1
|
Silva LS, Cavallini E, da Silva RA, Sant’Ana M, Yoshikawa AH, Salomão T, Huang B, Craice P, de Souza Ferreira LP, Della Matta HP, Gil CD, Pereira MDLG, Girol AP. Garcinia brasiliensis Leaves Extracts Inhibit the Development of Ascitic and Solid Ehrlich Tumors. Pharmaceuticals (Basel) 2024; 18:24. [PMID: 39861087 PMCID: PMC11768557 DOI: 10.3390/ph18010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Background:Garcinia brasiliensis is traditionally known for its medicinal properties. Objectives: Here, we investigated the effects of crude extract (CE) and ethyl acetate fraction (EAF) obtained from G. brasiliensis leaves on the ascitic (EA) and solid (ES) forms of Ehrlich tumors. Methods: Induced and uninduced BALB/c mice were treated intramuscularly, for 7 or 14 days, with saline solution or CE and EAF, both at a 10% concentration, based on in vitro cytotoxicity assessment. Biochemical analyses were also performed to evaluate in vivo cytotoxicity. In relation to tumor-induced animals, morphological changes, plasma enzymes, inflammatory mediators and the induction of apoptosis were analyzed, in addition to histopathological studies, to evaluate the inhibition of tumor growth. Results: Alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma glutamyl transferase (GGT) were regulated by CE and EAF administration. Furthermore, both treatments were effective in inhibiting tumor growth in EA and ES by modulating the levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α, decreasing mast cells numbers and inducing apoptosis. Conclusions: This research indicates that both CE and EAF from G. brasiliensis leaves have potential antitumor effects with low cytotoxicity.
Collapse
Affiliation(s)
- Lucas Sylvestre Silva
- Post Graduate Program in Structural and Functional Biology, Paulista School of Medicine (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (L.S.S.); (E.C.); (M.S.); (L.P.d.S.F.); (C.D.G.)
| | - Eduardo Cavallini
- Post Graduate Program in Structural and Functional Biology, Paulista School of Medicine (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (L.S.S.); (E.C.); (M.S.); (L.P.d.S.F.); (C.D.G.)
| | - Rafael André da Silva
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | - Monielle Sant’Ana
- Post Graduate Program in Structural and Functional Biology, Paulista School of Medicine (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (L.S.S.); (E.C.); (M.S.); (L.P.d.S.F.); (C.D.G.)
| | - Ariane Harumi Yoshikawa
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.H.Y.); (T.S.); (B.H.); (P.C.); (H.P.D.M.)
| | - Thiago Salomão
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.H.Y.); (T.S.); (B.H.); (P.C.); (H.P.D.M.)
| | - Bianca Huang
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.H.Y.); (T.S.); (B.H.); (P.C.); (H.P.D.M.)
| | - Paula Craice
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.H.Y.); (T.S.); (B.H.); (P.C.); (H.P.D.M.)
| | - Luiz Philipe de Souza Ferreira
- Post Graduate Program in Structural and Functional Biology, Paulista School of Medicine (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (L.S.S.); (E.C.); (M.S.); (L.P.d.S.F.); (C.D.G.)
| | - Heitor Pedro Della Matta
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.H.Y.); (T.S.); (B.H.); (P.C.); (H.P.D.M.)
| | - Cristiane Damas Gil
- Post Graduate Program in Structural and Functional Biology, Paulista School of Medicine (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (L.S.S.); (E.C.); (M.S.); (L.P.d.S.F.); (C.D.G.)
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | | | - Ana Paula Girol
- Post Graduate Program in Structural and Functional Biology, Paulista School of Medicine (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (L.S.S.); (E.C.); (M.S.); (L.P.d.S.F.); (C.D.G.)
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.H.Y.); (T.S.); (B.H.); (P.C.); (H.P.D.M.)
| |
Collapse
|
2
|
Fayyad RJ, Ali Alanisi EMA, Mohammed Ali AN. Algae-Mediated Green Synthesis of Dextran-Coated Titanium Nanoparticles and Their Cytotoxic Potential Against MCF7 Breast Cancer Cells. Rep Biochem Mol Biol 2024; 13:358-367. [PMID: 40330561 PMCID: PMC12050059 DOI: 10.61186/rbmb.13.3.358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/19/2024] [Indexed: 05/08/2025]
Abstract
Background The green synthesis of nanoparticles through algae-mediated processes offers an eco-friendly, cost-effective, and scalable approach for producing nanomaterials with potential applications in cancer therapy. The present study investigated the algae-mediated green synthesis of dextran-coated titanium oxide nanoparticles (TiO2NPs) and evaluated their cytotoxic effects against MCF-7 breast cancer cells. Methods Chlorella vulgaris was isolated and identified. The polymerase chain reaction (PCR)-amplification of the 18S ribosomal RNA gene was used to confirm the isolate. Dextran from C. vulgaris was used to prepare coated TiO2NPs), characterized using three techniques. The cytotoxicity of the dextran-coated TiO2NPs was evaluated using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay on MCF7- breast cancer cells at various concentrations (25, 50, and 75%) and exposure times (24, 48, and 72 hours). The bioactive compounds in the algal extract were also identified by gas chromatography-mass spectrometry (GC-MS). Results Chlorella vulgaris was successfully isolated as confirmed by the 345-bp PCR-amplified fragment. The characterization of the TiO2NPs confirmed the successful nanoparticle formation. A cluster of nanocrystalline particles had an average diameter of 71.44 nm. Compositional analysis revealed 15.85% atomic percentage for titanium. The dextran-coated TiO2NPs exhibited an impressive cytotoxicity rate of up to 99% at optimal concentration (25%) and exposure time (48 hours). Additionally, GC-MS analysis identified bioactive compounds in the algal extract, such as fatty acids, which may contribute to the observed anticancer effects. Conclusions The study demonstrated the potential of algae-mediated TiO2NPs in cancer co-therapy, enhancing treatment effectiveness and reducing the side effects of traditional therapies.
Collapse
Affiliation(s)
- Raghad Jasim Fayyad
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq.
| | | | | |
Collapse
|
3
|
Swidan MM, Marzook F, Sakr TM. pH-Sensitive doxorubicin delivery using zinc oxide nanoparticles as a rectified theranostic platform: in vitro anti-proliferative, apoptotic, cell cycle arrest and in vivo radio-distribution studies. J Mater Chem B 2024; 12:6257-6274. [PMID: 38845545 DOI: 10.1039/d4tb00615a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Despite enormous advancements in its management, cancer is the world's primary cause of mortality. Therefore, tremendous strides were made to produce intelligent theranostics with mitigated side effects and improved specificity and efficiency. Thus, we developed a pH-sensitive theranostic platform composed of dextran immobilized zinc oxide nanoparticles, loaded with doxorubicin and radiolabeled with the technetium-99m radionuclide (99mTc-labelled DOX-loaded ZnO@dextran). The platform measured 11.5 nm in diameter with -12 mV zeta potential, 88% DOX loading efficiency and 98.5% radiolabeling efficiency. It showed DOX release in a pH-responsive manner, releasing 93.1% cumulatively at pH 5 but just 7% at pH 7.4. It showed improved intracellular uptake, which resulted in a high growth suppressive effect against MCF-7 cancer cells as compared to the free DOX. It boasted a 4 times lower IC50 than DOX, indicating its significant anti-proliferative potential (0.14 and 0.55 μg ml-1, respectively). The in vitro biological evaluation revealed that its molecular mode of anti-proliferative action included downregulating Cdk-2, which provoked G1/S cell cycle arrest, and upregulating both the intracellular ROS level and caspase-3, which induced apoptosis and necrosis. The in vivo experiments in Ehrlich-ascites carcinoma bearing mice demonstrated that DOX-loaded ZnO@dextran showed a considerable 4-fold increase in anti-tumor efficacy compared to DOX. Moreover, by utilizing the diagnostic radionuclide (99mTc), the radiolabeled platform (99mTc-labelled DOX-loaded ZnO@dextran) was in vivo monitored in tumor-bearing mice, revealing high tumor accumulation (14% ID g-1 at 1 h p.i.) and reduced uptake in non-target organs with a 17.5 T/NT ratio at 1 h p.i. Hence, 99mTc-labelled DOX-loaded ZnO@dextran could be recommended as a rectified tumor-targeted theranostic platform.
Collapse
Affiliation(s)
- Mohamed M Swidan
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, PO13759, Cairo, Egypt.
| | - Fawzy Marzook
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, PO13759, Cairo, Egypt.
| | - Tamer M Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, PO13759, Cairo, Egypt
| |
Collapse
|
4
|
Medhat D, El-Bana MA, El-Tantawy El-Sayed I, Ahmed AAS, El-Naggar ME, Hussein J. Investigating the Anti-inflammatory Effect of Quinoline Derivative: N1-(5-methyl-5H-indolo[2,3-b]quinolin-11-yl)benzene-1,4-diamine Hydrochloride Loaded Soluble Starch Nanoparticles Against Methotrexate-induced Inflammation in Experimental Model. Biol Proced Online 2024; 26:16. [PMID: 38831428 PMCID: PMC11149278 DOI: 10.1186/s12575-024-00240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND It is necessary to develop advanced therapies utilizing natural ingredients with anti-inflammatory qualities in order to lessen the negative effects of chemotherapeutics. RESULTS The bioactive N1-(5-methyl-5H-indolo[2,3-b]quinolin-11-yl)benzene-1,4-diamine hydrochloride (NIQBD) was synthesized. After that, soluble starch nanoparticles (StNPs) was used as a carrier for the synthesized NIQBD with different concentrations (50 mg, 100 mg, and 200 mg). The obtained StNPs loaded with different concentrations of NIQBD were coded as StNPs-1, StNPs-2, and StNPs-3. It was observed that, StNPs-1, StNPs-2, and StNPs-3 exhibited an average size of 246, 300, and 328 nm, respectively. Additionally, they also formed with homogeneity particles as depicted from polydispersity index values (PDI). The PDI values of StNPs-1, StNPs-2, and StNPs-3 are 0.298, 0.177, and 0.262, respectively. In vivo investigation of the potential properties of the different concentrations of StNPs loaded with NIQBD against MTX-induced inflammation in the lung and liver showed a statistically substantial increase in levels of reduced glutathione (GSH) accompanied by a significant decrease in levels of oxidants such as malondialdehyde (MDA), nitric oxide (NO), advanced oxidation protein product (AOPP), matrix metalloproteinase 9/Gelatinase B (MMP-9), and levels of inflammatory mediators including interleukin 1-beta (IL-1β), nuclear factor kappa-B (NF-κB) in both lung and liver tissues, and a significant decrease in levels of plasma homocysteine (Hcy) compared to the MTX-induced inflammation group. The highly significant results were obtained by treatment with a concentration of 200 mg/mL. Histopathological examination supported these results, where treatment showed minimal inflammatory infiltration and congestion in lung tissue, a mildly congested central vein, and mild activation of Kupffer cells in liver tissues. CONCLUSION Combining the treatment of MTX with natural antioxidant supplements may help reducing the associated oxidation and inflammation.
