1
|
Raimondi V, Vescovini R, Dessena M, Donofrio G, Storti P, Giuliani N. Oncolytic viruses: a potential breakthrough immunotherapy for multiple myeloma patients. Front Immunol 2024; 15:1483806. [PMID: 39539548 PMCID: PMC11557349 DOI: 10.3389/fimmu.2024.1483806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Oncolytic virotherapy represents an innovative and promising approach for the treatment of cancer, including multiple myeloma (MM), a currently incurable plasma cell (PC) neoplasm. Despite the advances that new therapies, particularly immunotherapy, have been made, relapses still occur in MM patients, highlighting the medical need for new treatment options. Oncolytic viruses (OVs) preferentially infect and destroy cancer cells, exerting a direct and/or indirect cytopathic effect, combined with a modulation of the tumor microenvironment leading to an activation of the immune system. Both naturally occurring and genetically modified viruses have demonstrated significant preclinical effects against MM cells. Currently, the OVs genetically modified measles virus strains, reovirus, and vesicular stomatitis virus are employed in clinical trials for MM. Nevertheless, significant challenges remain, including the efficiency of the virus delivery to the tumor, overcoming antiviral immune responses, and the specificity of the virus for MM cells. Different strategies are being explored to optimize OV therapy, including combining it with standard treatments and targeted therapies to enhance efficacy. This review will provide a comprehensive analysis of the mechanism of action of the different OVs, and preclinical and clinical evidence, focusing on the role of oncolytic virotherapy as a new possible immunotherapeutic approach also in combination with the current therapeutic armamentarium and underlying the future directions in the context of MM treatments.
Collapse
Affiliation(s)
- Vincenzo Raimondi
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rosanna Vescovini
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mattia Dessena
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Paola Storti
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Nicola Giuliani
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Multiple Myeloma and Monoclonal Gammopathy Program, Department of Onco-Hematology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
- Hematology Unit, Department of Onco-Hematology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
2
|
Gao X, Liu J, Sun R, Zhang J, Cao X, Zhang Y, Zhao M. Alliance between titans: combination strategies of CAR-T cell therapy and oncolytic virus for the treatment of hematological malignancies. Ann Hematol 2024; 103:2569-2589. [PMID: 37853078 DOI: 10.1007/s00277-023-05488-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
There have been several clinical studies using chimeric antigen receptor (CAR)-T cell therapy for different hematological malignancies. It has transformed the therapy landscape for hematologic malignancies dramatically. Nonetheless, in acute myeloid leukemia (AML) and T cell malignancies, it still has a dismal prognosis. Even in the most promising locations, recurrence with CAR-T treatment remains a big concern. Oncolytic viruses (OVs) can directly lyse tumor cells or cause immune responses, and they can be manipulated to create therapeutic proteins, increasing anticancer efficacy. Oncolytic viruses have been proven in a rising number of studies to be beneficial in hematological malignancies. There are limitations that cannot be avoided by using either treatment alone, and the combination of CAR-T cell therapy and oncolytic virus therapy may complement the disadvantages of individual application, enhance the advantages of their respective treatment methods and improve the treatment effect. The alternatives for combining two therapies in hematological malignancies are discussed in this article.
Collapse
Affiliation(s)
- Xuejin Gao
- Emergency, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Jile Liu
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Rui Sun
- Nankai University School of Medicine, Tianjin, 300192, China
| | - Jingkun Zhang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Xinping Cao
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China.
| |
Collapse
|
3
|
Zarezadeh Mehrabadi A, Tat M, Ghorbani Alvanegh A, Roozbahani F, Esmaeili Gouvarchin Ghaleh H. Revolutionizing cancer treatment: the power of bi- and tri-specific T-cell engagers in oncolytic virotherapy. Front Immunol 2024; 15:1343378. [PMID: 38464532 PMCID: PMC10921556 DOI: 10.3389/fimmu.2024.1343378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/09/2024] [Indexed: 03/12/2024] Open
Abstract
Bi- or tri-specific T cell engagers (BiTE or TriTE) are recombinant bispecific proteins designed to stimulate T-cell immunity directly, bypassing antigen presentation by antigen-presenting cells (APCs). However, these molecules suffer from limitations such as short biological half-life and poor residence time in the tumor microenvironment (TME). Fortunately, these challenges can be overcome when combined with OVs. Various strategies have been developed, such as encoding secretory BiTEs within OV vectors, resulting in improved targeting and activation of T cells, secretion of key cytokines, and bystander killing of tumor cells. Additionally, oncolytic viruses armed with BiTEs have shown promising outcomes in enhancing major histocompatibility complex I antigen (MHC-I) presentation, T-cell proliferation, activation, and cytotoxicity against tumor cells. These combined approaches address tumor heterogeneity, drug delivery, and T-cell infiltration, offering a comprehensive and effective solution. This review article aims to provide a comprehensive overview of Bi- or TriTEs and OVs as promising therapeutic approaches in the field of cancer treatment. We summarize the cutting-edge advancements in oncolytic virotherapy immune-related genetic engineering, focusing on the innovative combination of BiTE or TriTE with OVs.
