was compared to the chemical molecules used. The results indicated a similarity between the chemical and natural ligands which suggested the potential use of the natural product against vitiligo. The main finding of this research work was the discovery of a new molecule extracted from a natural plant and the detection of its anti-vitiligo activity using an in-silico approach. This method can significantly reduce the cost of searching for potential medicinal molecules.
Collapse
Affiliation(s)
- Emna Trigui
- Laboratory of Bioressources, Integrative Biology & Valorisation (BIOLIVAL), Higher Institute of Biotechnology of Monastir, Monastir University, Monastir 5000, Tunisia; (E.T.); (M.T.); (S.A.)
| | - Hanen Ben Hassen
- Laboratory of Probabilities and Statistics, Faculty of Sciences of Sfax, Sfax University, Sfax 3000, Tunisia
| | - Hatem Zaghden
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cédria, Hammam-Lif 2050, Tunisia
| | - Maher Trigui
- Laboratory of Bioressources, Integrative Biology & Valorisation (BIOLIVAL), Higher Institute of Biotechnology of Monastir, Monastir University, Monastir 5000, Tunisia; (E.T.); (M.T.); (S.A.)
| | - Sami Achour
- Laboratory of Bioressources, Integrative Biology & Valorisation (BIOLIVAL), Higher Institute of Biotechnology of Monastir, Monastir University, Monastir 5000, Tunisia; (E.T.); (M.T.); (S.A.)
| |
Collapse
|
3
|
Wang KW, Sheng XY, Wu B, Wang H, Chen JB, Wang SW. Structure characterization of novel heteropolysaccharides from Pteridium revolutum with antioxidant and antiglycated activities. Food Chem X 2023; 19:100826. [PMID: 37780250 PMCID: PMC10534159 DOI: 10.1016/j.fochx.2023.100826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 10/03/2023] Open
Abstract
This study aims to analysis the structures of polysaccharides isolated from Pteridium revolutum and their antioxidant and antiglycated activities. Three novel water-soluble heteropolysaccharides, named PRP0, PRP1, and PRP2, were isolated from P. revolutum. The average molecular weight was determined by high performance gel permeation chromatography analysis as 1.04 × 106, 8.39 × 105, and 7.37 × 105 Da, respectively. Their structures were characterized using physicochemical and spectroscopic methods. The antioxidant and antiglycated activities were assayed in vitro. PRP0, PRP1, and PRP2 consist of l-Ara, l-Rha, d-Man, d-Xyl, d-Fuc, d-Gal, and d-Glc in different proportions. PRP1 mainly has a backbone of (1 → 3,6)-linked d-Man and (1 → 3)-linked d-Gal on main chain. PRP2 is mainly composed of (1 → 2,4)-linked d-Man and (1 → 3)-linked d-Gal on main chain. All polysaccharides have strong scavenging power on 2,2-difenil-1-picril-hidrazil and hydroxyl radicals and significantly antiglycated activity in Bovine serum albumin-Glucose model, which showing that the polysaccharides have potential application value on the functional food.
Collapse
Affiliation(s)
- Kui-Wu Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xin-Yuan Sheng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Bin Wu
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Hong Wang
- School of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian-Bo Chen
- Medical College, Jinhua Polytechnic, No. 1118 Wuzhou Road, Jinhua 321000, China
| | - Shi-Wei Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
4
|
Wang K, Zhang H, Yuan L, Li X, Cai Y. Potential Implications of Hyperoside on Oxidative Stress-Induced Human Diseases: A Comprehensive Review. J Inflamm Res 2023; 16:4503-4526. [PMID: 37854313 PMCID: PMC10581022 DOI: 10.2147/jir.s418222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Hyperoside is a flavonol glycoside mainly found in plants of the genera Hypericum and Crataegus, and also detected in many plant species such as Abelmoschus manihot, Ribes nigrum, Rosa rugosa, Agrostis stolonifera, Apocynum venetum and Nelumbo nucifera. This compound exhibits a multitude of biological functions including anti-inflammatory, antidepressant, antioxidative, vascular protective effects and neuroprotective effects, etc. This review summarizes the quantification, original plant, chemical structure and property, structure-activity relationship, pharmacologic effect, pharmacokinetics, toxicity and clinical application of hyperoside, which will be significant for the exploitation for new drug and full utilization of this compound.
