1
|
Zhang B, Leung L, Su EJ, Lawrence DA. PA System in the Pathogenesis of Ischemic Stroke. Arterioscler Thromb Vasc Biol 2025; 45:600-608. [PMID: 40143813 PMCID: PMC12037151 DOI: 10.1161/atvbaha.125.322422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025]
Abstract
Ischemic stroke remains a leading cause of morbidity and mortality worldwide, driven by complex pathophysiological mechanisms that make finding effective treatments challenging. PAs (plasminogen activators) play a critical role in fibrinolysis and vascular homeostasis and as such are important factors affecting stroke outcome. This review examines the complex relationships between ischemic stroke and PAs, highlighting their physiological, pathological, and therapeutic effects on ischemic stroke. We focus on recombinant tissue-type PA as the only Food and Drug Administration-approved thrombolytic agent, describing its clinical impact and associated obstacles impacting its wide-scale use, such as blood-brain barrier disruption and inflammation. Furthermore, emerging PA-based therapies and combination strategies are explored to address the limitations of recombinant tissue-type PA. By integrating mechanistic information with clinical developments, this review aims to provide insights for the advancement of PA-centered approaches to improve the safety and efficacy of stroke treatments.
Collapse
Affiliation(s)
- Boxin Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road of Kaifu District, Changsha, 410008, China
| | - Lisa Leung
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Enming J. Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniel A. Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Salinas MD, Martínez CM, Roca FJ, García-Bernal D, Martínez-Morga M, Rodríguez-Madoz JR, Prósper F, Zapata AG, Moraleda JM, Martínez S, Valdor R. Chaperone-mediated autophagy sustains pericyte stemness necessary for brain tissue homeostasis. J Adv Res 2025:S2090-1232(25)00259-0. [PMID: 40286844 DOI: 10.1016/j.jare.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
INTRODUCTION Pericytes (PCs) are mural cells exhibiting some mesenchymal stem cell (MSC) properties and contribute to tissue regeneration after injury. We have previously shown that glioblastoma cancer cells induce in PCs, a pathogenic upregulation of chaperone-mediated autophagy (CMA) which modulates immune functions and MSC-like properties to support tumor growth. OBJECTIVES The aim of the study was to interrogate the role of CMA-regulated MSC properties in PCs in the context of tissue repair during inflammation triggered by a demyelinating injury. METHODS Studies of RNA-seq were done PCs with (WT) and without (LAMP-2A KO) CMA. Cell characterization related to stemness, lineage and morphology was done in WT and KO PCs. Secretome analysis and cell differentiation assay using the supernatants from CMA-efficient and deficient PCs cultures was done in mesenchymal cells. Inflammatory response of brain cells was assessed with WT and KO PCs secretome. To corroborate in vitro results, CMA modulation in response to inflammation in PCs and tissue repair markers were measured in the lesion areas of a demyelination mouse model and correlated with the tissue reparation after intravenous PC administration. An inflammatory mediator was used to study effects on PC-CMA activity. RESULTS We found that inflammatory mediators such as IFNγ downregulate CMA in PCs, suppressing PC stemness and promoting a pro-inflammatory secretome. Restoration of PC CMA activity during inflammation maintains PC MSC properties and induces an MSC-like proteome which decreases inflammation and promotes tissue repair. We identified secreted proteins involved in regenerative and protective processes, and therefore, necessary to restore brain tissue homeostasis after inflammation induced by a demyelinating injury. CONCLUSION we show that manipulation of CMA activity in host PCs could be a useful therapeutical approach in the context of brain inflammation, which might be extended to other diseases where the pericyte has a key role in response to inflammation.
Collapse
Affiliation(s)
- María Dolores Salinas
- Unit of Autophagy, Immune Response and Tolerance in Pathologic Processes, Biomedical Research Institute of Murcia-Pascual Parrilla (IMIB), 30120 Murcia, Spain; Department of Biochemistry and Molecular Biology B, and Immunology, University of Murcia (UMU), 30120 Murcia, Spain; Cell Therapy and Hematopoietic Transplant Group, Faculty of Medicine, UMU, 30120 Murcia, Spain
| | | | - Francisco J Roca
- Department of Biochemistry and Molecular Biology B, and Immunology, University of Murcia (UMU), 30120 Murcia, Spain; Unit of Infectious Disease Pathology, Clinical Microbiology and Tropical Medicine, IMIB, 30120 Murcia, Spain
| | - David García-Bernal
- Department of Biochemistry and Molecular Biology B, and Immunology, University of Murcia (UMU), 30120 Murcia, Spain; Cell Therapy and Hematopoietic Transplant Group, Faculty of Medicine, UMU, 30120 Murcia, Spain; Virgen de la Arrixaca University Hospital, Hematopoietic Transplant Group, IMIB, 30120 Murcia, Spain
| | - Marta Martínez-Morga
- Unit of Autophagy, Immune Response and Tolerance in Pathologic Processes, Biomedical Research Institute of Murcia-Pascual Parrilla (IMIB), 30120 Murcia, Spain; Cell Therapy and Hematopoietic Transplant Group, Faculty of Medicine, UMU, 30120 Murcia, Spain
| | - Juan R Rodríguez-Madoz
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, 31008 Pamplona, Navarra, Spain; Centro de investigación Biomédica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Felipe Prósper
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, 31008 Pamplona, Navarra, Spain; Centro de investigación Biomédica en Red de Cancer (CIBERONC), Madrid, Spain; Department of Dermatology and Cell Therapy, Clinica Universidad de Navarra (CUN), IdiSNA, 31008 Pamplona Navarra, Spain; Cancer Center Clinica Universidad de Navarra (CCUN), 31008 Pamplona, Navarra, Spain
| | - Agustín G Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain
| | - Jose María Moraleda
- Cell Therapy and Hematopoietic Transplant Group, Faculty of Medicine, UMU, 30120 Murcia, Spain; Virgen de la Arrixaca University Hospital, Hematopoietic Transplant Group, IMIB, 30120 Murcia, Spain
| | - Salvador Martínez
- Instituto de Neurociencias-Miguel Hernández University (UMH-CSIC), 03550, San Juan de Alicante, ISABIAL, CIBERSAM, Alicante, Spain
| | - Rut Valdor
- Unit of Autophagy, Immune Response and Tolerance in Pathologic Processes, Biomedical Research Institute of Murcia-Pascual Parrilla (IMIB), 30120 Murcia, Spain; Department of Biochemistry and Molecular Biology B, and Immunology, University of Murcia (UMU), 30120 Murcia, Spain; Cell Therapy and Hematopoietic Transplant Group, Faculty of Medicine, UMU, 30120 Murcia, Spain.
| |
Collapse
|
3
|
Dalpati N, Rai SK, Sharma P, Sarangi PP. Integrins and integrin-driven secretory pathways as multi-dimensional regulators of tumor-associated macrophage recruitment and reprogramming in tumor microenvironment. Matrix Biol 2025; 135:55-69. [PMID: 39645091 DOI: 10.1016/j.matbio.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Integrins, a group of transmembrane receptors, play a crucial role in mediating the interactions between cells and extracellular matrix (ECM) proteins. The intracellular signaling initiated by these cell-matrix interactions in leukocytes mediates many essential cellular processes such as survival, migration, metabolism, and other immunological functions. Macrophages, as phagocytes, participate in both proinflammatory and anti-inflammatory processes, including progression. Numerous reports have shown that the integrin-regulated secretome, comprising cytokines, chemokines, growth factors, proteases, and other bioactive molecules, is a crucial modulator of macrophage functions in tumors, significantly influencing macrophage programming and reprogramming within the tumor microenvironment (TME) in addition to driving their step-by-step entry process into tumor tissue spaces. Importantly, studies have demonstrated a pivotal role for integrin receptor-mediated secretome and associated signaling pathways in functional reprogramming from anti-tumorigenic to pro-tumorigenic phenotype in tumor-associated macrophages (TAMs). In this comprehensive review, we have provided an in-depth analysis of the latest findings of various key pathways, mediators, and signaling cascades associated with integrin-driven polarization of macrophages in tumors. This manuscript will provide an updated understanding of the modulation of inflammatory monocytes/ macrophages and TAMs by integrin-driven secretory pathways in various functions such as migration, differentiation, and their role in tumor progression, angiogenesis, and metastasis.
Collapse
Affiliation(s)
- Nibedita Dalpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Shubham Kumar Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Prerna Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
4
|
Efimenko AY, Shmakova AA, Popov VS, Basalova NA, Vigovskiy MA, Grigorieva OA, Sysoeva VY, Klimovich PS, Khabibullin NR, Tkachuk VA, Rubina KA, Semina EV. Mesenchymal stem/stromal cells alleviate early-stage pulmonary fibrosis in a uPAR-dependent manner. Cell Biol Int 2024; 48:1714-1730. [PMID: 39023281 DOI: 10.1002/cbin.12222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/09/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
Pulmonary fibrosis, a debilitating lung disorder characterised by excessive fibrous tissue accumulation in lung parenchyma, compromises respiratory function leading to a life-threatening respiratory failure. While its origins are multifaceted and poorly understood, the urokinase system, including urokinase-type plasminogen activator (uPA) and its receptor (uPAR), plays a significant role in regulating fibrotic response, extracellular matrix remodelling, and tissue repair. Mesenchymal stem/stromal cells (MSCs) hold promise in regenerative medicine for treating pulmonary fibrosis. Our study aimed to investigate the potential of MSCs to inhibit pulmonary fibrosis as well as the contribution of uPAR expression to this effect. We found that intravenous MSC administration significantly reduced lung fibrosis in the bleomycin-induced pulmonary fibrosis model in mice as revealed by MRI and histological evaluations. Notably, administering the MSCs isolated from adipose tissue of uPAR knockout mice (Plaur-/- MSCs) attenuated lung fibrosis to a lesser extent as compared to WT MSCs. Collagen deposition, a hallmark of fibrosis, was markedly reduced in lungs treated with WT MSCs versus Plaur-/- MSCs. Along with that, endogenous uPA levels were affected differently; after Plaur-/- MSCs were administered, the uPA content was specifically decreased within the blood vessels. Our findings support the potential of MSC treatment in attenuating pulmonary fibrosis. We provide evidence that the observed anti-fibrotic effect depends on uPAR expression in MSCs, suggesting that uPAR might counteract the uPA accumulation in lungs.