Collapse
Affiliation(s)
- Dalia Medhat
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Dokki, Giza, Egypt.
| | - Mona A El-Bana
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Dokki, Giza, Egypt
| | | | - Abdullah A S Ahmed
- Chemistry Department, Faculty of Science, Menoufia University, 32511, Shebin El Koom, Egypt
| | - Mehrez E El-Naggar
- Institute of Textile Research and Technology, National Research Centre, 12622, Dokki, Giza, Egypt
| | - Jihan Hussein
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Dokki, Giza, Egypt
| |
Collapse
|
5
|
Hussein J, El-Bana M, Abdel-Latif Y, El-Sayed S, Shaarawy S, Medhat D. Moringa oleifera leaves extract loaded gold nanoparticles offers a promising approach in protecting against experimental nephrotoxicity. Prostaglandins Other Lipid Mediat 2024; 170:106800. [PMID: 38029886 DOI: 10.1016/j.prostaglandins.2023.106800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Cisplatin is one of the most important antitumor drugs, however; it has numerous adverse effects like nephrotoxicity which is considered one of cisplatin uses . The study was planned to evaluate the nephroprotective effect of M. oleifera leaves extract loaded gold nanoparticles (Au-NPs) against cisplatin-induced nephrotoxicity in rats. Initially, total phenolic contents (TPC) and the antioxidant activity of the M. oleifera leaves extract were evaluated and recorded 8.50 mg/g and 39.89 % respectively. After that, the dry leaves of M. oleifera were grinded into fine powder and extracted using water extraction system. Then, different volumes (0.5, 1 and 2 mL) of M. Oleifera were blended with constant volume of Au-NPs (1 mL). Both Au-NPs and M. oleifera extract loaded Au-NPs were investigated using transmission electron microscope (TEM) that illustrated the deposition of M. Oleifera onto Au-NPs. The experimental study was performed on seventy male albino rats alienated into seven groups. Group I healthy rats, group II injected with one dose of cisplatin (CisPt), groups from III to VII treated groups received CisPt then received M. Oleifera leaves extract alone and /or Au-NPs with different ratios and concentrations. After the experiment' time, serum urea and creatinine, kidney injury molecule-1 (KIM-1), advanced oxidation protein products (AOPP), monocyte chemoattractant protein-1 (MCP-1), tumor necrotic factor-α (TNF-α), and interleukin-6 (IL-6) were evaluated as markers of renal nephrotoxicity. The kidneys of rats were excised for malondialdehyde (MDA), nitric oxide (NO), and superoxide dismutase (SOD) assessments. Induction of CisPt showed a highly significant disturbance in oxidant/anti-oxidant balance and inducing inflammatory cascades supporting nephrotoxicity, while treatment with M. Oleifera leaves extract, Au-NPs, and the different concentrations of the extract loaded on Au-NPs had a crucial role in attenuating oxidative stress, enhancing antioxidant systems, and reducing inflammatory biomarkers, although the most significant results showed a powerful scavenging activity against nephrotoxicity induced by CisPt was obtained with M. Oleifera leaves extract loaded on Au-NPs with a concentration of 2:1 respectively.
Collapse
Affiliation(s)
- Jihan Hussein
- Medical Biochemistry Department, National Research Centre, Dokki 12622, Egypt.
| | - Mona El-Bana
- Medical Biochemistry Department, National Research Centre, Dokki 12622, Egypt
| | - Yasmin Abdel-Latif
- Medical Biochemistry Department, National Research Centre, Dokki 12622, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Samah El-Sayed
- Dairy Science Department, National Research Centre, Dokki 12622, Egypt
| | - Sahar Shaarawy
- Pre-Treatment and Finishing of Cellulosic Fabric Department, National Research Centre, Dokki 12622, Egypt
| | - Dalia Medhat
- Medical Biochemistry Department, National Research Centre, Dokki 12622, Egypt
| |
Collapse
|
6
|
Aldayel TS, Gad El Hak HN, Nafie MS, Saad R, Abdelrazek HMA, Kilany OE. Evaluation of antioxidant, anti-inflammatory, anticancer activities and molecular docking of Moringa oleifera seed oil extract against experimental model of Ehrlich ascites carcinoma in Swiss female albino mice. BMC Complement Med Ther 2023; 23:457. [PMID: 38098043 PMCID: PMC10720142 DOI: 10.1186/s12906-023-04279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
The current research intended to evaluate the antitumor properties of Moringa oleifera oil extract (MOE). Fifty-six female Swiss albino mice were employed in this study. Animals were assigned into four groups: control (C) group, moringa oil extract (MOE) group administered (500 mg/kg b. wt) MOE daily via gavage, Ehrlich ascites carcinoma (EAC) group and EAC group administered daily with (500 mg/kg b.wt) MOE for two weeks (EAC/MOE). The results showed that MOE significantly ameliorated the EAC increase in body weight and reduced the EAC cell viability. In addition, they upgraded the levels of hepatic and renal functions, inflammatory cytokines, oxidative stress markers and EAC-induced hepatic and renal histopathological changes. Treatment of EAC with MOE induced antitumor, anti-inflammatory and antioxidant effects and normalized most of the tested parameters besides the histopathological alterations in both renal and hepatic tissues. HPLC for the MOE identified Cinnamic acid, Ellagic acid, Quercetin, Gallic acid, Vanillin and Hesperidin as major compounds. The molecular docking study highlighted the virtual binding of the identified compounds inside the GSH and SOD proteins, especially for Quercetin which exhibited promising binding affinity with good interactive binding mode with the key amino acids. These results demonstrate that the antitumor constituents of MOE against EAC induced oxidative stress and inflammation by preventing oxidative damage and controlling EAC increase.
Collapse
Affiliation(s)
- Tahany Saleh Aldayel
- Department of Health Sciences, Clinical Nutrition, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Heba N Gad El Hak
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt.
| | - Mohamed S Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Raneem Saad
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Omnia E Kilany
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
7
|
Dextran Formulations as Effective Delivery Systems of Therapeutic Agents. Molecules 2023; 28:molecules28031086. [PMID: 36770753 PMCID: PMC9920038 DOI: 10.3390/molecules28031086] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Dextran is by far one of the most interesting non-toxic, bio-compatible macromolecules, an exopolysaccharide biosynthesized by lactic acid bacteria. It has been extensively used as a major component in many types of drug-delivery systems (DDS), which can be submitted to the next in-vivo testing stages, and may be proposed for clinical trials or pharmaceutical use approval. An important aspect to consider in order to maintain high DDS' biocompatibility is the use of dextran obtained by fermentation processes and with a minimum chemical modification degree. By performing chemical modifications, artefacts can appear in the dextran spatial structure that can lead to decreased biocompatibility or even cytotoxicity. The present review aims to systematize DDS depending on the dextran type used and the biologically active compounds transported, in order to obtain desired therapeutic effects. So far, pure dextran and modified dextran such as acetalated, oxidised, carboxymethyl, diethylaminoethyl-dextran and dextran sulphate sodium, were used to develop several DDSs: microspheres, microparticles, nanoparticles, nanodroplets, liposomes, micelles and nanomicelles, hydrogels, films, nanowires, bio-conjugates, medical adhesives and others. The DDS are critically presented by structures, biocompatibility, drugs loaded and therapeutic points of view in order to highlight future therapeutic perspectives.
Collapse
|
8
|
Abd-Elghany AA, Ahmed SM, Masoud MA, Atia T, Waggiallah HA, El-Sakhawy MA, Mohamad EA. Annona squamosa L. Extract-Loaded Niosome and Its Anti-Ehrlich Ascites' Carcinoma Activity. ACS OMEGA 2022; 7:38436-38447. [PMID: 36340141 PMCID: PMC9631742 DOI: 10.1021/acsomega.2c03649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/11/2022] [Indexed: 12/26/2022]
Abstract
Current research is focused on cancer treatments other than chemotherapy medications, particularly those derived from natural sources. The goal of this work was to look at the anticancer and biomarker properties of a methanolic extract of Annona squamosa leaves and their extract-loaded noisome. A. squamosa leaves extract and their leaves extract-loaded noisome were prepared. Transmission electron microscopy was used to screen the size of the niosomes loaded with the A. squamosa L. leaves extract. The tumor size, blood picture (hemoglobin, red blood cells, white blood cells), liver functions, kidney function, oxidative stress, and inflammatory markers were evaluated to assess the potential anticancer activity of the A. squamosa leaves extract and A. squamosa leaves extract-loaded noisome in Ehrlich ascites carcinoma. A. squamosa L. leaves extract was found to be an effective anticancer treatment. The protective effect of the loaded extract showed more significant results. All treated groups showed a lower tumor volume compared to the positive control. Liver and kidney functions were improved, and inflammatory markers were decreased. Oxidative stress was improved in tumor, liver, and kidney tissues. A. squamosa leaves contain major anticancer compounds that in general help most enzymes of the liver and kidney and other injured organs to return to their normal levels.