Collapse
Affiliation(s)
| | - Mahdi Tat
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Roozbahani
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | |
Collapse
|
4
|
Yeşilaltay A, Muz D, Erdal B, Bilgen T, Batar B, Turgut B, Topçu B, Yılmaz B, Avcı BA. Myxoma Virus Combination Therapy Enhances Lenalidomide and Bortezomib Treatments for Multiple Myeloma. Pathogens 2024; 13:72. [PMID: 38251379 PMCID: PMC10820570 DOI: 10.3390/pathogens13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/09/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
This study aimed to explore the effectiveness and safety of Myxoma virus (MYXV) in MM cell lines and primary myeloma cells obtained from patients with multiple myeloma. Myeloma cells were isolated from MM patients and cultured. MYXV, lenalidomide, and bortezomib were used in MM cells. The cytotoxicity assay was investigated using WST-1. Apoptosis was assessed through flow cytometry with Annexin V/PI staining and caspase-9 concentrations using ELISA. To explore MYXV entry into MM cells, monoclonal antibodies were used. Moreover, to explore the mechanisms of MYXV entry into MM cells, we examined the level of GFP-labeled MYXV within the cells after blocking with monoclonal antibodies targeting BCMA, CD20, CD28, CD33, CD38, CD56, CD86, CD117, CD138, CD200, and CD307 in MM cells. The study demonstrated the effects of treating Myxoma virus with lenalidomide and bortezomib. The treatment resulted in reduced cell viability and increased caspase-9 expression. Only low-dose CD86 blockade showed a significant difference in MYXV entry into MM cells. The virus caused an increase in the rate of apoptosis in the cells, regardless of whether it was administered alone or in combination with drugs. The groups with the presence of the virus showed higher rates of early apoptosis. The Virus, Virus + Bortezomib, and Virus + Lenalidomide groups had significantly higher rates of early apoptosis (p < 0.001). However, the measurements of late apoptosis and necrosis showed variability. The addition of MYXV resulted in a statistically significant increase in early apoptosis in both newly diagnosed and refractory MM patients. Our results highlight that patient-based therapy should also be considered for the effective management of MM.
Collapse
Affiliation(s)
- Alpay Yeşilaltay
- Department of Hematology, Faculty of Medicine, Başkent University Istanbul, Istanbul 34662, Türkiye
| | - Dilek Muz
- Department of Virology, Faculty of Veterinary, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Berna Erdal
- Department of Medical Microbiology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Türker Bilgen
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Bahadır Batar
- Department of Medical Biology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Burhan Turgut
- Department of Hematology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye; (B.T.); (B.A.A.)
| | - Birol Topçu
- Department of Biostatistics, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Bahar Yılmaz
- Department of Tumor Biology and Immunology, Institute of Health Sciences, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Burcu Altındağ Avcı
- Department of Hematology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye; (B.T.); (B.A.A.)
| |
Collapse
|
5
|
Seyed-Khorrami SM, Azadi A, Rastegarvand N, Habibian A, Soleimanjahi H, Łos MJ. A promising future in cancer immunotherapy: Oncolytic viruses. Eur J Pharmacol 2023; 960:176063. [PMID: 37797673 DOI: 10.1016/j.ejphar.2023.176063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Alongside the conventional methods, attention has been drawn to the use of immunotherapy-based methods for cancer treatment. Immunotherapy has developed as a therapeutic option that can be more specific with better outcomes in tumor treatment. It can boost or regulate the immune system behind the targeted virotherapy. Virotherapy is a kind of oncolytic immunotherapy that investigated broadly in cancer treatment in recent decades, due to its several advantages. According to recent advance in the field of understanding cancer cell biology and its occurrence, as well as increasing the knowledge about conditionally replicating oncolytic viruses and their destructive function in the tumor cells, nowadays, it is possible to apply this strategy in the treatment of malignancies. Relying on achievements in clinical trials of oncolytic viruses, we can certainly expect that this therapeutic perception can play a more central role in cancer treatment. In cancer treatment, combination therapy using oncolytic viruses alongside standard cancer treatment methods and other immunotherapy-based treatments can expect more promising results in the future.