Collapse
Affiliation(s)
- Anastasia Yu Efimenko
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Anna A Shmakova
- Institut Gustave Roussy, Université Paris Saclay, UMR 9018, CNRS, Villejuif, France
| | - Vladimir S Popov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia A Basalova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim A Vigovskiy
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Olga A Grigorieva
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Polina S Klimovich
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Moscow, Russia
| | | | - Vsevolod A Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniya A Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina V Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Moscow, Russia
| |
Collapse
|
5
|
Figueira MI, Carvalho TMA, Macário-Monteiro J, Cardoso HJ, Correia S, Vaz CV, Duarte AP, Socorro S. The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens. Biomedicines 2024; 12:1636. [PMID: 39200101 PMCID: PMC11351860 DOI: 10.3390/biomedicines12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
The role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (M.I.F.)
| |
Collapse
|
6
|
Berger M, Rosa da Mata S, Pizzolatti NM, Parizi LF, Konnai S, da Silva Vaz I, Seixas A, Tirloni L. An Ixodes persulcatus Inhibitor of Plasmin and Thrombin Hinders Keratinocyte Migration, Blood Coagulation, and Endothelial Permeability. J Invest Dermatol 2024; 144:1112-1123.e7. [PMID: 37996063 PMCID: PMC11034719 DOI: 10.1016/j.jid.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 11/25/2023]
Abstract
The skin is the first host tissue that the tick mouthparts, tick saliva, and a tick-borne pathogen contact during feeding. Tick salivary glands have evolved a complex and sophisticated pharmacological arsenal, consisting of bioactive molecules, to assist blood feeding and pathogen transmission. In this work, persulcatin, a multifunctional molecule that targets keratinocyte function and hemostasis, was identified from Ixodes persulcatus female ticks. The recombinant persulcatin was expressed and purified and is a 25-kDa acidic protein with 2 Kunitz-type domains. Persulcatin is a classical tight-binding competitive inhibitor of proteases, targeting plasmin (Ki: 28 nM) and thrombin (Ki: 115 nM). It blocks plasmin generation on keratinocytes and inhibits their migration and matrix protein degradation; downregulates matrix metalloproteinase 2 and matrix metalloproteinase 9; and causes a delay in blood coagulation, endothelial cell activation, and thrombin-induced fibrinocoagulation. It interacts with exosite I of thrombin and reduces thrombin-induced endothelial cell permeability by inhibiting vascular endothelial-cadherin disruption. The multifaceted roles of persulcatin as an inhibitor and modulator within the plasminogen-plasmin system and thrombin not only unveil further insights into the intricate mechanisms governing wound healing but also provide a fresh perspective on the intricate interactions between ticks and their host organisms.
Collapse
Affiliation(s)
- Markus Berger
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Sheila Rosa da Mata
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | | | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Instituto Nacional de Ciência e Tecnologia-Entomologia Molecular, Rio de Janeiro, Brazil
| | - Adriana Seixas
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; Instituto Nacional de Ciência e Tecnologia-Entomologia Molecular, Rio de Janeiro, Brazil.
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA.
| |
Collapse
|
7
|
Tabatabaee A, Nafari B, Farhang A, Hariri A, Khosravi A, Zarrabi A, Mirian M. Targeting vimentin: a multifaceted approach to combatting cancer metastasis and drug resistance. Cancer Metastasis Rev 2024; 43:363-377. [PMID: 38012357 DOI: 10.1007/s10555-023-10154-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
This comprehensive review explores vimentin as a pivotal therapeutic target in cancer treatment, with a primary focus on mitigating metastasis and overcoming drug resistance. Vimentin, a key player in cancer progression, is intricately involved in processes such as epithelial-to-mesenchymal transition (EMT) and resistance mechanisms to standard cancer therapies. The review delves into diverse vimentin inhibition strategies. Precision tools, including antibodies and nanobodies, selectively neutralize vimentin's pro-tumorigenic effects. DNA and RNA aptamers disrupt vimentin-associated signaling pathways through their adaptable binding properties. Innovative approaches, such as vimentin-targeted vaccines and microRNAs (miRNAs), harness the immune system and post-transcriptional regulation to combat vimentin-expressing cancer cells. By dissecting vimentin inhibition strategies across these categories, this review provides a comprehensive overview of anti-vimentin therapeutics in cancer treatment. It underscores the growing recognition of vimentin as a pivotal therapeutic target in cancer and presents a diverse array of inhibitors, including antibodies, nanobodies, DNA and RNA aptamers, vaccines, and miRNAs. These multifaceted approaches hold substantial promise for tackling metastasis and overcoming drug resistance, collectively presenting new avenues for enhanced cancer therapy.
Collapse
Affiliation(s)
- Aliye Tabatabaee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Behjat Nafari
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Armin Farhang
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, 34959, Türkiye
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Türkiye.
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
| |
Collapse
|
8
|
Movahhed M, pazhouhi M, Ghaleh HEG, Kondori BJ. Anti-metastatic effect of taraxasterol on prostate cancer cell lines. Res Pharm Sci 2023; 18:439-448. [PMID: 37614618 PMCID: PMC10443670 DOI: 10.4103/1735-5362.378090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/04/2023] [Accepted: 05/30/2023] [Indexed: 08/25/2023] Open
Abstract
Background and purpose Prostate cancer is the second cause of death among men. Nowadays, treating various cancers with medicinal plants is more common than other therapeutic agents due to their minor side effects. This study aimed to evaluate the effect of taraxasterol on the prostate cancer cell line. Experimental approach The prostate cancer cell line (PC3) was cultured in a nutrient medium. MTT method and trypan blue staining were used to evaluate the viability of cells in the presence of different concentrations of taraxasterol, and IC50 was calculated. Real-time PCR was used to measure the expression of MMP-9, MMP-2, uPA, uPAR, TIMP-2, and TIMP-1 genes. Gelatin zymography was used to determine MMP-9 and MMP-2 enzyme activity levels. Finally, the effect of taraxasterol on cell invasion, migration, and adhesion was investigated. Findings/Results Taraxasterol decreased the survival rate of PC3 cells at IC50 time-dependently (24, 48, and 72 h). Taraxasterol reduced the percentage of PC3 cell adhesion, invasion, and migration by 74, 56, and 76 percent, respectively. Real-time PCR results revealed that uPA, uPAR, MMP-9, and MMP-2 gene expressions decreased in the taraxasterol-treated groups, but TIMP-2 and TIMP-1 gene expressions increased significantly. Also, a significant decrease in the level of MMP-9 and MMP-2 enzymes was observed in the PC3 cell line treated with taraxasterol. Conclusion and implications The present study confirmed the therapeutic role of taraxasterol in preventing prostate cancer cell metastasis in the in-vitro study.
Collapse
Affiliation(s)
- Morteza Movahhed
- Department of Pathology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mona pazhouhi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | | | - Bahman Jalali Kondori
- Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Rosenfeld MA, Yurina LV, Vasilyeva AD. Antioxidant role of methionine-containing intra- and extracellular proteins. Biophys Rev 2023; 15:367-383. [PMID: 37396452 PMCID: PMC10310685 DOI: 10.1007/s12551-023-01056-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/24/2023] [Indexed: 07/04/2023] Open
Abstract
Significant evidence suggests that reversible oxidation of methionine residues provides a mechanism capable of scavenging reactive species, thus creating a cycle with catalytic efficiency to counteract or mitigate deleterious effects of ROS on other functionally important amino acid residues. Because of the absence of MSRs in the blood plasma, oxidation of methionines in extracellular proteins is effectively irreversible and, therefore, the ability of methionines to serve as interceptors of oxidant molecules without impairment of the structure and function of plasma proteins is still debatable. This review presents data on the oxidative modification of both intracellular and extracellular proteins that differ drastically in their spatial structures and functions indicating that the proteins contain antioxidant methionines/the oxidation of which does not affect (or has a minor effect) on their functional properties. The functional consequences of methionine oxidation in proteins have been mainly identified from studies in vitro and, to a very limited extent, in vivo. Hence, much of the functioning of plasma proteins constantly subjected to oxidative stress remains unclear and requires further research to understand the evolutionary role of methionine oxidation in proteins for the maintenance of homeostasis and risk factors affecting the development of ROS-related pathologies. Data presented in this review contribute to increased evidence of antioxidant role of surface-exposed methionines and can be useful for understanding a possible mechanism that supports or impairs structure-function relationships of proteins subjected to oxidative stress.
Collapse
Affiliation(s)
- Mark A. Rosenfeld
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334 Russia
| | - Lyubov V. Yurina
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334 Russia
| | - Alexandra D. Vasilyeva
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
10
|
Ragavi R, Muthukumaran P, Nandagopal S, Ahirwar DK, Tomo S, Misra S, Guerriero G, Shukla KK. Epigenetics regulation of prostate cancer: Biomarker and therapeutic potential. Urol Oncol 2023:S1078-1439(23)00090-X. [PMID: 37032230 DOI: 10.1016/j.urolonc.2023.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
Prostate cancer (CaP) is the second leading cause of cancer death and displays a broad range of clinical behavior from relatively indolent to aggressive metastatic disease. The etiology of most cases of CaP is not understood completely, which makes it imperative to search for the molecular basis of CaP and markers for early diagnosis. Epigenetic modifications, including changes in DNA methylation patterns, histone modifications, miRNAs, and lncRNAs are key drivers of prostate tumorigenesis. These epigenetic defects might be due to deregulated expression of the epigenetic machinery, affecting the expression of several important genes like GSTP1, RASSF1, CDKN2, RARRES1, IGFBP3, RARB, TMPRSS2-ERG, ITGB4, AOX1, HHEX, WT1, HSPE, PLAU, FOXA1, ASC, GPX3, EZH2, LSD1, etc. In this review, we highlighted the most important epigenetic gene alterations and their variations as a diagnostic marker and target for therapeutic intervention of CaP in the future. Characterization of epigenetic changes involved in CaP is obscure and adequate validation studies are still required to corroborate the present results that would be the impending future of transforming basic research settings into clinical practice.
