1
|
Wang F, Li J, Zhang Z, Huang G, Zhang X, Liu Q, Xiao W, Liu F, Sun J, Liu Y, Ma Y, Zhuang R, Du Y, Wang X, Gao C, Gu X. Baicalin reduced vandetanib induced myocardial injury by regulating redox balance and NLRP3 inflammasome pathway. Tissue Cell 2025; 94:102795. [PMID: 39987774 DOI: 10.1016/j.tice.2025.102795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/25/2025]
Abstract
Baicalin has garnered attention for its potential therapeutic effects on various cardiovascular conditions, including drug-induced cardiac injury. In this study, we utilized a murine model to explore the protective role of baicalin against cardiac dysfunction induced by vandetanib. Our findings indicate that baicalin administration effectively ameliorated vandetanib-induced cardiac injury. Echocardiographic assessments revealed significant improvements in the myocardial contraction in mice treated with baicalin compared with those receiving vandetanib alone. Histological analysis revealed reduced myocardial inflammation and fibrosis in baicalin-treated mice. Specifically, baicalin suppressed proinflammatory factors such as IL-6, IL-1β, and TNF-α, thereby attenuating the inflammatory response triggered by vandetanib. Moreover, baicalin inhibited myocardial apoptosis, as evidenced by decreased levels of Caspase-3, Bax, and p53, while concurrently elevated expression of the antiapoptotic protein Bcl-2. Mechanistically, baicalin-mediated inhibition of the NLRP3 inflammasome pathway has emerged as a crucial aspect of its cardioprotective action and promotes redox balance in myocardial cells under vandetanib-induced oxidative stress. It upregulated the expression of the antioxidant enzymes SOD1 and SOD2, thereby mitigating intracellular ROS accumulation and preserving cardiomyocyte viability. In conclusion, our study highlights baicalin as a promising therapeutic agent for mitigating vandetanib-induced cardiac injury through multiple mechanisms, including anti-inflammatory, antiapoptotic, antioxidant, and NLRP3 inflammasome inhibitory actions. Our findings will be further validated in clinical trials and explore the translational potential of baicalin in treating drug-induced cardiotoxicity in humans.
Collapse
Affiliation(s)
- Fen Wang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Jianwei Li
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Zhixuan Zhang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Guangyi Huang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Xiaodong Zhang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Qian Liu
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Wang Xiao
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Fengqi Liu
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Jialong Sun
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Yankui Liu
- Department of Pathology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Yiyi Ma
- Department of Ultrasound Medicine,The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Ruijuan Zhuang
- Department of Geriatric Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Yingqiang Du
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University; Suzhou Municipal Hospital; Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215008, China
| | - Xiaoyan Wang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China.
| | - Changzheng Gao
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China.
| | - Xin Gu
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China.
| |
Collapse
|
2
|
Cui Y, Yang Y, Tang X, Wang P, Cui J, Chen Y, Zhang T. Cinnamic acid alleviates hypertensive left ventricular hypertrophy by antagonizing the vasopressor activity and the pro-cardiac hypertrophic signaling of angiotensin II. Front Pharmacol 2025; 16:1555991. [PMID: 40028160 PMCID: PMC11868102 DOI: 10.3389/fphar.2025.1555991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Background Hypertension is the most common cause of pathological left ventricular hypertrophy, a condition causally associated with debilitating heart failure and cardiovascular events in hypertensive patients. It is well recognized that the disease burden of hypertension-linked heart failure remains unabated with existing treatments. New therapies controlling hypertensive left ventricular hypertrophy are thus required to decelerate or prevent the development of heart failure. Our previous study has demonstrated that cinnamic acid, a naturally occurring monocarboxylic acid, mitigates transverse aortic constriction-induced pressure overload-mediated cardiac hypertrophy. However, whether cinnamic acid is effective at controlling hypertensive left ventricular hypertrophy remains unknown. Angiotensin II (ang II) plays a pivotal role in driving the pathogenesis of hypertensive left ventricular hypertrophy. The current work thus investigates the therapeutic potential and pharmacological mechanisms of cinnamic acid in the context of ang II-mediated hypertensive left ventricular hypertrophy. Methods Ang II-infused mice and cardiomyocytes were analyzed by histological, immunohistochemical, cellular and molecular biological methods to delineate the impact of cinnamic acid on hypertensive left ventricular hypertrophy. Results The results showed that cinnamic acid lowered blood pressure and attenuated left ventricular hypertrophic and fibrotic alterations in the ang II-infused mice. Cinnamic acid counteracted hypertrophic responses, impairment of the mitochondrial function and overproduction of mitochondrial reactive oxygen species (ROS) in the cardiomyocytes exposed to ang II. At the molecular level, cinnamic acid mitigated ang II-induced activation of signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase 1/2 (ERK1/2) in cardiomyocytes. Additionally, cinnamic acid blunted STAT3 and ERK1/2 activation as well as the hypertrophic responses in cardiomyocytes exposed to interleukin 6 (IL-6) as well. Conclusion In summary, this is the first study demonstrating that cinnamic acid is effective at mitigating hypertensive left ventricular hypertrophy. Cinnamic acid antagonizes the vasopressor activity of ang II at the systemic level and the ligand-dependent pro-hypertrophic signaling of ang II in cardiomyocytes. Furthermore, our present study presents new evidence supporting that cinnamic acid lessens the activation of STAT3 and ERK1/2, which may in part contribute to its anti-hypertrophic actions in cardiomyocytes.
Collapse
Affiliation(s)
- Yimeng Cui
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yawei Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinmiao Tang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peiwei Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jingang Cui
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yu Chen
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Laboratory of Clinical and Molecular Pharmacology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Teng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Singh S. Exploring the Cardiovascular Protective Effects of Baicalin: A Pathway to New Therapeutic Insights. Curr Top Med Chem 2025; 25:163-171. [PMID: 39390834 DOI: 10.2174/0115680266347503241008075106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Cardiovascular disorders develop the highest rates of mortality and morbidity worldwide, emphasizing the need for novel pharmacotherapies. The Chinese medicinal plant S. baicalensis has a number of major active components, one of which is called baicalin. According to emerging research, baicalin reduces chronic inflammation, immunological imbalance, lipid metabolism, apoptosis, and oxidative stress. Baicalin improves endothelial function and protects the cardiovascular system from oxidative stress-induced cell injury by scavenging free radicals and inhibiting xanthine oxidase. Therefore, it helps prevent CVD such as hypertension, atherosclerosis, and cardiac arrest. In this review, the therapeutic effects of baicalein are discussed in relation to both the prevention and management of cardiovascular diseases.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, UP:281406, India
| |
Collapse
|
4
|
Cheng Y, Lin G, Xie Y, Xuan B, He S, Shang Z, Yan M, Lin J, Wei L, Peng J, Shen A. Baicalin ameliorates angiotensin II-induced cardiac hypertrophy and mitogen-activated protein kinase signaling pathway activation: A target-based network pharmacology approach. Eur J Pharmacol 2024; 981:176876. [PMID: 39127302 DOI: 10.1016/j.ejphar.2024.176876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Baicalin, a flavonoid glycoside from Scutellaria baicalensis Georgi., exerts anti-hypertensive effects. The present study aimed to assess the cardioprotective role of baicalin and explore its potential mechanisms. Network pharmacology analysis pointed out a total of 477 potential targets of baicalin were obtained from the PharmMapper and SwissTargetPrediction databases, while 11,280 targets were identified associating with hypertensive heart disease from GeneCards database. Based on the above 382 common targets, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed enrichment in the regulation of cardiac hypertrophy, cardiac contraction, cardiac relaxation, as well as the mitogen-activated protein kinase (MAPK) and other signaling pathways. Moreover, baicalin treatment exhibited the amelioration of increased cardiac index and pathological alterations in angiotensin II (Ang II)-infused C57BL/6 mice. Furthermore, baicalin treatment demonstrated a reduction in cell surface area and a down-regulation of hypertrophy markers (including atrial natriuretic peptide and brain natriuretic peptide) in vivo and in vitro. In addition, baicalin treatment led to a decrease in the expression of phosphorylated c-Jun N-terminal kinase (p-JNK)/JNK, phosphorylated p38 (p-p38)/p38, and phosphorylated extracellular signal-regulated kinase (p-ERK)/ERK in the cardiac tissues of Ang II-infused mice and Ang II-stimulated H9c2 cells. These findings highlight the cardioprotective effects of baicalin, as it alleviates hypertensive cardiac injury, cardiac hypertrophy, and the activation of the MAPK pathway.
Collapse
Affiliation(s)
- Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Guosheng Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Yi Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Bihan Xuan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Shuyu He
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Zucheng Shang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Mengchao Yan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Jing Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China.
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
5
|
Si L, Lai Y. Pharmacological mechanisms by which baicalin ameliorates cardiovascular disease. Front Pharmacol 2024; 15:1415971. [PMID: 39185317 PMCID: PMC11341428 DOI: 10.3389/fphar.2024.1415971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Baicalin is a flavonoid glycoside obtained from the dried root of Scutellaria baicalensis Georgi, which belongs to the Labiatae family. Accumulating evidence indicates that baicalin has favorable therapeutic effects on cardiovascular diseases. Previous studies have revealed the therapeutic effects of baicalin on atherosclerosis, myocardial ischemia/reperfusion injury, hypertension, and heart failure through anti-inflammatory, antioxidant, and lipid metabolism mechanisms. In recent years, some new ideas related to baicalin in ferroptosis, coagulation and fibrinolytic systems have been proposed, and new progress has been made in understanding the mechanism by which baicalin protects cardiomyocytes. However, many relevant underlying mechanisms remain unexplained, and much experimental data is lacking. Therefore, further research is needed to determine these mechanisms. In this review, we summarize the mechanisms of baicalin, which include its anti-inflammatory and antioxidant effects; inhibition of endothelial cell apoptosis; modulation of innate immunity; suppression of vascular smooth muscle cells proliferation, migration, and contraction; regulation of coagulation and fibrinolytic systems; inhibition of myocardial hypertrophy; prevention of myocardial fibrosis; and anti-apoptotic effects on cardiomyocytes.