Collapse
Affiliation(s)
- Amr A. Abd-Elghany
- Radiology
and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj11942, Saudi Arabia
- Biophysics
Department, Faculty of Science, Cairo University, Giza12613, Egypt
| | - Samya Mahmoud Ahmed
- Department
of Biochemistry, National Organization for Drug Control and Research
(NODCAR), Egyptian Drug Authority (EDA), Giza12654, Egypt
| | - Marwa A. Masoud
- Department
of Pharmacology, National Organization for Drug Control and Research
(NODCAR), Egyptian Drug Authority (EDA), Giza12654, Egypt
| | - Tarek Atia
- Department
of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdul-Aziz University, Al-Kharj11942, Saudi Arabia
| | - Hisham Ali Waggiallah
- Department
of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdul-Aziz University, Al-Kharj11942, Saudi Arabia
| | - Mohamed A. El-Sakhawy
- Department
of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdul-Aziz University, Al-Kharj11942, Saudi Arabia
- Department
of Medicinal and Aromatic Plants, Desert
Research Center, Cairo11753, Egypt
| | - Ebtesam A. Mohamad
- Radiology
and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj11942, Saudi Arabia
| |
Collapse
|
9
|
Wang H, Yan X, Jin Z, Wang Y, Lin Y, Zhao K. N‐2‐hydroxypropyl trimethyl ammonium chloride chitosan‐glycerol complex temperature‐sensitive hydrogel for wound dressing. J Appl Polym Sci 2022. [DOI: 10.1002/app.53112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hongli Wang
- School of Life Science, College of Chemistry and Material Sciences Heilongjiang University Harbin Heilongjiang Province China
- Institute of Nanobiomaterials and Immunology, School of Life Science Taizhou University Taizhou China
| | - Xingye Yan
- School of Life Science, College of Chemistry and Material Sciences Heilongjiang University Harbin Heilongjiang Province China
| | - Zheng Jin
- School of Life Science, College of Chemistry and Material Sciences Heilongjiang University Harbin Heilongjiang Province China
- Institute of Nanobiomaterials and Immunology, School of Life Science Taizhou University Taizhou China
| | - Yiyu Wang
- Institute of Nanobiomaterials and Immunology, School of Life Science Taizhou University Taizhou China
| | - Yuhong Lin
- Institute of Nanobiomaterials and Immunology, School of Life Science Taizhou University Taizhou China
| | - Kai Zhao
- School of Life Science, College of Chemistry and Material Sciences Heilongjiang University Harbin Heilongjiang Province China
- Institute of Nanobiomaterials and Immunology, School of Life Science Taizhou University Taizhou China
| |
Collapse
|
10
|
El-Banna MA, Hendawy OM, El-Nekeety AA, Abdel-Wahhab MA. Efficacy of ginsenoside Rg3 nanoparticles against Ehrlich solid tumor growth in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43814-43825. [PMID: 35118592 DOI: 10.1007/s11356-022-19019-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Solid tumors are fairly common and face many clinical difficulties since they are hardly surgically resectable and broadly do not respond to radiation and chemotherapy. The current study aimed to fabricate ginsenoside Rg3 nanoparticles (Rg3-NPs) and evaluate their antitumor effect against Ehrlich solid tumors (EST) in mice. Rg3-NPs were fabricated using whey protein isolates (WPI), maltodextrin (MD), and gum Arabic (GA). EST was developed by the injection of mice with Ehrlich ascites cells (2.5 × 106). The mice were divided into a control group, EST group, and the EST groups that were treated orally 2 weeks for with normal Rg3 (3 mg/kg b.w.), Rg3-NPs at a low dose (3 mg/kg b.w.), and Rg3-NPs at a high dose (6 mg/kg b.w.). Serum and solid tumors were collected for different assays. The results revealed that synthesized Rg3-NPs showed a spherical shape with an average particle size of 20 nm and zeta potential of -5.58 mV. The in vivo study revealed that EST mice showed a significant increase in AFP, Casp3, TNF-α, MMP-9, VEGF, MDA, and DNA damage accompanied by a significant decrease in SOD and GPx. Treatment with Rg3 or Rg3-NPs decreased the tumor weight and size and induced a significant improvement in all the biochemical parameters. Rg3-NPs were more effective than Rg3, and the improvement was dose-dependent. It could be concluded that fabrication of Rg3-NPs enhanced the protective effect against EST development which may be due to the synergistic effect of Rg3 and MD, GA, and WPI.
Collapse
Affiliation(s)
- Mona A El-Banna
- Medical Biochemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Omnia M Hendawy
- Clinical Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
11
|
Elimam H, Hussein J, Abdel-Latif Y, Abdel-Aziz AK, El-Say KM. Preclinical activity of fluvastatin-loaded self-nanoemulsifying delivery system against breast cancer models: Emphasis on apoptosis. J Cell Biochem 2022; 123:947-963. [PMID: 35342983 DOI: 10.1002/jcb.30238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/27/2022] [Accepted: 03/08/2022] [Indexed: 12/22/2022]
Abstract
Statins trigger apoptotic cell death in some types of growing tumor cells in a cholesterol-lowering-independent manner. Self-nanoemulsifying delivery systems (SNEDs) are potentially effective for the suppression of breast cancer development. This study aims to investigate the potential anticancer activity of fluvastatin (FLV)-SNEDs in breast cancer while comparing it with FLV in vitro as well as in vivo exploiting/using MDA-MB-231 and Erhlich ascites carcinoma (EAC)-bearing mice, respectively. Biochemical analysis of liver and kidney functions, oxidative stress markers, and histopathological examinations of such tumor tissues were performed showing the potentiality of SNEDs as a nanocarrier for antitumor agents. FLV-SNEDs demonstrated more potent anticancer activity compared to FLV on MDA-MB-231 and hepatocellular carcinoma (HepG2) cells. In vivo experiments on the EAC-bearing mice model indicated that FLV and-to a greater extent-FLV-SNEDs ameliorated EAC-induced hepatotoxicity and nephrotoxicity. FLV or FLV-SNEDs evidently reduced the percent of Ki-67 +ve EAC cells by 57.5% and 86.5% in comparison to the vehicle-treated EAC group. In addition, FLV or FLV-SNEDs decreased Bcl-2 levels in serum and liver specimens. In contrast, FLV or FLV-SNEDs significantly activated the executioner caspase-3. Simultaneously, both FLV and FLV-SNEDs stimulated p53 signaling and modulated Bcl-2 protein levels in treated cells. Collectively, these results support the contribution of apoptotic cell death in mediating the anticancer activities of FLV and FLV-SNEDs against murine EAC model in vivo. This study provides new understandings of how FLV and FLV-SNEDs regulate EAC cell viability via upregulation of p53 signaling, and through modulation of cleaved caspase-3 as well as antiapoptotic Bcl-2 marker.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt.,Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantara, Egypt
| | - Jihan Hussein
- Department of Medical Biochemistry, National Research Centre, Giza, Egypt
| | - Yasmin Abdel-Latif
- Department of Medical Biochemistry, National Research Centre, Giza, Egypt.,Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th of October, Giza, Egypt
| | - Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Saleh N, Allam T, Korany RMS, Abdelfattah AM, Omran AM, Abd Eldaim MA, Hassan AM, El-Borai NB. Protective and Therapeutic Efficacy of Hesperidin versus Cisplatin against Ehrlich Ascites Carcinoma-Induced Renal Damage in Mice. Pharmaceuticals (Basel) 2022; 15:ph15030294. [PMID: 35337092 PMCID: PMC8953897 DOI: 10.3390/ph15030294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 01/07/2023] Open
Abstract
This study evaluates the antitumor efficacy of hesperidin (Hesp) versus cisplatin (Cis) in Ehrlich ascites carcinoma (EAC)-bearing mice, as well as its protective effect against Cis-triggered nephrotoxicity. Seventy female mice were allocated into control, Hesp, EAC, Hesp-protected, Hesp-treated, Cis-treated, and Cis+Hesp-treated groups. The inoculation of mice with EAC cells significantly reduced the mean survival time, while significantly increased the body weight, abdominal circumference, ascitic fluid volume, viable tumor cell count, and serum carcinoembryonic antigen, urea and creatinine levels, besides various hematological changes. Additionally, kidney tissue of EAC-bearing mice showed a significant increase in the malondialdehyde level, significant decreases in the reduced glutathione content and catalase activity, marked pathological alterations, and a strong Ki-67 expression with a weak caspase-3 expression in neoplastic cells infiltrating the renal capsule. Conversely, the administration of Hesp and/or Cis to the EAC-bearing mice induced, to various degrees, antitumor responses and alleviated the cytotoxic effects of EAC. In addition to the potent antitumor effect of the concomitant administration of Hesp and Cis, Hesp minimized the renal adverse side effects of Cis. In conclusion, Hesp may open new avenues for safe and effective cancer therapy and could be valuable for enhancing the antitumor potency and minimizing the renal adverse side effects of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Nahed Saleh
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Menoufia, Egypt; (N.S.); (T.A.); (A.M.A.); (A.M.O.)
| | - Tamer Allam
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Menoufia, Egypt; (N.S.); (T.A.); (A.M.A.); (A.M.O.)
| | - Reda M. S. Korany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Abdelfattah M. Abdelfattah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Menoufia, Egypt; (N.S.); (T.A.); (A.M.A.); (A.M.O.)
| | - Ahmed M. Omran
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Menoufia, Egypt; (N.S.); (T.A.); (A.M.A.); (A.M.O.)
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Sheben El-Kom 32511, Egypt
- Correspondence: (M.A.A.E.); or (N.B.E.-B.); Tel./Fax: +20-1-1748-4718 (M.A.A.E.); +20-4-8260-3215 or +20-10-0736-5569 (N.B.E.-B.)
| | - Aziza M. Hassan
- Department of Biotechnology, Collage of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Nermeen Borai El-Borai
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Menoufia, Egypt
- Correspondence: (M.A.A.E.); or (N.B.E.-B.); Tel./Fax: +20-1-1748-4718 (M.A.A.E.); +20-4-8260-3215 or +20-10-0736-5569 (N.B.E.-B.)
| |
Collapse
|
13
|
Berta L, Coman NA, Rusu A, Tanase C. A Review on Plant-Mediated Synthesis of Bimetallic Nanoparticles, Characterisation and Their Biological Applications. MATERIALS 2021; 14:ma14247677. [PMID: 34947271 PMCID: PMC8705710 DOI: 10.3390/ma14247677] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
The study of bimetallic nanoparticles (BNPs) has constantly been expanding, especially in the last decade. The biosynthesis of BNPs mediated by natural extracts is simple, low-cost, and safe for the environment. Plant extracts contain phenolic compounds that act as reducing agents (flavonoids, terpenoids, tannins, and alkaloids) and stabilising ligands moieties (carbonyl, carboxyl, and amine groups), useful in the green synthesis of nanoparticles (NPs), and are free of toxic by-products. Noble bimetallic NPs (containing silver, gold, platinum, and palladium) have potential for biomedical applications due to their safety, stability in the biological environment, and low toxicity. They substantially impact human health (applications in medicine and pharmacy) due to the proven biological effects (catalytic, antioxidant, antibacterial, antidiabetic, antitumor, hepatoprotective, and regenerative activity). To the best of our knowledge, there are no review papers in the literature on the synthesis and characterisation of plant-mediated BNPs and their pharmacological potential. Thus, an effort has been made to provide a clear perspective on the synthesis of BNPs and the antioxidant, antibacterial, anticancer, antidiabetic, and size/shape-dependent applications of BNPs. Furthermore, we discussed the factors that influence BNPs biosyntheses such as pH, temperature, time, metal ion concentration, and plant extract.