Collapse
Affiliation(s)
- Ravindran Ragavi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Srividhya Nandagopal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Dinesh Kumar Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sanjeev Misra
- Atal Bihari Vajpayee Medical University, Lucknow Uttar Pradesh, India
| | - Giulia Guerriero
- Comparative Endocrinology Lab, Department of Biology, University of Naples Federico II, Naples, Italy
| | - Kamla Kant Shukla
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| |
Collapse
|
11
|
Singh VK, Kainat KM, Sharma PK. Crosstalk between epigenetics and tumor promoting androgen signaling in prostate cancer. VITAMINS AND HORMONES 2023; 122:253-282. [PMID: 36863797 DOI: 10.1016/bs.vh.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PCa) is one of the major health burdens among all cancer types in men globally. Early diagnosis and efficacious treatment options are highly warranted as far as the incidence of PCa is concerned. Androgen-dependent transcriptional activation of androgen receptor (AR) is central to the prostate tumorigenesis and therefore hormonal ablation therapy remains the first line of treatment for PCa in the clinics. However, the molecular signaling engaged in AR-dependent PCa initiation and progression is infrequent and diverse. Moreover, apart from the genomic changes, non-genomic changes such as epigenetic modifications have also been suggested as critical regulator of PCa development. Among the non-genomic mechanisms, various epigenetic changes such as histones modifications, chromatin methylation and noncoding RNAs regulations etc. play decisive role in the prostate tumorigenesis. Given that epigenetic modifications are reversible using pharmacological modifiers, various promising therapeutic approaches have been designed for the better management of PCa. In this chapter, we discuss the epigenetic control of tumor promoting AR signaling that underlies the mechanism of prostate tumorigenesis and progression. In addition, we have discussed the approaches and opportunities to develop novel epigenetic modifications based therapeutic strategies for targeting PCa including castrate resistant prostate cancer (CRPC).
Collapse
Affiliation(s)
- Vipendra Kumar Singh
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - K M Kainat
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
12
|
Mathiesen A, Haynes B, Huyck R, Brown M, Dobrian A. Adipose Tissue-Derived Extracellular Vesicles Contribute to Phenotypic Plasticity of Prostate Cancer Cells. Int J Mol Sci 2023; 24:1229. [PMID: 36674745 PMCID: PMC9864182 DOI: 10.3390/ijms24021229] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Metastatic prostate cancer is one of the leading causes of male cancer deaths in the western world. Obesity significantly increases the risk of metastatic disease and is associated with a higher mortality rate. Systemic chronic inflammation can result from a variety of conditions, including obesity, where adipose tissue inflammation is a major contributor. Adipose tissue endothelial cells (EC) exposed to inflammation become dysfunctional and produce a secretome, including extracellular vesicles (EV), that can impact function of cells in distant tissues, including malignant cells. The aim of this study was to explore the potential role of EVs produced by obese adipose tissue and the ECs exposed to pro-inflammatory cytokines on prostate cancer phenotypic plasticity in vitro. We demonstrate that PC3ML metastatic prostate cancer cells exposed to EVs from adipose tissue ECs and to EVs from human adipose tissue total explants display reduced invasion and increased proliferation. The latter functional changes could be attributed to the EV miRNA cargo. We also show that the functional shift is TWIST1-dependent and is consistent with mesenchymal-to-epithelial transition, which is key to establishment of secondary tumor growth. Understanding the complex effects of EVs on prostate cancer cells of different phenotypes is key before their intended use as therapeutics.
Collapse
Affiliation(s)
- Allison Mathiesen
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Bronson Haynes
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Ryan Huyck
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Michael Brown
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Anca Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| |
Collapse
|
13
|
Nekrasova LA, Shmakova AA, Samokhodskaya LM, Kirillova KI, Stoyanova SS, Mershina EA, Nazarova GB, Rubina KA, Semina EV, Kamalov AA. The Association of PLAUR Genotype and Soluble suPAR Serum Level with COVID-19-Related Lung Damage Severity. Int J Mol Sci 2022; 23:ijms232416210. [PMID: 36555850 PMCID: PMC9785175 DOI: 10.3390/ijms232416210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Uncovering the risk factors for acute respiratory disease coronavirus 2019 (COVID-19) severity may help to provide a valuable tool for early patient stratification and proper treatment implementation, improving the patient outcome and lowering the burden on the healthcare system. Here we report the results of a single-center retrospective cohort study on 151 severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected symptomatic hospitalized adult patients. We assessed the association of several blood test measurements, soluble urokinase receptor (uPAR) serum level and specific single nucleotide polymorphisms of ACE (I/D), NOS3 (rs2070744, rs1799983), SERPINE1 (rs1799768), PLAU (rs2227564) and PLAUR (rs344781, rs2302524) genes, with the disease severity classified by the percentage of lung involvement on computerized tomography scans. Our findings reveal that the T/C genotype of PLAUR rs2302524 was independently associated with a less severe lung damage (odds ratio 0.258 [0.071-0.811]). Along with high C-reactive protein, fibrinogen and soluble uPAR serum levels turned out to be independently associated with more severe lung damage in COVID-19 patients. The identified factors may be further employed as predictors of a possibly severe COVID-19 clinical course.
Collapse
Affiliation(s)
- Ludmila A. Nekrasova
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Anna A. Shmakova
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| | - Larisa M. Samokhodskaya
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Karina I. Kirillova
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Simona S. Stoyanova
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Elena A. Mershina
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Galina B. Nazarova
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Kseniya A. Rubina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Ekaterina V. Semina
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Correspondence:
| | - Armais A. Kamalov
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
| |
Collapse
|
14
|
Piet M, Paduch R. Ursolic and oleanolic acids in combination therapy inhibit migration of colon cancer cells through down-regulation of the uPA/uPAR-dependent MMPs pathway. Chem Biol Interact 2022; 368:110202. [PMID: 36191607 DOI: 10.1016/j.cbi.2022.110202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Colorectal cancer is one the most lethal cancers worldwide. Since chemotherapy is burdened with harmful effects, agents capable of enhancing the chemotherapeutic effect are being sought. Ursolic acid (UA) and oleanolic acid (OA) were analyzed for such properties. The aim of the study was to evaluate the ability of UA and OA administered individually and in combination with each other and/or a cytostatic drug camptothecin-11 (CPT-11) to limit the viability and migration of colorectal cancer cells. MATERIALS AND METHODS The cytotoxic effect of UA, OA and CPT-11 and impact on normal and cancer cell migration rate were assessed. Furthermore, the effect on factors crucial in cancer metastasis: MMP-2 and -9, uPA/uPAR, and E-cadherin were assessed with ELISA, Western Blotting and immunofluorescence assays. Statistical analysis was performed with One-Way Anova with Dunnett's test. RESULTS The studied compounds exhibited the most favorable properties, i.e. they reduced the viability and migration of cancer cells. Furthermore, the secretion, activity, and cellular level of cancer MMP-2 and -9 were decreased, as a result of uPA/uPAR down-regulation. The agents also increased the level of cellular E-cadherin. The effect of the studied agents on normal cells was milder. CONCLUSIONS The compounds exhibited stronger activity when administered in combination and, combined with CPT-11, enhanced anti-tumorigenic activity of the drug. The migration-limiting activity was based on down-regulation of the uPA/uPAR-dependent MMP pathway. Moreover, UA and OA exhibited a protective effect towards normal cells.
Collapse
Affiliation(s)
- Mateusz Piet
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland; Department of General Ophthalmology, Faculty of Medicine, Medical University of Lublin, ul Chmielna 1, 20-079, Lublin, Poland.
| |
Collapse
|
15
|
Secretory SERPINE1 Expression Is Increased by Antiplatelet Therapy, Inducing MMP1 Expression and Increasing Colon Cancer Metastasis. Int J Mol Sci 2022; 23:ijms23179596. [PMID: 36076991 PMCID: PMC9455756 DOI: 10.3390/ijms23179596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Contrary to many reports that antiplatelet agents inhibit cancer growth and metastasis, new solid tumors have been reported in patients receiving long-term antiplatelet therapy. We investigated the effects of these agents directly on cancer cells in the absence of platelets to mimic the effects of long-term therapy. When four antiplatelet agents (aspirin, clopidogrel, prasugrel, and ticagrelor) were administered to colon cancer cells, cancer cell proliferation was inhibited similarly to a previous study. However, surprisingly, when cells were treated with a purinergic P2Y12 inhibitor (purinergic antiplatelet agent), the motility of the cancer cells was significantly increased. Therefore, gene expression profiles were identified to investigate the effect of P2Y12 inhibitors on cell mobility, and Serpin family 1 (SERPINE1) was identified as a common gene associated with cell migration and cell death in three groups. Antiplatelet treatment increased the level of SERPINE1 in cancer cells and also promoted the secretion of SERPINE1 into the medium. Increased SERPINE1 was found to induce MMP1 and, thus, increase cell motility. In addition, an increase in SERPINE1 was confirmed using the serum of patients who received these antiplatelet drugs. With these results, we propose that SERPINE1 could be used as a new target gene to prevent the onset and metastasis of cancer in patients with long-term antiplatelet therapy.