Collapse
Affiliation(s)
- Lujia Si
- Acupunture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Drago SFA, Rottura M, Molonia A, Gianguzzo VM, Pallio G, Irrera N, Orlando L, De Fazio MG, Isgrò M, Zirilli N, Arcoraci V, Imbalzano E. Effects of a Dietary Supplement Composed of Baicalin, Bromelain and Escin for Venous Chronic Insufficiency Treatment: Insights from a Retrospective Observational Study. Pharmaceuticals (Basel) 2024; 17:779. [PMID: 38931445 PMCID: PMC11206508 DOI: 10.3390/ph17060779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic venous insufficiency (CVI) represents a risk factor for cardiovascular events. The first-line treatment includes the use of compression stockings and lifestyle changes. Natural products, such as flavonoids, could be used to improve the effects of compression therapy due to their anti-inflammatory and anti-oxidant properties. This study aims to evaluate the effects of a dietary supplement containing baicalin, bromeline and escin in CVI patients. A retrospective cohort study was performed by using the medical records of CVI affected outpatients. Patients treated with the dietary supplement were defined as "users". A modified Venous Clinical Severity Score (VCSS) was calculated, including pain, inflammation, vessels induration and skin pigmentation. All clinical variables were evaluated at baseline (T0), after 30 (T1) and 90(T2) days in "users" and "non-users". Out of 62 patients, 30 (48.4%) were "users". No difference was observed between groups at baseline. A lower VCSS value was recorded in "users" than that observed in "non-users" at T2 (7.0 (4.0-9.0) vs. 9.0 (5.0-10.0); p = 0.025). Vessels' induration and pain significantly reduced in 53.3% and 43.3% of "users" and in 18.8% and 9.4% of "non-users". Only "users" (33.3%) showed a reduction of the inflammatory signs as well as a decrease in malleolar circumference, from 29.0 (26.5-30.0) to 27.5 (26.0-28.5) (p < 000.1). A reduction of C-reactive Protein levels was found in "users" compared to "non-users" at T2 (1.0 (0.9-1.2) vs. 1.3 (1.0-1.5); p = 0.006). These findings suggest that implementation of a dietary supplement could improve the clinical outcomes of CVI patients.
Collapse
Affiliation(s)
- Selene Francesca Anna Drago
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (S.F.A.D.); (M.R.); (A.M.); (N.I.); (L.O.); (M.G.D.F.); (M.I.); (N.Z.); (E.I.)
| | - Michelangelo Rottura
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (S.F.A.D.); (M.R.); (A.M.); (N.I.); (L.O.); (M.G.D.F.); (M.I.); (N.Z.); (E.I.)
| | - Antonino Molonia
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (S.F.A.D.); (M.R.); (A.M.); (N.I.); (L.O.); (M.G.D.F.); (M.I.); (N.Z.); (E.I.)
| | - Viviana Maria Gianguzzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Giovanni Pallio
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy;
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (S.F.A.D.); (M.R.); (A.M.); (N.I.); (L.O.); (M.G.D.F.); (M.I.); (N.Z.); (E.I.)
| | - Luana Orlando
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (S.F.A.D.); (M.R.); (A.M.); (N.I.); (L.O.); (M.G.D.F.); (M.I.); (N.Z.); (E.I.)
| | - Marianna Gigliotti De Fazio
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (S.F.A.D.); (M.R.); (A.M.); (N.I.); (L.O.); (M.G.D.F.); (M.I.); (N.Z.); (E.I.)
| | - Marilena Isgrò
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (S.F.A.D.); (M.R.); (A.M.); (N.I.); (L.O.); (M.G.D.F.); (M.I.); (N.Z.); (E.I.)
| | - Natalia Zirilli
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (S.F.A.D.); (M.R.); (A.M.); (N.I.); (L.O.); (M.G.D.F.); (M.I.); (N.Z.); (E.I.)
| | - Vincenzo Arcoraci
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (S.F.A.D.); (M.R.); (A.M.); (N.I.); (L.O.); (M.G.D.F.); (M.I.); (N.Z.); (E.I.)
| | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (S.F.A.D.); (M.R.); (A.M.); (N.I.); (L.O.); (M.G.D.F.); (M.I.); (N.Z.); (E.I.)
| |
Collapse
|
7
|
Cheng Y, Yan M, He S, Xie Y, Wei L, Xuan B, Shang Z, Wu M, Zheng H, Chen Y, Yuan M, Peng J, Shen A. Baicalin alleviates angiotensin II-induced cardiomyocyte apoptosis and autophagy and modulates the AMPK/mTOR pathway. J Cell Mol Med 2024; 28:e18321. [PMID: 38712979 PMCID: PMC11075640 DOI: 10.1111/jcmm.18321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024] Open
Abstract
As a main extraction compound from Scutellaria baicalensis Georgi, Baicalin exhibits various biological activities. However, the underlying mechanism of Baicalin on hypertension-induced heart injury remains unclear. In vivo, mice were infused with angiotensin II (Ang II; 500 ng/kg/min) or saline using osmotic pumps, followed by intragastrically administrated with Baicalin (5 mg/kg/day) for 4 weeks. In vitro, H9C2 cells were stimulated with Ang II (1 μM) and treated with Baicalin (12.5, 25 and 50 μM). Baicalin treatment significantly attenuated the decrease in left ventricular ejection fraction and left ventricular fractional shortening, increase in left ventricular mass, left ventricular systolic volume and left ventricular diastolic volume of Ang II infused mice. Moreover, Baicalin treatment reversed 314 differentially expressed transcripts in the cardiac tissues of Ang II infused mice, and enriched multiple enriched signalling pathways (including apoptosis, autophagy, AMPK/mTOR signalling pathway). Consistently, Baicalin treatment significantly alleviated Ang II-induced cell apoptosis in vivo and in vitro. Baicalin treatment reversed the up-regulation of Bax, cleaved-caspase 3, cleaved-caspase 9, and the down-regulation of Bcl-2. Meanwhile, Baicalin treatment alleviated Ang II-induced increase of autophagosomes, restored autophagic flux, and down-regulated LC3II, Beclin 1, as well as up-regulated SQSTM1/p62 expression. Furthermore, autophagy inhibitor 3-methyladenine treatment alleviated the increase of autophagosomes and the up-regulation of Beclin 1, LC3II, Bax, cleaved-caspase 3, cleaved-caspase 9, down-regulation of SQSTM1/p62 and Bcl-2 expression after Ang II treated, which similar to co-treatment with Baicalin. Baicalin treatment reduced the ratio of p-AMPK/AMPK, while increased the ratio of p-mTOR/mTOR. Baicalin alleviated Ang II-induced cardiomyocyte apoptosis and autophagy, which might be related to the inhibition of the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Ying Cheng
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
| | - Mengchao Yan
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
| | - Shuyu He
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
| | - Yi Xie
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
| | - Lihui Wei
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
- Innovation and Transformation CenterFujian University of Traditional Chinese MedicineFuzhouFujianChina
| | - Bihan Xuan
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
| | - Zucheng Shang
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
| | - Meizhu Wu
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
| | - Huifang Zheng
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
- Innovation and Transformation CenterFujian University of Traditional Chinese MedicineFuzhouFujianChina
| | - Youqin Chen
- Department of PediatricsRainbow Babies and Children's Hospital and Case Western Reserve University School of MedicineClevelandOhioUSA
| | - Meng Yuan
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
- Innovation and Transformation CenterFujian University of Traditional Chinese MedicineFuzhouFujianChina
| | - Jun Peng
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
- Innovation and Transformation CenterFujian University of Traditional Chinese MedicineFuzhouFujianChina
| | - Aling Shen
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
- Innovation and Transformation CenterFujian University of Traditional Chinese MedicineFuzhouFujianChina
| |
Collapse
|
8
|
Hur JY, Lee S, Shin WR, Kim YH, Ahn JY. The emerging role of medical foods and therapeutic potential of medical food-derived exosomes. NANOSCALE ADVANCES 2023; 6:32-50. [PMID: 38125597 PMCID: PMC10729880 DOI: 10.1039/d3na00649b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
Medical food is consumed for the purpose of improving specific nutritional requirements or disease conditions, such as inflammation, diabetes, and cancer. It involves partial or exclusive feeding for fulfilling unique nutritional requirements of patients and is different from medicine, consisting of basic nutrients, such as polyphenols, vitamins, sugars, proteins, lipids, and other functional ingredients to nourish the patients. Recently, studies on extracellular vesicles (exosomes) with therapeutic and drug carrier potential have been actively conducted. In addition, there have been attempts to utilize exosomes as medical food components. Consequently, the application of exosomes is expanding in different fields with increasing research being conducted on their stability and safety. Herein, we introduced the current trends of medical food and the potential utilization of exosomes in them. Moreover, we proposed Medi-Exo, a exosome-based medical food. Furthermore, we comprehensively elucidate various disease aspects between medical food-derived exosomes (Medi-Exo) and therapeutic natural bionanocomposites. This review highlights the therapeutic challenges regarding Medi-Exo and its potential health benefits.