Collapse
Affiliation(s)
- Lavinia Berta
- Department of General and Inorganic Chemistry, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, 540139 Târgu Mureș, Romania;
| | - Năstaca-Alina Coman
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Aura Rusu
- Pharmaceutical and Therapeutical Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania
- Correspondence:
| | - Corneliu Tanase
- Pharmaceutical Botany Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| |
Collapse
|
14
|
Mahmoud YAG, El-Naggar ME, Abdel-Megeed A, El-Newehy M. Recent Advancements in Microbial Polysaccharides: Synthesis and Applications. Polymers (Basel) 2021; 13:polym13234136. [PMID: 34883639 PMCID: PMC8659985 DOI: 10.3390/polym13234136] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Polysaccharide materials are widely applied in different applications including food, food packaging, drug delivery, tissue engineering, wound dressing, wastewater treatment, and bioremediation sectors. They were used in these domains due to their efficient, cost-effective, non-toxicity, biocompatibility, and biodegradability. As is known, polysaccharides can be synthesized by different simple, facile, and effective methods. Of these polysaccharides are cellulose, Arabic gum, sodium alginate, chitosan, chitin, curdlan, dextran, pectin, xanthan, pullulan, and so on. In this current article review, we focused on discussing the synthesis and potential applications of microbial polysaccharides. The biosynthesis of polysaccharides from microbial sources has been considered. Moreover, the utilization of molecular biology tools to modify the structure of polysaccharides has been covered. Such polysaccharides provide potential characteristics to transfer toxic compounds and decrease their resilience to the soil. Genetically modified microorganisms not only improve yield of polysaccharides, but also allow economically efficient production. With the rapid advancement of science and medicine, biosynthesis of polysaccharides research has become increasingly important. Synthetic biology approaches can play a critical role in developing polysaccharides in simple and facile ways. In addition, potential applications of microbial polysaccharides in different fields with a particular focus on food applications have been assessed.
Collapse
Affiliation(s)
- Yehia A.-G. Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Mehrez E. El-Naggar
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Cairo 12622, Egypt
- Correspondence: (M.E.E.-N.); (M.E.-N.)
| | - Ahmed Abdel-Megeed
- Department of Plant Protection, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria 21531, Egypt;
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Correspondence: (M.E.E.-N.); (M.E.-N.)
| |
Collapse
|
15
|
Aboseada HA, Hassanien MM, El-Sayed IH, Saad EA. Schiff base 4-ethyl-1-(pyridin-2-yl) thiosemicarbazide up-regulates the antioxidant status and inhibits the progression of Ehrlich solid tumor in mice. Biochem Biophys Res Commun 2021; 573:42-47. [PMID: 34388453 DOI: 10.1016/j.bbrc.2021.07.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/31/2021] [Indexed: 01/12/2023]
Abstract
Cisplatin is an approved cancer therapeutic drug used to treat many solid tumors but its accumulation in the kidney, which causes nephrotoxicity, limits its clinical use. Therefore, investigators seek new alternatives to cisplatin that may be more effective and/or safer. Thiosemicarbazides are of great significance due to their expected biological activity including anticancer activities. The aim of this work is the study of the antitumor effect of Schiff base 4-ethyl-1-(pyridin-2-yl) thiosemicarbazide (HEPTS) on Ehrlich solid tumor-bearing mice in comparison to cancer therapeutic drug cisplatin. The experiment was run using sixty adult female Swiss albino mice. Mice were allocated into six groups (n = 10 mice). Healthy control, EAC control (untreated tumor), EAC + cisplatin, EAC + HEPTS, Healthy + HEPTS, and Healthy + solvent. After scarification, blood samples, liver organs, and solid tumors were collected. Tumor weights and volumes were registered. The concentrations of malondialdehyde (MDA), reduced glutathione (GSH), SOD, catalase (CAT), total antioxidant capacity (TAC), nitric oxide (NO), uric acid, creatinine, and urea were assessed. Median survival time (MST) and the percentage increase in lifespan (%ILS) were also calculated. Treatment of tumorized mice with HEPTS significantly reduced both tumor volume and weight while it significantly increased the MST, antioxidant marks and prolonged the %ILS. It also, significantly reduced MAD, creatinine, urea, uric acid, and NO levels. Compared to cisplatin, HEPTS effects were better. Our results recommend HEPTS as one of the probable cisplatin-alternatives for tumor treatment after more validation.
Collapse
Affiliation(s)
- Helnan A Aboseada
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Mohamed M Hassanien
- Chemistry Department, Faculty of Technology and Education, Beni-Suef University, Beni-Suef, Egypt
| | - Ibrahim H El-Sayed
- Chemistry Department, Faulty of Science, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt
| | - Entsar A Saad
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt.
| |
Collapse
|
16
|
Singhal M, Chatterjee S, Kumar A, Syed A, Bahkali AH, Gupta N, Nimesh S. Exploring the Antibacterial and Antibiofilm Efficacy of Silver Nanoparticles Biosynthesized Using Punica granatum Leaves. Molecules 2021; 26:5762. [PMID: 34641304 PMCID: PMC8510064 DOI: 10.3390/molecules26195762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
The current research work illustrates an economical and rapid approach towards the biogenic synthesis of silver nanoparticles using aqueous Punica granatum leaves extract (PGL-AgNPs). The optimization of major parameters involved in the biosynthesis process was done using Box-Behnken Design (BBD). The effects of different independent variables (parameters), namely concentration of AgNO3, temperature and ratio of extract to AgNO3, on response viz. particle size and polydispersity index were analyzed. As a result of experiment designing, 17 reactions were generated, which were further validated experimentally. The statistical and mathematical approaches were employed on these reactions in order to interpret the relationship between the factors and responses. The biosynthesized nanoparticles were initially characterized by UV-vis spectrophotometry followed by physicochemical analysis for determination of particle size, polydispersity index and zeta potential via dynamic light scattering (DLS), SEM and EDX studies. Moreover, the determination of the functional group present in the leaves extract and PGL-AgNPs was done by FTIR. Antibacterial and antibiofilm efficacies of PGL-AgNPs against Gram-positive and Gram-negative bacteria were further determined. The physicochemical studies suggested that PGL-AgNPs were round in shape and of ~37.5 nm in size with uniform distribution. Our studies suggested that PGL-AgNPs exhibit potent antibacterial and antibiofilm properties.
Collapse
Affiliation(s)
- Monisha Singhal
- Department of Biotechnology, IIS (Deemed to be University), Gurukul Marg, SFS, Mansarovar, Jaipur 302020, India; (M.S.); (S.C.)
| | - Sreemoyee Chatterjee
- Department of Biotechnology, IIS (Deemed to be University), Gurukul Marg, SFS, Mansarovar, Jaipur 302020, India; (M.S.); (S.C.)
| | - Ajeet Kumar
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5814, USA;
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.)
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.)
| | - Nidhi Gupta
- Department of Biotechnology, IIS (Deemed to be University), Gurukul Marg, SFS, Mansarovar, Jaipur 302020, India; (M.S.); (S.C.)
| | - Surendra Nimesh
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India
| |
Collapse
|
17
|
Salem AZ, Medhat D, Fathy SA, Mohamed MR, El-Khayat Z, El-Daly SM. Indole glucosinolates exhibit anti-inflammatory effects on Ehrlich ascites carcinoma cells through modulation of inflammatory markers and miRNAs. Mol Biol Rep 2021; 48:6845-6855. [PMID: 34476740 DOI: 10.1007/s11033-021-06683-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Nuclear factor-κB (NF-κB) has been identified as the major link between inflammation and cancer. Natural agents that inhibit this pathway are essential in attenuating inflammation induced by cancer or chemotherapeutic drugs. High intake of Brassicaceae vegetables has been determined to modulate essential pathways related to chronic diseases. In this study, we investigated the anti-proliferative and anti-inflammatory effects of the indole glucosinolates; indole-3-carbinol (I3C) and its metabolite 3,3-diindolylmethane (DIM) on the inflammatory biomarkers and miRNAs controlling the NF-κB pathway. METHODS AND RESULTS In our study, we inoculated Ehrlich ascites carcinoma (EAC) cells in female albino mice, which increased their packed cell volume and induced a significant increase in the levels of several cytokines and inflammatory biomarkers (NF-κB IL-6, IL-1b, TNF-α, and NO). A significant elevation in inflammatory-medicated miRNAs (miR-31 and miR-21) was also noted. Treatment with 5-fluorouracil (5-FU) significantly reduced packed cell volume and viable cell count. However, it was accompanied by a significant increase in the levels of inflammatory markers and expression of miR-31 and miR-21. Nevertheless, although treatment with indoles (I3C and DIM) significantly reduced the packed cell volume and viable cell count, their prominent effect was the marked reduction of all inflammatory biomarkers compared to both the EAC untreated group and the EAC group treated with 5-FU. Moreover, the anti-inflammatory effect of I3C or DIM was accompanied by a significant decrease in the expression of miR-31 and miR-21. CONCLUSION Our findings have; therefore, revealed that I3C and DIM have strong anti-inflammatory effects, implying that their use as a co-treatment with chemotherapeutic drugs can effectively improve the anti-tumor effect of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Ayah Z Salem
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Dalia Medhat
- Medical Biochemistry Department, Medical Research Division, National Research Centre, 33 El Buhouth St. Dokki, Cairo, 12622, Egypt
| | - Shadia A Fathy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed R Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Zakaria El-Khayat
- Medical Biochemistry Department, Medical Research Division, National Research Centre, 33 El Buhouth St. Dokki, Cairo, 12622, Egypt
| | - Sherien M El-Daly
- Medical Biochemistry Department, Medical Research Division, National Research Centre, 33 El Buhouth St. Dokki, Cairo, 12622, Egypt. .,Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt.
| |
Collapse
|
18
|
Nag M, Lahiri D, Sarkar T, Ghosh S, Dey A, Edinur HA, Pati S, Ray RR. Microbial Fabrication of Nanomaterial and Its Role in Disintegration of Exopolymeric Matrices of Biofilm. Front Chem 2021. [PMID: 34109159 DOI: 10.3389/fchem.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Bacterial biofilms are responsible for the development of various chronic wound-related and implant-mediated infections and confer protection to the pathogenic bacteria against antimicrobial drugs and host immune responses. Hence, biofilm-mediated chronic infections have created a tremendous burden upon healthcare systems worldwide. The development of biofilms upon the surface of medical implants has resulted in the failure of various implant-based surgeries and therapies. Although different conventional chemical and physical agents are used as antimicrobials, they fail to kill the sessile forms of bacterial pathogens due to the resistance exerted by the exopolysaccharide (EPS) matrices of the biofilm. One of the major techniques used in addressing such a problem is to directly check the biofilm formation by the use of novel antibiofilm materials, local drug delivery, and device-associated surface modifications, but the success of these techniques is still limited. The immense expansion in the field of nanoscience and nanotechnology has resulted in the development of novel nanomaterials as biocidal agents that can be either easily integrated within biomaterials to prevent the colonization of microbial cells or directly approach the pathogen overcoming the biofilm matrix. The antibiofilm efficacies of these nanomaterials are accomplished by the generation of oxidative stresses and through alterations of the genetic expressions. Microorganism-assisted synthesis of nanomaterials paved the path to success in such therapeutic approaches and is found to be more acceptable for its "greener" approach. Metallic nanoparticles functionalized with microbial enzymes, silver-platinum nanohybrids (AgPtNHs), bacterial nanowires, superparamagnetic iron oxide (Fe3O4), and nanoparticles synthesized by both magnetotactic and non-magnetotactic bacteria showed are some of the examples of such agents used to attack the EPS.