Collapse
|
16
|
Costa CSDO, Mafra RP, Rolim LSA, Souza LBD, Pinto LP. Immunohistochemical study of the plasminogen activator system in benign epithelial odontogenic lesions. Braz Oral Res 2022; 36:e071. [PMID: 36507758 DOI: 10.1590/1807-3107bor-2022.vol36.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to analyze and compare the immunohistochemical expression of plasminogen activator system (PAS) proteins (uPA, uPAR, and PAI-1) in ameloblastomas (AMBs), odontogenic keratocysts (OKCs), and dental follicles (DFs) representing normal odontogenic tissue, as well as to investigate possible correlations between these proteins. Twenty AMBs, 20 OKCs, and 10 DFs were selected for immunohistochemical analysis. In each case, the immunoexpression of uPA, uPAR, and PAI-1 was evaluated semiquantitatively based on the percentage of positivity in odontogenic epithelial and connective tissue cells. The epithelial immunoexpression of uPA was significantly lower in AMBs when compared to OKCs (p = 0.001) and DFs (p = 0.029). Significantly higher epithelial immunostaining for uPAR was observed in AMBs when compared to OKCs (p < 0.001). There were no significant differences in the epithelial immunoexpression of PAI-1 between AMBs and OKCs (p = 1.000). The correlations found for the expression of the studied proteins were not statistically significant (p > 0.05). However, the epithelial and connective tissue expressions of uPAR have a strong positive and statistically significant correlation in AMBs. The present results suggest that uPA is involved in the pathogenesis of OKCs and that uPAR may participate in tumorigenesis in AMBs. The high percentage of PAI-1-positive cells suggests a possible role for this protein in the development of AMBs and OKCs. Furthermore, the studied proteins do not seem to act synergistically in AMBs, OKCs, and DFs.
Collapse
Affiliation(s)
- Carla Samily de Oliveira Costa
- Universidade Federal do Rio Grande do Norte - UFRN, School of Dentistry, Department of Oral Pathology, Natal, RN, Brazil
| | - Rodrigo Porpino Mafra
- Universidade Federal do Rio Grande do Norte - UFRN, School of Dentistry, Department of Oral Pathology, Natal, RN, Brazil
| | - Larissa Santos Amaral Rolim
- Universidade Federal do Rio Grande do Norte - UFRN, School of Dentistry, Department of Oral Pathology, Natal, RN, Brazil
| | - Lélia Batista de Souza
- Universidade Federal do Rio Grande do Norte - UFRN, School of Dentistry, Department of Oral Pathology, Natal, RN, Brazil
| | - Leão Pereira Pinto
- Universidade Federal do Rio Grande do Norte - UFRN, School of Dentistry, Department of Oral Pathology, Natal, RN, Brazil
| |
Collapse
|
17
|
Extracellular Vesicles Derived from Acidified Metastatic Melanoma Cells Stimulate Growth, Migration, and Stemness of Normal Keratinocytes. Biomedicines 2022; 10:biomedicines10030660. [PMID: 35327461 PMCID: PMC8945455 DOI: 10.3390/biomedicines10030660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Metastatic melanoma is a highly malignant tumor. Melanoma cells release extracellular vesicles (EVs), which contribute to the growth, metastasis, and malignancy of neighboring cells by transfer of tumor-promoting miRNAs, mRNA, and proteins. Melanoma microenvironment acidification promotes tumor progression and determines EVs’ properties. We studied the influence of EVs derived from metastatic melanoma cells cultivated at acidic (6.5) and normal (7.4) pH on the morphology and homeostasis of normal keratinocytes. Acidification of metastatic melanoma environment made EVs more prooncogenic with increased expression of prooncogenic mi221 RNA, stemless factor CD133, and pro-migration factor SNAI1, as well as with downregulated antitumor mir7 RNA. Incubation with EVs stimulated growth and migration both of metastatic melanoma cells and keratinocytes and changed the morphology of keratinocytes to stem-like phenotype, which was confirmed by increased expression of the stemness factors KLF and CD133. Activation of the AKT/mTOR and ERK signaling pathways and increased expression of epidermal growth factor receptor EGFR and SNAI1 were detected in keratinocytes upon incubation with EVs. Moreover, EVs reduced the production of different cytokines (IL6, IL10, and IL12) and adhesion factors (sICAM-1, sICAM-3, sPecam-1, and sCD40L) usually secreted by keratinocytes to control melanoma progression. Bioinformatic analysis revealed the correlation between decreased expression of these secreted factors and worse survival prognosis for patients with metastatic melanoma. Altogether, our data mean that metastatic melanoma EVs are important players in the transformation of normal keratinocytes.
Collapse
|
18
|
Demirel E, Sabouni R, Chandra N, Slayden OD, Archer DF. The Plasminogen Activator System, Glucocorticoid, and Mineralocorticoid Receptors in the Primate Endometrium During Artificial Menstrual Cycles. Reprod Sci 2022; 29:1001-1019. [PMID: 34796470 PMCID: PMC8863636 DOI: 10.1007/s43032-021-00797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/03/2021] [Indexed: 11/26/2022]
Abstract
As a key mechanism in fibrinolysis and tissue remodeling, the plasminogen activator system has been suggested in the process of endometrial shedding and tissue remodeling. Previous studies have explored the role of estrogen, progesterone, and androgen receptors as well as elements of the renin-angiotensin-aldosterone system in shaping the morphology of the endometrium. This study investigates the distribution and concentrations of the mineralocorticoid receptor, glucocorticoid receptor, tissue plasminogen activator, urokinase plasminogen activator, and plasminogen activator inhibitor-1 within the endometrial stroma, glandular, and endothelial cells of the primate endometrium during artificial menstrual cycles. Our immunohistochemistry quantification shows mineralocorticoid and glucocorticoid receptors are ubiquitously distributed within the macaque endometrium with their patterns of expression following similar fluctuations to urokinase and tissue plasminogen activators particularly within the endometrial vasculature. These proteins are present in endometrial vasculature in high levels during the proliferative phase, decreasing levels during the secretory phase followed by rising levels in the menstrual phase. These similarities could suggest overlapping pathways and interactions between the plasminogen activator system and the steroid receptors within the endometrium. Given the anti-inflammatory properties of glucocorticoids and the role of plasminogen activators in endometrial breakdown, the glucocorticoid receptor may be contributing to stabilizing the endometrium by regulating plasminogen activators during the proliferative phase and menstruation. Furthermore, given the anti-mineralocorticoid properties of certain anti-androgenic progestins and their reduced unscheduled uterine bleeding patterns, the mineralocorticoid receptor may be involved in unscheduled endometrial bleeding.
Collapse
Affiliation(s)
- Esra Demirel
- Department of Obstetrics and Gynecology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 300 Community Dr, Manhasset, NY, 11030, USA.
| | - Reem Sabouni
- The Clinical Research Center, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Neelima Chandra
- The Clinical Research Center, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ov D Slayden
- Oregon National Primate Research Center, Beaverton, OR, USA
| | - David F Archer
- The Clinical Research Center, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
19
|
Shmakova AA, Klimovich PS, Rysenkova KD, Popov VS, Gorbunova AS, Karpukhina AA, Karagyaur MN, Rubina KA, Tkachuk VA, Semina EV. Urokinase Receptor uPAR Downregulation in Neuroblastoma Leads to Dormancy, Chemoresistance and Metastasis. Cancers (Basel) 2022; 14:cancers14040994. [PMID: 35205745 PMCID: PMC8870350 DOI: 10.3390/cancers14040994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/05/2022] [Accepted: 02/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary uPAR is a membrane receptor that contributes to extracellular matrix remodeling and controls cellular adhesion, proliferation, survival, and migration. We demonstrate that the initially high uPAR expression predicts poor survival in neuroblastoma. However, relapsed neuroblastomas have a significantly decreased uPAR expression. uPAR downregulation in neuroblastoma cells leads to dormancy and resistance to chemotherapeutic drugs. In mice, low uPAR-expressing neuroblastoma cells formed smaller primary tumors but more frequent metastasis. Abstract uPAR is a membrane receptor that binds extracellular protease urokinase, contributes to matrix remodeling and plays a crucial role in cellular adhesion, proliferation, survival, and migration. uPAR overexpression in tumor cells promotes mitogenesis, opening a prospective avenue for targeted therapy. However, uPAR targeting in cancer has potential risks. We have recently shown that uPAR downregulation in neuroblastoma promotes epithelial-mesenchymal transition (EMT), potentially associated with metastasis and chemoresistance. We used data mining to evaluate the role of uPAR expression in primary and relapsed human neuroblastomas. To model the decreased uPAR expression, we targeted uPAR using CRISPR/Cas9 and shRNA in neuroblastoma Neuro2a cells and evaluated their chemosensitivity in vitro as well as tumor growth and metastasis in vivo. We demonstrate that the initially high PLAUR expression predicts poor survival in human neuroblastoma. However, relapsed neuroblastomas have a significantly decreased PLAUR expression. uPAR targeting in neuroblastoma Neuro2a cells leads to p38 activation and an increased p21 expression (suggesting a dormant phenotype). The dormancy in neuroblastoma cells can be triggered by the disruption of uPAR-integrin interaction. uPAR-deficient cells are less sensitive to cisplatin and doxorubicin treatment and exhibit lower p53 activation. Finally, low uPAR-expressing Neuro2a cells formed smaller primary tumors, but more frequent metastasis in mice. To the best of our knowledge, this is the first study revealing the pathological role of dormant uPAR-deficient cancer cells having a chemoresistant and motile phenotype.