Collapse
Affiliation(s)
| | - Arezou Azadi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasrin Rastegarvand
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ala Habibian
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100, Gliwice, Poland; LinkoCare Life Sciences AB, Linkoping, Sweden.
| |
Collapse
|
6
|
Ye J, Zhang J, Zhu Y, Wang L, Jiang X, Liu B, He G. Targeting autophagy and beyond: Deconvoluting the complexity of Beclin-1 from biological function to cancer therapy. Acta Pharm Sin B 2023; 13:4688-4714. [PMID: 38045051 PMCID: PMC10692397 DOI: 10.1016/j.apsb.2023.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 12/05/2023] Open
Abstract
Beclin-1 is the firstly-identified mammalian protein of the autophagy machinery, which functions as a molecular scaffold for the assembly of PI3KC3 (class III phosphatidylinositol 3 kinase) complex, thus controlling autophagy induction and other cellular trafficking events. Notably, there is mounting evidence establishing the implications of Beclin-1 in diverse tumorigenesis processes, including tumor suppression and progression as well as resistance to cancer therapeutics and CSC (cancer stem-like cell) maintenance. More importantly, Beclin-1 has been confirmed as a potential target for the treatment of multiple cancers. In this review, we provide a comprehensive survey of the structure, functions, and regulations of Beclin-1, and we discuss recent advances in understanding the controversial roles of Beclin-1 in oncology. Moreover, we focus on summarizing the targeted Beclin-1-regulating strategies in cancer therapy, providing novel insights into a promising strategy for regulating Beclin-1 to improve cancer therapeutics in the future.
Collapse
Affiliation(s)
- Jing Ye
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanghui Zhu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Wang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| |
Collapse
|
7
|
Muthukutty P, Yoo SY. Oncolytic Virus Engineering and Utilizations: Cancer Immunotherapy Perspective. Viruses 2023; 15:1645. [PMID: 37631987 PMCID: PMC10459766 DOI: 10.3390/v15081645] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Oncolytic viruses have positively impacted cancer immunotherapy over the past 20 years. Both natural and genetically modified viruses have shown promising results in treating various cancers. Various regulatory authorities worldwide have approved four commercial oncolytic viruses, and more are being developed to overcome this limitation and obtain better anti-tumor responses in clinical trials at various stages. Faster advancements in translating research into the commercialization of cancer immunotherapy and a comprehensive understanding of the modification strategies will widen the current knowledge of future technologies related to the development of oncolytic viruses. In this review, we discuss the strategies of virus engineering and the progress of clinical trials to achieve virotherapeutics.
Collapse
Affiliation(s)
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
8
|
Lin D, Shen Y, Liang T. Oncolytic virotherapy: basic principles, recent advances and future directions. Signal Transduct Target Ther 2023; 8:156. [PMID: 37041165 PMCID: PMC10090134 DOI: 10.1038/s41392-023-01407-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 04/13/2023] Open
Abstract
Oncolytic viruses (OVs) have attracted growing awareness in the twenty-first century, as they are generally considered to have direct oncolysis and cancer immune effects. With the progress in genetic engineering technology, OVs have been adopted as versatile platforms for developing novel antitumor strategies, used alone or in combination with other therapies. Recent studies have yielded eye-catching results that delineate the promising clinical outcomes that OVs would bring about in the future. In this review, we summarized the basic principles of OVs in terms of their classifications, as well as the recent advances in OV-modification strategies based on their characteristics, biofunctions, and cancer hallmarks. Candidate OVs are expected to be designed as "qualified soldiers" first by improving target fidelity and safety, and then equipped with "cold weapons" for a proper cytocidal effect, "hot weapons" capable of activating cancer immunotherapy, or "auxiliary weapons" by harnessing tactics such as anti-angiogenesis, reversed metabolic reprogramming and decomposing extracellular matrix around tumors. Combinations with other cancer therapeutic agents have also been elaborated to show encouraging antitumor effects. Robust results from clinical trials using OV as a treatment congruously suggested its significance in future application directions and challenges in developing OVs as novel weapons for tactical decisions in cancer treatment.
Collapse
Affiliation(s)
- Danni Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yinan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Wu YY, Sun TK, Chen MS, Munir M, Liu HJ. Oncolytic viruses-modulated immunogenic cell death, apoptosis and autophagy linking to virotherapy and cancer immune response. Front Cell Infect Microbiol 2023; 13:1142172. [PMID: 37009515 PMCID: PMC10050605 DOI: 10.3389/fcimb.2023.1142172] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Recent reports have revealed that oncolytic viruses (OVs) play a significant role in cancer therapy. The infection of OVs such as oncolytic vaccinia virus (OVV), vesicular stomatitis virus (VSV), parvovirus, mammalian reovirus (MRV), human adenovirus, Newcastle disease virus (NDV), herpes simplex virus (HSV), avian reovirus (ARV), Orf virus (ORFV), inactivated Sendai virus (ISV), enterovirus, and coxsackievirus offer unique opportunities in immunotherapy through diverse and dynamic pathways. This mini-review focuses on the mechanisms of OVs-mediated virotherapy and their effects on immunogenic cell death (ICD), apoptosis, autophagy and regulation of the immune system.
