1
|
Lin J, Ren F, Zhu M, Hu Y, Zhao Z, Pei J, Chen H, Chen W, Zhong Q, Lyu Y, He R, Chen W. Pandanus Amaryllifolius Roxb. Polyphenol Extract Alleviates NAFLD via Regulating Gut Microbiota and AMPK/AKT/mTOR Signaling Pathway. Foods 2025; 14:1000. [PMID: 40232027 PMCID: PMC11941299 DOI: 10.3390/foods14061000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 04/16/2025] Open
Abstract
With the drastic changes in lifestyle, nonalcoholic fatty liver disease (NAFLD) has become a widespread health problem. Natural actives such as polyphenols have multi-target, multi-mechanism characteristics, and offer new opportunities for NAFLD treatment. This study established a high-fat diet (HFD)-induced NAFLD model in mice to investigate the molecular mechanism of Pandanus amaryllifolius Roxb. polyphenol extract (PAE) in alleviating NAFLD. The results showed that PAE significantly inhibited HFD-induced obesity, maintained glucose homeostasis, mitigated oxidative damage in liver tissue, and reduced liver steatosis. Moreover, PAE treatment remarkably reversed 16 endogenous DMs, and significantly affected glycerophospholipid metabolism, which increased the levels of phosphatidylcholine and phosphatidylethanolamine, and down-regulated choline and sn-glyceropl-3P. Further validation revealed that PAE was able to prevent NAFLD progression by regulating the AMPK/AKT/mTOR signaling pathway to enhance autophagy levels. Meanwhile, PAE treatment restored the balance of gut microbiota mainly by increasing the relative abundance of Bacteroidetes, decreasing the relative abundance of Firmicutes and the ratio of Firmicutes/Bacteroidetes. Overall, the findings highlight that the mechanism by which PAE alleviates NAFLD may be related to the regulation of the gut microbes and AMPK/AKT/mTOR signaling pathway, enriching the health-promoting effects of PAE on NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Rongrong He
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.L.); (F.R.); (M.Z.); (Y.H.); (Z.Z.); (J.P.); (H.C.); (W.C.); (Q.Z.); (Y.L.)
| | - Wenxue Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.L.); (F.R.); (M.Z.); (Y.H.); (Z.Z.); (J.P.); (H.C.); (W.C.); (Q.Z.); (Y.L.)
| |
Collapse
|
2
|
Banerjee T, Sarkar A, Ali SZ, Bhowmik R, Karmakar S, Halder AK, Ghosh N. Bioprotective Role of Phytocompounds Against the Pathogenesis of Non-alcoholic Fatty Liver Disease to Non-alcoholic Steatohepatitis: Unravelling Underlying Molecular Mechanisms. PLANTA MEDICA 2024; 90:675-707. [PMID: 38458248 DOI: 10.1055/a-2277-4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), with a global prevalence of 25%, continues to escalate, creating noteworthy concerns towards the global health burden. NAFLD causes triglycerides and free fatty acids to build up in the liver. The excessive fat build-up causes inflammation and damages the healthy hepatocytes, leading to non-alcoholic steatohepatitis (NASH). Dietary habits, obesity, insulin resistance, type 2 diabetes, and dyslipidemia influence NAFLD progression. The disease burden is complicated due to the paucity of therapeutic interventions. Obeticholic acid is the only approved therapeutic agent for NAFLD. With more scientific enterprise being directed towards the understanding of the underlying mechanisms of NAFLD, novel targets like lipid synthase, farnesoid X receptor signalling, peroxisome proliferator-activated receptors associated with inflammatory signalling, and hepatocellular injury have played a crucial role in the progression of NAFLD to NASH. Phytocompounds have shown promising results in modulating hepatic lipid metabolism and de novo lipogenesis, suggesting their possible role in managing NAFLD. This review discusses the ameliorative role of different classes of phytochemicals with molecular mechanisms in different cell lines and established animal models. These compounds may lead to the development of novel therapeutic strategies for NAFLD progression to NASH. This review also deliberates on phytomolecules undergoing clinical trials for effective management of NAFLD.