Collapse
Affiliation(s)
- Kaiyang Wang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Huhai Zhang
- Department of Nephrology, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
5
|
Fakudze NT, Sarbadhikary P, George BP, Abrahamse H. Ethnomedicinal Uses, Phytochemistry, and Anticancer Potentials of African Medicinal Fruits: A Comprehensive Review. Pharmaceuticals (Basel) 2023; 16:1117. [PMID: 37631032 PMCID: PMC10458058 DOI: 10.3390/ph16081117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Africa is home to diverse medicinal plants that have been used for generations for the treatment of several different cancers and, presently, they are gaining interest from researchers as promising approaches to cancer treatment. This review aims to provide a comprehensive review of dietary and medicinal African fruits including their traditional uses, botanical description, ethnobotanical uses, bioactive phytochemical compositions, and anticancer properties investigated to date in vitro, in vivo, and in clinical studies. Data on recent updates concerning the traditional uses and anticancer properties of these fruits were collected from a myriad of available publications in electronic databases, such as Web of Science, PubMed, ScienceDirect, Scopus, SpringerLink, and Google Scholar. The results suggest that approximately 12 native or commercially grown African fruits belonging to different plant species, including Tribulus terrestris, Xanthium strumarium, Withania somnifera, Xylopia aethiopica, Abelmoschus esculentus, Carissa macrocarpa, Carpobrotus edulis, Syzygium cumini, Kigelia Africana, Annona muricata, Persea americana, and Punica granatum, have been reported for their potential as treatment options for the management of cancer. We further found that approximately eight different fruits from native plant species from Africa, namely, Sclerocarya birrea, Dovyalis caffra, Parinari curatellifolia, Mimusops caffra, Carpobrotus edulis, Vangueria infausta, Harpephyllum caffrum, and Carissa macrocarpa, have been widely used for the traditional treatment of different ailments but somehow failed to gain the interest of researchers for their use in anticancer research. In this review, we show the potential use of various fruits as anticancer agents, such as Tribulus terrestris, Xanthium strumarium, Withania somnifera, Xylopia aethiopica, Abelmoschus esculentus, Carissa macrocarpa, Carpobrotus edulis, Syzygium cumini, Kigelia Africana, Annona muricata, Persea americana, and Punica granatum; unfortunately, not enough reported research data have been published to gain thorough mechanistic insights and clinical applications. Additionally, we discuss the possibility of the utilization of potential phytochemicals from fruits like Persea americana and Punica granatum in anticancer research, as well as future directions.
Collapse
Affiliation(s)
| | - Paromita Sarbadhikary
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 1701, Johannesburg 2028, South Africa; (N.T.F.); (H.A.)
| | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 1701, Johannesburg 2028, South Africa; (N.T.F.); (H.A.)
| | | |
Collapse
|
6
|
Pereira CG, Neng NR, Custódio L. From Threat to Opportunity: Harnessing the Invasive Carpobrotus edulis (L.) N.E.Br for Nutritional and Phytotherapeutic Valorization Amid Seasonal and Spatial Variability. Mar Drugs 2023; 21:436. [PMID: 37623717 PMCID: PMC10456270 DOI: 10.3390/md21080436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Carpobrotus edulis (L.) N.E.Br. (Hottentot-fig) is a problematic invasive species found in coastal areas worldwide. Mechanical removal is a common control method, leaving the removed biomass available as a possible source of natural phytochemicals with prospective commercial applications. While the Hottentot-fig's vegetative organs have been studied previously, this work establishes for the first time a seasonal and spatial comparative analysis of its nutritional, chemical, and bioactivity profiles (in three locations over four seasons). Proximate and mineral contents were assessed, along with its phenolic composition and in vitro antioxidant and anti-inflammatory properties. Hottentot-fig's biomass offered a good supply of nutrients, mainly carbohydrates, proteins, and minerals, with a tendency for higher concentrations of the most relevant minerals and proteins in autumn and winter, and in plants from sites A (Ria de Alvor lagoon) and B (Ancão beach). The extracts were rich in polyphenolics, with higher levels in spring and summer, especially for luteolin-7-O-glucoside and salicylic and coumaric acids. The extracts were also effective antioxidants, with stronger radical scavenging activities in spring and summer, along with anti-inflammatory properties. Our results suggest that the usually discarded plant material of this invasive halophyte could be valuable as a source of natural products with potential biotechnological applications in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Catarina Guerreiro Pereira
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Ed. 7, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal;
| | - Nuno R. Neng
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz School of Health and Science, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - Luísa Custódio
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Ed. 7, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal;
| |
Collapse
|
7
|
Han Z, Zhu M, Wan X, Zhai X, Ho CT, Zhang L. Food polyphenols and Maillard reaction: regulation effect and chemical mechanism. Crit Rev Food Sci Nutr 2022; 64:4904-4920. [PMID: 36382683 DOI: 10.1080/10408398.2022.2146653] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Maillard reaction is a non-enzymatic thermal reaction during food processing and storage. It massively contributes to the flavor, color, health benefits and safety of foods and could be briefly segmented into initial, intermediate and final stages with the development of a cascade of chemical reactions. During thermal reaction of food ingredients, sugar, protein and amino acids are usually the main substrates, and polyphenols co-existed in food could also participate in the Maillard reaction as a modulator. Polyphenols including flavan-3-ols, hydroxycinnamic acids, flavonoids, and tannins have shown various effects throughout the process of Maillard reaction, including conjugating amino acids/sugars, trapping α-dicarbonyls, capturing Amadori rearrangement products (ARPs), as well as decreasing acrylamide and 5-hydroxymethylfurfural (5-HMF) levels. These effects significantly influenced the flavor, taste and color of processed foods, and also decreased the hazard products' level. The chemical mechanism of polyphenols-Maillard products involved the scavenging of radicals, as well as nucleophilic addition and substitution reactions. In the present review, we concluded and discussed the interaction of polyphenols and Maillard reaction, and proposed some perspectives for future studies.