Collapse
Affiliation(s)
- Jin-Young Hur
- Department of Microbiology, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu Cheongju 28644 South Korea +82-43-264-9600 +82-43-261-2301 +82-43-261-3575
| | - SeonHyung Lee
- Department of Bioengineering, University of Pennsylvania 210 S 33rd St. Philadelphia PA 19104 USA
| | - Woo-Ri Shin
- Department of Microbiology, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu Cheongju 28644 South Korea +82-43-264-9600 +82-43-261-2301 +82-43-261-3575
- Department of Bioengineering, University of Pennsylvania 210 S 33rd St. Philadelphia PA 19104 USA
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu Cheongju 28644 South Korea +82-43-264-9600 +82-43-261-2301 +82-43-261-3575
| | - Ji-Young Ahn
- Department of Microbiology, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu Cheongju 28644 South Korea +82-43-264-9600 +82-43-261-2301 +82-43-261-3575
| |
Collapse
|
9
|
Wu W, Huang J, Han P, Zhang J, Wang Y, Jin F, Zhou Y. Research Progress on Natural Plant Molecules in Regulating the Blood-Brain Barrier in Alzheimer's Disease. Molecules 2023; 28:7631. [PMID: 38005352 PMCID: PMC10674591 DOI: 10.3390/molecules28227631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder. With the aging population and the continuous development of risk factors associated with AD, it will impose a significant burden on individuals, families, and society. Currently, commonly used therapeutic drugs such as Cholinesterase inhibitors, N-methyl-D-aspartate antagonists, and multiple AD pathology removal drugs have been shown to have beneficial effects on certain pathological conditions of AD. However, their clinical efficacy is minimal and they are associated with certain adverse reactions. Furthermore, the underlying pathological mechanism of AD remains unclear, posing a challenge for drug development. In contrast, natural plant molecules, widely available, offer multiple targeting pathways and demonstrate inherent advantages in modifying the typical pathologic features of AD by influencing the blood-brain barrier (BBB). We provide a comprehensive review of recent in vivo and in vitro studies on natural plant molecules that impact the BBB in the treatment of AD. Additionally, we analyze their specific mechanisms to offer novel insights for the development of safe and effective targeted drugs as well as guidance for experimental research and the clinical application of drugs for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Weidong Wu
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Jiahao Huang
- Department of Chinese Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Pengfei Han
- Science and Education Section, Zhangjiakou First Hospital, Zhangjiakou 075041, China;
| | - Jian Zhang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Yuxin Wang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Fangfang Jin
- Department of Internal Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yanyan Zhou
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| |
Collapse
|
10
|
Li H, Zhang Q. Research Progress of Flavonoids Regulating Endothelial Function. Pharmaceuticals (Basel) 2023; 16:1201. [PMID: 37765009 PMCID: PMC10534649 DOI: 10.3390/ph16091201] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
The endothelium, as the guardian of vascular homeostasis, is closely related to the occurrence and development of cardiovascular diseases (CVDs). As an early marker of the development of a series of vascular diseases, endothelial dysfunction is often accompanied by oxidative stress and inflammatory response. Natural flavonoids in fruits, vegetables, and Chinese herbal medicines have been shown to induce and regulate endothelial cells and exert anti-inflammatory, anti-oxidative stress, and anti-aging effects in a large number of in vitro models and in vivo experiments so as to achieve the prevention and improvement of cardiovascular disease. Focusing on endothelial mediation, this paper introduces the signaling pathways involved in the improvement of endothelial dysfunction by common dietary and flavonoids in traditional Chinese medicine and describes them based on their metabolism in the human body and their relationship with the intestinal flora. The aim of this paper is to demonstrate the broad pharmacological activity and target development potential of flavonoids as food supplements and drug components in regulating endothelial function and thus in the prevention and treatment of cardiovascular diseases. This paper also introduces the application of some new nanoparticle carriers in order to improve their bioavailability in the human body and play a broader role in vascular protection.
Collapse
Affiliation(s)
| | - Qi Zhang
- The Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, China;
| |
Collapse
|
11
|
Choi NR, Kwon MJ, Choi WG, Kim SC, Park JW, Nam JH, Kim BJ. The traditional herbal medicines mixture, Banhasasim-tang, relieves the symptoms of irritable bowel syndrome via modulation of TRPA1, NaV1.5 and NaV1.7 channels. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116499. [PMID: 37059250 DOI: 10.1016/j.jep.2023.116499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The cause of irritable bowel syndrome (IBS), a functional gastrointestinal (GI) disorder, remains unclear. Banhasasim-tang (BHSST), a traditional herbal medicines mixture, mainly used to treat GI-related diseases, may have a potential in IBS treatment. IBS is characterized by abdominal pain as the main clinical symptom, which seriously affects the quality of life. AIM OF THE STUDY We conducted a study to evaluate the effectiveness of BHSST and its mechanisms of action in treating IBS. MATERIALS AND METHODS We evaluated the efficacy of BHSST in a zymosan-induced diarrhea-predominant animal model of IBS. Electrophysiological methods were used to confirm modulation of transient receptor potential (TRP) and voltage-gated Na+ (NaV) ion channels, which are associated mechanisms of action. RESULTS Oral administration of BHSST decreased colon length, increased stool scores, and increased colon weight. Weight loss was also minimized without affecting food intake. In mice administered with BHSST, the mucosal thickness was suppressed, making it similar to that of normal mice, and the degree of tumor necrosis factor-α was severely reduced. These effects were similar to those of the anti-inflammatory drug-sulfasalazine-and antidepressant-amitriptyline. Moreover, pain-related behaviors were substantially reduced. Additionally, BHSST inhibited TRPA1, NaV1.5, and NaV1.7 ion channels associated with IBS-mediated visceral hypersensitivity. CONCLUSIONS In summary, the findings suggest that BHSST has potential beneficial effects on IBS and diarrhea through the modulation of ion channels.
Collapse
Affiliation(s)
- Na Ri Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, 50612, Republic of Korea.
| | - Min Ji Kwon
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, 50612, Republic of Korea.
| | - Woo-Gyun Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, 50612, Republic of Korea.
| | - Sang Chan Kim
- College of Oriental Medicine Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Jae-Woo Park
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Kyungju, 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang, 10326, Republic of Korea.
| | - Byung Joo Kim
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
12
|
Wen Y, Wang Y, Zhao C, Zhao B, Wang J. The Pharmacological Efficacy of Baicalin in Inflammatory Diseases. Int J Mol Sci 2023; 24:ijms24119317. [PMID: 37298268 DOI: 10.3390/ijms24119317] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Baicalin is one of the most abundant flavonoids found in the dried roots of Scutellaria baicalensis Georgi (SBG) belonging to the genus Scutellaria. While baicalin is demonstrated to have anti-inflammatory, antiviral, antitumor, antibacterial, anticonvulsant, antioxidant, hepatoprotective, and neuroprotective effects, its low hydrophilicity and lipophilicity limit the bioavailability and pharmacological functions. Therefore, an in-depth study of baicalin's bioavailability and pharmacokinetics contributes to laying the theoretical foundation for applied research in disease treatment. In this view, the physicochemical properties and anti-inflammatory activity of baicalin are summarized in terms of bioavailability, drug interaction, and inflammatory conditions.
Collapse
Affiliation(s)
- Yongqiang Wen
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Yazhou Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
13
|
Zhan Q, Zhao J, Liu L, Wang B, Hui J, Lin Q, Qin Y, Xue B, Xu F. Integrated network pharmacology and molecular docking analyses of the mechanisms underlying the antihypertensive effects of lotusine. Eur J Pharmacol 2023; 945:175622. [PMID: 36863553 DOI: 10.1016/j.ejphar.2023.175622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
Hypertension is a modifiable cardiovascular risk factor and cause of death worldwide. Lotusine, an alkaloid extracted from a plant used in traditional Chinese Medicine, has shown anti-hypertensive effects. However, its therapeutic efficacy requires further investigation. We adopted integrated network pharmacology and molecular docking approaches with the aim of investigating lotusine's antihypertensive effects and mechanisms of action in rat models. After identifying the optimal intravenous dosage, we observed the effects of lotusine administration on two-kidney, one-clip (2K1C) rats and spontaneously hypertensive rats (SHRs). Based on network pharmacology and molecular docking analyses, we measured renal sympathetic nerve activity (RSNA) to evaluate lotusine's effect. Finally, an abdominal aortic coarctation (AAC) model was established to evaluate lotusine's long-term effects. The network pharmacology analysis identified 21 intersection targets; of these, 17 were also implicated by the neuroactive live receiver interaction. Further integrated analysis showed high lotusine affinity for the cholinergic receptor nicotinic alpha 2 subunit, adrenoceptor beta 2, and adrenoceptor alpha 1B. Blood pressure of the 2K1C rats and SHRs decreased after treatment with 2.0 and 4.0 mg/kg of lotusine (P < 0.001 versus saline control). We also observed RSNA decreases consistent with the network pharmacology and molecular docking analysis results. Results from the AAC rat model indicated that myocardial hypertrophy was decreased with lotusine administration, demonstrated by echocardiography and hematoxylin and eosin and Masson staining. This study provides insights into the antihypertensive effects and underlying mechanisms of lotusine; lotusine may exert long-term protective effects against myocardial hypertrophy caused by elevated blood pressure.
Collapse
Affiliation(s)
- Qiuxiao Zhan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Junnan Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Lu Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Biqing Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Jiaqi Hui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Quan Lin
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Yuxuan Qin
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Bing Xue
- Core Facility Center, Capital Medical University, Beijing, 100069, China.
| | - Fengqin Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
14
|
Bajek-Bil A, Chmiel M, Włoch A, Stompor-Gorący M. Baicalin-Current Trends in Detection Methods and Health-Promoting Properties. Pharmaceuticals (Basel) 2023; 16:ph16040570. [PMID: 37111327 PMCID: PMC10146343 DOI: 10.3390/ph16040570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Baicalin (7-D-glucuronic acid-5,6-dihydroxyflavone) belongs to natural flavonoids extracted from the roots of Scutellaria baicalensis, the plant used in traditional Chinese medicine. It has been proven that baicalin has various pharmacological activities, such as antioxidant, anti-inflammatory, anticancer, antibacterial, and anti-apoptotic ones. However, it is essential not only to determine the medical usefulness of baicalin, but also to find and develop the most effective methods for its extraction and detection. Therefore, the aim of this review was to summarize the current methods of detection and identification of baicalin and to present the medical applications of baicalin and the underlying mechanisms of its action. Based on the review of the latest literature, it can be concluded that liquid chromatography alone or together with mass spectrometry is the most commonly used method for the determination of baicalin. Recently, also new electrochemical methods have been established, e.g., biosensors with fluorescence, which have better detection limits, sensitivity, and selectivity.