Collapse
Affiliation(s)
- Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sk Zeeshan Ali
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Amit Kumar Halder
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur, West Bengal, India
| | - Nilanjan Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| |
Collapse
|
3
|
Wang R, Mao Y, Yu C, Rong Z, Wang R, Wang Y, Lv L, Gao Y, Wang Z, Zhang H. Research Progress of Natural Products with the Activity of Anti-nonalcoholic Steatohepatitis. Mini Rev Med Chem 2024; 24:1894-1929. [PMID: 38752645 DOI: 10.2174/0113895575306598240503054317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 10/16/2024]
Abstract
Nonalcoholic steatohepatitis (NASH), a multi-target disease, is becoming a global epidemic. Although several anti-NASH drug candidates are being evaluated in late-stage clinical trials, none have been approved by the FDA to date. Given the global prevalence of the disease, the lack of effective drugs, and the very limited therapeutic efficacy of most of the existing synthetic drugs focusing on a single target, there is an urgent need to continue to develop new therapeutic agents. In contrast, many natural products, including pure compounds and crude extracts, possess hepatoprotective activities. Usually, these natural components are characterized by multi-targeting and low side effects. Therefore, natural products are important resources for the development of new anti- NASH drugs. In this paper, we focus on reviewing the anti-NASH potential, structure, and some of the side effects of natural products based on structural classification. We hope this mini-review will help researchers design and develop new anti-NASH drugs, especially based on the structure of natural products.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuheng Mao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chunping Yu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenji Rong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruyue Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yixin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Linjin Lv
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhigang Wang
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hailong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
4
|
Zhang P, Wei W, Zhang X, Wen C, Ovatlarnporn C, Olatunji OJ. Antidiabetic and antioxidant activities of Mitragyna speciosa (kratom) leaf extract in type 2 diabetic rats. Biomed Pharmacother 2023; 162:114689. [PMID: 37058820 DOI: 10.1016/j.biopha.2023.114689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
Mitragyna speciosa is a medicinal plant with a reputation for treating pains, diabetes as well as increasing energy and sexual desires. However, there is no scientific evidence to validate the antidiabetic effect of M. speciosa. This study investigated the antidiabetic effects of M. speciosa (Krat) ethanolic extract on fructose and streptozocin (STZ)-induced type 2 diabetic rats. In vitro antioxidant and antidiabetic effects were evaluated using DPPH, ABST, FRAP and α-glucosidase inhibitory assays. Rats with fructose/STZ induced T2D were treated with Krat (100 and 400 mg/kg) or metformin (200 mg/kg) for 5 weeks via oral gavage. Krat showed good antioxidant activity and also displayed potent α-glucosidase inhibitory activity. Administration of Krat to the diabetic rats significantly improved body weight gain, restored alterations in blood glucose level, glucose tolerance, dyslipidemia (increased cholesterol, triglycerides, low-density lipoprotein-cholesterol and reduced high-density lipoprotein), hepatorenal biomarkers alterations (alanine transaminase, aspartate transaminase, alanine phosphatase, creatinine and blood urea nitrogen) and oxidative stress indices (superoxide dismutase, glutathione and malondialdehyde)in the treated diabetic rats. Furthermore, Krat also restored pancreatic histological and increased immunohistochemical aberrations in the diabetic rats. These results for the first time demonstrated the antidiabetic and antihyperlipidemic potentials of M. speciosa, thus providing scientific reinforcement for the traditional use of the plant in the treatment of diabetes.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Second People's Hospital of Wuhu City, Anhui 241001, China
| | - Wei Wei
- Second People's Hospital of Wuhu City, Anhui 241001, China
| | - Xiaohai Zhang
- Second People's Hospital of Wuhu City, Anhui 241001, China
| | - Chaoling Wen
- Anhui College of Traditional Chinese Medicine, Wuhu, Anhui 241000, China.