Collapse
Affiliation(s)
- Moupriya Nag
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Technology and Bio-Chemical Engineering, Jadavpur University, Kolkata, India.,Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | | | - Ankita Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Hisham Atan Edinur
- School of Health Sciences, University Sains Malaysia, Kelantan, Malaysia
| | - Siddhartha Pati
- Centre of Excellence, Khallikote University, Berhampur, India.,Research Division, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
19
|
Nag M, Lahiri D, Sarkar T, Ghosh S, Dey A, Edinur HA, Pati S, Ray RR. Microbial Fabrication of Nanomaterial and Its Role in Disintegration of Exopolymeric Matrices of Biofilm. Front Chem 2021; 9:690590. [PMID: 34109159 PMCID: PMC8181132 DOI: 10.3389/fchem.2021.690590] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
Bacterial biofilms are responsible for the development of various chronic wound-related and implant-mediated infections and confer protection to the pathogenic bacteria against antimicrobial drugs and host immune responses. Hence, biofilm-mediated chronic infections have created a tremendous burden upon healthcare systems worldwide. The development of biofilms upon the surface of medical implants has resulted in the failure of various implant-based surgeries and therapies. Although different conventional chemical and physical agents are used as antimicrobials, they fail to kill the sessile forms of bacterial pathogens due to the resistance exerted by the exopolysaccharide (EPS) matrices of the biofilm. One of the major techniques used in addressing such a problem is to directly check the biofilm formation by the use of novel antibiofilm materials, local drug delivery, and device-associated surface modifications, but the success of these techniques is still limited. The immense expansion in the field of nanoscience and nanotechnology has resulted in the development of novel nanomaterials as biocidal agents that can be either easily integrated within biomaterials to prevent the colonization of microbial cells or directly approach the pathogen overcoming the biofilm matrix. The antibiofilm efficacies of these nanomaterials are accomplished by the generation of oxidative stresses and through alterations of the genetic expressions. Microorganism-assisted synthesis of nanomaterials paved the path to success in such therapeutic approaches and is found to be more acceptable for its "greener" approach. Metallic nanoparticles functionalized with microbial enzymes, silver-platinum nanohybrids (AgPtNHs), bacterial nanowires, superparamagnetic iron oxide (Fe3O4), and nanoparticles synthesized by both magnetotactic and non-magnetotactic bacteria showed are some of the examples of such agents used to attack the EPS.
Collapse
Affiliation(s)
- Moupriya Nag
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Technology and Bio-Chemical Engineering, Jadavpur University, Kolkata, India
- Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | | | - Ankita Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Hisham Atan Edinur
- School of Health Sciences, University Sains Malaysia, Kelantan, Malaysia
| | - Siddhartha Pati
- Centre of Excellence, Khallikote University, Berhampur, India
- Research Division, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
20
|
Abd Eldaim MA, Tousson E, El Sayed IET, Abd Elmaksoud AZ, Ahmed AAS. Ameliorative effects of 9-diaminoacridine derivative against Ehrlich ascites carcinoma-induced hepatorenal injury in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21835-21850. [PMID: 33415614 DOI: 10.1007/s11356-020-11857-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Ehrlich ascites carcinoma induces hepatorenal injuries while acridine derivatives have antioxidant, anticancer, and anti-inflammatory. Thus, this study evaluated the protective potential of a newly synthesized the 9-diaminoacridine derivative (9-DAAD), N1-(acridin-9-yl) propane-1, 3-diamine hydrochloride, against Ehrlich ascites carcinoma (EAC) induced hepatorenal injury in female mice. Forty female mice were allocated into 4 groups. Group I was injected with 0.1% DMSO subcutaneously and kept a control. Group II received 9-DAAD (30 mg/kg bw/2 days) subcutaneously for 2 weeks. Group III was injected interaperitonealy with 2.5 × 106 cells of EAC/20 g bw. Group IV was injected with EAC as the third group and administered with 9-DAAD as the second group for 2 weeks after induction of EAC. EAC significantly elevated total leukocytes and platelets counts; activities of serum AST, ALT, and ALP; serum levels of alpha-fetoprotein; carcinoembryonic antigen; urea and creatinine; and expression of vascular endothelial growth factor protein in hepatic and renal tissues. Meanwhile it decreased red blood cells count, hemoglobin concentration and hematocrit value. At the same time, it significantly reduced serum levels of total protein and albumin and altered hepatic and renal tissues structures. Also, EAC decreased apoptosis and DNA synthesis in hepatic and renal cells. However, treatment of EAC-bearing mice with 9-DAAD improved liver and kidney structures, functions and modulated EAC altered parameters, as well as it reduced hepatic and renal cells proliferation and DNA synthesis. This study indicated that 9-DAAD had a potential ameliorative effect against EAC-induced hepatorenal injury.
Collapse
Affiliation(s)
- Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Sheben Elkom, Menoufia, 32511, Egypt.
| | - Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | | | | - Abdullah A S Ahmed
- Chemistry Department, Faculty of Science, Menoufia University, Sheben Elkom, 32511, Egypt
| |
Collapse
|
21
|
Zhang X, Li Y, Hu Y. Green synthesis of silver nanoparticles and their preventive effect in deficits in recognition and spatial memory in sporadic Alzheimer's rat model. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
The efficiency of blackberry loaded AgNPs, AuNPs and Ag@AuNPs mediated pectin in the treatment of cisplatin-induced cardiotoxicity in experimental rats. Int J Biol Macromol 2020; 159:1084-1093. [DOI: 10.1016/j.ijbiomac.2020.05.115] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/03/2023]
|
23
|
Peng J, Zhao H, Tu C, Xu Z, Ye L, Zhao L, Gu Z, Zhao D, Zhang J, Feng Z. In situ hydrogel dressing loaded with heparin and basic fibroblast growth factor for accelerating wound healing in rat. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111169. [PMID: 32806292 DOI: 10.1016/j.msec.2020.111169] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/15/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
Abstract
In order to accelerate the healing of chronic wound, a hydrogel dressing encapsulating with heparin and basic fibroblast growth factor is prepared by the Michael addition of 4-arm acrylated polyethylene glycol and dithiothreitol. As-prepared hydrogel dressing can combine the advantages of wet healing theory and exogenous growth factor supplement. Furthermore, the encapsulated heparin can play a role in diminishing inflammation and accelerating wound healing in addition to its well-known function of stabilizing basic fibroblast growth factor. In vitro release test shows the hydrogel network is able to sustainably release basic fibroblast growth factor within 10 days by the regulation of heparin, while released growth factor can significantly promote fibroblast's proliferation in vitro. Moreover, the wound healing in rat shows that as-prepared hydrogel dressing could accelerate wound healing in vivo much more effectively compared with blank hydrogel dressing and negative control. Hematoxylin-eosin and Masson's Trichrome staining exhibit the formation of complete and uniform epidermis. Immunohistochemical staining exhibits heparin can help hydrogel dressing to possess low inflammation in early stage, which is beneficial for accelerating wound healing as well as preventing the production of scar tissue. The enzyme-linked immunosorbent assay results demonstrate the exogenous bFGF in hydrogel can significantly upgrade the expressing of vascular endothelial growth factor and transforming growth factor-β in wound site, which indicate better angiogenesis, and better on-site cell proliferation in wound site, respectively. Those results are further demonstrated by immunohistochemical and immunofluorescence staining. Consequently, as-prepared hydrogel dressing shows promising potential to perform better therapy efficacy in clinic for accelerating wound healing.
Collapse
Affiliation(s)
- Jia Peng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Zhao
- Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Chengzhao Tu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zeqin Xu
- Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing 100081, China.
| | - Liang Zhao
- Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.
| | - Zongheng Gu
- Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Dong Zhao
- Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Jie Zhang
- Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing 100081, China
| |
Collapse
|
24
|
Sarhan AAM, Boraei ATA, Barakat A, Nafie MS. Discovery of hydrazide-based pyridazino[4,5- b]indole scaffold as a new phosphoinositide 3-kinase (PI3K) inhibitor for breast cancer therapy. RSC Adv 2020; 10:19534-19541. [PMID: 35515454 PMCID: PMC9054070 DOI: 10.1039/d0ra02798g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/28/2020] [Indexed: 02/05/2023] Open
Abstract
Herein, the mono and dialkylation of pyridazino[4,5-b]indole were achieved with a set of alkylating agents, including amyl bromide, allyl bromide, benzyl bromide and ethyl chloroacetate in the presence of K2CO3/acetone or KOH/DMSO. The hydrazinolysis of mono and di-esters 10 and 11 gave the target hydrazides 12 and 13, which displayed promising, potent, and significant cytotoxic activity against the MCF-7 cell line with IC50 values of 4.25 and 5.35 μm compared to that of the standard drug 5-FU (IC50 6.98 μm), respectively. RT-PCR analysis of the most active compound 12 was performed to determine its mode of action through the up-regulation of pro-apoptotic genes and inhibition of anti-apoptotic and PI3K/AKT/mTOR genes. The findings were consistent with the proposed mechanism illustrated in the in silico study. Further, the in vivo analysis exhibited its potent anti-cancer activity through the prolongation of survival parameters, and inhibition of ascetic fluid parameters in EAC-bearing mice.