Collapse
Affiliation(s)
- Agata Bajek-Bil
- Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland
| | - Marcelina Chmiel
- Institute of Medical Sciences, University of Rzeszów, 35-959 Rzeszów, Poland
| | - Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | | |
Collapse
|
15
|
Li M, Cui Y, Wang P, Cui J, Chen Y, Zhang T. Baicalin mitigates hypertension-linked alterations in the intestinal lymphatic vasculature in part through preserving the functional barrier integrity of lymphatic endothelial cells. Biomed Pharmacother 2023. [DOI: 10.1016/j.biopha.2023.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
|
16
|
Tan YQ, Lin F, Ding YK, Dai S, Liang YX, Zhang YS, Li J, Chen HW. Pharmacological properties of total flavonoids in Scutellaria baicalensis for the treatment of cardiovascular diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154458. [PMID: 36152591 DOI: 10.1016/j.phymed.2022.154458] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/21/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Scutellaria baicalensis, a medicinal herb belonging to the Lamiaceae family, has been recorded in the Chinese, European, and British Pharmacopoeias. The medicinal properties of this plant are attributed to the total flavonoids of Scutellaria baicalensis (TFSB), particularly the main component, baicalin. This study provides a systematic and comprehensive list of the identified TFSB components and their chemical structures. The quality control process, pharmacokinetics, clinical application, and safety of Scutellaria baicalensis are discussed, and its pharmacological effect on cardiovascular diseases (CVDs) is detailed. Finally, the future research trends and prospects of this medicinal plant are provided. METHODS The Chinese and English papers related to TFSB were collected from the PubMed and CNKI databases using the relevant keywords. To highlight the pharmacological mechanism, clinical application, and safety of TFSB, the collected articles were screened and classified based on their research content. RESULTS TFSB contains at least 100 different kinds of flavonoids, of which baicalin, baicalein, wogonin, wogonoside, scutellarin, and scutellarein are the main active ingredients. The preparation process of TFSB is relatively well established, and the extraction rate can be significantly increased by enzymatic pretreatment and ultrasonication. The low oral availability of TFSB may be effectively enhanced using nanoformulations. The available pharmacokinetic data show that flavonoid glycosides and aglycones with the same parent nucleus may be converted to structures that are conducive to absorption in vivo. Moreover, TFSB can protect against CVDs by inhibiting apoptosis, regulating oxidative stress response, participating in inflammatory response, protecting against myocardial fibrosis, inhibiting myocardial hypertrophy, and regulating blood vessels. In terms of clinical application and animal safety, the available studies show that TFSB can be applied in a wide range of clinical treatments and is safe to use is animals. CONCLUSION This article systematically reviews the therapeutic effect and underlying pharmacological mechanism of TFSB against CVDs. The available studies clearly suggest that TFSB has great potential for the treatment of CVDs and is worthy of in-depth research and development.
Collapse
Affiliation(s)
- Yu-Qing Tan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fei Lin
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100 Henan, China
| | - Yu-Kun Ding
- Beijing University of Chinese Medicine, Beijing 100029, China; Department of Cardiology, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Shuang Dai
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying-Xin Liang
- Traditional Chinese Medicine Orthopedics, Liuzhou Worker's Hospital, Liuzhou 545007, China
| | - Yun-Shu Zhang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Heng-Wen Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
17
|
Combined Effects of Methyldopa and Baicalein or Scutellaria baicalensis Roots Extract on Blood Pressure, Heart Rate, and Expression of Inflammatory and Vascular Disease-Related Factors in Spontaneously Hypertensive Pregnant Rats. Pharmaceuticals (Basel) 2022; 15:ph15111342. [PMID: 36355514 PMCID: PMC9694684 DOI: 10.3390/ph15111342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of the study was to investigate the effect of baicalein or Scutellaria baicalensis root extract interaction with methyldopa in pregnant spontaneously hypertensive rats (SHR) at the pharmacodynamic, molecular, and biochemical levels. The rats, after confirming pregnancy, received baicalein (200 mg/kg/day, p.o.) and extract (1000 mg/kg/day, p.o.), in combination with methyldopa (400 mg/kg/day; p.o.), for 14 consecutive days, 1 h before blood pressure and heart rate measurements. In the heart and placenta from mothers after giving birth to their offspring, mRNA expression of factors related to inflammatory processes (TNF-α, Il-1β, IL-6) and vascular diseases (TGF-β, HIF-1α, VEGF, PlGF) was measured. Levels of markers of oxidative stress (superoxide dismutase and malondialdehyde) in the placenta and indicators of myocardial damage (troponin cTnC and cTnI, creatine kinase, myoglobin, and lactate dehydrogenase) in the heart were also assessed. Baicalein co-administered with methyldopa was associated with reduced blood pressure, especially during the first three days. The interactions were more pronounced for such factors as TGF-β, HIF-1α, VEGF, and PlGF than TNF-α, Il-1β, and IL-6. Combined application of baicalein and extract with methyldopa may be of value in the development of a new antihypertensive medication intended for patients suffering from preeclampsia or pregnancy-induced hypertension.
Collapse
|
18
|
Rajabalizadeh R, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Medicinal herbs in treating chemotherapy-induced nausea and vomiting: A review. Phytother Res 2022; 36:3691-3708. [PMID: 35841194 DOI: 10.1002/ptr.7563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 12/22/2022]
Abstract
Cancer development entangles with mutation and selection for cells that progressively increase capacity for proliferation and metastasis at the cellular level. Surgery, chemotherapy, and radiotherapy are the standard treatments to manage several types of cancer. Chemotherapy is toxic for both normal and cancer cells and can induce unfavorable conditions, such as chemotherapy-induced nausea and vomiting (CINV), that reduce patients' quality of life. Emesis after chemotherapy is categorized into two classes acute and delayed. Since ancient times, herbal medicines have been used in various cultures to manage stomachache, vomiting, and nausea. In this manuscript, the antiemetic mechanisms of several herbal medicines and their preparations such as Zingiber officinale (5-HT, NK-1 receptor and muscarinic antagonist activity), Mentha spicata (5-HT antagonist activity), Scutellaria baicalensis (antioxidant activity), Persumac (useful in delayed phase through antioxidant, anti-inflammatory, and anti-contractile properties) and Rikkunshito (supportive in acute and delayed phase through 5-HT receptor antagonist activity) have been reviewed to show their potential effects on decreasing CINV and attract scientists attention to formulate more herbal medicine to alleviate CINV in cancer patients. However, it is crucial to say that additional high-quality investigations are required to firmly verify the clinical effectiveness and safety of each plant/compound.
Collapse
Affiliation(s)
- Reza Rajabalizadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Elesawy RO, El-Deeb OS, Eltokhy AK, Arakeep HM, Ali DA, Elkholy SS, Kabel AM. Postnatal baicalin ameliorates behavioral and neurochemical alterations in valproic acid-induced rodent model of autism: The possible implication of sirtuin-1/mitofusin-2/ Bcl-2 pathway. Biomed Pharmacother 2022; 150:112960. [PMID: 35447549 DOI: 10.1016/j.biopha.2022.112960] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by pervasive impairments in social communication along with repetitive or stereotyped behaviors. Although its distinctive etiology isn`t completely understood, genetic and environmental risk factors were incriminated. Being a flavonoid of high biomedical value, baicalin was recently verified as an emerging medicinal herb with numerous pharmacological activities. The objective of this study was to investigate the feasible effects of baicalin on valproic acid (VPA)-induced autism regarding its potential mitochondrial modulatory, antioxidant, and antiapoptotic effects. The present study was performed using a rodent model of autism by exposing rat fetuses to VPA on the 12.5th day of gestation. Ten male Wistar rats that were born from control pregnant females were considered as group I (control group). Twenty male Wistar rats that were born from prenatal VPA- treated females were further divided into two groups: Group II (VPA- induced ASD) and group III (VPA + Baicalin). Postnatal baicalin promoted postnatal growth and maturation. In addition, it improved motor development and ameliorated repetitive behavior as well as social deficits in prenatally exposed VPA rats. Moreover, baicalin enhanced neuronal mitochondrial functions as evidenced by elevation of mitochondrial adenosine triphosphate (ATP) level and promotion of mitofusin-2 expression. Furthermore, baicalin elevated sirtuin-1 (SIRT1) level in VPA rats' brain tissues and restored the antioxidant defense mechanisms. Besides, it abrogated the neuronal histopathological changes in the brain tissues. Based on the data herein, baicalin may provide a promising pre-clinical therapeutic line in ASD as a mitochondrial function modulator, antioxidant and anti-apoptotic agent.