Collapse
Affiliation(s)
- Zisheng Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
8
|
From Tradition to Health: Chemical and Bioactive Characterization of Five Traditional Plants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196495. [PMID: 36235035 PMCID: PMC9571014 DOI: 10.3390/molecules27196495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Several scientific studies have been proving the bioactive effects of many aromatic and medicinal plants associated with the presence of a high number of bioactive compounds, namely phenolic compounds. The antioxidant, anti-inflammatory, and antimicrobial capacities of these molecules have aroused high interest in some industrial sectors, including food, pharmaceuticals, and cosmetics. This work aimed to determine the phenolic profiles of the infusions and hydroethanolic extracts of five plants (Carpobrotus edulis, Genista tridentata, Verbascum sinuatum, Cytisus multiflorus, and Calluna vulgaris) that have been employed in many traditional preparations. In addition, the antioxidant, antimicrobial, anti-inflammatory, and anti-tumoral activity of each different preparation was evaluated using in vitro assays. The HPLC-DAD-ESI/MS profile revealed the presence of eighty phenolic compounds, belonging to seven different families of compounds. Regarding antioxidant properties, the hydroethanolic extract of C. edulis showed a potent effect in the TBARS assay (IC50 = 1.20 µg/mL), while G. tridentata hydroethanolic extract achieved better results in the OxHLIA test (IC50 = 76 µg/mL). For cytotoxic and anti-inflammatory results, V. sinuatum infusions stood out significantly, with GI50 = 59.1–92.1 µg/mL and IC50 = 121.1 µg/mL, respectively. Finally, C. edulis hydroethanolic extract displayed the most relevant antibacterial activity, showing MBC values of 0.25–1 mg/mL, while G. tridentata hydroethanolic extract exerted the greatest antifungal effects (MFC of 0.5–1 mg/mL). The results of this study deepen the knowledge of the phenolic profiles and also provide evidence on the bioactive properties of the species selected, which could be considered highly valuable options for research and application in several sectors, namely food, cosmetics, and pharmaceuticals.
Collapse
|
9
|
Kurt-Celep I, Zheleva-Dimitrova D, Gevrenova R, Uba AI, Zengin G, Yıldıztugay E, Picot-Allain CMN, Lorenzo JM, Mahomoodally MF, Montesano D. An In-Depth Study on the Metabolite Profile and Biological Properties of Primula auriculata Extracts: A Fascinating Sparkle on the Way from Nature to Functional Applications. Antioxidants (Basel) 2022; 11:1377. [PMID: 35883868 PMCID: PMC9312287 DOI: 10.3390/antiox11071377] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/26/2022] Open
Abstract
The biological activity of the aerial part and rhizomes of Primula auriculata were assessed for the first time. The biological activities (antioxidant properties, enzyme inhibition, and AGE inhibition) as well as the phenolic and flavonoid contents of the ethyl acetate, ethanol, hydro-ethanol and water extracts of P. auriculata aerial parts and rhizomes were determined. Cell viability assays and gelatin zymography were also performed for MMP-2/-9 to determine the molecular mechanisms of action. The gene expression for MMPs was described with RT-PCR. The levels of various proteins, including phospho-Nf-κB, BCL-2, BAX, p-53, and cyclin D1 as well as RAGE were measured using Western blot analysis. The hydro-ethanol extract of the aerial part possessed the highest phenolic (56.81 mg GAE/g) and flavonoid (63.92 mg RE/g) contents. In-depth profiling of the specialized metabolites by ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) allowed for the identification and annotation of 65 compounds, including phenolic acids and glycosides, flavones, flavonols, chalcones, dihydrochalcones, and saponins. The hydro-ethanol extract of the aerial parts (132.65, 180.87, 172.46, and 108.37 mg TE/g, for the DPPH, ABTS, CUPRAC, and FRAP assays, respectively) and the ethanol extract of the rhizomes (415.06, 638.30, 477.77, and 301.02 mg TE/g, for the DPPH, ABTS, CUPRAC, and FRAP assays, respectively) exhibited the highest free radical scavenging and reducing activities. The ethanol and hydro-ethanol extracts of both the P. auriculata aerial part and rhizomes exhibited higher inhibitory activity against acetylcholinesterase, while the hydro-ethanol extracts (1.16 mmol ACAE/g, for both the aerial part and rhizomes extracts) were more active in the inhibition of α-glucosidase. After the treatment of an HT-29 colorectal cancer cell line with the extracts, the apoptosis mechanism was initiated, the integrity of the ECM was remodeled, and cell proliferation was also taken under control. In this way, Primula extracts were shown to be potential drug sources in the treatment of colorectal cancer. They were also detected as natural MMP inhibitors. The findings presented in the present study appraise the bioactivity of P. auriculata, an understudied species. Additional assessment is required to evaluate the cytotoxicity of P. auriculata as well as its activity in ex vivo systems.