Collapse
Affiliation(s)
- Anna A. Shmakova
- National Cardiology Research Center of the Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (A.A.S.); (P.S.K.); (K.D.R.); (V.A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Polina S. Klimovich
- National Cardiology Research Center of the Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (A.A.S.); (P.S.K.); (K.D.R.); (V.A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Karina D. Rysenkova
- National Cardiology Research Center of the Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (A.A.S.); (P.S.K.); (K.D.R.); (V.A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Vladimir S. Popov
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Anna S. Gorbunova
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Anna A. Karpukhina
- Koltzov Institute of Developmental Biology, Russian Academy of Science, 117334 Moscow, Russia;
| | - Maxim N. Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Kseniya A. Rubina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Vsevolod A. Tkachuk
- National Cardiology Research Center of the Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (A.A.S.); (P.S.K.); (K.D.R.); (V.A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Ekaterina V. Semina
- National Cardiology Research Center of the Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (A.A.S.); (P.S.K.); (K.D.R.); (V.A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
- Correspondence:
| |
Collapse
|
20
|
Kumar AA, Buckley BJ, Ranson M. The Urokinase Plasminogen Activation System in Pancreatic Cancer: Prospective Diagnostic and Therapeutic Targets. Biomolecules 2022; 12:152. [PMID: 35204653 PMCID: PMC8961517 DOI: 10.3390/biom12020152] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is a highly aggressive malignancy that features high recurrence rates and the poorest prognosis of all solid cancers. The urokinase plasminogen activation system (uPAS) is strongly implicated in the pathophysiology and clinical outcomes of patients with pancreatic ductal adenocarcinoma (PDAC), which accounts for more than 90% of all pancreatic cancers. Overexpression of the urokinase-type plasminogen activator (uPA) or its cell surface receptor uPAR is a key step in the acquisition of a metastatic phenotype via multiple mechanisms, including the increased activation of cell surface localised plasminogen which generates the serine protease plasmin. This triggers multiple downstream processes that promote tumour cell migration and invasion. Increasing clinical evidence shows that the overexpression of uPA, uPAR, or of both is strongly associated with worse clinicopathological features and poor prognosis in PDAC patients. This review provides an overview of the current understanding of the uPAS in the pathogenesis and progression of pancreatic cancer, with a focus on PDAC, and summarises the substantial body of evidence that supports the role of uPAS components, including plasminogen receptors, in this disease. The review further outlines the clinical utility of uPAS components as prospective diagnostic and prognostic biomarkers for PDAC, as well as a rationale for the development of novel uPAS-targeted therapeutics.
Collapse
Affiliation(s)
- Ashna A. Kumar
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.A.K.); (B.J.B.)
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Benjamin J. Buckley
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.A.K.); (B.J.B.)
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.A.K.); (B.J.B.)
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
21
|
Momeny M, Shamsaiegahkani S, Kashani B, Hamzehlou S, Esmaeili F, Yousefi H, Irani S, Mousavi SA, Ghaffari SH. Cediranib, a pan-inhibitor of vascular endothelial growth factor receptors, inhibits proliferation and enhances therapeutic sensitivity in glioblastoma cells. Life Sci 2021; 287:120100. [PMID: 34715143 DOI: 10.1016/j.lfs.2021.120100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/26/2022]
Abstract
AIMS Glioblastoma (GB) is the most aggressive type of brain tumor. Rapid progression, active angiogenesis, and therapy resistance are major reasons for its high mortality. Elevated expression of members of the vascular endothelial growth factor (VEGF) family suggests that anti-VEGF therapies may be potent anti-glioma therapeutic approaches. Here, we evaluated the anti-tumor activity of cediranib, a pan inhibitor of the VEGF receptors, on GB cells. MATERIALS AND METHODS Anti-proliferative effects of cediranib were determined using MTT, crystal-violet staining, clonogenic and anoikis resistance assays. Apoptosis induction was assessed by Annexin V/PI staining and Western blot analysis and aggressive abilities of GB cells were investigated using cell migration/invasion assays and zymography. Small-interfering RNA (siRNA)-mediated Knockdown was used to study resistance mechanisms. The anti-proliferative and apoptotic effects of cediranib in combination with radiotherapy, temozolomide, bevacizumab were also evaluated using MTT, Annexin V/PI staining and Western blot analysis for cleaved PARP-1. KEY FINDINGS Cediranib reduced GB cell proliferation, induced apoptotic cell death and inhibited the aggressive abilities of GB cells. Cediranib synergistically increased the anti-proliferative and apoptotic effects of radiotherapy and bevacizumab and augmented the sensitivity of GB cells to temozolomide chemotherapy. In addition, knockdown of MET and AKT potentiated cediranib sensitivity in cediranib-resistant GB cells. SIGNIFICANCE These findings suggest that cediranib, alone or in combination with other therapeutics, is a promising strategy for the treatment of GB and provide a rationale for further investigation of the therapeutic potential of cediranib for the treatment of this fatal malignancy.
Collapse
Affiliation(s)
| | - Sahar Shamsaiegahkani
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Kashani
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Esmaeili
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Centre, New Orleans, USA
| | - Shiva Irani
- Department of Biology Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed A Mousavi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Usman S, Waseem NH, Nguyen TKN, Mohsin S, Jamal A, Teh MT, Waseem A. Vimentin Is at the Heart of Epithelial Mesenchymal Transition (EMT) Mediated Metastasis. Cancers (Basel) 2021; 13:4985. [PMID: 34638469 PMCID: PMC8507690 DOI: 10.3390/cancers13194985] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a reversible plethora of molecular events where epithelial cells gain the phenotype of mesenchymal cells to invade the surrounding tissues. EMT is a physiological event during embryogenesis (type I) but also happens during fibrosis (type II) and cancer metastasis (type III). It is a multifaceted phenomenon governed by the activation of genes associated with cell migration, extracellular matrix degradation, DNA repair, and angiogenesis. The cancer cells employ EMT to acquire the ability to migrate, resist therapeutic agents and escape immunity. One of the key biomarkers of EMT is vimentin, a type III intermediate filament that is normally expressed in mesenchymal cells but is upregulated during cancer metastasis. This review highlights the pivotal role of vimentin in the key events during EMT and explains its role as a downstream as well as an upstream regulator in this highly complex process. This review also highlights the areas that require further research in exploring the role of vimentin in EMT. As a cytoskeletal protein, vimentin filaments support mechanical integrity of the migratory machinery, generation of directional force, focal adhesion modulation and extracellular attachment. As a viscoelastic scaffold, it gives stress-bearing ability and flexible support to the cell and its organelles. However, during EMT it modulates genes for EMT inducers such as Snail, Slug, Twist and ZEB1/2, as well as the key epigenetic factors. In addition, it suppresses cellular differentiation and upregulates their pluripotent potential by inducing genes associated with self-renewability, thus increasing the stemness of cancer stem cells, facilitating the tumour spread and making them more resistant to treatments. Several missense and frameshift mutations reported in vimentin in human cancers may also contribute towards the metastatic spread. Therefore, we propose that vimentin should be a therapeutic target using molecular technologies that will curb cancer growth and spread with reduced mortality and morbidity.
Collapse
Affiliation(s)
- Saima Usman
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| | - Naushin H. Waseem
- UCL Institute of Ophthalmology, 11-43 Bath Str., London EC1V 9EL, UK;
| | - Thuan Khanh Ngoc Nguyen
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| | - Sahar Mohsin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Ahmad Jamal
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| |
Collapse
|
23
|
Wang J, Peng Y, Guo H, Li C. PAI-1 Polymorphisms Have Significant Associations With Cancer Risk, Especially Feminine Cancer. Technol Cancer Res Treat 2021; 20:15330338211037813. [PMID: 34521295 PMCID: PMC8447096 DOI: 10.1177/15330338211037813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The plasminogen activator inhibitor-1 (PAI-1) was found in many types of tumor cells, which involved in tumorigenesis. Some studies investigated the associations between PAI-1 polymorphisms and various cancers, but the results were inconsistent. So this study did a meta-analysis to assess the strength of relationship between PAI-1 and cancer. METHODS Articles that meet the requirements were searched from PubMed, EMBASE, MEDLINE, Scopus, CNKI, Wanfang and SinoMed electronic databases before June 17th 2021. Stata version 11.2 was performed to merge the odds ratios (ORs) values and calculate 95% confidence intervals (CIs). Stratified analyses were assessed on the basis of types of cancer, ethnicity and source of the control group. Heterogeneity and sensitivity analysis were tested, and publication bias was also estimated. A meta-regression analysis was applied to explore sources of heterogeneity. The false-positive report probabilities (FPRP) and the Bayesian False Discovery Probability (BFDP) test were used to assess the credibility of statistically significant associations. RESULTS Ultimately, in this study, 33 eligible reports were included with 9550 cases and 10431 controls for the rs1799889 polymorphism, 5 reports with 2705 cases and 3168 controls for the rs2227631 polymorphism, and 4 reports with 2799 cases and 4011 controls for the rs2227667 polymorphism. The ORs and 95% CIs showed a statistically significant relationship between rs1799889 4G>5G polymorphism and cancer risk, especially in feminine cancer. The term refers to cancers that occur in the female reproductive system, such as ovarian, breast, endometrial and cervical cancer. Moreover, there was no association observed for the PAI-1 promoter A>G polymorphism (rs2227631 and rs2227667). In further subgroup analyses of 4G>5G polymorphism (rs1799889), an increased susceptibility to cancer was observed in Caucasians group and some types of cancer groups. CONCLUSIONS This article comes to a conclusion that the rs1799889 polymorphism might help to increase the risk of cancer; moreover, the susceptibility to feminine cancer is more evident.
Collapse
Affiliation(s)
- Jiaxi Wang
- Department of Periodontal and Oral Medicine, College and Hospital of Stomatology, Guangxi Medical University, Nanning, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, People's Republic of China.,Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, College of Stomatology, Guangxi Medical University, Nanning, People's Republic of China.,Jiaxi Wang, Yuanyuan Peng, and Hejia Guo contributed equally to this work
| | - Yuanyuan Peng
- Department of Periodontal and Oral Medicine, College and Hospital of Stomatology, Guangxi Medical University, Nanning, People's Republic of China.,Jiaxi Wang, Yuanyuan Peng, and Hejia Guo contributed equally to this work
| | - Hejia Guo
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, People's Republic of China.,Jiaxi Wang, Yuanyuan Peng, and Hejia Guo contributed equally to this work
| | - Cuiping Li
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, People's Republic of China.,Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, College of Stomatology, Guangxi Medical University, Nanning, People's Republic of China.,Medical Scientific Research Center, College of Stomatology, Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
24
|
Santibanez JF, Obradović H, Krstić J. BMP2 downregulates urokinase-type plasminogen activator via p38 MAPK: Implications in C2C12 cells myogenic differentiation. Acta Histochem 2021; 123:151774. [PMID: 34450502 DOI: 10.1016/j.acthis.2021.151774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Bone morphogenetic protein (BMP)2 strongly affects the differentiation program of myoblast cells by inhibiting myogenesis and inducing osteogenic differentiation. In turn, extracellular matrix (ECM) proteinases, such as urokinase-type plasminogen activator (uPA), can influence the fate of muscle stem cells by participating in ECM reorganization. Although both BMP2 and uPA have antagonistic roles in muscles cells differentiation, no connection between them has been elucidated so far. This study aims to determine whether BMP2 regulates uPA expression in the myogenic C2C12 cell line and its impact on muscle cell fate differentiation. Our results showed that BMP2 did not modify C2C12 cell proliferation in a growth medium or myogenic differentiation medium. Although BMP2 inhibited myogenesis and induced osteogenesis, these effects were achieved with different doses of BMP2. Low concentrations of BMP2 blocked myogenesis, while a higher concentration was needed to induce osteogenesis. Reduced uPA expression was noticed alongside myogenic inhibition at low concentrations of BMP2. BMP2 activated p38 MAPK signaling to inhibit uPA activity. Furthermore, ectopic human uPA expression reduced BMP2's ability to inhibit the myogenic differentiation of C2C12 cells. In conclusion, BMP2 inhibits uPA expression through p38 MAPK and in vitro myogenesis at non-osteogenic concentrations, while uPA ectopic expression prevents BMP2 from inhibiting myogenesis in C2C12 cells.