Collapse
Affiliation(s)
- Rasha O Elesawy
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Omnia S El-Deeb
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira K Eltokhy
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba M Arakeep
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina A Ali
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Sanad S Elkholy
- Physiology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Ahmed M Kabel
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
20
|
Lin Y, Wang ZY, Wang MJ, Jiang ZM, Qin YQ, Huang TQ, Song Y, Liang HT, Liu EH. Baicalin attenuate diet-induced metabolic syndrome by improving abnormal metabolism and gut microbiota. Eur J Pharmacol 2022; 925:174996. [PMID: 35513018 DOI: 10.1016/j.ejphar.2022.174996] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
Abstract
In this work, we examined whether baicalin (BC), a bioactive flavonoid in Scutellaria baicalensis Georgi, can reduce high-fat diet (HFD)-induced metabolic syndrome (MetS) in mice. The UPLC-QTOF/MS was used for metabolome profiles analysis, and an analysis of bacterial 16S rDNA in feces was used to examine the effects of BC on gut microbiota composition. Our results showed that BC (400 mg/kg) could reduce the body weight gain, decrease hepatic fat accumulation and abnormal blood lipids, and increase insulin sensitivity after 8 weeks of treatment. BC could reverse the alteration of 7 metabolites induced by HFD and the metabolic pathways responsive to BC intervention including citrate cycle, alanine, aspartate and glutamate metabolism, glycerophospholipid metabolism, and aminoacyl-tRNA biosynthesis. 16S rDNA analysis demonstrated that BC altered the composition and function of gut microbiota in MetS mice. Notably, we found that the change in succinic acid was negatively associated with the changes in Bacteroides and Sutterella, and positively associated with the change in Mucispirillum. Moreover, we confirmed that succinic acid displayed a metabolic protective effect on MetS mice. The antibiotic treatment verified that BC exerts metabolic protection through gut microbiota. Our findings suggested BC may be a potential therapeutic drug to ameliorate diet induced MetS and gut microbiome may be a novel mechanistic target of BC for treatment of MetS.
Collapse
Affiliation(s)
- Yang Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zi-Yuan Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; Public Experimental Platform, China Pharmaceutical University, Nanjing, China
| | - Ma-Jie Wang
- Public Experimental Platform, China Pharmaceutical University, Nanjing, China
| | - Zheng-Meng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ya-Qiu Qin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Tian-Qing Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yu Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hui-Ting Liang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
21
|
Ibrahim A, Nasr M, El-Sherbiny IM. Baicalin as an emerging magical nutraceutical molecule: Emphasis on pharmacological properties and advances in pharmaceutical delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Shah MA, Rasul A, Yousaf R, Haris M, Faheem HI, Hamid A, Khan H, Khan AH, Aschner M, Batiha GE. Combination of natural antivirals and potent immune invigorators: A natural remedy to combat COVID-19. Phytother Res 2021; 35:6530-6551. [PMID: 34396612 PMCID: PMC8441799 DOI: 10.1002/ptr.7228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/14/2021] [Accepted: 04/10/2021] [Indexed: 12/23/2022]
Abstract
The flare-up in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged in December 2019 in Wuhan, China, and spread expeditiously worldwide has become a health challenge globally. The rapid transmission, absence of anti-SARS-CoV-2 drugs, and inexistence of vaccine are further exacerbating the situation. Several drugs, including chloroquine, remdesivir, and favipiravir, are presently undergoing clinical investigation to further scrutinize their effectiveness and validity in the management of COVID-19. Natural products (NPs) in general, and plants constituents specifically, are unique sources for various effective and novel drugs. Immunostimulants, including vitamins, iron, zinc, chrysin, caffeic acid, and gallic acid, act as potent weapons against COVID-19 by reinvigorating the defensive mechanisms of the immune system. Immunity boosters prevent COVID-19 by stimulating the proliferation of T-cells, B-cells, and neutrophils, neutralizing the free radicals, inhibiting the immunosuppressive agents, and promoting cytokine production. Presently, antiviral therapy includes several lead compounds, such as baicalin, glycyrrhizin, theaflavin, and herbacetin, all of which seem to act against SARS-CoV-2 via particular targets, such as blocking virus entry, attachment to host cell receptor, inhibiting viral replication, and assembly and release.
Collapse
Affiliation(s)
- Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical SciencesGovernment College UniversityFaisalabadPakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Rimsha Yousaf
- Department of Pharmacognosy, Faculty of Pharmaceutical SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Haris
- Department of Pharmacognosy, Faculty of Pharmaceutical SciencesGovernment College UniversityFaisalabadPakistan
| | - Hafiza Ishmal Faheem
- Department of Pharmacognosy, Faculty of Pharmaceutical SciencesGovernment College UniversityFaisalabadPakistan
| | - Ayesha Hamid
- Department of Pharmacognosy, Faculty of Pharmaceutical SciencesGovernment College UniversityFaisalabadPakistan
| | - Haroon Khan
- Department of PharmacyAbdul Wali Khan UniversityMardanPakistan
| | - Abdul Haleem Khan
- Department of PharmacyForman Christian College (A Chartered University)LahorePakistan
| | - Michael Aschner
- Department of Molecular PharmacologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAl‐BeheiraEgypt
| |
Collapse
|
23
|
Inhibition of the PERK/TXNIP/NLRP3 Axis by Baicalin Reduces NLRP3 Inflammasome-Mediated Pyroptosis in Macrophages Infected with Mycobacterium tuberculosis. Mediators Inflamm 2021; 2021:1805147. [PMID: 34790063 PMCID: PMC8592748 DOI: 10.1155/2021/1805147] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) remains a significant threat to global health as it induces granuloma and systemic inflammatory responses during active tuberculosis. Mtb can induce macrophage pyroptosis, leading to the release of IL-1β and tissue damage, promoting its spread. Here, we established an in vitro Mtb-infected macrophage model to seek an effective antipyroptosis agent. Baicalin, isolated from Radix Scutellariae, was found to reduce pyroptosis in Mtb-infected macrophages. Baicalin could inhibit activation of the PERK/eIF2α pathway and thus downregulates TXNIP expression and subsequently reduces activation of the NLRP3 inflammasome, resulting in reduced pyroptosis in Mtb-infected macrophages. In conclusion, baicalin reduced pyroptosis by inhibiting the PERK/TXNIP/NLRP3 axis and might thus be a new adjuvant host-directed therapy (HDT) drug.
Collapse
|
24
|
Liu H, Cheng Y, Chu J, Wu M, Yan M, Wang D, Xie Q, Ali F, Fang Y, Wei L, Yang Y, Shen A, Peng J. Baicalin attenuates angiotensin II-induced blood pressure elevation and modulates MLCK/p-MLC signaling pathway. Biomed Pharmacother 2021; 143:112124. [PMID: 34492423 DOI: 10.1016/j.biopha.2021.112124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 01/05/2023] Open
Abstract
Scutellaria baicalensis Georgi is an extensively used medicinal herb for the treatment of hypertension in traditional Chinese medicine. Baicalin, is an important flavonoid in Scutellaria baicalensis Georgi extracts, which exhibits therapeutic effects on anti-hypertension, but its underlying mechanisms remain to be further explored. Therefore, we investigated the effects and molecular mechanisms of Baicalin on anti-hypertension. In vivo studies revealed that Baicalin treatment significantly attenuated the elevation in blood pressure, the pulse propagation and thickening of the abdominal aortic wall in C57BL/6 mice infused with Angiotensin II (Ang II). Moreover, RNA-sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses identified 537 differentially expressed transcripts and multiple enriched signaling pathways (including vascular smooth muscle contraction and calcium signaling pathway). Consistently, we found that Baicalin pretreatment significantly alleviated the Ang II induced constriction of abdominal aortic ring, while promoted NE pre-contracted vasodilation of abdominal aortic ring at least partly dependent on L-type calcium channel. In addition, Ang II stimulation significantly increased cell viability and PCNA expression, while were attenuated after Baicalin treatment. Moreover, Baicalin pretreatment attenuated Ang II-induced intracellular Ca2+ release, Angiotensin II type 1 receptor (AT1R) expression and activation of MLCK/p-MLC pathway in vascular smooth muscle cells (VSMCs). The present work further addressed the pharmacological and mechanistic insights on anti-hypertension of Baicalin, which may help better understand the therapeutic effect of Scutellaria baicalensis Georgi on anti-hypertension.
Collapse
MESH Headings
- Angiotensin II
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/physiopathology
- Blood Pressure/drug effects
- Calcium Signaling/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Disease Models, Animal
- Flavonoids/pharmacology
- Hypertension/chemically induced
- Hypertension/enzymology
- Hypertension/physiopathology
- Hypertension/prevention & control
- Hypoglycemic Agents/pharmacology
- Male
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myosin Light Chains/metabolism
- Myosin-Light-Chain Kinase/metabolism
- Phosphorylation
- Rats, Wistar
- Mice
- Rats
Collapse
Affiliation(s)
- Huixin Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jianfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Mengchao Yan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Di Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Qiurong Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Farman Ali
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yi Fang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yanyan Yang
- Laboratory Animal Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
25
|
Pu Y, Cai Y, Zhang Q, Hou T, Zhang T, Zhang T, Wang B. Comparison of Pinoresinol and its Diglucoside on their ADME Properties and Vasorelaxant Effects on Phenylephrine-Induced Model. Front Pharmacol 2021; 12:695530. [PMID: 34434107 PMCID: PMC8381248 DOI: 10.3389/fphar.2021.695530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022] Open
Abstract
Pinoresinol (PINL) and pinoresinol diglucoside (PDG), two natural lignans found in Eucommia ulmoides Oliv. (Duzhong), have several pharmacological activities. However, there is no report available on their absorption, distribution, metabolism, and elimination (ADME) properties. Given the possible wide spectrum of their application in therapeutic areas, this area should be investigated. This work studied the in vitro ADME properties of PDG and PINL, including their kinetic solubility, permeability across monolayer cells (PAMPA), protein binding, and metabolic stabilities in liver microsomes. The in vivo pharmacokinetic study and in vitro vasorelaxant effects on isolated phenylephrine-induced aortic rings of PINL and PDG were also investigated. It was found that both of their kinetic solubility in PBS (pH 7.4) was greater than 100 μM, indicating that they are both soluble compounds. The permeability investigations (Peff) by PAMPA indicated that PINL had higher permeability than PDG (p < 0.05). Both components represented moderate plasma protein binding activities (average binding rate in human plasma: PINL 89.03%, PDG 45.21%) and low metabolic rate (t1/2 in human liver microsome: PINL 1509.5 min, PDG 1004.8 min). Furthermore, the results of pharmacokinetic studies indicated that PINL might be eliminated less quickly than PDG from the rat plasma, and its cumulative urinary excretion was much lower than that of PDG. The phenylephrine-induced aortic rings demonstrated concentration-dependent vasorelaxation in PDG, PINL, or their combination group. The vasorelaxant effects of PINL were more obvious than those of PDG, whereas the vasorelaxant effect of the combinations was significantly better than that of the single component (p < 0.05). The similarity or difference between PINL and its diglucoside in these pharmaceutical aspects may offer valuable insights into the further exploration of lignans and might contribute to relevant studies involving natural products with similar molecular structure and their glucosides.