Collapse
Affiliation(s)
- Yi-Ying Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Te-Kai Sun
- Tsairder Boitechnology Co. Ltd., Taichung, Taiwan
| | - Ming-Shan Chen
- Department of Anesthesiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Muhammad Munir
- Department of Biomedical and Life Sciences, Lancaster University, Lancashire, United Kingdom
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- *Correspondence: Hung-Jen Liu,
| |
Collapse
|
10
|
Tazzyman S, Stewart GR, Yeomans J, Linford A, Lath D, Conner J, Muthana M, Chantry AD, Lawson MA. HSV1716 Prevents Myeloma Cell Regrowth When Combined with Bortezomib In Vitro and Significantly Reduces Systemic Tumor Growth in Mouse Models. Viruses 2023; 15:v15030603. [PMID: 36992311 PMCID: PMC10059747 DOI: 10.3390/v15030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Multiple myeloma remains largely incurable due to refractory disease; therefore, novel treatment strategies that are safe and well-tolerated are required. Here, we studied the modified herpes simplex virus HSV1716 (SEPREHVIR®), which only replicates in transformed cells. Myeloma cell lines and primary patient cells were infected with HSV1716 and assessed for cell death using propidium iodide (PI) and Annexin-V staining and markers of apoptosis and autophagy by qPCR. Myeloma cell death was associated with dual PI and Annexin-V positivity and increased expression of apoptotic genes, including CASP1, CASP8, CASP9, BAX, BID, and FASL. The combination of HSV1716 and bortezomib treatments prevented myeloma cell regrowth for up to 25 days compared to only transient cell growth suppression with bortezomib treatment. The viral efficacy was tested in a xenograft (JJN-3 cells in NSG mice) and syngeneic (murine 5TGM1 cells in C57BL/KaLwRijHsd mice) systemic models of myeloma. After 6 or 7 days, the post-tumor implantation mice were treated intravenously with the vehicle or HSV1716 (1 × 107 plaque forming units/1 or 2 times per week). Both murine models treated with HSV1716 had significantly lower tumor burden rates compared to the controls. In conclusion, HSV1716 has potent anti-myeloma effects and may represent a novel therapy for multiple myeloma.
Collapse
Affiliation(s)
- Simon Tazzyman
- Sheffield Myeloma Research Team, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Mellanby Centre for Musculoskeletal Research, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Oncology and Metabolism, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Georgia R. Stewart
- Sheffield Myeloma Research Team, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Mellanby Centre for Musculoskeletal Research, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Oncology and Metabolism, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - James Yeomans
- Sheffield Myeloma Research Team, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Mellanby Centre for Musculoskeletal Research, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Oncology and Metabolism, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Adam Linford
- Sheffield Myeloma Research Team, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Mellanby Centre for Musculoskeletal Research, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Oncology and Metabolism, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Darren Lath
- Sheffield Myeloma Research Team, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Mellanby Centre for Musculoskeletal Research, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Oncology and Metabolism, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Joe Conner
- Sorrento Therapeutics, 4955 Directors Place, San Diego, CA 92121, USA
| | - Munitta Muthana
- Department of Oncology and Metabolism, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Andrew D. Chantry
- Sheffield Myeloma Research Team, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Mellanby Centre for Musculoskeletal Research, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Oncology and Metabolism, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Michelle A. Lawson
- Sheffield Myeloma Research Team, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Mellanby Centre for Musculoskeletal Research, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Oncology and Metabolism, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Correspondence: ; Tel.: +44-114-2159094
| |
Collapse
|
11
|
Lanier OL, Pérez-Herrero E, Andrea APD, Bahrami K, Lee E, Ward DM, Ayala-Suárez N, Rodríguez-Méndez SM, Peppas NA. Immunotherapy approaches for hematological cancers. iScience 2022; 25:105326. [PMID: 36325064 PMCID: PMC9619355 DOI: 10.1016/j.isci.2022.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hematological cancers such as leukemia, lymphoma, and multiple myeloma have traditionally been treated with chemo and radiotherapy approaches. Introduction of immunotherapies for treatment of these diseases has led to patient remissions that would not have been possible with traditional approaches. In this critical review we identify main disease characteristics, symptoms, and current treatment options. Five common immunotherapies, namely checkpoint inhibitors, vaccines, cell-based therapies, antibodies, and oncolytic viruses, are described, and their applications in hematological cancers are critically discussed.