Collapse
|
25
|
Wawruszak A, Halasa M, Okon E, Kukula-Koch W, Stepulak A. Valproic Acid and Breast Cancer: State of the Art in 2021. Cancers (Basel) 2021; 13:3409. [PMID: 34298623 PMCID: PMC8306563 DOI: 10.3390/cancers13143409] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Valproic acid (2-propylpentanoic acid, VPA) is a short-chain fatty acid, a member of the group of histone deacetylase inhibitors (HDIs). VPA has been successfully used in the treatment of epilepsy, bipolar disorders, and schizophrenia for over 50 years. Numerous in vitro and in vivo pre-clinical studies suggest that this well-known anticonvulsant drug significantly inhibits cancer cell proliferation by modulating multiple signaling pathways. Breast cancer (BC) is the most common malignancy affecting women worldwide. Despite significant progress in the treatment of BC, serious adverse effects, high toxicity to normal cells, and the occurrence of multi-drug resistance (MDR) still limit the effective therapy of BC patients. Thus, new agents which improve the effectiveness of currently used methods, decrease the emergence of MDR, and increase disease-free survival are highly needed. This review focuses on in vitro and in vivo experimental data on VPA, applied individually or in combination with other anti-cancer agents, in the treatment of different histological subtypes of BC.
Collapse
Affiliation(s)
- Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.S.)
| | - Marta Halasa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.S.)
| | - Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.S.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.S.)
| |
Collapse
|
26
|
Substrate-biased activity-based probes identify proteases that cleave receptor CDCP1. Nat Chem Biol 2021; 17:776-783. [PMID: 33859413 DOI: 10.1038/s41589-021-00783-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/04/2021] [Indexed: 02/02/2023]
Abstract
CUB domain-containing protein 1 (CDCP1) is an oncogenic orphan transmembrane receptor and a promising target for the detection and treatment of cancer. Extracellular proteolysis of CDCP1 by poorly defined mechanisms induces pro-metastatic signaling. We describe a new approach for the rapid identification of proteases responsible for key proteolytic events using a substrate-biased activity-based probe (sbABP) that incorporates a substrate cleavage motif grafted onto a peptidyl diphenyl phosphonate warhead for specific target protease capture, isolation and identification. Using a CDCP1-biased probe, we identify urokinase (uPA) as the master regulator of CDCP1 proteolysis, which acts both by directly cleaving CDCP1 and by activating CDCP1-cleaving plasmin. We show that coexpression of uPA and CDCP1 is strongly predictive of poor disease outcome across multiple cancers and demonstrate that uPA-mediated CDCP1 proteolysis promotes metastasis in disease-relevant preclinical in vivo models. These results highlight CDCP1 cleavage as a potential target to disrupt cancer and establish sbABP technology as a new approach to identify disease-relevant proteases.
Collapse
|
27
|
Montemagno C, Cassim S, De Leiris N, Durivault J, Faraggi M, Pagès G. Pancreatic Ductal Adenocarcinoma: The Dawn of the Era of Nuclear Medicine? Int J Mol Sci 2021; 22:6413. [PMID: 34203923 PMCID: PMC8232627 DOI: 10.3390/ijms22126413] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), accounting for 90-95% of all pancreatic tumors, is a highly devastating disease associated with poor prognosis. The lack of accurate diagnostic tests and failure of conventional therapies contribute to this pejorative issue. Over the last decade, the advent of theranostics in nuclear medicine has opened great opportunities for the diagnosis and treatment of several solid tumors. Several radiotracers dedicated to PDAC imaging or internal vectorized radiotherapy have been developed and some of them are currently under clinical consideration. The functional information provided by Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) could indeed provide an additive diagnostic value and thus help in the selection of patients for targeted therapies. Moreover, the therapeutic potential of β-- and α-emitter-radiolabeled agents could also overcome the resistance to conventional therapies. This review summarizes the current knowledge concerning the recent developments in the nuclear medicine field for the management of PDAC patients.
Collapse
Affiliation(s)
- Christopher Montemagno
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Centre Antoine Lacassagne, CNRS UMR 7284 and IN-SERM U1081, Université Cote d’Azur, 06200 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Shamir Cassim
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Nicolas De Leiris
- Nuclear Medicine Department, Grenoble-Alpes University Hospital, 38000 Grenoble, France;
- Laboratoire Radiopharmaceutiques Biocliniques, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, 38000 Grenoble, France
| | - Jérôme Durivault
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Marc Faraggi
- Centre Hospitalier Princesse Grace, Nuclear Medicine Department, 98000 Monaco, Monaco;
| | - Gilles Pagès
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Centre Antoine Lacassagne, CNRS UMR 7284 and IN-SERM U1081, Université Cote d’Azur, 06200 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| |
Collapse
|
28
|
Karagyaur M, Rostovtseva A, Dzhauari S, Kozlov E, Lebedeva L, Klimovich P, Balabanyan V, Semina E, Sysoeva V, Shidlovskii Y, Popov V, Stambolsky D. Biodistribution and Safety Studies of a Bicistronic Plasmid for Nerve Repair. Tissue Eng Part C Methods 2021; 27:391-400. [PMID: 34015967 DOI: 10.1089/ten.tec.2021.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene therapy is one of the promising approaches for regenerative medicine. Local and long-term expression of essential growth factors allows to achieve the desired therapeutic effect. However, some aspects of prolonged usage of genetic constructs encoding growth factors, such as toxicity, mutagenicity, genotoxicity, and ability to disseminate from the injection site and mediate ectopic expression of therapeutic proteins, are poorly investigated. These aspects of gene therapy drugs' usage became the subject of this study. To study plasmid biodistribution, toxicity, mutagenicity, and genotoxicity, we used previously described bicistronic genetic construct encoding human brain-derived neurotrophic factor (hBDNF) and human urokinase plasminogen activator (huPA) for nerve repair. Biodistribution studies were conducted in mice: a course of intramuscular plasmid injections was followed by the study of the content of the plasmid (real-time polymerase chain reaction) and recombinant proteins (enzyme-linked immunosorbent assay) in murine organs and tissues. The study of the plasmid chronic toxicity was carried out on rats with registration of their weight dynamics, neurological status, emotional state, and blood test parameters. The mutagenicity of the plasmid was studied in an in vivo DNA comet test in mice. Plasmid genotoxicity was investigated in the model of somatic recombination in Drosophila females. We have shown that plasmids can disseminate from the injection site, but do not mediate ectopic expression of growth factors upon repeated intramuscular injections. The studied plasmid also does not reveal toxic, mutagenic, or genotoxic effects. During the toxicological study on rats, we have shown that daily injections of this genetic construct, despite its ability to disseminate from the injection site, do not affect the physical, cognitive, and emotional state of experimental animals. We have demonstrated the safety of the bicistronic plasmid, encoding hBDNF and huPA, upon its repeated administration. The properties of genetic constructs strongly depend on their sequence and delivery approach, which requires conducting of their safety studies in each specific case. Impact statement Gene therapy is one of the promising approaches for regenerative medicine. Local and long-term expression of essential growth factors allows to achieve the desired therapeutic effect. However, some aspects of prolonged usage of genetic constructs encoding growth factors, such as toxicity, mutagenicity, genotoxicity, and ability to disseminate from the injection site and mediate ectopic expression of therapeutic proteins, are poorly investigated. These aspects of gene therapy became the subject of this study. To our knowledge, this is a unique study that provides a thorough safety investigation of a bicistronic plasmid after its readministration.
Collapse
Affiliation(s)
- Maxim Karagyaur
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Stalik Dzhauari
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Eugene Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lyubov Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Polina Klimovich
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vadim Balabanyan
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Molecular Endocrinology Lab, Institute of Experimental Cardiology, National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - Veronika Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Yulii Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir Popov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry Stambolsky
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
29
|
Tseng YJ, Lee CH, Chen WY, Yang JL, Tzeng HT. Inhibition of PAI-1 Blocks PD-L1 Endocytosis and Improves the Response of Melanoma Cells to Immune Checkpoint Blockade. J Invest Dermatol 2021; 141:2690-2698.e6. [PMID: 34000287 DOI: 10.1016/j.jid.2021.03.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 12/28/2022]
Abstract
Immune checkpoint molecules, especially PD-1 and its ligand PD-L1, act as a major mechanism of cancer immune evasion. Although anti-PD-1/PD-L1 monotherapy increases therapeutic efficacy in melanoma treatment, only a subset of patients exhibits long-term tumor remission, and the underlying mechanism of resistance to PD-1/PD-L1 inhibitors remains unclear. In this study, we demonstrated that cell surface retention of PD-L1 is inversely correlated with PAI-1 expression in vitro, in vivo, and in clinical specimens. Moreover, extracellular PAI-1 induced the internalization of surface-expressed PD-L1 by triggering clathrin-mediated endocytosis. The endocytosed PD-L1 was transported to lysosomes for degradation by endolysosomal systems, resulting in the reduction of surface PD-L1. Notably, inhibition of PAI-1 by pharmacological inhibitor with tiplaxtinin led to elevated PD-L1 expression on the plasma membrane, both in vitro and in vivo. Strikingly, targeting PAI-1 by tiplaxtinin treatment synergizes with anti-PD-L1 immune checkpoint blockade therapy in a syngeneic murine model of melanoma. Our findings demonstrate a role for PAI-1 activity in immune checkpoint modulation by promoting surface PD-L1 for lysosomal degradation and provides an insight into the combination of PAI-1 inhibition and anti-PD-L1 immunotherapy as a promising therapeutic regimen for melanoma treatment.