Collapse
Affiliation(s)
- Yiqiong Pu
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiqing Cai
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Clinical Research Institute of Integrated Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Qi Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianling Hou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Teng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Clinical Research Institute of Integrated Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Wang
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
26
|
Amer AE, Shehatou GSG, El-Kashef HA, Nader MA, El-Sheakh AR. Flavocoxid Ameliorates Aortic Calcification Induced by Hypervitaminosis D 3 and Nicotine in Rats Via Targeting TNF-α, IL-1β, iNOS, and Osteogenic Runx2. Cardiovasc Drugs Ther 2021; 36:1047-1059. [PMID: 34309798 DOI: 10.1007/s10557-021-07227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE This research was designed to investigate the effects and mechanisms of flavocoxid (FCX) on vascular calcification (VC) in rats. METHODS Vitamin D3 and nicotine were administered to Wistar rats, which then received FCX (VC-FCX group) or its vehicle (VC group) for 4 weeks. Control and FCX groups served as controls. Systolic (SBP) and diastolic (DBP) blood pressures, heart rate (HR), and left ventricular weight (LVW)/BW were measured. Serum concentrations of calcium, phosphate, creatinine, uric acid, and alkaline phosphatase were determined. Moreover, aortic calcium content and aortic expression of runt-related transcription factor (Runx2), osteopontin (OPN), Il-1β, α-smooth muscle actin (α-SMA), matrix metalloproteinase-9 (MMP-9), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF-α) were assessed. Oxidative status in aortic homogenates was investigated. RESULTS Compared to untreated VC rats, FCX treatment prevented body weight loss, reduced aortic calcium deposition, restored normal values of SBP, DBP, and HR, and attenuated LV hypertrophy. FCX also improved renal function and ameliorated serum levels of phosphorus, calcium, and ALP in rats with VC. FCX abolished aortic lipid peroxidation in VC rats. Moreover, VC-FCX rats showed marked reductions in aortic levels of Il-1β and osteogenic marker (Runx2) and attenuated aortic expression of TNF-α, iNOS, and MMP-9 proteins compared to untreated VC rats. The expression of the smooth muscle lineage marker α-SMA was greatly enhanced in aortas from VC rats upon FCX treatment. CONCLUSION These findings demonstrate FCX ability to attenuate VDN-induced aortic calcinosis in rats, suggesting its potential for preventing arteiocalcinosis in diabetic patients and those with chronic kidney disease.
Collapse
Affiliation(s)
- Ahmed E Amer
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - George S G Shehatou
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, Egypt.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt.
| | - Hassan A El-Kashef
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| |
Collapse
|
27
|
Liu Y, Xiong M, Zhou F, Shi N, Jia Y. Effect of baicalin on gestational hypertension-induced vascular endothelial cell damage. J Int Med Res 2021; 48:300060520934288. [PMID: 33081553 PMCID: PMC7588769 DOI: 10.1177/0300060520934288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective Baicalin is a compound extracted from the dried root of Scutellaria baicalensis Georgi. Studies have shown that baicalin has a protective effect on vascular endothelial cells, but whether baicalin could alleviate ascular endothelial cell damage in pregnancy-induced hypertensive patients remains unknown. Materials and methods We established a hypertensive pregnant rat model to study vascular endothelial injury during pregnancy-induced hypertension. Plasma epoprostenol (PGI-2), thromboxane A2 (Txa-2), β-human chorionic gonadotropin (β-HCG), and estrogen levels in rats were detected using ELISA. Vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), and C-reactive protein (CRP) expression were detected using western blotting and quantitative PCR (q-PCR). Results Results showed that baicalin alleviated symptoms of pregnancy-induced hypertension. CRP, Txa-2, and β-HCG expression were significantly upregulated, while VEGF, eNOS, PGI-2, and estrogen expression was decreased in plasma and placental tissues of hypertensive rats. However, the levels of these injury indicators were significantly decreased after baicalin therapy, while the expression of protective indicators was significantly increased. Conclusion Baicalin reversed vascular endothelial cell injury in pregnant hypertensive rats by promoting VEGF, eNOS, PGI-2, and estrogen expression.
Collapse
Affiliation(s)
- Yang Liu
- Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Miao Xiong
- Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Fangfang Zhou
- Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Nana Shi
- Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yunbin Jia
- Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
28
|
Influence of Dietary Components and Traditional Chinese Medicine on Hypertension: A Potential Role for Gut Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5563073. [PMID: 33986817 PMCID: PMC8079198 DOI: 10.1155/2021/5563073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
Hypertension (HTN) is an important worldwide public health issue affecting human health. The pathogenesis of HTN involves complex factors such as genetics, external environment, diet, and the gut microbial dysbiosis. The gut microbiota, as a medium of diet and drug metabolism, is closely correlated to host's health and disease (including HTN). Literatures were randomly collected from various databases including PubMed, ScienceDirect, Google Scholar, and China National Knowledge Infrastructure (CNKI). In this review, we elucidate the relationship between HTN and gut microbiota, as well as concerning the effects of different dietary components, diet-derived microbial metabolites, and traditional Chinese medicine (TCM) on intestinal flora. These studies have shown that diet and TCM can regulate and balance the intestinal flora, which are inclined to increasing the abundance of Akkermansia, Bifidobacterium, and Bacteroides and reducing the ratio of Firmicutes and Bacteroidetes. Moreover, monitoring the dynamic change of gut microflora may indicate patient prognosis and personalized response to treatment. This review aims to provide novel perspectives and potential personalized interventions for future HTN management from the perspective of gut microbiota.
Collapse
|
29
|
Li J, Yang X, Zhou X, Cai J. The Role and Mechanism of Intestinal Flora in Blood Pressure Regulation and Hypertension Development. Antioxid Redox Signal 2021; 34:811-830. [PMID: 32316741 DOI: 10.1089/ars.2020.8104] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Hypertension (HTN) has a complex etiology that is characterized by genetic and environmental factors. It has become a global health burden leading to cardiovascular diseases and kidney diseases, ultimately progressing to premature death. Accumulating evidence indicated that gut microbiome was associated with metabolic disorders and inflammation, which were closely linked to HTN. Recent Advances: Recent studies using bacterial genomic analysis and fecal microbiota transplantation as well as many lines of seminal evidence demonstrated that aberrant gut microbiome was significantly associated with HTN. The intestinal microbiome of both patients and animals with HTN had decreased bacterial diversity, disordered microbial structure and functions, and altered end products of fermentation. Gut dysbiosis and metabolites of the gut microbiota play an important role in blood pressure (BP) control, and they are therefore responsible for developing HTN. Critical Issues: This study aimed at focusing on the recent advances in understanding the role played by gut bacteria and the mechanisms underlying the pathological milieu that induced elevated BP and led to HTN pathogenesis. Potential intervention strategies targeting the correction of gut dysbiosis to improve HTN development were summarized. Future Directions: Larger numbers of fecal transplants from participants with HTN should be carried out to examine the magnitude of BP changes with the replacement of the gut microbiome. The proposed mechanisms for the gut in regulating BP remain to be verified. Whether intervention strategies using probiotics, dietary interventions, bacteriophages, and fecal transplants are feasible for individuals with HTN remains to be explored. Antioxid. Redox Signal. 34, 811-830.
Collapse
Affiliation(s)
- Jing Li
- Heart Center, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypertension, Beijing, China
| | - Xinchun Yang
- Heart Center, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypertension, Beijing, China
| | - Xin Zhou
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease of China, Hypertension Center, National Center for Cardiovascular Diseases of China, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Huang X, Ngaenklangdon S, He J, Gao X. Traditional Chinese Medicine's liver yang ascendant hyperactivity pattern of essential hypertension and its treatment approaches: A narrative review. Complement Ther Clin Pract 2021; 43:101354. [PMID: 33706064 DOI: 10.1016/j.ctcp.2021.101354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022]
Abstract
"Liver yang ascendant hyperactivity" (SF52), as termed by WHO, is a commonly observed pattern of essential hypertension (EH), herein referred to as EH-SF52. This paper summarizes the Traditional Chinese Medicine (TCM) perspectives, biomedical findings, and TCM managements for EH-SF52 in modern times. EH-SF52 is generally identified as an EH individual presenting with headache, dizziness, poor sleep quality, tinnitus, facial flushing, fatigue, signs of mild dehydration, and whom are highly irritable individuals with a tendency to overthink, be competitive, or be aggressive. The proposed EH-SF52 model features a state of autonomic imbalance and vascular changes that accounts for the above symptoms. TCM managements for EH-SF52 includes Chinese herbal medication, acupuncture, qigong, taichi, massage, food therapy, as well as lifestyle changes, which targets symptomatic alleviation and blood pressure reduction in a multi-mechanistic manner. An increasing shift towards integrated practice of TCM and western medicine in EH-SF52 requires effective communication between both disciplines.