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Opeyemi Joshua Olatunji
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco; Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai 90110, Thailand.
| |
Collapse
|
5
|
El-Ghonemy DH, Ali SA, Abdel-Megeed RM, Elshafei AM. Therapeutic impact of purified Trichoderma viride L-asparaginase in murine model of liver cancer and in vitro Hep-G2 cell line. J Genet Eng Biotechnol 2023; 21:38. [PMID: 36995465 PMCID: PMC10063745 DOI: 10.1186/s43141-023-00493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is among the common cancers, but difficult to diagnose and treat. L-asparaginase has been introduced in the treatment protocol of pediatric acute lymphoblastic leukemia (ALL) since the 1960s with a good outcome and increased survival rates to nearly 90%. Moreover, it has been found to have therapeutic potential in solid tumors. Production of glutaminase-free-L-asparaginase is of interest to avoid glutaminase-related toxicity and hypersensitivity. In the current study, an extracellular L-asparaginase that is free of L-glutaminase was purified from the culture filtrate of an endophytic fungus Trichoderma viride. The cytotoxic effect of the purified enzyme was evaluated in vitro against a panel of human tumor cell lines and in vivo against male Wister albino mice intraperitoneally injected with diethyl nitrosamine (200 mg/kg bw), followed by (after 2 weeks) oral administration of carbon tetrachloride (2 mL/kg bw). This dose was repeated for 2 months, and after that, the blood samples were collected to estimate hepatic and renal injury markers, lipid profiles, and oxidative stress parameters. RESULTS L-asparaginase was purified from T. viride culture filtrate with 36 purification folds, 688.1 U/mg specific activity, and 38.9% yield. The highest antiproliferative activity of the purified enzyme was observed against the hepatocellular carcinoma (Hep-G2) cell line, with an IC50 of 21.2 g/mL, which was higher than that observed for MCF-7 (IC50 34.2 g/mL). Comparing the DENA-intoxicated group to the negative control group, it can be demonstrated that L-asparaginase adjusted the levels of the liver function enzymes and the hepatic injury markers that had previously changed with DENA intoxication. DENA causes kidney dysfunction and altered serum albumin and creatinine levels as well. Administration of L-asparaginase was found to improve the levels of the tested biomarkers including kidney and liver function tests. L-asparaginase treatment of the DENA-intoxicated group resulted in a significant improvement in the liver and kidney tissues to near normal similar to the healthy control group. CONCLUSION The results suggest that this purified T. viride L-asparaginase may be able to delay the development of liver cancer and may be used as a potential candidate for future application in medicine as an anticancer medication.
Collapse
Affiliation(s)
- Dina H El-Ghonemy
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Buhouth St, Giza, EG-12622, Egypt.
| | - Sanaa A Ali
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, 33 El Buhouth St., Giza, EG-12622, Egypt
| | - Rehab M Abdel-Megeed
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, 33 El Buhouth St., Giza, EG-12622, Egypt
| | - Ali M Elshafei
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Buhouth St, Giza, EG-12622, Egypt
| |
Collapse
|
6
|
Li H, Guan T, Qin S, Xu Q, Yin L, Hu Q. Natural products in pursuing novel therapies of nonalcoholic fatty liver disease and steatohepatitis. Drug Discov Today 2023; 28:103471. [PMID: 36610488 DOI: 10.1016/j.drudis.2022.103471] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/04/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are hepatic manifestations of systemic metabolic dysfunction, which affect one-quarter of the adult population worldwide as estimated, and exhibit high risk in progressing to hepatic fibrosis, cirrhosis, and hepatocellular carcinoma. Current drug discovery focuses on modifying homeostasis of lipids, carbohydrates, and cholesterol, as well as inhibiting inflammation and fibrogenesis. Many natural products show promising activities on various molecular targets involving these mechanisms; however, they have not been fully exploited. Since some compounds are components of healthy food, they may be employed in chemoprevention as adjuvants to lifestyle modification, while natural products such as alkaloids and sesquiterpenoids could serve as promising starting points for structural modifications and deserve further development.