Collapse
Affiliation(s)
- Ahmed A M Sarhan
- Chemistry Department, Faculty of Science, Arish University Al-Arish 45511 Egypt
| | - Ahmed T A Boraei
- Chemistry Department, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Assem Barakat
- Chemistry Department, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
- Chemistry Department, Faculty of Science, Alexandria University P.O. Box 426, Ibrahimia Alexandria 21321 Egypt
| | - Mohamed S Nafie
- Chemistry Department, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| |
Collapse
|
25
|
Effect of the type of reducing agents of silver ions in interpolyelectrolyte-metal complexes on the structure, morphology and properties of silver-containing nanocomposites. Sci Rep 2020; 10:7126. [PMID: 32346019 PMCID: PMC7188676 DOI: 10.1038/s41598-020-64079-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/02/2020] [Indexed: 11/09/2022] Open
Abstract
The objective of this work is to study the peculiarities of structural organization, morphology, thermomechanical, electrical and antimicrobial properties of nanocomposites based on pectin-polyethyleneimine interpolyelectrolyte complexes and silver nanoparticles in dependence on the type of reducing agent being applied for chemical reduction of silver ions in the interpolyelectrolyte-metal complexes. The average size of Ag nanoparticles is shown to be increased with decreasing of the activity of reducing agent (E0) and equals to 3.8 nm, 4.3 nm, and 15.8 nm, respectively, when engaging sodium borohydride (-1.24 V), hydrazine (-1.15 V) and ascorbic acid (-0.35 V). Moreover, it was found that the crystallite size of Ag nanoparticles also had the smallest value for nanocomposites obtained involving NaBH4 as reducing agent. Ag-containing nanocomposites prepared by reduction of silver ions in interpolyelectrolyte-metal complexes while applying a range of reducing agents are characterized by different electrical properties and polymer matrix' glass transition temperature. The influence of silver nanoparticles' size incorporated in the polymer matrix on the antimicrobial activity of nanocomposites has been established. The inhibition zone diameter of Staphylococcus aureus and Escherichia coli was higher for nanocomposites obtained using sodium borohydride and hydrazine compared to nanocomposites where ascorbic acid was used as the reducing agent.
Collapse
|
26
|
Mutar TF, Tousson E, Hafez E, Abo Gazia M, Salem SB. Ameliorative effects of vitamin B17 on the kidney against Ehrlich ascites carcinoma induced renal toxicity in mice. ENVIRONMENTAL TOXICOLOGY 2020; 35:528-537. [PMID: 31821727 DOI: 10.1002/tox.22888] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/20/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Cancer is the major cause of death and many factors that lead to its occurrences, such as environmental pollution and pesticides and other factors. Ehrlich carcinoma development depends on many things associated with the environment, nutrition, personal habits, and family history. The present study aimed to evaluate the potential protective effects of vitamin B17 (VB17) against Ehrlich ascites carcinoma (EAC) that induced kidney toxicity in female mice. The mice were divided into five groups (first group, control group; second group, VB17 group; third group, EAC group; fourth group, pretreated EAC with VB17; fifth group, cotreated EAC with VB17). Results showed the VB17 in pretreated (G4) and cotreated (G5) groups lead to an improvement in DNA damage and cytological examination, in addition significantly (P < .05) increase in Na+ , red blood cell, hemoglobin, hematocrit value, mean corpuscular hemoglobin (MCH), and MCH concentration, whereas significantly (P < .05) decrease in urea, creatinine, K+ , platelets, and white blood cells while insignificant (P < .05) changes in mean corpuscular volume when compared to the EAC group. Many histopathological changes were observed in kidney sections in EAC as marked damage and degenerated, glomerular atrophy, the Malpighian corpuscles that lost their characteristic configuration. On the other hand, a moderate improvement and arrangement in the kidney histological structure in pretreated VB17 + EAC, while a mild enhancement and arrangement of the kidney structure in cotreated EAC + VB17. In addition, depletion in renal P53 and PCNA protein expression compared with the EAC group. It could be concluded that VB17 has a potential renal protective effect against EAC cells induced kidney injury.
Collapse
Affiliation(s)
- Thulfiqar F Mutar
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ezar Hafez
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Maha Abo Gazia
- Histology Department, Faculty of Medicine, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt
| | - Seham B Salem
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
27
|
de Almeida DA, Sabino RM, Souza PR, Bonafé EG, Venter SA, Popat KC, Martins AF, Monteiro JP. Pectin-capped gold nanoparticles synthesis in-situ for producing durable, cytocompatible, and superabsorbent hydrogel composites with chitosan. Int J Biol Macromol 2020; 147:138-149. [DOI: 10.1016/j.ijbiomac.2020.01.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/22/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022]
|
28
|
Tousson E, Hafez E, Abo Gazia MM, Salem SB, Mutar TF. Hepatic ameliorative role of vitamin B17 against Ehrlich ascites carcinoma-induced liver toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9236-9246. [PMID: 31916166 DOI: 10.1007/s11356-019-06528-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
Vitamin B17 (VB17), also known as amygdalin and laetrile, is a type of carbohydrate occurring naturally in many plants, such as apricot kernels which have obtained a great interest in cancer therapy. This study aimed to investigate the hepatic protective potential of VB17 against Ehrlich ascites carcinoma (EAC)-bearing mice-induced liver injury, DNA damage, apoptotic P53, and PCNA alterations. A total of 100 female mice were divided into 5 groups (1st group, control group; 2nd group, VB17 group; 3rd group, EAC group; 4th group, pre-treated EAC with VB17; 5th group, co-treated EAC with VB17). Results showed that the presence of VB17 in pre-treated and co-treated groups lead to decreased DNA damage, microsomal protein, NADPH cytochrome c reductase, alpha-fetoprotein (AFP), AST, ALT, and ALP while showed increased cytochrome b5, cytochrome P450 amidopyrine N-demethylase, and aniline 4-hydroxylase compared with the EAC group. Many histopathological changes were observed in liver sections in EAC as moderate fibrosis and marked diffuse necrosis of hepatic tissue, marked inflammatory cells, and congested blood sinusoids. On the other hand, there was a moderate degree of improvement in hepatocytes in liver sections in pre-treated VB17+EAC, while a mild degree of improvement in hepatocytes, moderate cellular infiltrations, and moderate cytoplasmic vacuolization of hepatocytes in liver sections in co-treated EAC+VB17. In addition, there was a depletion in hepatic P53 and PCNA protein expression compared with the EAC group. It could be concluded that VB17 has a potential hepatoprotective effect against EAC cell-induced liver toxicity.
Collapse
Affiliation(s)
- Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ezar Hafez
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Maha Mohamed Abo Gazia
- Histology Department, Faculty of Medicine, Kafr El Sheikh University, Kafr El Sheikh, Egypt
| | | | | |
Collapse
|
29
|
Evaluation of the Cardiac Protection Conferred by Proanthocyanidins in Grape Seeds against Development of Ehrlich Solid Tumors in Mice. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3530296. [PMID: 32016114 PMCID: PMC6985929 DOI: 10.1155/2020/3530296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/10/2019] [Accepted: 12/21/2019] [Indexed: 02/08/2023]
Abstract
Examination of the antineoplastic effects of a range of chemical compounds is often undertaken via the transplantable tumor model of Ehrlich solid tumor (EST), which is a simulation of breast cancer. The purpose of this study was to explore how cardiac toxicity, damage, oxidative stress, and changes in the expressions of TNFα and apoptotic P53 triggered by EST could be countered with grape seed proanthocyanidins (GSPE). To that end, 50 female mice were used, with arbitrary and equal distribution into five groups, namely, the control group (G1), GSPE group (G2), EST group (G3), GSPE + EST (G4; cotreatment consisted of mice that received GSPE treatment at the beginning of EST induction over a period of 14 days), and EST + GSPE (G5; posttreatment consisted of mice with EST that received GSPE treatment for 14 days following the 14 days since the induction of EST). By comparison with the control group, the EST group had significantly higher levels of serum lactate dehydrogenase (LDH), creatine phosphokinase (CPK), creatine kinase MB (CK-MB), myoglobin, cardiac TBARS, nitric oxide (NO), total thiol and hydrogen peroxide, cardiac damage, and expression of P53 and TNFα. On the other hand, the EST group had significantly lower levels of cardiac catalase and total antioxidant (TAC) than the control group. Furthermore, better improvement in cardiac toxicity, oxidative stress, damage, apoptosis, and TNFα expressions was displayed by the cotreated (GSPE + EST) group than by the posttreated (EST + GSPE) group. This led to the conclusion that GSPE conferred cardiac protective and antioxidant effects against EST. This finding calls for more investigation on the benefits of grape seeds as adjuvant agents to prevent and treat cardiac toxicity.
Collapse
|
30
|
El-Naggar ME, Othman SI, Allam AA, Morsy OM. Synthesis, drying process and medical application of polysaccharide-based aerogels. Int J Biol Macromol 2020; 145:1115-1128. [DOI: 10.1016/j.ijbiomac.2019.10.037] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
|
31
|
Fouda MMG, Abdelsalam NR, Gohar IMA, Hanfy AEM, Othman SI, Zaitoun AF, Allam AA, Morsy OM, El-Naggar M. Utilization of High throughput microcrystalline cellulose decorated silver nanoparticles as an eco-nematicide on root-knot nematodes. Colloids Surf B Biointerfaces 2020; 188:110805. [PMID: 31972444 DOI: 10.1016/j.colsurfb.2020.110805] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/27/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
The present study aimed to evaluate the influence of high throughput microcrystalline cellulose embedded silver nanoparticles (Ag-NPs), as an alternative eco-nematicide on Root-knot nematode (Meliodogyne incognita), which deem the main reason toward the loss of more than 20% in crops worldwide. In this work, Ag-NPs was prepared in very high concentration. Ag-NPs prepared using such technique has many advantages such as: absence of organic or solvents, scaling up thru using high concentration of silver precursor and utilization of environmentally benign polymer; Microcrystalline Cellulose (MCC). At the beginning, the bulk Ag-NPs colloidal solution is diluted to 5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 80 and 100 ppm. Then, heavily galled roots of annual seed-propagated weed, Solanum nigrum L. family Solanaceae were selected to identify the Meloidogyne species and followed by treatment with the previously Ag-NPs concentrations. Results obtained after 24 h incubation, showed the highest mortality (M%) (40.36 ± 1.15%) which was achieved by means of 20 ppm of Ag-NPs compared with the highest concentration of Ag-NPs; 100 ppm (42.85 ± 3.51%). It was obviously noticed that, by increasing the concentration of Ag-NPs, M % decreased. On the other hand, after 48 h, 30 ppm Ag-NPs showed the highest M%; (52.82 ± 0.57%), while, after 72 h of treatments, the M% reached 95.53 ± 0.57% using 40 ppm Ag-NPs, then decreased to 66.67 ± 2.00% using 100 ppm Ag-NPs. All previous finding affirms the effectiveness of lower concentrations of Ag-NPs compared with the highest one, after 72 h. In conclusion, Ag-NPs could be successfully used as eco-nematicide for Root-knot nematodes; Meloidogyne incognita with a recommended dose of 20-40 ppm that is acquired higher M% and caused many aberrations during the different growth stages.