Collapse
Affiliation(s)
- Inci Kurt-Celep
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey;
| | - Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria; (D.Z.-D.); (R.G.)
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria; (D.Z.-D.); (R.G.)
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083 Istanbul, Turkey;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Evren Yıldıztugay
- Department of Biotechnology, Science Faculty, Selcuk University, 42079 Konya, Turkey;
| | - Carene Marie Nancy Picot-Allain
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 80837 Réduit, Mauritius; (C.M.N.P.-A.); (M.F.M.)
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 80837 Réduit, Mauritius; (C.M.N.P.-A.); (M.F.M.)
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
10
|
Yu GH, Li SF, Wei R, Jiang Z. Diabetes and Colorectal Cancer Risk: Clinical and Therapeutic Implications. J Diabetes Res 2022; 2022:1747326. [PMID: 35296101 PMCID: PMC8920658 DOI: 10.1155/2022/1747326] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/19/2022] [Indexed: 12/24/2022] Open
Abstract
Several epidemiological studies have identified diabetes as a risk factor for colorectal cancer (CRC). The potential pathophysiological mechanisms of this association include hyperinsulinemia, insulin-like growth factor (IGF) axis, hyperglycemia, inflammation induced by adipose tissue dysfunction, gastrointestinal motility disorder, and impaired immunological surveillance. Several studies have shown that underlying diabetes adversely affects the prognosis of patients with CRC. This review explores the novel anticancer agents targeting IGF-1R and receptor for advanced glycation end products (RAGE), both of which play a vital role in diabetes-induced colorectal tumorigenesis. Inhibitors of IGF-1R and RAGE are expected to become promising therapeutic choices, particularly for CRC patients with diabetes. Furthermore, hypoglycemic therapy is associated with the incidence of CRC. Selection of appropriate hypoglycemic agents, which can reduce the risk of CRC in diabetic patients, is an unmet issue. Therefore, this review mainly summarizes the current studies concerning the connections among diabetes, hypoglycemic therapy, and CRC as well as provides a synthesis of the underlying pathophysiological mechanisms. Our synthesis provides a theoretical basis for rational use of hypoglycemic therapies and early diagnosis and treatment of diabetes-related CRC.
Collapse
Affiliation(s)
- Guan-Hua Yu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuo-Feng Li
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ran Wei
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
11
|
Sarmah S, Roy AS. A review on prevention of glycation of proteins: Potential therapeutic substances to mitigate the severity of diabetes complications. Int J Biol Macromol 2022; 195:565-588. [DOI: 10.1016/j.ijbiomac.2021.12.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/21/2022]
|
12
|
Omoruyi SI, Enogieru AB, Ekpo OE. In vitro evaluation of the antiproliferative activity of Carpobrotus edulis on human neuroblastoma cells. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Bazzicalupo M, Cornara L, Burlando B, Cascini A, Denaro M, Smeriglio A, Trombetta D. Carpobrotus edulis (L.) N.E.Br. extract as a skin preserving agent: From traditional medicine to scientific validation. JOURNAL OF INTEGRATIVE MEDICINE 2021; 19:526-536. [PMID: 34538643 DOI: 10.1016/j.joim.2021.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/24/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Carpobrotus edulis (L.) N.E.Br. is a succulent perennial plant native to South Africa and grows invasively in the Mediterranean basin. It is commonly used for the treatment of various diseases, including skin wound healing and regeneration, for which experimental validation is lacking. We therefore evaluated the skin healing properties by testing a C. edulis aqueous leaf extract (CAE) on cell cultures and in enzymatic assays. METHODS Micro-morphological analysis of leaves was carried out using scanning electron microscopy and light microscopy. Phytochemical features and antioxidant activity of CAE were evaluated by reversed-phase liquid chromatography coupled with diode array detection and electrospray ion trap mass spectrometry (RP-LC-DAD-ESI-MS), and in vitro cell-free assays. Biological activities were evaluated using keratinocytes and fibroblasts, as well as elastase, collagenase, and hyaluronidase. RESULTS CAE showed high carbohydrates (28.59% ± 0.68%), total phenols ([101.9 ± 6.0] g gallic acid equivalents/kg dry extract [DE]), and flavonoids ([545.9 ± 26.0] g rutin equivalents/kg DE). RP-LC-DAD-ESI-MS revealed the predominant presence of hydroxycinnamic acids (51.96%), followed by tannins (14.82%) and flavonols (11.32%). The extract was not cytotoxic, had a strong and dose-dependent antioxidant activity, and inhibited collagenase (> 90% at 500 µg/mL) and hyaluronidase (100% at 1000 µg/mL). In cell culture experiments, CAE increased wound closure and collagen production, which was consistent with its high polyphenol content. CONCLUSION Our data support the use of the C. edulis for skin care and the treatment of skin problems. Moreover, use of C. edulis for skin care purposes could be an eco-friendly solution to reduce its invasiveness in the environment.