Collapse
Affiliation(s)
- Olivia L. Lanier
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Edgar Pérez-Herrero
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna, La Laguna, 38206 Tenerife, Spain
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, La Laguna, 38206 Tenerife, Spain
- Instituto Universitario de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, 38200 Tenerife, Spain
| | - Abielle P. D.’ Andrea
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Kiana Bahrami
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Elaine Lee
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Deidra M. Ward
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Nilaya Ayala-Suárez
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, La Laguna, 38206 Tenerife, Spain
| | - Sheyla M. Rodríguez-Méndez
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, La Laguna, 38206 Tenerife, Spain
| | - Nicholas A. Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
12
|
Villa NY, Rahman MM, Mamola J, Sharik ME, de Matos AL, Kilbourne J, Lowe K, Daggett-Vondras J, D'Isabella J, Goras E, Chesi M, Bergsagel PL, McFadden G. Transplantation of autologous bone marrow pre-loaded ex vivo with oncolytic myxoma virus is efficacious against drug-resistant Vk*MYC mouse myeloma. Oncotarget 2022; 13:490-504. [PMID: 35251496 PMCID: PMC8893797 DOI: 10.18632/oncotarget.28205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy of plasma cells that remains incurable despite significant progress with myeloablative regimens and autologous stem cell transplantation for eligible patients and, more recently with T cell redirected immunotherapy. Recently, we reported that ex vivo virotherapy with oncolytic myxoma virus (MYXV) improved MM-free survival in an autologous-transplant Balb/c mouse model. Here, we tested the Vk*MYC transplantable C57BL/6 mouse MM model that more closely recapitulates human disease. In vitro, the murine bortezomib-resistant Vk12598 cell line is fully susceptible to MYXV infection. In vivo results demonstrate: (i) autologous bone marrow (BM) leukocytes armed ex vivo with MYXV exhibit moderate therapeutic effects against MM cells pre-seeded into recipient mice; (ii) Cyclophosphamide in combination with BM/MYXV delays the onset of myeloma in mice seeded with Vk12598 cells; (iii) BM/MYXV synergizes with the Smac-mimetics LCL161 and with immune checkpoint inhibitor α-PD-1 to control the progression of established MM in vivo, resulting in significant improvement of survival rates and decreased of tumor burden; (iv) Survivor mice from (ii) and (iii), when re-challenged with fresh Vk12598 cells, developed acquired anti-MM immunity. These results highlight the utility of autologous BM grafts armed ex vivo with oncolytic MYXV alone or in combination with chemotherapy/immunotherapy to treat drug-resistant MM in vivo.
Collapse
Affiliation(s)
- Nancy Y. Villa
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
- Division of Hematology/Oncology, School of Medicine, Emory University, Atlanta, GA 32322, USA
| | - Masmudur M. Rahman
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Joseph Mamola
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | | | - Ana Lemos de Matos
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Jacquelyn Kilbourne
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Kenneth Lowe
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Juliane Daggett-Vondras
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Julia D'Isabella
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Elizabeth Goras
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Marta Chesi
- Department of Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | | | - Grant McFadden
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
13
|
Lei W, Ye Q, Hao Y, Chen J, Huang Y, Yang L, Wang S, Qian W. CD19-targeted BiTE expression by an oncolytic vaccinia virus significantly augments therapeutic efficacy against B-cell lymphoma. Blood Cancer J 2022; 12:35. [PMID: 35228544 PMCID: PMC8885649 DOI: 10.1038/s41408-022-00634-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Immunotherapy with CD19-targeting bispecific T-cell engagers (CD19BiTEs) has demonstrated highly effective killing of cancer cells in patients with precursor acute lymphoblastic leukemia and non-Hodgkin's lymphomas. However, there are some drawbacks to this therapy, such as toxicity, short half-life in the serum, and immunosuppressive tumor microenvironment that could limit the use of CD19BiTEs in the clinic. Here, we generate an oncolytic vaccinia virus (OVV) encoding a CD19-specific BiTE (OVV-CD19BiTE). We demonstrate that OVV-CD19BiTE's ability to replicate and induce oncolysis was similar to that of its parental counterpart. Supernatants from OVV-CD19BiTE-infected cells could induce activation and proliferation of human T cells, and the bystander effect of the virus was also demonstrated. In vivo study showed that OVV-CD19BiTE selectively replicated within tumor tissue, and contributed to a more significantly increased percentage of CD3, CD8, and naïve CD8 T subpopulations within tumors in contrast to blinatumomab. More importantly, treatment with OVV-CD19BiTE both in vitro and in vivo resulted in potent antitumor activity in comparison with control OVV or blinatumomab, a first-in-class BiTE, thereby resulting in long-term tumor remissions without relapse. The study provides strong evidence for the therapeutic benefits of CD19-targeting BiTE expression by OVV, and suggests the feasibility of testing the approach in clinical trials.