Collapse
Affiliation(s)
- Haiyan Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 East Waihuan Road, Panyu, Guangzhou, China
| | - Ting Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 East Waihuan Road, Panyu, Guangzhou, China
| | - Shi Qin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 East Waihuan Road, Panyu, Guangzhou, China
| | - Qihao Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 East Waihuan Road, Panyu, Guangzhou, China.
| | - Lina Yin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 East Waihuan Road, Panyu, Guangzhou, China.
| | - Qingzhong Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 East Waihuan Road, Panyu, Guangzhou, China.
| |
Collapse
|
7
|
Xu X, Poulsen KL, Wu L, Liu S, Miyata T, Song Q, Wei Q, Zhao C, Lin C, Yang J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct Target Ther 2022; 7:287. [PMID: 35963848 PMCID: PMC9376100 DOI: 10.1038/s41392-022-01119-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH) has become the leading cause of liver disease worldwide. NASH, an advanced form of NAFL, can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma. Currently, lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis. While there are still limited appropriate drugs specifically to treat NAFL/NASH, growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets. In this review, we discussed recent developments in etiology and prospective therapeutic targets, as well as pharmacological candidates in pre/clinical trials and patents, with a focus on diabetes, hepatic lipid metabolism, inflammation, and fibrosis. Importantly, growing evidence elucidates that the disruption of the gut-liver axis and microbe-derived metabolites drive the pathogenesis of NAFL/NASH. Extracellular vesicles (EVs) act as a signaling mediator, resulting in lipid accumulation, macrophage and hepatic stellate cell activation, further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH. Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH. Finally, other mechanisms, such as cell therapy and genetic approaches, also have enormous therapeutic potential. Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH.
Collapse
Affiliation(s)
- Xiaohan Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kyle L Poulsen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Lijuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shan Liu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Qiaoling Song
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qingda Wei
- School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
8
|
Nagul Kumar S, Darvin SS, Toppo E, Porchezhian V, Pandikumar P, Paulraj MG, Ignacimuthu S. Ameliorative effect of mangiferin on high fat diet - Diethylnitrosamine induced non-alcoholic steatohepatitis rats. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Elsayed HRH, El-Nablaway M, Khattab BA, Sherif RN, Elkashef WF, Abdalla AM, El Nashar EM, Abd-Elmonem MM, El-Gamal R. Independent of Calorie Intake, Short-term Alternate-day Fasting Alleviates NASH, With Modulation of Markers of Lipogenesis, Autophagy, Apoptosis, and Inflammation in Rats. J Histochem Cytochem 2021; 69:575-596. [PMID: 34448436 PMCID: PMC8427931 DOI: 10.1369/00221554211041607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a worldwide health problem. Alternate-day fasting (ADF), although thought to be aggressive, has proven safety and efficacy. We aimed to evaluate the effect of short-term ADF against already established high-fat-fructose (HFF)-induced NASH, independent of the amount of calorie intake, and to study the effect of ADF on lipogenesis, apoptosis, and hepatic inflammation. Male Sprague Dawley rats were divided into two groups: (1) negative control and (2) NASH group fed on HFF for 9 weeks, and then randomized into two subgroups of either HFF alone or with ADF protocol for 3 weeks. The ADF could improve HFF-related elevation in serum lactate dehydrogenase and could decrease the mRNA expression of lipogenesis genes; acetyl CoA carboxylase, peroxisome proliferator-activated receptor γ, and peroxisome proliferator-activated receptor α; apoptotic genes caspase-3, p53, and inflammatory cyclo-oxygenase 2; and immunohistochemical staining for their proteins in liver with upregulation of LC3 and downregulation of P62 immunoexpression. Moreover, ADF ameliorated HFF-induced steatosis, inflammation, ballooning, and fibrosis through hematoxylin and eosin, Oil Red O, and Sirius Red staining, confirmed by morphometric analysis, without significant weight loss. Significant correlation of morphometric parameters with levels of gene expression was found. These findings suggest ADF to be a safe effective therapeutic agent in the management of NASH.