Collapse
Affiliation(s)
- Miriam Bazzicalupo
- Department for the Earth, Environment and Life Sciences (DiSTAV), University of Genova, Genova 16132, Italy
| | - Laura Cornara
- Department for the Earth, Environment and Life Sciences (DiSTAV), University of Genova, Genova 16132, Italy
| | - Bruno Burlando
- Department of Pharmacy, University of Genova, Genova 16132, Italy.
| | - Alberta Cascini
- Department for the Earth, Environment and Life Sciences (DiSTAV), University of Genova, Genova 16132, Italy
| | - Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| |
Collapse
|
14
|
Neves M, Antunes M, Fernandes W, Campos MJ, Azevedo ZM, Freitas V, Rocha JM, Tecelão C. Physicochemical and nutritional profile of leaves, flowers, and fruits of the edible halophyte chorão-da-praia (Carpobrotus edulis) on Portuguese west shores. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Lassoued MA, Ben Fatma NEH, Haj Romdhane M, Faidi A, Majdoub H, Sfar S. Photoprotective potential of a Tunisian halophyte plant Carpobrotus edulis L. Eur J Integr Med 2021. [DOI: 10.1016/j.eujim.2021.101286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Azizian-Farsani F, Abedpoor N, Hasan Sheikhha M, Gure AO, Nasr-Esfahani MH, Ghaedi K. Receptor for Advanced Glycation End Products Acts as a Fuel to Colorectal Cancer Development. Front Oncol 2020; 10:552283. [PMID: 33117687 PMCID: PMC7551201 DOI: 10.3389/fonc.2020.552283] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Receptor for advanced glycation end-products (RAGE) is a multiligand binding and single-pass transmembrane protein taken in diverse chronic inflammatory conditions. RAGE behaves as a pattern recognition receptor, which binds and is engaged in the cellular response to a variety of damage-associated molecular pattern molecules, as well as HMGB1, S100 proteins, and AGEs (advanced glycation end-products). The RAGE activation turns out to a formation of numerous intracellular signaling mechanisms, resulting in the progression and prolongation of colorectal carcinoma (CRC). The RAGE expression correlates well with the survival of colon cancer cells. RAGE is involved in the tumorigenesis, which increases and develops well in the stressed tumor microenvironment. In this review, we summarized downstream signaling cascade activated by the multiligand activation of RAGE, as well as RAGE ligands and their sources, clinical studies, and tumor markers related to RAGE particularly in the inflammatory tumor microenvironment in CRC. Furthermore, the role of RAGE signaling pathway in CRC patients with diabetic mellitus is investigated. RAGE has been reported to drive assorted signaling pathways, including activator protein 1, nuclear factor-κB, signal transducer and activator of transcription 3, SMAD family member 4 (Smad4), mitogen-activated protein kinases, mammalian target of rapamycin, phosphoinositide 3-kinases, reticular activating system, Wnt/β-catenin pathway, and Glycogen synthase kinase 3β, and even microRNAs.
Collapse
Affiliation(s)
| | - Navid Abedpoor
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, Academic Center for Education, Culture and Reasearch (ACECR), Isfahan, Iran
| | | | - Ali Osmay Gure
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, Academic Center for Education, Culture and Reasearch (ACECR), Isfahan, Iran
| | - Kamran Ghaedi
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, Academic Center for Education, Culture and Reasearch (ACECR), Isfahan, Iran.,Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
17
|
Ethnopharmacology, Therapeutic Properties and Nutritional Potentials of Carpobrotus edulis: A Comprehensive Review. Sci Pharm 2020. [DOI: 10.3390/scipharm88030039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Carpobrotus edulis, formerly known as Mesembryanthemum edule L, belongs to the Aizoaceae family of plants. It is a facultative halophytic invasive medicinal and edible succulent plant that is native to South Africa and is distributed worldwide. Hitherto, this plant appears to be mainly known for its ornamental use in decorations, soil stabilization, and erosion control, and not for its many potential medicinal and nutritional benefits, thus suggesting its underutilization. This review presents cogent and comprehensive information on the distribution, ethnomedicinal use, phytochemistry, pharmacology, toxicology, and nutritional value of Carpobrotus edulis and provides the rationale for further pharmacognostic research that will validate its many folkloric medicinal and nutraceutical claims, and promote its standardization into a commercially available product. The reported traditional use of this plant for the treatment of sinusitis, diarrhoea, tuberculosis, infantile eczema, fungal and bacterial infections, oral and vaginal thrush, high blood pressure, diabetes, wound infections, spider and tick bites, sore throat as well as mouth infections are well documented. Its therapeutic activities such as anti-proliferative, antioxidant, antifungal, antibacterial, antidiabetic, anti-inflammatory, cytotoxicity, and nutritional value have also been reported to be attributable to the array of phytoconstituents present in the plant. These have promoted renewed research interests into this valuable medicinal plant with a view to repositioning and expanding its uses from the current predominantly ornamental and environmental management role to include phytotherapeutical applications through scientific validation studies that will improve its value for the drug discovery process as well as its contribution to food security.