Collapse
Affiliation(s)
- Wen Lei
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, P. R. China.,Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
| | - Qian Ye
- Hangzhou RongGu Biotechnology Limited Company, 310056, Hangzhou, Zhejiang, P. R. China
| | - Yuanyuan Hao
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, P. R. China.,Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
| | - Jie Chen
- Hangzhou RongGu Biotechnology Limited Company, 310056, Hangzhou, Zhejiang, P. R. China
| | - Yu Huang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, P. R. China
| | - Liu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, P. R. China
| | - Shibing Wang
- Cancer Center, Molecular Diagnosis Laboratory, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, P. R. China.
| | - Wenbin Qian
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, P. R. China. .,Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Leonardi L, Sibéril S, Alifano M, Cremer I, Joubert PE. [Autophagy modulation by viruses: An important role in tumor progression]. Med Sci (Paris) 2022; 38:159-167. [PMID: 35179470 DOI: 10.1051/medsci/2022010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Autophagy is an important process for cellular homeostasis at critical steps of development or in response to environmental stress. In the context of cancers, autophagy has a significant impact on tumor occurrence and tumor cell growth. On the one hand, autophagy limits the transformation of precancerous cells into cancer cells at an early stage. However, on the other hand, it promotes cell survival, cell proliferation, metastasis and resistance to anti-tumor therapies in more advanced tumors. Autophagy can be induced by a variety of extracellular and intracellular stimulus. Viral infections have often been associated with a modulation of autophagy, with variable impacts on viral replication and on the survival of infected cells depending on the model studied. In a tumor context, the modulation of autophagy induced by the viral infection of tumor cells seems to have a significant impact on tumor progression. The aim of this review article is to present recent findings regarding the consequences of autophagy disturbance by viral infections on tumor behavior.
Collapse
Affiliation(s)
- Lucas Leonardi
- Inserm UMRS1138, Centre de recherche des Cordeliers, 15 rue de l'École de médecine, 75006 Paris, France - Sorbonne université, Univ Paris 6, France
| | - Sophie Sibéril
- Inserm UMRS1138, Centre de recherche des Cordeliers, 15 rue de l'École de médecine, 75006 Paris, France - Sorbonne université, Univ Paris 6, France
| | - Marco Alifano
- Inserm UMRS1138, Centre de recherche des Cordeliers, 15 rue de l'École de médecine, 75006 Paris, France - Département de chirurgie thoracique, Hôpital Cochin, 24 rue du Faubourg Saint-Jacques, AP-HP, 75014 Paris, France
| | - Isabelle Cremer
- Inserm UMRS1138, Centre de recherche des Cordeliers, 15 rue de l'École de médecine, 75006 Paris, France - Sorbonne université, Univ Paris 6, France
| | - Pierre-Emmanuel Joubert
- Inserm UMRS1138, Centre de recherche des Cordeliers, 15 rue de l'École de médecine, 75006 Paris, France - Sorbonne université, Univ Paris 6, France
| |
Collapse
|
15
|
Cristi F, Gutiérrez T, Hitt MM, Shmulevitz M. Genetic Modifications That Expand Oncolytic Virus Potency. Front Mol Biosci 2022; 9:831091. [PMID: 35155581 PMCID: PMC8826539 DOI: 10.3389/fmolb.2022.831091] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/06/2022] [Indexed: 12/20/2022] Open
Abstract
Oncolytic viruses (OVs) are a promising type of cancer therapy since they selectively replicate in tumor cells without damaging healthy cells. Many oncolytic viruses have progressed to human clinical trials, however, their performance as monotherapy has not been as successful as expected. Importantly, recent literature suggests that the oncolytic potential of these viruses can be further increased by genetically modifying the viruses. In this review, we describe genetic modifications to OVs that improve their ability to kill tumor cells directly, to dismantle the tumor microenvironment, or to alter tumor cell signaling and enhance anti-tumor immunity. These advances are particularly important to increase virus spread and reduce metastasis, as demonstrated in animal models. Since metastasis is the principal cause of mortality in cancer patients, having OVs designed to target metastases could transform cancer therapy. The genetic alterations reported to date are only the beginning of all possible improvements to OVs. Modifications described here could be combined together, targeting multiple processes, or with other non-viral therapies with potential to provide a strong and lasting anti-tumor response in cancer patients.