Collapse
Affiliation(s)
- Moustafa M G Fouda
- Pre-Treatment and Finishing of Cellulosic Fabric Department, Textile Research Division, National Research Center, 33 El- Behooth St, Dokki, Giza, 12311, Egypt.
| | - Nader R Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, 21531 Alexandria, Egypt.
| | - I M A Gohar
- Sugar Crops Research Institute, Department of Sugar Crops Disease and Pests Research, Agricultural Research Center, 12619, Giza, Egypt
| | - Amira E M Hanfy
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, 21531 Alexandria, Egypt
| | - Sarah I Othman
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, P.O. Box 24428, Saudi Arabia
| | - Amera F Zaitoun
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, 21531 Alexandria, Egypt
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt
| | - Osama M Morsy
- Arab Academy of Science, Technology, and Maritime Transport, Cairo, Egypt
| | - Mehrez El-Naggar
- Pre-Treatment and Finishing of Cellulosic Fabric Department, Textile Research Division, National Research Center, 33 El- Behooth St, Dokki, Giza, 12311, Egypt.
| |
Collapse
|
32
|
Attia MF, Ranasinghe M, Akasov R, Anker JN, Whitehead DC, Alexis F. In situ preparation of gold–polyester nanoparticles for biomedical imaging. Biomater Sci 2020; 8:3032-3043. [DOI: 10.1039/d0bm00175a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hybrid gold-polyester nanoparticles were synthesized by UV irradiation of a gold salt and photoinitiator encapsulated in a polyester nanoparticle. The resulting materials exhibit excellent cellular imaging and surface plasmon resonance properties.
Collapse
Affiliation(s)
| | | | - Roman Akasov
- National University of Science and Technology “MISIS”
- 119991 Moscow
- Russia
- I.M. Sechenov First Moscow State Medical University
- Moscow
| | | | | | - Frank Alexis
- School of Biological Sciences and Engineering
- Yachay Tech
- San Miguel de Urcuquí
- Ecuador
| |
Collapse
|
33
|
Gao H, Tayebee R, Abdizadeh MF, Mansouri E, Latifnia M, Pourmojahed Z. The efficient biogeneration of Ag and NiO nanoparticles from VPLE and a study of the anti-diabetic properties of the extract. RSC Adv 2020; 10:3005-3012. [PMID: 35496124 PMCID: PMC9048759 DOI: 10.1039/c9ra08668d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Vitex pseudo-negundo leaf extract (VPLE) is used to mediate the green biosynthesis of Ag and NiO nanoparticles in aqueous solutions under mild conditions. The synthesized nanoparticles, with a narrow size range and good distribution, are characterized by means of powder X-ray diffraction (PXRD), Fourier-transform infrared (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) techniques. SEM and TEM micrographs proved formation of mostly spherical or ellipsoidal nanoparticles with little agglomeration, and the average particle size was less than 20–35 nm for both types of nanoparticle. Then, the protective role of VPLE toward the liver is assessed in streptozotocin-induced diabetic rats. For this purpose, diabetes is induced in rats through the intraperitoneal injection of streptozotocin, and VPLE is administered via oral gavage for 6 weeks. This study suggests that VPLE can ameliorate biochemical and structural changes in the livers of diabetic rats, showing that VPLE can improve the condition of rats with diabetic hepatopathy via a decrease in oxidative stress and an enhancement in the activity of antioxidant enzymes in the liver. Vitex pseudo-negundo leaf extract (VPLE) is a mediator for the green biosynthesis of Ag and NiO nanoparticles, and its protective effects are assessed in the livers of streptozotocin-induced diabetic rats.![]()
Collapse
Affiliation(s)
- Hongying Gao
- Department of Chinese Medicine
- Binzhou City Central Hospital
- Binzhou
- China
| | - Reza Tayebee
- Department of Chemistry
- School of Sciences
- Hakim Sabzevari University
- Sabzevar
- Iran
| | - Mojtaba Fattahi Abdizadeh
- Department of Lab Sciences
- Faculty of Paramedicine
- Sabzevar University of Medical Sciences
- Sabzevar
- Iran
| | - Esrafil Mansouri
- Department of Anatomical Sciences
- Cellular and Molecular Research Center
- Faculty of Medicine
- Ahvaz Jundishapur University of Medical Sciences
- Ahvaz
| | - Maryam Latifnia
- Department of Gasterointestinal and Liver Disease
- Faculty of Medicine
- Sabzevar University of Medical Sciences
- Sabzevar
- Iran
| | | |
Collapse
|
34
|
El-Naggar ME, Abdelgawad AM, Elsherbiny DA, El-shazly WA, Ghazanfari S, Abdel-Aziz MS, Abd-Elmoneam YK. Bioactive Wound Dressing Gauze Loaded with Silver Nanoparticles Mediated by Acacia Gum. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01746-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Effect of Ficus carica L. leaves extract loaded gold nanoparticles against cisplatin-induced acute kidney injury. Colloids Surf B Biointerfaces 2019; 184:110465. [DOI: 10.1016/j.colsurfb.2019.110465] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 01/21/2023]
|
36
|
Youssef H, El-Naggar ME, Fouda F, Youssef AM. Antimicrobial packaging film based on biodegradable CMC/PVA-zeolite doped with noble metal cations. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100378] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
A Review of Bark-Extract-Mediated Green Synthesis of Metallic Nanoparticles and Their Applications. Molecules 2019; 24:molecules24234354. [PMID: 31795265 PMCID: PMC6930476 DOI: 10.3390/molecules24234354] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Nanoparticles are intensely studied because of their importance in diverse fields of biotechnology, especially in medicine. This paper highlights that waste bark can be a cheap source of biocompounds, with high recovery and functionalization potential in nanoparticle synthesis. Due to their biocompatibility and activity as antioxidant, antimicrobial, and anticancer agents, the green synthesis of metallic nanoparticles is of great importance. This review aims to bring together the diversity of synthesized metallic nanoparticles mediated by bark extracts obtained from different woody vascular plants, the phytoconstituents responsible for the reduction of metal salts, and the activity of metallic nanoparticles as diverse agents in combating the microbial, oxidant, and cancer activity. The literature data highlight the fact that metallic nanoparticles obtained from natural compounds are proven reducing agents with multiple activities. Thus, the activity of natural components in environmental protection and human health is confirmed.
Collapse
|
38
|
Evaluation of urinary 8-hydroxy-2-deoxyguanosine level in experimental Alzheimer’s disease: Impact of carvacrol nanoparticles. Mol Biol Rep 2019; 46:4517-4527. [DOI: 10.1007/s11033-019-04907-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
|
39
|
Abd Eldaim MA, Tousson E, El Sayed IET, Abd El-Aleim AEAH, Elsharkawy HN. Grape seeds proanthocyanidin extract ameliorates Ehrlich solid tumor induced renal tissue and DNA damage in mice. Biomed Pharmacother 2019; 115:108908. [PMID: 31108378 DOI: 10.1016/j.biopha.2019.108908] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 12/30/2022] Open
Abstract
The current study was carried out to evaluate the protective effect of grape seed proanthocyanidins extract (GSPE) against Ehrlich solid tumor (EST) induced renal injury, with the respect to DNA fragmentation and P53 and PCNA proteins expression in renal tissue. A total of 50 female mice were randomly assigned into five groups. Control mice were injected with physiological saline solution. Mice of the 2nd group were administered with GSPE (50 mg/kg bw/every 2day/per OS) for 2 weeks and injected with physiological saline solution. Mice of the 3rd group were injected subcutaneously with 2.5 million cells of EAC/mouse. Mice of the 4th group were injected with EAC as the 3rd group and administered with GSPE as the 2nd group simultaneously for 2 weeks. Mice of the 5th group were injected with EAC as the 3rd group and left for 2 weeks (till development of solid tumor), then treated with GSPE for another 2 weeks. EST significantly increased serum levels of urea, creatinine, potassium and chloride. In addition, it induced renal tissue and DNA injuries and increased P53, PCNA and ki67 proteins expression in renal tissues. On the other hand, it decreased serum levels of sodium and calcium ions. However, treatment of EST bearing mice with GSPE normalized serum levels of the above-mentioned parameters and improved renal tissue structure and reduced renal tissue DNA damage and P53, PCNA and ki67 proteins expression. These results indicated that GSPE is a promising nephron protective agent against EST induced renal injury.
Collapse
Affiliation(s)
- Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkom, Menoufia, Egypt
| | - Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | | | | | | |
Collapse
|
40
|
Green synthesis, size control, and antibacterial activity of silver nanoparticles on chitosan films. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03842-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Gahlawat G, Choudhury AR. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv 2019; 9:12944-12967. [PMID: 35520790 PMCID: PMC9064032 DOI: 10.1039/c8ra10483b] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Metal nanoparticles have received great attention from researchers across the world because of a plethora of applications in agriculture and the biomedical field as antioxidants and antimicrobial compounds. Over the past few years, green nanotechnology has emerged as a significant approach for the synthesis and fabrication of metal nanoparticles. This green route employs various reducing and stabilizing agents from biological resources for the synthesis of nanoparticles. The present article aims to review the progress made in recent years on nanoparticle biosynthesis by microbes. These microbial resources include bacteria, fungi, yeast, algae and viruses. This review mainly focuses on the biosynthesis of the most commonly studied metal and metal salt nanoparticles such as silver, gold, platinum, palladium, copper, cadmium, titanium oxide, zinc oxide and cadmium sulphide. These nanoparticles can be used in pharmaceutical products as antimicrobial and anti-biofilm agents, targeted delivery of anticancer drugs, water electrolysis, waste water treatment, biosensors, biocatalysis, crop protection against pathogens, degradation of dyes etc. This review will discuss in detail various microbial modes of nanoparticles synthesis and the mechanism of their synthesis by various bioreducing agents such as enzymes, peptides, proteins, electron shuttle quinones and exopolysaccharides. A thorough understanding of the molecular mechanism of biosynthesis is the need of the hour to develop a technology for large scale production of bio-mediated nanoparticles. The present review also discusses the advantages of various microbial approaches in nanoparticles synthesis and lacuna involved in such processes. This review also highlights the recent milestones achieved on large scale production and future perspectives of nanoparticles.