Collapse
|
18
|
Alfei S, Marengo B, Zuccari G. Oxidative Stress, Antioxidant Capabilities, and Bioavailability: Ellagic Acid or Urolithins? Antioxidants (Basel) 2020; 9:E707. [PMID: 32759749 PMCID: PMC7465258 DOI: 10.3390/antiox9080707] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OS), triggered by overproduction of reactive oxygen and nitrogen species, is the main mechanism responsible for several human diseases. The available one-target drugs often face such illnesses, by softening symptoms without eradicating the cause. Differently, natural polyphenols from fruits and vegetables possess multi-target abilities for counteracting OS, thus representing promising therapeutic alternatives and adjuvants. Although in several in vitro experiments, ellagitannins (ETs), ellagic acid (EA), and its metabolites urolithins (UROs) have shown similar great potential for the treatment of OS-mediated human diseases, only UROs have demonstrated in vivo the ability to reach tissues to a greater extent, thus appearing as the main molecules responsible for beneficial activities. Unfortunately, UROs production depends on individual metabotypes, and the consequent extreme variability limits their potentiality as novel therapeutics, as well as dietary assumption of EA, EA-enriched functional foods, and food supplements. This review focuses on the pathophysiology of OS; on EA and UROs chemical features and on the mechanisms of their antioxidant activity. A discussion on the clinical applicability of the debated UROs in place of EA and on the effectiveness of EA-enriched products is also included.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4, I-16148 Genoa, Italy;
| | - Barbara Marengo
- Department of Experimental Medicine—DIMES, Via Alberti L.B. 2, I-16132 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4, I-16148 Genoa, Italy;
| |
Collapse
|
19
|
Máximo P, Ferreira LM, Branco PS, Lourenço A. Invasive Plants: Turning Enemies into Value. Molecules 2020; 25:molecules25153529. [PMID: 32752287 PMCID: PMC7436051 DOI: 10.3390/molecules25153529] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/28/2022] Open
Abstract
In this review, a brief description of the invasive phenomena associated with plants and its consequences to the ecosystem is presented. Five worldwide invasive plants that are a threat to Portugal were selected as an example, and a brief description of each is presented. A full description of their secondary metabolites and biological activity is given, and a resume of the biological activity of extracts is also included. The chemical and pharmaceutical potential of invasive species sensu lato is thus acknowledged. With this paper, we hope to demonstrate that invasive species have potential positive attributes even though at the same time they might need to be controlled or eradicated. Positive attributes include chemical and pharmaceutical properties and developing these could help mitigate the costs of management and eradication.
Collapse
|
20
|
Aiello P, Sharghi M, Mansourkhani SM, Ardekan AP, Jouybari L, Daraei N, Peiro K, Mohamadian S, Rezaei M, Heidari M, Peluso I, Ghorat F, Bishayee A, Kooti W. Medicinal Plants in the Prevention and Treatment of Colon Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2075614. [PMID: 32377288 PMCID: PMC7187726 DOI: 10.1155/2019/2075614] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/03/2019] [Indexed: 01/04/2023]
Abstract
The standard treatment for cancer is generally based on using cytotoxic drugs, radiotherapy, chemotherapy, and surgery. However, the use of traditional treatments has received attention in recent years. The aim of the present work was to provide an overview of medicinal plants effective on colon cancer with special emphasis on bioactive components and underlying mechanisms of action. Various literature databases, including Web of Science, PubMed, and Scopus, were used and English language articles were considered. Based on literature search, 172 experimental studies and 71 clinical cases on 190 plants were included. The results indicate that grape, soybean, green tea, garlic, olive, and pomegranate are the most effective plants against colon cancer. In these studies, fruits, seeds, leaves, and plant roots were used for in vitro and in vivo models. Various anticolon cancer mechanisms of these medicinal plants include induction of superoxide dismutase, reduction of DNA oxidation, induction of apoptosis by inducing a cell cycle arrest in S phase, reducing the expression of PI3K, P-Akt protein, and MMP as well; reduction of antiapoptotic Bcl-2 and Bcl-xL proteins, and decrease of proliferating cell nuclear antigen (PCNA), cyclin A, cyclin D1, cyclin B1 and cyclin E. Plant compounds also increase both the expression of the cell cycle inhibitors p53, p21, and p27, and the BAD, Bax, caspase 3, caspase 7, caspase 8, and caspase 9 proteins levels. In fact, purification of herbal compounds and demonstration of their efficacy in appropriate in vivo models, as well as clinical studies, may lead to alternative and effective ways of controlling and treating colon cancer.