Collapse
Affiliation(s)
- Xuhua Huang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Sakhorn Ngaenklangdon
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Faculty of Traditional Chinese Medicine, Nakhonratchasima College, Thailand
| | - Jun He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
31
|
Secondary Metabolites of Plants as Modulators of Endothelium Functions. Int J Mol Sci 2021; 22:ijms22052533. [PMID: 33802468 PMCID: PMC7959468 DOI: 10.3390/ijms22052533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
According to the World Health Organization, cardiovascular diseases are the main cause of death worldwide. They may be caused by various factors or combinations of factors. Frequently, endothelial dysfunction is involved in either development of the disorder or results from it. On the other hand, the endothelium may be disordered for other reasons, e.g., due to infection, such as COVID-19. The understanding of the role and significance of the endothelium in the body has changed significantly over time—from a simple physical barrier to a complex system encompassing local and systemic regulation of numerous processes in the body. Endothelium disorders may arise from impairment of one or more signaling pathways affecting dilator or constrictor activity, including nitric oxide–cyclic guanosine monophosphate activation, prostacyclin–cyclic adenosine monophosphate activation, phosphodiesterase inhibition, and potassium channel activation or intracellular calcium level inhibition. In this review, plants are summarized as sources of biologically active substances affecting the endothelium. This paper compares individual substances and mechanisms that are known to affect the endothelium, and which subsequently may cause the development of cardiovascular disorders.
Collapse
|
32
|
Baradaran Rahimi V, Askari VR, Hosseinzadeh H. Promising influences of Scutellaria baicalensis and its two active constituents, baicalin, and baicalein, against metabolic syndrome: A review. Phytother Res 2021; 35:3558-3574. [PMID: 33590943 DOI: 10.1002/ptr.7046] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/26/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome is known as a group of metabolic abnormalities with features including central obesity, insulin resistance, hypercholesterolemia, hypertriglyceridemia, and hypertension as well as low level of high-density lipoprotein (HDL)-cholesterol. Previous studies showed the ameliorating effects of Scutellaria baicalensis on metabolic syndrome parameters, including antidiabetic, anti-hyperlipidemic, anti-obesity, and antihypertensive. In this review, we deeply and mechanistically evaluated different studies on the effect of S. baicalensis and its two major bioactive constituents, baicalin, and baicalein, on the critical components of metabolic syndrome, including diabetes, hyperlipidemia, obesity, hypertension, and atherosclerosis. Scientific databases, including PubMed, Scopus, and Google Scholar were searched in the English language until the end of June 2020. Accordingly, S. baicalensis, and its two major bioactive constituents, baicalin and baicalein, represent promising effects on the control of metabolic syndrome and its related disorders such as obesity, hyperlipidemia, atherosclerosis, diabetes, and their following complications. In summary, our findings show that S. baicalensis and its active constituents, baicalin and baicalein, by activation and upregulation of AMPK and PPAR-γ as the main signaling in the hemostasis of glucose and lipid metabolisms may be favorable candidates for the prevention and treatment of the metabolic syndrome.
Collapse
Affiliation(s)
- Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Zhou DD, Luo M, Shang A, Mao QQ, Li BY, Gan RY, Li HB. Antioxidant Food Components for the Prevention and Treatment of Cardiovascular Diseases: Effects, Mechanisms, and Clinical Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6627355. [PMID: 33574978 PMCID: PMC7864729 DOI: 10.1155/2021/6627355] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases (CVDs) have gained increasing attention because of their high prevalence and mortality worldwide. Epidemiological studies revealed that intake of fruits, vegetables, nuts, and cereals could reduce the risk of CVDs, and their antioxidants are considered as the main contributors. Moreover, experimental studies showed that some antioxidant natural products and their bioactive compounds exerted beneficial effects on the cardiovascular system, such as polyphenols, polysaccharides, anthocyanins, epigallocatechin gallate, quercetin, rutin, and puerarin. The mechanisms of action mainly included reducing blood pressure, improving lipid profile, ameliorating oxidative stress, mitigating inflammation, and regulating gut microbiota. Furthermore, clinical trials confirmed the cardiovascular-protective effect of some antioxidant natural products, such as soursop, beetroot, garlic, almond, and green tea. In this review, we summarized the effects of some antioxidant natural products and their bioactive compounds on CVDs based on the epidemiological, experimental, and clinical studies, with special attention paid to the relevant mechanisms and clinical trials.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
34
|
Xu Z, Liu X, Li Y, Gao H, He T, Zhang C, Hao W, Teng X. Shuxuetong injection simultaneously ameliorates dexamethasone-driven vascular calcification and osteoporosis. Exp Ther Med 2021; 21:197. [PMID: 33488806 PMCID: PMC7812579 DOI: 10.3892/etm.2021.9630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis (OP) and vascular calcification (VC) share a number of common risk factors, pathophysiological mechanisms and etiology, which are known as bone-vascular axis. The present study aimed to investigate the effects of Shuxuetong (SXT) injection on VC and osteoporosis. A rat model of VC and osteoporosis was induced by dexamethasone (DEX; 1 mg/kg/day for 4 weeks, intramuscularly). Simultaneously, 0.6 ml/kg/day SXT was intraperitoneally injected. Compared with control rats, DEX induced significantly more VC and OP, as determined by increased calcium deposition and alkaline phosphatase activity in the aorta, disturbed structure, decreased levels of cortical bone thickness and trabecular bone area, and increased apoptosis in the bone. SXT injection ameliorated DEX-induced VC and osteoporosis; furthermore, the osteoblastic differentiation of vascular smooth muscle cells and the activation of endoplasmic reticulum stress in the DEX group was also prevented by SXT injection. Compared with control rats, protein expression levels of sclerostin, a crucial crosslink of the bone-vascular axis, were significantly increased in the aorta and bone of rats with DEX, which was also attenuated by SXT injection. Thus, the present study suggested that SXT injection could ameliorate both VC and OP, and may be mediated by the regulation of sclerostin. The present study may provide the basis a novel strategy for the prevention and treatment of VC and OP, which emerge as side-effects of glucocorticoids.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Xiaoguang Liu
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Yanqing Li
- Department of Gynecology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Hongliang Gao
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Tao He
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Chunlei Zhang
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Wei Hao
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
35
|
Cheng Y, Shen A, Wu X, Shen Z, Chen X, Li J, Liu L, Lin X, Wu M, Chen Y, Chu J, Peng J. Qingda granule attenuates angiotensin II-induced cardiac hypertrophy and apoptosis and modulates the PI3K/AKT pathway. Biomed Pharmacother 2021; 133:111022. [PMID: 33378940 DOI: 10.1016/j.biopha.2020.111022] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 12/01/2022] Open
Abstract
Qingda granule (QDG), simplified from Qingxuan Jiangya Decoction, is a well-known traditional Chinese medicine formula that has been used for decades to treat hypertension. However, the cardioprotective effects of QDG on Ang II-induced hypertension remain unknown. This study aimed to investigate the effects of QDG on hypertension-induced cardiac hypertrophy and apoptosis, as well as explore its underlying mechanisms. Mice were infused with Ang II (500 ng/kg/min) or saline solution as control, then administered oral QDG (1.145 g/kg/day) or saline for two weeks. QDG treatment attenuated the elevation in blood pressure caused by Ang II, as well as the decreased left ventricle ejection fractions and fractional shortening. Moreover, QDG treatment significantly alleviated the Ang II-induced elevation of the ratio of heart weight to tibia length, as well as cardiac injury, hypertrophy, and apoptosis. In cultured H9C2 cells stimulated with Ang II, QDG partially reversed the increase in cell surface area and number of apoptotic cells, up-regulation of hypertrophy markers ANP and BNP, and activation of caspases-9 and -3. QDG also partially reversed Ang II-induced accumulation of reactive oxygen species (ROS), depolarization of the mitochondrial membrane, release of cytochrome C, up-regulation of Bax, and decrease in levels of p-PI3K, p-AKT, and Bcl-2. These results suggest that QDG can significantly attenuate Ang II-induced hypertension, cardiac hypertrophy and apoptosis, and it may exert these effects in part by suppressing ROS production and activating the PI3K/AKT signaling pathway.
Collapse
MESH Headings
- Angiotensin II
- Animals
- Apoptosis/drug effects
- Blood Pressure/drug effects
- Cell Line
- Disease Models, Animal
- Drugs, Chinese Herbal/pharmacology
- Gene Expression Regulation
- Gene Regulatory Networks
- Hypertension/chemically induced
- Hypertension/enzymology
- Hypertension/physiopathology
- Hypertension/prevention & control
- Hypertrophy, Left Ventricular/chemically induced
- Hypertrophy, Left Ventricular/enzymology
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/prevention & control
- Male
- Mice, Inbred C57BL
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Phosphatidylinositol 3-Kinase/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Xiangyan Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Zhiqing Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Xiaoping Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Jiapeng Li
- Department of Physical Education, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Xiaoying Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA.
| | - Jianfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
36
|
Xin L, Gao J, Lin H, Qu Y, Shang C, Wang Y, Lu Y, Cui X. Regulatory Mechanisms of Baicalin in Cardiovascular Diseases: A Review. Front Pharmacol 2020; 11:583200. [PMID: 33224035 PMCID: PMC7667240 DOI: 10.3389/fphar.2020.583200] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular diseases (CVDs) is the leading cause of high morbidity and mortality worldwide, which emphasizes the urgent necessity to develop new pharmacotherapies. In eastern countries, traditional Chinese medicine Scutellaria baicalensis Georgi has been used clinically for thousands of years. Baicalin is one of the main active ingredients extracted from Chinese herbal medicine S. baicalensis. Emerging evidence has established that baicalin improves chronic inflammation, immune imbalance, disturbances in lipid metabolism, apoptosis and oxidative stress. Thereby it offers beneficial roles against the initiation and progression of CVDs such as atherosclerosis, hypertension, myocardial infarction and reperfusion, and heart failure. In this review, we summarize the pharmacological features and relevant mechanisms by which baicalin regulates CVDs in the hope to reveal its application for CVDs prevention and/or therapy.