Collapse
Affiliation(s)
- Yu-Ju Tseng
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan
| | - Wei-Yu Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan
| | - Hong-Tai Tzeng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan.
| |
Collapse
|
30
|
Piperigkou Z, Kyriakopoulou K, Koutsakis C, Mastronikolis S, Karamanos NK. Key Matrix Remodeling Enzymes: Functions and Targeting in Cancer. Cancers (Basel) 2021; 13:1441. [PMID: 33809973 PMCID: PMC8005147 DOI: 10.3390/cancers13061441] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue functionality and integrity demand continuous changes in distribution of major components in the extracellular matrices (ECMs) under normal conditions aiming tissue homeostasis. Major matrix degrading proteolytic enzymes are matrix metalloproteinases (MMPs), plasminogen activators, atypical proteases such as intracellular cathepsins and glycolytic enzymes including heparanase and hyaluronidases. Matrix proteases evoke epithelial-to-mesenchymal transition (EMT) and regulate ECM turnover under normal procedures as well as cancer cell phenotype, motility, invasion, autophagy, angiogenesis and exosome formation through vital signaling cascades. ECM remodeling is also achieved by glycolytic enzymes that are essential for cancer cell survival, proliferation and tumor progression. In this article, the types of major matrix remodeling enzymes, their effects in cancer initiation, propagation and progression as well as their pharmacological targeting and ongoing clinical trials are presented and critically discussed.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| | - Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | | | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| |
Collapse
|
31
|
Sugioka K, Fukuda K, Nishida T, Kusaka S. The fibrinolytic system in the cornea: A key regulator of corneal wound healing and biological defense. Exp Eye Res 2021; 204:108459. [PMID: 33493476 DOI: 10.1016/j.exer.2021.108459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022]
Abstract
The cornea is a relatively unique tissue in the body in that it possesses specific features such as a lack of blood vessels that contribute to its transparency. The cornea is supplied with soluble blood components such as albumin, globulin, and fibrinogen as well as with nutrients, oxygen, and bioactive substances by diffusion from aqueous humor and limbal vessels as well as a result of its exposure to tear fluid. The healthy cornea is largely devoid of cellular components of blood such as polymorphonuclear leukocytes, monocytes-macrophages, and platelets. The location of the cornea at the ocular surface renders it susceptible to external insults, and its avascular nature necessitates the operation of healing and defense mechanisms in a manner independent of a direct blood supply. The fibrinolytic system, which was first recognized for its role in the degradation of fibrin clots in the vasculature, has also been found to contribute to various biological processes outside of blood vessels. Fibrinolytic factors thus play an important role in biological defense of the cornea. In this review, we address the function of the fibrinolytic system in corneal defense including wound healing and the inflammatory response.
Collapse
Affiliation(s)
- Koji Sugioka
- Department of Ophthalmology, Kindai University Nara Hospital, 1248-1 Otodacho, Ikoma City, Nara, 630-0293, Japan; Department of Ophthalmology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osakasayama City, Osaka, 589-8511, Japan.
| | - Ken Fukuda
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Nankoku City, Kochi, 783-8505, Japan
| | - Teruo Nishida
- Department of Ophthalmology, Kindai University Nara Hospital, 1248-1 Otodacho, Ikoma City, Nara, 630-0293, Japan; Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi, 755-8505, Japan; Division of Cornea and Ocular Surface, Ohshima Eye Hospital, 11-8 Kamigofukumachi, Hakata-ku, Fukuoka City, Fukuoka, 812-0036, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osakasayama City, Osaka, 589-8511, Japan
| |
Collapse
|
32
|
Assessment of telomerase as drug target in breast cancer. J Biosci 2020. [DOI: 10.1007/s12038-020-00045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Sugiura M, Sato H, Kanesaka M, Imamura Y, Sakamoto S, Ichikawa T, Kaneda A. Epigenetic modifications in prostate cancer. Int J Urol 2020; 28:140-149. [PMID: 33111429 DOI: 10.1111/iju.14406] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022]
Abstract
Prostate cancer is a major cause of cancer-related deaths among men worldwide. In addition to genomic alterations, epigenetic alterations accumulated in prostate cancer have been elucidated. While aberrant deoxyribonucleic acid hypermethylation in promoter CpG islands inactivates crucial genes associated with deoxyribonucleic acid repair, cell cycle, apoptosis or cell adhesion, aberrant deoxyribonucleic acid hypomethylation can lead to oncogene activation. Acetylation of histone is also deregulated in prostate cancer, which could cause aberrant super-enhancer formation and activation of genes associated with cancer development. Deregulations of histone methylation, such as an increase of trimethylation at position 27 of histone H3 by enhancer of zeste homolog2 overexpression, or other modifications, such as phosphorylation and ubiquitination, are also involved in prostate cancer development, and inhibitors targeting these epigenomic aberrations might be novel therapeutic strategies. In this review, we provide an overview of epigenetic alterations in the development and progression of prostate cancer, focusing on deoxyribonucleic acid methylation and histone modifications.
Collapse
Affiliation(s)
- Masahiro Sugiura
- Departments of, Department of, Urology, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of, Molecular Oncology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroaki Sato
- Departments of, Department of, Urology, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of, Molecular Oncology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Manato Kanesaka
- Departments of, Department of, Urology, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of, Molecular Oncology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yusuke Imamura
- Departments of, Department of, Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shinichi Sakamoto
- Departments of, Department of, Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomohiko Ichikawa
- Departments of, Department of, Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Kaneda
- Department of, Molecular Oncology, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
34
|
Klimovich PS, Semina EV. Mechanisms of Participation of the Urokinase Receptor in Directed Axonal Growth. Mol Biol 2020. [DOI: 10.1134/s0026893320010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Zhu C, Jiang L, Xu J, Ren A, Ju F, Shu Y. The urokinase-type plasminogen activator and inhibitors in resectable lung adenocarcinoma. Pathol Res Pract 2020; 216:152885. [PMID: 32113794 DOI: 10.1016/j.prp.2020.152885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/25/2020] [Accepted: 02/12/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND The urokinase-type plasminogen activator (uPA) system is closely related to the occurrence and progression of cancer in many aspects. Previous studies demonstrated that the conclusions about the prognosis value of uPA, plasminogen activator inhibitor 1 (PAI-1) and plasminogen activator inhibitor 2 (PAI-2) in lung cancer are controversial, so this study was performed for the exploration of the predictive effect of uPA, PAI-1 and PAI-2 on the overall survival (OS) of resectable pulmonary adenocarcinoma patients. METHODS UPA, PAI-1 and PAI-2 expression levels were assayed by immunohistochemical staining based on tissue microarray (TMA) that is composed of formalin-fixed paraffin-embedded specimens from 84 resectable lung adenocarcinoma patients from July 2004 to June 2009. The relationship of IHC, mRNA expression levels of three molecules were investigated respectively. The three molecules' relationship with clinicopathologic parameters and OS was explored by Chi-square, Kaplan-Meier, and Cox regression analyses. The Cancer Genome Atlas (TCGA) database was used to analyze differential gene expressions of RNA-sequencing data of pulmonary adenocarcinoma and normal tissues, and Kaplan-Meier methods were adopted to confirm the prognostic value of uPA, PAI-1 and PAI-2 in resectable lung adenocarcinoma in TCGA database and the R package MethylMix was used to conduct an analysis integrating methylation data and gene expression of RNA-sequencing data based on TCGA. RESULTS UPA, PAI-1 and PAI-2 had much higher IHC expression levels in tumor than those in the normal tissues (uPA, Z = -10.511; PAI-1, Z = -4.836; PAI-2, Z = -6.794; all P < 0.0001). High DNA methylation level of gene uPA resulted in the decrease of its expression. In addition, expression level of PAI-2 was positively associated with tumor size (χ2 = 8.372, P = 0.004). Multivariate analyses showed TNM stage III was an independent adverse prognostic factor (hazard ratio = 3.736, 95 % confidence interval = 1.097-12.72, P = 0.035). Kaplan-Meier method revealed that uPA, PAI-1 and PAI-2 expression levels were not related to the OS for 84 resectable lung adenocarcinoma patients. According to TCGA data, PAI-1 expression level was identified as a potential adverse predictor for prognosis of resectable lung adenocarcinoma (Gehan-Breslow-Wilcoxon test, P = 0.025). CONCLUSIONS Our data show that, the expression levels of uPA, PAI-1 and PAI-2 are significantly up-regulated in resectable lung adenocarcinoma. Besides, this study highlights PAI-1 as a latent adverse prognostic factor in resectable adenocarcinoma of lung.