Collapse
Affiliation(s)
- Paola Aiello
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
- Department of Physiology and Pharmacology “V. Erspamer”, La Sapienza University of Rome, Rome, Italy
| | - Maedeh Sharghi
- Nursing and Midwifery School, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Azam Pourabbasi Ardekan
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leila Jouybari
- Nursing Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nahid Daraei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Khadijeh Peiro
- Department of Biology, Faculty of Sciences, Shahid Chamran University, Ahvaz, Iran
| | - Sima Mohamadian
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdiyeh Rezaei
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Heidari
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ilaria Peluso
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Fereshteh Ghorat
- Traditional and Complementary Medicine Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| | - Wesam Kooti
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
21
|
Wu X, Zhang G, Hu X, Pan J, Liao Y, Ding H. Inhibitory effect of epicatechin gallate on protein glycation. Food Res Int 2019; 122:230-240. [DOI: 10.1016/j.foodres.2019.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/05/2023]
|
22
|
Characterization of polysaccharide fractions from fruit of Actinidia arguta and assessment of their antioxidant and antiglycated activities. Carbohydr Polym 2019; 210:73-84. [DOI: 10.1016/j.carbpol.2019.01.037] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/20/2018] [Accepted: 01/10/2019] [Indexed: 12/22/2022]
|
23
|
Asgharpour Dil F, Ranjkesh Z, Goodarzi MT. A systematic review of antiglycation medicinal plants. Diabetes Metab Syndr 2019; 13:1225-1229. [PMID: 31336468 DOI: 10.1016/j.dsx.2019.01.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/25/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND OBJECTIVES The present review shows a list of anti-glycation plants with their anti-glycation activity mechanisms that can attract the attention of pharmacologist for further scientific research towards finding better remedy for diabetic complications. MATERIALS Google scholar, Pubmed, Web of Science and Scopus were searched. The terms were advanced glycation end products (AGEs), medicinal plants, antiglycation products. RESULTS plants that studied in this review inhibit glycation in several possible mechanisms. Some of these plants inhibit the production of shiff base and amadori products. The others inhibit the generation of amadori products in the advanced phase. Some others blocked the aggregation of AGEs and some plants have antioxidant activity and reduce AGEs formation by preventing oxidation of amadori product and metal-catalyzed glucoxidation. CONCLUSION This review can help pharmacologist to find antiglycation natural substance that can be useful in treatment of diabetic complications.
Collapse
Affiliation(s)
| | - Zahra Ranjkesh
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Mohammad Taghi Goodarzi
- Department of Clinical Biochemistry, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
24
|
Dulong V, Kouassi MC, Labat B, Le Cerf D, Picton L. Antioxidant properties and bioactivity of Carboxymethylpullulan grafted with ferulic acid and of their hydrogels obtained by enzymatic reaction. Food Chem 2018; 262:21-29. [DOI: 10.1016/j.foodchem.2018.04.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022]
|
25
|
Parveen A, Kim JH, Oh BG, Subedi L, Khan Z, Kim SY. Phytochemicals: Target-Based Therapeutic Strategies for Diabetic Retinopathy. Molecules 2018; 23:E1519. [PMID: 29937497 PMCID: PMC6100391 DOI: 10.3390/molecules23071519] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023] Open
Abstract
Background: A variety of causative factors are involved in the initiation of diabetic retinopathy (DR). Current antidiabetic therapies are expensive and not easily accessible by the public. Furthermore, the use of multiple synthetic drugs leads to severe side effects, which worsen the diabetic patient’s condition. Medicinal plants and their derived phytochemicals are considered safe and effective treatment and their consumption can reduce the DR risk. In this article, we discuss a variety of medicinal plants, and their noteworthy bio-active constituents, that will be utilized as target based therapeutic strategies for DR. Methods: A broad-spectrum study was conducted using published English works in various electronic databases including Science Direct, PubMed, Scopus, and Google Scholar. Results: Targeting the multiple pathological factors including ROS, AGEs formation, hexosamine flux, PARP, PKC, and MAPK activation through variety of bioactive constituents in medicinal plants, diabetes progression can be delayed with improved loss of vision. Conclusions: Data reveals that traditional herbs and their prominent bioactive components control and normalize pathological cellular factors involved in DR progression. Therefore, studies should be carried out to explore the protective retinopathy effects of medicinal plants using experimental animal and humans models.