Collapse
Affiliation(s)
| | | | | | - Rania N. Sherif
- Department of Anatomy and Embryology
- Department of Anatomy, Horus University, New Damietta, Egypt
| | - Wagdi Fawzy Elkashef
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Asim Mohammed Abdalla
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Eman Mohammad El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Randa El-Gamal
- Department of Medical Biochemistry
- Department of Pathology and Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
Leng YR, Zhang MH, Luo JG, Zhang H. Pathogenesis of NASH and Promising Natural Products. Chin J Nat Med 2021; 19:12-27. [PMID: 33516448 DOI: 10.1016/s1875-5364(21)60002-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 02/08/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a common clinical condition that can lead to advanced liver diseases. The mechanism of the diaease progression, which is lacking effective therapy, remains obsure. Therefore, there is a need to understand the pathogenic mechanisms responsible for disease development and progression in order to develop innovative therapies. To accomplish this goal, experimental animal models that recapitulate the human disease are necessary. Currently, an increasing number of studies have focused on natural constituents from medicinal plants which have been emerged as a new hope for NASH. This review summarized the pathogenesis of NASH, animal models commonly used, and the promising targets for therapeutics. We also reviewed the natural constituents as potential NASH therapeutic agents.
Collapse
Affiliation(s)
- Ying-Rong Leng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mei-Hui Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Guang Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
11
|
Rodríguez MJ, Herrera F, Donoso W, Castillo I, Orrego R, González DR, Zúñiga-Hernández J. Pro-Resolving Lipid Mediator Resolvin E1 Mitigates the Progress of Diethylnitrosamine-Induced Liver Fibrosis in Sprague-Dawley Rats by Attenuating Fibrogenesis and Restricting Proliferation. Int J Mol Sci 2020; 21:ijms21228827. [PMID: 33266360 PMCID: PMC7700193 DOI: 10.3390/ijms21228827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is a complex process associated to most types of chronic liver disease, which is characterized by a disturbance of hepatic tissue architecture and the excessive accumulation of extracellular matrix. Resolvin E1 (RvE1) is a representative member of the eicosapentaenoic omega-3 lipid derivatives, and is a drug candidate of the growing family of endogenous resolvins. Considering the aforementioned, the main objective of this study was to analyze the hepatoprotective effect of RvE1 in a rat model of liver fibrosis. Male Sprague-Dawley rats received diethylnitrosamine (DEN, 70 mg/mg body weight intraperitoneally (i.p)) as an inductor of liver fibrosis once weekly and RvE1(100 ng/body weight i.p) twice weekly for four weeks. RvE1 suppressed the alterations induced by DEN, normalizing the levels of alanine aminotransferase (ALT), albumin, and lactate dehydrogenase (LDH), and ameliorated DEN injury by decreasing the architecture distortion, inflammatory infiltration, necrotic areas, and microsteatosis. RvE1 also limited DEN-induced proliferation through a decrease in Ki67-positive cells and cyclin D1 protein expression, which is related to an increase of the levels of cleaved caspase-3. Interestingly, we found that RvE1 promotes higher nuclear translocation of nuclear factor κB (NF-κB)p65 than DEN. RvE1 also increased the levels of nuclear the nuclear factor erythroid 2-related factor 2 (Nrf2), but with no antioxidant effect, measured as an increase in glutathione disulfide (GSSG) and a decrease in the ratio of glutathione (GSH)/GSSG. Taken together, these results suggest that RvE1 modulates the fibrogenesis, steatosis, and cell proliferation in a model of DEN induced fibrosis.
Collapse
Affiliation(s)
- Maria José Rodríguez
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.); (D.R.G.)