Collapse
Affiliation(s)
- Francisca Cristi
- Shmulevitz Laboratory, Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tomás Gutiérrez
- Goping Laboratory, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mary M. Hitt
- Hitt Laboratory, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Mary M. Hitt, ; Maya Shmulevitz,
| | - Maya Shmulevitz
- Shmulevitz Laboratory, Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Mary M. Hitt, ; Maya Shmulevitz,
| |
Collapse
|
16
|
Vorobyev PO, Babaeva FE, Panova AV, Shakiba J, Kravchenko SK, Soboleva AV, Lipatova AV. Oncolytic Viruses in the Therapy of Lymphoproliferative Diseases. Mol Biol 2022; 56:684-695. [PMID: 36217339 PMCID: PMC9534467 DOI: 10.1134/s0026893322050144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022]
Abstract
Cancer is a leading causes of death. Despite significant success in the treatment of lymphatic system tumors, the problems of relapse, drug resistance and effectiveness of therapy remain relevant. Oncolytic viruses are able to replicate in tumor cells and destroy them without affecting normal, healthy tissues. By activating antitumor immunity, viruses are effective against malignant neoplasms of various nature. In lymphoproliferative diseases with a drug-resistant phenotype, many cases of remissions have been described after viral therapy. The current level of understanding of viral biology and the discovery of host cell interaction mechanisms made it possible to create unique strains with high oncoselectivity widely used in clinical practice in recent years.
Collapse
Affiliation(s)
- P. O. Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - F. E. Babaeva
- National Medical Research Center for Hematology, Ministry of Health of Russia, 125167 Moscow, Russia
| | - A. V. Panova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia
| | - J. Shakiba
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - S. K. Kravchenko
- National Medical Research Center for Hematology, Ministry of Health of Russia, 125167 Moscow, Russia
| | - A. V. Soboleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A. V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
17
|
Leonardi L, Sibéril S, Alifano M, Cremer I, Joubert PE. Autophagy Modulation by Viral Infections Influences Tumor Development. Front Oncol 2021; 11:743780. [PMID: 34745965 PMCID: PMC8569469 DOI: 10.3389/fonc.2021.743780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a self-degradative process important for balancing cellular homeostasis at critical times in development and/or in response to nutrient stress. This is particularly relevant in tumor model in which autophagy has been demonstrated to have an important impact on tumor behavior. In one hand, autophagy limits tumor transformation of precancerous cells in early stage, and in the other hand, it favors the survival, proliferation, metastasis, and resistance to antitumor therapies in more advanced tumors. This catabolic machinery can be induced by an important variety of extra- and intracellular stimuli. For instance, viral infection has often been associated to autophagic modulation, and the role of autophagy in virus replication differs according to the virus studied. In the context of tumor development, virus-modulated autophagy can have an important impact on tumor cells' fate. Extensive analyses have shed light on the molecular and/or functional complex mechanisms by which virus-modulated autophagy influences precancerous or tumor cell development. This review includes an overview of discoveries describing the repercussions of an autophagy perturbation during viral infections on tumor behavior.
Collapse
Affiliation(s)
- Lucas Leonardi
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Univ Paris, Paris, France
| | - Sophie Sibéril
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Univ Paris, Paris, France
| | - Marco Alifano
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Department of Thoracic Surgery, Hospital Cochin Assistance Publique Hopitaux de Paris, Paris, France
| | - Isabelle Cremer
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Univ Paris, Paris, France
| | - Pierre-Emmanuel Joubert
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Univ Paris, Paris, France
| |
Collapse
|
18
|
Rahman MM, McFadden G. Oncolytic Viruses: Newest Frontier for Cancer Immunotherapy. Cancers (Basel) 2021; 13:5452. [PMID: 34771615 PMCID: PMC8582515 DOI: 10.3390/cancers13215452] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer remains a leading cause of death worldwide. Despite many signs of progress, currently available cancer treatments often do not provide desired outcomes for too many cancers. Therefore, newer and more effective therapeutic approaches are needed. Oncolytic viruses (OVs) have emerged as a novel cancer treatment modality, which selectively targets and kills cancer cells while sparing normal ones. In the past several decades, many different OV candidates have been developed and tested in both laboratory settings as well as in cancer patient clinical trials. Many approaches have been taken to overcome the limitations of OVs, including engineering OVs to selectively activate anti-tumor immune responses. However, newer approaches like the combination of OVs with current immunotherapies to convert "immune-cold" tumors to "immune-hot" will almost certainly improve the potency of OVs. Here, we discuss strategies that are explored to further improve oncolytic virotherapy.