Collapse
Affiliation(s)
- Geeta Gahlawat
- CSIR - Institute of Microbial Technology Sector 39A Chandigarh India +91 172 2695215 +91 172 6665312
| | - Anirban Roy Choudhury
- CSIR - Institute of Microbial Technology Sector 39A Chandigarh India +91 172 2695215 +91 172 6665312
| |
Collapse
|
42
|
zhang H, Xiang Z, Duan X, Jiang JL, Xing YM, Zhu C, Song Q, Yu QR. Antitumor and anti-inflammatory effects of oligosaccharides from Cistanche deserticola extract on spinal cord injury. Int J Biol Macromol 2019; 124:360-367. [DOI: 10.1016/j.ijbiomac.2018.11.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 01/11/2023]
|
43
|
Hassabo AG, El-Naggar ME, Mohamed AL, Hebeish AA. Development of multifunctional modified cotton fabric with tri-component nanoparticles of silver, copper and zinc oxide. Carbohydr Polym 2019; 210:144-156. [PMID: 30732747 DOI: 10.1016/j.carbpol.2019.01.066] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/13/2022]
Abstract
A facile method, cost-effective and highly efficient with shortened-time operation was devised for unprecedented modification of cotton fabrics. This modification induced the formation of metallic and metal oxide nanoparticles within cotton fabrics in such a way that cotton samples loaded with AgNPs- or AgNPs/ZnONPs or AgNPs/ZnONPs/CuNPs respectively. Presence of the trimetallic nanoparticles concomitantly within microstructural features of cotton imparts durable antibacterial, UV protection and conductivity properties to yield ultimately cotton fabrics with multifunctional performance. The nanoparticles were formed and stabilized independently by Polymethylol compound (PMC) and functionalized polyethyleneimine (FPEI) as per one bath. The results obtained proved that the solution of these metal compounds are turned from colourless to yellow and black green colour up on addition of PMC or FPEI compound. It was found that UV-vis spectra display maximum surface plasmon peak of around 410-415 confirming the successful synthesis of AgNPs stabilized by PMC or FPEI chains. In addition, the results obtained indicated that the as formed nanoparticles are successfully deposited into the surface of cellulose fabrics and reveal changes in crystalline structure. Fabrics underwent structural changes during their treatments as per the designed practice exhibit multifunctional properties and manifold performance. The resultant treated cotton fabric gives good antibacterial properties event after 20 washing cycles additionally to the excellent ultra-violet properties and excellent electrical conductivity.
Collapse
Affiliation(s)
- Ahmed G Hassabo
- National Research Centre, Textile Research Division, Pre-Treatment and Finishing of Cellulosic Fibres Department, 33-El-Behouth St. (Former El-Tahrir Str.), Dokki, P.O. 12622, Giza, Egypt
| | - Mehrez E El-Naggar
- National Research Centre, Textile Research Division, Pre-Treatment and Finishing of Cellulosic Fibres Department, 33-El-Behouth St. (Former El-Tahrir Str.), Dokki, P.O. 12622, Giza, Egypt.
| | - Amina L Mohamed
- National Research Centre, Textile Research Division, Pre-Treatment and Finishing of Cellulosic Fibres Department, 33-El-Behouth St. (Former El-Tahrir Str.), Dokki, P.O. 12622, Giza, Egypt
| | - Ali A Hebeish
- National Research Centre, Textile Research Division, Pre-Treatment and Finishing of Cellulosic Fibres Department, 33-El-Behouth St. (Former El-Tahrir Str.), Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
44
|
Dhapte V, Pokharkar V. Microbe-Based Versatile Polymeric Bionanoplatforms in Anticancer Therapy. POLYMERIC NANOPARTICLES AS A PROMISING TOOL FOR ANTI-CANCER THERAPEUTICS 2019:281-292. [DOI: 10.1016/b978-0-12-816963-6.00013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
45
|
Niu X, Zheng S, Liu H, Li S. Protective effects of taurine against inflammation, apoptosis, and oxidative stress in brain injury. Mol Med Rep 2018; 18:4516-4522. [PMID: 30221665 PMCID: PMC6172387 DOI: 10.3892/mmr.2018.9465] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022] Open
Abstract
The protective effect of taurine against inflammation, apoptosis and oxidative stress in traumatic brain injury was investigated in the present study. Taurine is a non-proteogenic and essential amino acid in animals. It plays a critical nutritional role in brain cell growth, differentiation, and development. Taurine is involved in regeneration and neuroprotection in the injured nervous system, and is an effective antioxidant against lead-, cadmium-, and exercise-induced oxidative stress. Astrocytes and neuron cells were co-cultured and cells were treated with different concentrations of taurine (100, 200 and 300 mg/l) for 72 h, and the levels of reactive oxygen species, malondialdehyde, reduced glutathione, glutathione peroxidase, superoxide dismutase, catalase, acetylcholinesterase, tumor necrosis factor-α, interleukin-6, caspase-3, p53, B-cell lymphoma 2 and Bcl-2-associated X protein were determined. These inflammatory, apoptotic, and oxidative stress markers were substantially increased in injured cells, and returned to normal levels following taurine supplementation. Thus, taurine supplementation may be effective against oxidative stress, apoptosis, and inflammation in injured brain cells.
Collapse
Affiliation(s)
- Xiaoli Niu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Simin Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hongtao Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Siyuan Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
46
|
Bacterial Exopolysaccharides as Reducing and/or Stabilizing Agents during Synthesis of Metal Nanoparticles with Biomedical Applications. INT J POLYM SCI 2018. [DOI: 10.1155/2018/7045852] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacterial exopolysaccharides (EPSs) are biomolecules secreted in the extracellular space and have diverse biological functionalities, such as environmental protection, surface adherence, and cellular interactions. EPSs have been found to be biocompatible and eco-friendly, therefore making them suitable for applications in many areas of study and various industrial products. Recently, synthesis and stabilization of metal nanoparticles have been of interest because their usefulness for many biomedical applications, such as antimicrobials, anticancer drugs, antioxidants, drug delivery systems, chemical sensors, contrast agents, and as catalysts. In this context, bacterial EPSs have been explored as agents to aid in a greener production of a myriad of metal nanoparticles, since they have the ability to reduce metal ions to form nanoparticles and stabilize them acting as capping agents. In addition, by incorporating EPS to the metal nanoparticles, the EPS confers them biocompatibility. Thus, the present review describes the main bacterial EPS utilized in the synthesis and stabilization of metal nanoparticles, the mechanisms involved in this process, and the different applications of these nanoparticles, emphasizing in their biomedical applications.
Collapse
|
47
|
Khan SA, Bello BA, Khan JA, Anwar Y, Mirza MB, Qadri F, Farooq A, Adam IK, Asiri AM, Khan SB. Albizia chevalier based Ag nanoparticles: Anti-proliferation, bactericidal and pollutants degradation performance. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 182:62-70. [PMID: 29621690 DOI: 10.1016/j.jphotobiol.2018.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 12/30/2022]
Abstract
The eco-friendly biosynthesis of silver nanoparticles (AgNps) from bark extract of Albizia chevalier are reported here for their anti-proliferative, antibacterial and pollutant degradation potentials. The synthesized AgNps were characterized by FTIR spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X-rays spectrometry (EDS) and X-ray diffraction studies. The TEM and FESEM images show a monodispersed spherical shaped particles of approximately 30 nm. Crystalline peaks were obtained for the synthesized AgNps in XRD spectrum. The AgNps were investigated for in vitro anticancer and antibacterial activities and its potential to degrade 4-nitrophenol (4-NP) and congo red dye (CR). The MTT results shows a significant dose-dependent antiproliferation effect of the AgNps on the cell lines HepG2, MDA-MB-231 and MFC7. The effect was found more pronounced in MDA-MB-231 as compared to MFC-7 cell lines. The antibacterial results indicated 99 and 95% killing of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) respectively, after 24 h of incubation with the AgNps. The AgNps were found to speed up the reductive degradation of 4-NP and CR dye, which give an alternative route for the removal of toxic organic pollutants from the wastewater. The synthesized AgNps were not only used as a bactericidal and anticancer agent, but also effectively used for the reductive degradation of carcinogenic compounds which are listed as the priority pollutants. Therefore, AgNps have the potential for the treatment of various cancers, bacterial infections and for industrial detoxification of wastewater.
Collapse
Affiliation(s)
- Shahid Ali Khan
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan; Center of Excellence for Advanced Materials Research (CEAMR), King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Bello Aminu Bello
- Department of Biochemistry, King Abdul-Aziz University, Jeddah, Saudi Arabia; Department of Biochemistry, Federal University Dutse, P.M.B. 7156, Dutse, Jigawa State, Nigeria
| | | | - Yasir Anwar
- Department of Biological sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Muqtadir Baig Mirza
- Department of Biological sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Fareed Qadri
- Department of Biological sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Aliya Farooq
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Pakistan
| | - Ibrahim Khalil Adam
- Department of Biochemistry, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Abdullah Muhammad Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
48
|
Wang C, Gao X, Chen Z, Chen Y, Chen H. Preparation, Characterization and Application of Polysaccharide-Based Metallic Nanoparticles: A Review. Polymers (Basel) 2017; 9:E689. [PMID: 30965987 PMCID: PMC6418682 DOI: 10.3390/polym9120689] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/03/2017] [Accepted: 12/05/2017] [Indexed: 12/25/2022] Open
Abstract
Polysaccharides are natural biopolymers that have been recognized to be the most promising hosts for the synthesis of metallic nanoparticles (MNPs) because of their outstanding biocompatible and biodegradable properties. Polysaccharides are diverse in size and molecular chains, making them suitable for the reduction and stabilization of MNPs. Considerable research has been directed toward investigating polysaccharide-based metallic nanoparticles (PMNPs) through host⁻guest strategy. In this review, approaches of preparation, including top-down and bottom-up approaches, are presented and compared. Different characterization techniques such as scanning electron microscopy, transmission electron microscopy, dynamic light scattering, UV-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and small-angle X-ray scattering are discussed in detail. Besides, the applications of PMNPs in the field of wound healing, targeted delivery, biosensing, catalysis and agents with antimicrobial, antiviral and anticancer capabilities are specifically highlighted. The controversial toxicological effects of PMNPs are also discussed. This review can provide significant insights into the utilization of polysaccharides as the hosts to synthesize MPNs and facilitate their further development in synthesis approaches, characterization techniques as well as potential applications.
Collapse
Affiliation(s)
- Cong Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Xudong Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhongqin Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yue Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|