- Programa de Doctorado en Ciencias Mención Investigación y Desarrollo de Productos Bioactivos, Instituto de Química de los Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Francisca Herrera
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.); (D.R.G.)
| | - Wendy Donoso
- Departamento de Estomatología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile;
| | - Iván Castillo
- Unidad de Anatomía Patológica, Hospital Regional de Talca, Talca 3460001, Chile;
- Centro Oncológico, Facultad de Medicina, Universidad Católica del Maule, Talca 3466706, Chile
| | - Roxana Orrego
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile;
| | - Daniel R. González
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.); (D.R.G.)
| | - Jessica Zúñiga-Hernández
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.); (D.R.G.)
- Correspondence: ; Tel.: +56-71-241-8855
| |
Collapse
|
12
|
Shang XF, Yang CJ, Morris-Natschke SL, Li JC, Yin XD, Liu YQ, Guo X, Peng JW, Goto M, Zhang JY, Lee KH. Biologically active isoquinoline alkaloids covering 2014-2018. Med Res Rev 2020; 40:2212-2289. [PMID: 32729169 PMCID: PMC7554109 DOI: 10.1002/med.21703] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Isoquinoline alkaloids, an important class of N-based heterocyclic compounds, have attracted considerable attention from researchers worldwide since the early 19th century. Over the past 200 years, many compounds from this class were isolated, and most of them and their analogs possess various bioactivities. In this review, we survey the updated literature on bioactive alkaloids and highlight research achievements of this alkaloid class during the period of 2014-2018. We reviewed over 400 molecules with a broad range of bioactivities, including antitumor, antidiabetic and its complications, antibacterial, antifungal, antiviral, antiparasitic, insecticidal, anti-inflammatory, antioxidant, neuroprotective, and other activities. This review should provide new indications or directions for the discovery of new and better drugs from the original naturally occurring isoquinoline alkaloids.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Susan L. Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jun-Cai Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao-Dan Yin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Qinghai University Tibetan Medical College, Qinghai University, 251 Ningda Road, Xining 810016, P.R. China
| | - Jing-Wen Peng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ji-Yu Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan
| |
Collapse
|
13
|
Bachar SC, Bachar R, Jannat K, Jahan R, Rahmatullah M. Hepatoprotective natural products. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2020:207-249. [DOI: 10.1016/bs.armc.2020.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Esakkimuthu S, Nagulkumar S, Darvin SS, Buvanesvaragurunathan K, Sathya TN, Navaneethakrishnan KR, Kumaravel TS, Murugan SS, Shirota O, Balakrishna K, Pandikumar P, Ignacimuthu S. Antihyperlipidemic effect of iridoid glycoside deacetylasperulosidic acid isolated from the seeds of Spermacoce hispida L. - A traditional antiobesity herb. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112170. [PMID: 31434002 DOI: 10.1016/j.jep.2019.112170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
ETHNOBOTANICAL RELEVANCE The interest on herbal health supplements for obesity is increasing globally. Our previous ethnobotanical survey in Tiruvallur district, Tamil Nadu, India indicated the use of Spermacoce hispida L. seeds for the treatment of obesity. AIM OF THE STUDY This study was aimed to validate the traditional claim and to identify the antihyperlipidemic principle in the seeds of Spermacoce hispida using bioassay guided fractionation method. METHODS Bioassay monitored fractionation of the aqueous extract from Spermacoce hispida seeds was carried out using triton WR 1339 induced hyperlipidemic animals. It yielded deacetylasperulosidic acid (DAA) as the active ingredient. Pharmacokinetic properties of DAA were predicted using DataWarrior and SwissADME tools. In vitro antiobesity and antihyperlipidemic effects of DAA were evaluated in 3T3L1 preadipocytes and HepG2 cells, respectively. The chronic antihyperlipidemic efficacy of DAA was evaluated in high fat diet fed rats. RESULTS DAA did not show any mutagenic and tumorigenic properties. It bound with PPARα with comparable ligand efficiency as fenofibrate. The treatment with DAA significantly lowered the proliferation of matured adipocytes, but not preadipocytes. The treatment of steatotic HepG2 cells with DAA significantly decreased the LDH leakage by 43.03% (P < 0.05) at 50 μM concentration. In triton WR 1339 induced hyperlipidemic animals, the treatment with 50 mg/kg dose significantly lowered the TC, TG and LDL-c levels by 40.27, 46.00 and 63.65% respectively. In HFD fed animals, the treatment at 10 mg/kg decreased BMI and AC/TC ratio without altering SRBG. It also improved serum lipid, transaminases and phosphatases levels of HFD fed animals. The treatment lowered adipocyte hypertrophy and steatosis of hepatocytes. CONCLUSION This preliminary report supported the traditional use of Spermacoce hispida for the treatment of obesity. Further detailed investigations on the long term safety, efficacy and molecular mode of action of Spermacoce hispida and DAA will throw more light on their usefulness for the management of obesity.