Collapse
Affiliation(s)
- Amna Parveen
- Department of Pharmacognosy, College of Pharmacy, Government College University Faisalabad, Faisalabad 3800, Pakistan.
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea.
| | - Jin Hyun Kim
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea.
| | - Byeong Gyu Oh
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea.
| | - Lalita Subedi
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea.
| | - Zahra Khan
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea.
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea.
- Gachon Institute of Pharmaceutical Science, Gachon University, Hambakmoe-ro, Yeonsu-gu, Incheon 406-799, Korea.
| |
Collapse
|
26
|
Yang D, Zhang X, Zhang W, Rengarajan T. Vicenin-2 inhibits Wnt/β-catenin signaling and induces apoptosis in HT-29 human colon cancer cell line. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1303-1310. [PMID: 29849451 PMCID: PMC5965372 DOI: 10.2147/dddt.s149307] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Colorectal cancer (CRC) is among highest prevailing cancers in the whole world, especially in western countries. For a diverse of reasons, patients prefer naturally occurring dietary substances over synthetic agents to prevent cancer. Vicenin-2 is largely available in a medicinal plant Ocimum sanctum and is an apigenin form, 6,8-di-C-glucoside, which has been reported to have a range of pharmacological values which includes antioxidant, hepatoprotective, anti-inflammatory and anti-cancer. This study was aimed to analyze the anti-proliferative effect of Vicenin-2 on human colon cancer cells via the Wnt/β-catenin signaling inhibition. Methods MTT assay was used to assess the cell viability at different concentrations and time point. Vicenin-2 at a concentration of 50 µM (IC50) decreased the phosphorylated (inactive) glycogen synthase kinase-3β, cyclin D1, and non-p-β-catenin expressions in HT-29 cells, which were evidenced through western blot analysis. Results Further, Vincenin-2 reduced the T-cell factor (TCF) / Leukocyte erythroid factor (LEF) reporter activity in HT-29 cells. Vicenin-2 also promoted substantial cell cycle arrest at the G2M phase of HT-29 cells, as well induced apoptosis in HT-29 cells, as revealed through flow cytometric analysis. Furthermore, immunoblot analysis showed that Vicenin-2 treatment enhanced the expression of Cytochrome C, Bax and caspase-3 whereas suppressed the Bcl-2 expression. Conclusion Together, these results revealed that Vicenin-2 can act as a potent inhibitor of HT-29 cell proliferation and can be used as an agent against CRC.
Collapse
Affiliation(s)
- Dong Yang
- Department of Anorectal Surgery, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Xiling Zhang
- Department of Anorectal Surgery, Shaanxi Provincial People's Hospital, Shaanxi, Xi'an, China
| | - Wencun Zhang
- Department of Anorectal Surgery, The Fourth Hospital of Yu Lin City, Shaanxi Province, China
| | | |
Collapse
|
27
|
Characterization, antioxidant and antiglycation properties of polysaccharides extracted from the medicinal halophyte Carpobrotus edulis L. Int J Biol Macromol 2018; 107:833-842. [DOI: 10.1016/j.ijbiomac.2017.09.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
|
28
|
Aidi Wannes W, Saidani Tounsi M, Marzouk B. A review of Tunisian medicinal plants with anticancer activity. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2017; 15:/j/jcim.ahead-of-print/jcim-2017-0052/jcim-2017-0052.xml. [PMID: 28915116 DOI: 10.1515/jcim-2017-0052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
Cancer is a major public health problem in the world. The use of the medicinal plants in cancer prevention and management is frequent in Africa, especially in Tunisia, and it is transmitted from generation to generation within cultures. Many previous studies showed that a wide range of Tunisian medicinal plants exerted cytotoxic and anticancer activity. A comprehensive review was conducted to collect information from scientific journal articles, including indigenous knowledge researches, about Tunisian medicinal plants used for the prevention and management of cancer. The aim of this review article is to provide the reader with information concerning the importance of Tunisian medicinal plants in the prevention and management of cancer and to open the door for the health professionals and scientists working in the field of pharmacology and therapeutics to produce new drug formulations to treat different types of cancer.
Collapse
Affiliation(s)
- Wissem Aidi Wannes
- Laboratory of Aromatic and Medicinal Plants, Biotechnologic Center Borj-Cedria Technopark, Hammam-Lif, Tunisia
| | - Moufida Saidani Tounsi
- Laboratory of Aromatic and Medicinal Plants, Biotechnologic Center Borj-Cedria Technopark, Hammam-Lif, Tunisia
| | - Brahim Marzouk
- Laboratory of Aromatic and Medicinal Plants, Biotechnologic Center Borj-Cedria Technopark, Hammam-Lif, Tunisia
| |
Collapse
|