Collapse
Affiliation(s)
- Chengjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, China
| | - Lu Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, China
| | - Jun Xu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, #185 Juqian Road, Changzhou, 213003, China
| | - Anjing Ren
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, China
| | - Feng Ju
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, #29 Yudao Road, Nanjing, 210016, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
36
|
Semina EV, Rubina KA, Shmakova AA, Rysenkova KD, Klimovich PS, Aleksanrushkina NA, Sysoeva VY, Karagyaur MN, Tkachuk VA. Downregulation of uPAR promotes urokinase translocation into the nucleus and epithelial to mesenchymal transition in neuroblastoma. J Cell Physiol 2020; 235:6268-6286. [PMID: 31990070 PMCID: PMC7318179 DOI: 10.1002/jcp.29555] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
The urokinase system is involved in a variety of physiological processes, such as fibrinolysis, matrix remodeling, wound healing, and regeneration. Upon binding to its cognate receptor urokinase‐type plasminogen activator receptor (uPAR), urokinase‐type plasminogen activator (uPA) catalyzes the conversion of plasminogen to plasmin and the activation of matrix metalloproteases. Apart from this, uPA–uPAR interaction can lead to the activation of transcription factors, mitogen‐activated protein kinase signaling pathways and RTK cascades. Elevated expression of uPA and uPAR is markedly associated with cancer progression and metastasis and correlates with a poor prognosis in clinics. Targeting the urokinase system has proved to be effective in experimental models in vitro and in vivo, however, in clinics the inhibition of the uPA/uPAR system has fallen short of expectations, suggesting that the question of the functional relevance of uPA/uPAR system is far from being moot. Recently, using CRISPR/Cas9 technology, we have shown that uPAR knockout decreases the proliferation of neuroblastoma Neuro2a cells in vitro. In the present study we demonstrate that uPAR expression is essential for maintaining the epithelial phenotype in Neuro2a cells and that uPAR silencing promotes epithelial‐mesenchymal transition (EMT) and increased cell migration. Accordingly, uPAR knockout results in the downregulation of epithelial markers (E‐cadherin, occludin, and claudin‐5) and in the increase of mesenchymal markers (N‐cadherin, α‐smooth muscle actin, and interleukin‐6). In search of the molecular mechanism underlying these changes, we identified uPA as a key component. Two key insights emerged as a result of this work: in the absence of uPAR, uPA is translocated into the nucleus where it is presumably involved in the activation of transcription factors (nuclear factor κB and Snail) resulting in EMT. In uPAR‐expressing cells, uPAR functions as a uPA “trap” that binds uPA on the cell surface and promotes controlled uPA internalization and degradation in lysosomes.
Collapse
Affiliation(s)
- Ekaterina V Semina
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - Kseniya A Rubina
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Morohogenesis and Tissue Reparation, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Anna A Shmakova
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - Karina D Rysenkova
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - Polina S Klimovich
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - Natalya A Aleksanrushkina
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Veronika Y Sysoeva
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim N Karagyaur
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vsevolod A Tkachuk
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
37
|
Jaiswal RK, Yadava PK. TGF-β-mediated regulation of plasminogen activators is human telomerase reverse transcriptase dependent in cancer cells. Biofactors 2019; 45:803-817. [PMID: 31317567 DOI: 10.1002/biof.1543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023]
Abstract
Telomerase is a specialized reverse transcriptase/terminal transferase enzyme that adds telomeric repeat sequences at the extreme end of a newly replicated chromosome. Apart from telomere lengthening, telomerase has many extracurricular activities. Telomerase is known to regulate the expression of many genes and helps in cancer progression and epithelial-to-mesenchymal transitions (EMTs). We have previously reported that human telomerase reverse transcriptase (hTERT) regulates the expression of plasminogen activator such as urokinase-type plasminogen activator (uPA) in cancer cells following a genome-wide transcriptomic study. Here, we present data substantiating these results in terms of real-time assays, western blots, and immunofluorescence. Another aim of this study is to find out the possible mechanism by which hTERT regulates the expression of plasminogen activators. We have used some molecular biology techniques such as quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence and some assays such as wound healing assay and colony formation assay to solve this question. In this study, we show a positive association between hTERT and uPA. We also demonstrate that hTERT enhances uPA expression concomitant with EMT. Knocking down of hTERT reduces uPA expression as well as reverses EMT in cancer cells. We have also found that uPA is a transforming growth factor beta (TGF-β)-induced protein. Our observations establish that TGF-β-induced uPA expression is hTERT dependent.
Collapse
Affiliation(s)
- Rishi K Jaiswal
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Pramod K Yadava
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| |
Collapse
|
38
|
The uPAR System as a Potential Therapeutic Target in the Diseased Eye. Cells 2019; 8:cells8080925. [PMID: 31426601 PMCID: PMC6721659 DOI: 10.3390/cells8080925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/07/2019] [Accepted: 08/17/2019] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of vascular networks is characteristic of eye diseases associated with retinal cell degeneration and visual loss. Visual impairment is also the consequence of photoreceptor degeneration in inherited eye diseases with a major inflammatory component, but without angiogenic profile. Among the pathways with high impact on vascular/degenerative diseases of the eye, a central role is played by a system formed by the ligand urokinase-type plasminogen activator (uPA) and its receptor uPAR. The uPAR system, although extensively investigated in tumors, still remains a key issue in vascular diseases of the eye and even less studied in inherited retinal pathologies such as retinitis pigmantosa (RP). Its spectrum of action has been extended far beyond a classical pro-angiogenic function and has emerged as a central actor in inflammation. Preclinical studies in more prevalent eye diseases characterized by neovascular formation, as in retinopathy of prematurity, wet macular degeneration and rubeosis iridis or vasopermeability excess as in diabetic retinopathy, suggest a critical role of increased uPAR signaling indicating the potentiality of its modulation to counteract neovessel formation and microvascular dysfunction. The additional observation that the uPAR system plays a major role in RP by limiting the inflammatory cascade triggered by rod degeneration rises further questions about its role in the diseased eye.
Collapse
|
39
|
Cogo F, Williams R, Burden RE, Scott CJ. Application of nanotechnology to target and exploit tumour associated proteases. Biochimie 2019; 166:112-131. [PMID: 31029743 DOI: 10.1016/j.biochi.2019.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Proteases are hydrolytic enzymes fundamental for a variety of physiological processes, but the loss of their regulation leads to aberrant functions that promote onset and progression of many diseases including cancer. Proteases have been implicated in almost every hallmark of cancer and whilst widely investigated for tumour therapy, clinical adoption of protease inhibitors as drugs remains a challenge due to issues such as off-target toxicity and inability to achieve therapeutic doses at the disease site. Now, nanotechnology-based solutions and strategies are emerging to circumvent these issues. In this review, preclinical advances in approaches to enhance the delivery of protease drugs and the exploitation of tumour-derived protease activities to promote targeting of nanomedicine formulations is examined. Whilst this field is still in its infancy, innovations to date suggest that nanomedicine approaches to protease targeting or inhibition may hold much therapeutic and diagnostic potential.
Collapse
Affiliation(s)
- Francesco Cogo
- Centre for Cancer Research and Cell Biology, 97 Lisburn Road, BT9 7AE, UK
| | - Rich Williams
- Centre for Cancer Research and Cell Biology, 97 Lisburn Road, BT9 7AE, UK
| | - Roberta E Burden
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | | |
Collapse
|
40
|
Plasminogen Activator Inhibitor Type 1 in Blood at Onset of Chemotherapy Unfavorably Affects Survival in Primary Ovarian Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1153:47-54. [DOI: 10.1007/5584_2019_353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Kugaevskaya EV, Gureeva TA, Timoshenko OS, Solovyeva NI. Urokinase-Type Plasminogen Activator System in Norm and in Life-Threatening Processes (Review). ACTA ACUST UNITED AC 2018. [DOI: 10.15360/1813-9779-2018-6-61-79] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The multifunctional urokinase-type plasminogen activator system (uPA-system) includes serine proteinase — uPA or urokinase, its receptor (uPAR) and two inhibitors (PAI-1 and PAI-2). The review discusses the structural features and involvement of the system components in the development of life-threatening processes including carcinogenesis, inflammation, neurogenesis and fibrinolysis, in regulation of which the destruction of extracellular matrix (ECM), cell mobility and signaling inside and outside the cell play a decisive role. uPA triggers the processes by activating the plasminogen and its convertion into plasmin involved in the activation of matrix metalloproteinases (MMPs) in addition to the regulation of fibrinolysis. MMPs can hydrolyze all the major ECM components and therefore play a key role in invasion, metastasis, and cell mobility. MMPs activates a cassette of biologically active regulatory molecules and release them from ECM. uPAR, PAI-1 and PAI-2 are responsible for regulation of the uPA activity. In addition, being a signaling receptor, uPAR along with MMPs lead to the stimulation of a number of signaling pathways that are associated with the regulation of proliferation, apoptosis, adhesion, growth and migration of cells contributing to tumor progression, inflammation, chemotaxis, and angiogenesis. Effective participation of the uPA system components in ECM destruction and regulation of intracellular and extracellular signaling pathways demonstrates that the system significantly contributes to the regulation of various physiological and pathological processes.
Collapse
|
42
|
Kugaevskaya E, Gureeva T, Timoshenko O, Solovyeva N. The urokinase-type plasminogen activator system and its role in tumor progression. ACTA ACUST UNITED AC 2018; 64:472-486. [DOI: 10.18097/pbmc20186406472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the multistage process of carcinogenesis, the key link in the growth and progression of the tumor is the invasion of malignant cells into normal tissue and their distribution and the degree of destruction of tissues. The most important role in the development of these processes is played by the system of urokinase-type plasminogen activator (uPA system), which consists of several components: serine proteinase – uPA, its receptor – uPAR and its two endogenous inhibitors – PAI-1 and PAI-2. The components of the uPA system are expressed by cancer cells to a greater extent than normal tissue cells. uPA converts plasminogen into broad spectrum, polyfunctional protease plasmin, which, in addition to the regulation of fibrinolysis, can hydrolyze a number of components of the connective tissue matrix (СTM), as well as activate the zymogens of secreted matrix metalloproteinases (MMР) – pro-MMР. MMРs together can hydrolyze all the main components of the СTM, and thus play a key role in the development of invasive processes, as well as to perform regulatory functions by activating and releasing from STM a number of biologically active molecules that are involved in the regulation of the main processes of carcinogenesis. The uPA system promotes tumor progression not only through the proteolytic cascade, but also through uPAR, PAI-1 and PAI-2, which are involved in both the regulation of uPA/uPAR activity and are involved in proliferation, apoptosis, chemotaxis, adhesion, migration and activation of epithelial-mesenchymal transition pathways. All of the above processes are aimed at regulating invasion, metastasis and angiogenesis. The components of the uPA system are used as prognostic and diagnostic markers of many cancers, as well as serve as targets for anticancer therapy.
Collapse
Affiliation(s)
| | - T.A. Gureeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | |
Collapse
|