Collapse
Affiliation(s)
- S Esakkimuthu
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College (University of Madras), Chennai, Tamil Nadu, 600034, India
| | - S Nagulkumar
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College (University of Madras), Chennai, Tamil Nadu, 600034, India
| | - S Sylvester Darvin
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College (University of Madras), Chennai, Tamil Nadu, 600034, India
| | - K Buvanesvaragurunathan
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College (University of Madras), Chennai, Tamil Nadu, 600034, India
| | - T N Sathya
- GLR Laboratories Private Limited, Mathur, Chennai, 600068, India
| | | | - T S Kumaravel
- GLR Laboratories Private Limited, Mathur, Chennai, 600068, India
| | - S S Murugan
- GLR Laboratories Private Limited, Mathur, Chennai, 600068, India
| | - Osamu Shirota
- Laboratory of Pharmacognosy and Natural Products Chemistry, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, 769-2193, Japan.
| | - K Balakrishna
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College (University of Madras), Chennai, Tamil Nadu, 600034, India.
| | - P Pandikumar
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College (University of Madras), Chennai, Tamil Nadu, 600034, India.
| | - S Ignacimuthu
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College (University of Madras), Chennai, Tamil Nadu, 600034, India; St. Xavier Research Foundation, St. Xavier's College, High Ground Road, Palayamkottai, Tirunelveli, Tamil Nadu, 627002, India.
| |
Collapse
|
15
|
Effect of tiliamosine, a bis, benzylisoquinoline alkaloid isolated from Tiliacora acuminata (Lam.) Hook. f. & Thom on the immature stages of filarial mosquito Culex quinquefasciatus say (Diptera: Culicidae). Exp Parasitol 2019; 204:107719. [PMID: 31255572 DOI: 10.1016/j.exppara.2019.107719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/23/2019] [Accepted: 06/26/2019] [Indexed: 11/22/2022]
Abstract
The present study was aimed to check the mosquitocidal activity of tiliamosine isolated from Tiliacora acuminata (Lam.) Hook. f. & Thom against immature stages of Culex quinquefasciatus. Eggs and larvae of Cx. quinquefasciatus were exposed to different concentrations of tiliamosine - 0.5, 1.0, 1.5 and 2.0 ppm - prepared using DMSO. The compound tiliamosine showed good larvicidal activity with LC50 and LC90 values of 1.13 and 2.85 ppm respectively, against third-instar larvae of Cx. quinquefasciatus at 24 h. In control, the larvae exhibited normal movement. Tiliamosine exhibited 91% ovicidal activity at 2.0 ppm concentration after 120 h post-treatment. Lowest concentration of tiliamosine (0.5 ppm) showed 19% egg mortality. Histopathology study of the compound-treated larvae showed serious damage on the larval midgut cells. The treated larvae showed restless movement which was different from that of the control larvae. The larvae exhibited malformation in development. The compound tiliamosine was harmless to non-target organisms P. reticulata and Dragon fly nymph at tested concentrations. The compound was highly active and inhibited AChE in a concentration-dependent manner. Computational analysis of the tiliamosine had strong interaction with AChE1 of Cx. quinquefasciatus. This report clearly suggests that the isolated compound can be used as an insecticide to control mosquito population and thus prevent the spread of vector-borne diseases.
Collapse
|