Collapse
Affiliation(s)
- Laiyun Xin
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jialiang Gao
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongchen Lin
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Qu
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chang Shang
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Wang
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingdong Lu
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangning Cui
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
37
|
Song JW, Long JY, Xie L, Zhang LL, Xie QX, Chen HJ, Deng M, Li XF. Applications, phytochemistry, pharmacological effects, pharmacokinetics, toxicity of Scutellaria baicalensis Georgi. and its probably potential therapeutic effects on COVID-19: a review. Chin Med 2020; 15:102. [PMID: 32994803 PMCID: PMC7517065 DOI: 10.1186/s13020-020-00384-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Scutellaria baicalensis Georgi. (SB) is a common heat-clearing medicine in traditional Chinese medicine (TCM). It has been used for thousands of years in China and its neighboring countries. Clinically, it is mostly used to treat diseases such as cold and cough. SB has different harvesting periods and processed products for different clinical symptoms. Botanical researches proved that SB included in the Chinese Pharmacopoeia (1st, 2020) was consistent with the medicinal SB described in ancient books. Modern phytochemical analysis had found that SB contains hundreds of active ingredients, of which flavonoids are its major components. These chemical components are the material basis for SB to exert pharmacological effects. Pharmacological studies had shown that SB has a wide range of pharmacological activities such as antiinflammatory, antibacterial, antiviral, anticancer, liver protection, etc. The active ingredients of SB were mostly distributed in liver and kidney, and couldn't be absorbed into brain via oral absorption. SB's toxicity was mostly manifested in liver fibrosis and allergic reactions, mainly caused by baicalin. The non-medicinal application prospects of SB were broad, such as antibacterial plastics, UV-resistant silk, animal feed, etc. In response to the Coronavirus Disease In 2019 (COVID-19), based on the network pharmacology research, SB's active ingredients may have potential therapeutic effects, such as baicalin and baicalein. Therefore, the exact therapeutic effects are still need to be determined in clinical trials. SB has been reviewed in the past 2 years, but the content of these articles were not comprehensive and accurate. In view of the above, we made a comprehensive overview of the research progress of SB, and expect to provide ideas for the follow-up study of SB.
Collapse
Affiliation(s)
- Jia-Wen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Jia-Ying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Lin-Lin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Qing-Xuan Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Hui-Juan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Xiao-Fang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| |
Collapse
|
38
|
Aekthammarat D, Pannangpetch P, Tangsucharit P. Moringa oleifera leaf extract induces vasorelaxation via endothelium-dependent hyperpolarization and calcium channel blockade in mesenteric arterial beds isolated from L-NAME hypertensive rats. Clin Exp Hypertens 2020; 42:490-501. [PMID: 31965874 DOI: 10.1080/10641963.2020.1714640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND An aqueous extract of Moringa oleifera leaves (MOE) is known to cause relaxation of mesenteric resistance arteries of rats in which hypertension has been induced by the administration of L-NAME, but the mechanism(s) of action of MOE remains unclear. The purpose of this study was to investigate these mechanisms in mesenteric arterial beds isolated from L-NAME induced hypertensive rats. Methods: An investigation of vascular reactivity was conducted on isolated mesenteric arterial beds by measuring the changes in perfusion pressure using an in vitro system. RESULTS MOE (0.001-3 mg in 0.1 ml injection volume) caused a dose-dependent relaxation in methoxamine (5 µM) pre-contracted arterial beds, which was partially abolished by endothelium removal. The endothelium-dependent component of vasorelaxation was insensitive to both L-NAME (100 µM) and indomethacin (10 µM), while completely inhibited in high KCl (45 mM)-induced contraction. MOE (1 and 3 mg/ml) showed a dose-dependent inhibitory effect on CaCl2-induced contractions of denuded preparations in Ca2+-free medium containing a high KCl (60 mM) or methoxamine (10 µM). In Ca2+-free medium, MOE (3 mg/ml) also inhibited phenylephrine-induced contractions of denuded preparations. Conclusion: These findings suggest that MOE relaxes mesenteric arterial beds of L-NAME hypertensive rats via both endothelium-dependent and endothelium-independent mechanisms. The endothelium-dependent action occurred via endothelium-derived hyperpolarizing factor-mediated hyperpolarization. The endothelium-independent action was related to blocking the entry of extracellular Ca2+ via voltage-operated and receptor-operated Ca2+ channels, and inhibiting mobilization of sarcolemmal Ca2+ via inositol trisphosphate receptor Ca2+ channels. MOE may be potentially useful as a natural vasodilator against hypertension.
Collapse
Affiliation(s)
- Direk Aekthammarat
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University , Khon Kaen, Thailand.,Cardiovascular Research Group, Khon Kaen University , Khon Kaen, Thailand
| | - Patchareewan Pannangpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University , Khon Kaen, Thailand.,Cardiovascular Research Group, Khon Kaen University , Khon Kaen, Thailand
| | - Panot Tangsucharit
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University , Khon Kaen, Thailand.,Cardiovascular Research Group, Khon Kaen University , Khon Kaen, Thailand
| |
Collapse
|
39
|
Wang ZY, Jiang ZM, Xiao PT, Jiang YQ, Liu WJ, Liu EH. The mechanisms of baicalin ameliorate obesity and hyperlipidemia through a network pharmacology approach. Eur J Pharmacol 2020; 878:173103. [DOI: 10.1016/j.ejphar.2020.173103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
|
40
|
Abstract
Background: The dawn of the year 2020 witnessed the spread of the highly infectious and communicable disease coronavirus disease 2019 (COVID-19) globally since it was first reported in 2019. Severe acute respiratory syndrome coronavirus-2 is the main causative agent. In total, 3,096,626 cases and 217,896 deaths owing to COVID-19 were reported by 30th April, 2020 by the World Health Organization. This means infection and deaths show an exponential growth globally. In order to tackle this pandemic, it is necessary to find possible easily accessible therapeutic agents till an effective vaccine is developed. Methods: In this study, we present the results of molecular docking processes through high throughput virtual screening to analyze drugs recommended for the treatment of COVID-19. Results: Atovaquone, fexofenadine acetate (Allegra), ethamidindole, baicalin, glycyrrhetic acid, justicidin D, euphol, and curine are few of the lead molecules found after docking 129 known antivirals, antimalarial, antiparasitic drugs and 992 natural products. Conclusions: These molecules could act as an effective inhibitory drug against COVID-19.
Collapse
Affiliation(s)
- Sweta Singh
- Savitribai Phule Pune University, Pune, India
| | - Hector Florez
- Universidad Distrital Francisco Jose de Caldas, Bogota, Colombia
| |
Collapse
|
41
|
Fusi F, Trezza A, Tramaglino M, Sgaragli G, Saponara S, Spiga O. The beneficial health effects of flavonoids on the cardiovascular system: Focus on K+ channels. Pharmacol Res 2020; 152:104625. [DOI: 10.1016/j.phrs.2019.104625] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/14/2019] [Accepted: 12/31/2019] [Indexed: 01/17/2023]
|
42
|
Wu D, Ding L, Tang X, Wang W, Chen Y, Zhang T. Baicalin Protects Against Hypertension-Associated Intestinal Barrier Impairment in Part Through Enhanced Microbial Production of Short-Chain Fatty Acids. Front Pharmacol 2019; 10:1271. [PMID: 31719823 PMCID: PMC6826474 DOI: 10.3389/fphar.2019.01271] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
Impaired intestinal barrier plays an important role in the pathogenesis of hypertension primarily through promoting the development of chronic low-grade inflammation. Baicalin is the major flavonoid component of Scutellaria baicalensis Georgi, a medicinal plant commonly used for the treatment of inflammatory intestinal disorders and hypertension in traditional Chinese medicine. However, it remains to be elucidated whether baicalin alleviates hypertension-associated intestinal barrier impairment. The current study thus investigated the effects of baicalin on the intestinal barrier integrity, the intestinal expression of genes encoding proinflammatory factors and tight junction proteins, the serum levels of the inflammatory markers, the amount of fecal short-chain fatty acids (SCFAs) and the abundance of SCFAs-producing bacteria in the spontaneously hypertensive rats (SHRs). The results showed that baicalin alleviated the pathological lesions in the ilium and the proximal colon in the SHRs. Baicalin treatment resulted in decreased ileal and colonic expression of proinflammatory genes in the SHRs. In addition, baicalin treatment attenuated hypertension-associated intestinal hyperpermeability and decreased the serum levels of inflammatory indicators such as high-sensitivity C-reactive protein (hs-CRP), interleukin 1 beta, and IL-6 in the SHRs. The protective effect of baicalin on the intestinal integrity was also supported by well-preserved intestinal ultrastructure and increased intestinal expression of genes encoding tight junction proteins such as zonula occludens-1 (ZO-1), cingulin, and occludin in the SHRs. Lastly, baicalin treatment increased the amount of fecal SCFAs and the abundance of SCFAs-producing bacteria in the SHRs. In conclusion, the work here provides for the first time the morphological, biochemical, and molecular evidence supporting the protective effects of baicalin on the intestinal integrity in the SHRs, which may help better understand the therapeutic effects of S. baicalensis Georgi in the treatment of hypertension.
Collapse
Affiliation(s)
- Dandan Wu
- Clinical Research Institute of Integrative Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liliqiang Ding
- Clinical Research Institute of Integrative Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoting Tang
- Clinical Research Institute of Integrative Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjian Wang
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yu Chen
- Clinical Research Institute of Integrative Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Teng Zhang
- Clinical Research Institute of Integrative Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
43
|
Wu D, Tang X, Ding L, Cui J, Wang P, Du X, Yin J, Wang W, Chen Y, Zhang T. Candesartan attenuates hypertension-associated pathophysiological alterations in the gut. Biomed Pharmacother 2019; 116:109040. [DOI: 10.1016/j.biopha.2019.109040] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 01/04/2023] Open
|