Collapse
Affiliation(s)
- Masmudur M. Rahman
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA;
| | | |
Collapse
|
19
|
Cook J, Acosta-Medina AA, Peng KW, Lacy M, Russell S. Oncolytic virotherapy - Forging its place in the immunomodulatory paradigm for Multiple Myeloma. Cancer Treat Res Commun 2021; 29:100473. [PMID: 34673439 DOI: 10.1016/j.ctarc.2021.100473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
The treatment focus for multiple myeloma (MM) has recently pivoted towards immune modulating strategies, with T-cell redirection therapies currently at the forefront of drug development. Yet, despite this revolution in treatment, MM remains without a sustainable cure. At the same time, tremendous advancement has been made in recombinant and gene editing techniques for oncolytic viruses (OV), which have increased their tumor specificity, improved safety, and enhanced the oncolytic and immunostimulatory potential. These breakthrough developments in oncolytic virotherapy have opened new avenues for OVs to be used in combination with other immune-based therapies such as checkpoint inhibitors, chimeric antigen receptor T-cells (CAR-T) and bispecific T-cell engagers. In this review, the authors place the spotlight on systemic oncolytic virotherapy as an adaptable immunotherapeutic for MM, highlight the unique mechanism of OVs in activating the immune-suppressive marrow microenvironment, and lastly showcase the OV platforms and the promising combination strategies in the pipeline for MM.
Collapse
Affiliation(s)
- Joselle Cook
- Division of Hematology, Mayo Clinic, Rochester MN, United States.
| | | | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester MN , United States
| | - Martha Lacy
- Division of Hematology, Mayo Clinic, Rochester MN, United States
| | - Stephen Russell
- Division of Hematology, Mayo Clinic, Rochester MN, United States; Department of Molecular Medicine, Mayo Clinic, Rochester MN , United States
| |
Collapse
|
20
|
Autophagy in Tumor Immunity and Viral-Based Immunotherapeutic Approaches in Cancer. Cells 2021; 10:cells10102672. [PMID: 34685652 PMCID: PMC8534833 DOI: 10.3390/cells10102672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a fundamental catabolic process essential for the maintenance of cellular and tissue homeostasis, as well as directly contributing to the control of invading pathogens. Unsurprisingly, this process becomes critical in supporting cellular dysregulation that occurs in cancer, particularly the tumor microenvironments and their immune cell infiltration, ultimately playing a role in responses to cancer therapies. Therefore, understanding "cancer autophagy" could help turn this cellular waste-management service into a powerful ally for specific therapeutics. For instance, numerous regulatory mechanisms of the autophagic machinery can contribute to the anti-tumor properties of oncolytic viruses (OVs), which comprise a diverse class of replication-competent viruses with potential as cancer immunotherapeutics. In that context, autophagy can either: promote OV anti-tumor effects by enhancing infectivity and replication, mediating oncolysis, and inducing autophagic and immunogenic cell death; or reduce OV cytotoxicity by providing survival cues to tumor cells. These properties make the catabolic process of autophagy an attractive target for therapeutic combinations looking to enhance the efficacy of OVs. In this article, we review the complicated role of autophagy in cancer initiation and development, its effect on modulating OVs and immunity, and we discuss recent progress and opportunities/challenges in targeting autophagy to enhance oncolytic viral immunotherapy.
Collapse
|
21
|
Yang C, Hua N, Xie S, Wu Y, Zhu L, Wang S, Tong X. Oncolytic viruses as a promising therapeutic strategy for hematological malignancies. Biomed Pharmacother 2021; 139:111573. [PMID: 33894623 DOI: 10.1016/j.biopha.2021.111573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
The incidence of hematological malignancies such as multiple myeloma, leukemia, and lymphoma has increased over time. Although bone marrow transplantation, immunotherapy and chemotherapy have led to significant improvements in efficacy, poor prognosis in elderly patients, recurrence and high mortality among hematological malignancies remain major challenges, and innovative therapeutic strategies should be explored. Besides directly lyse tumor cells, oncolytic viruses can activate immune responses or be engineered to express therapeutic factors to increase antitumor efficacy, and have gradually been recognized as an appealing approach for fighting cancers. An increasing number of studies have applied oncolytic viruses in hematological malignancies and made progress. In particular, strategies combining immunotherapy and oncolytic virotherapy are emerging. Various phase I clinical trials of oncolytic reovirus with lenalidomide or programmed death 1(PD-1) immune checkpoint inhibitors in multiple myeloma are ongoing. Moreover, preclinical studies of combinations with chimeric antigen receptor T (CAR-T) cells are underway. Thus, oncolytic virotherapy is expected to be a promising approach to cure hematological malignancies. This review summarizes progress in oncolytic virus research in hematological malignancies. After briefly reviewing the development and oncolytic mechanism of oncolytic viruses, we focus on delivery methods of oncolytic viruses, especially systemic delivery that is suitable for hematological tumors. We then discuss the main types of oncolytic viruses applied for hematological malignancies and related clinical trials. In addition, we present several ways to improve the antitumor efficacy of oncolytic viruses. Finally, we discuss current challenges and provide suggestions for future studies.
Collapse
Affiliation(s)
- Chen Yang
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; Department of Clinical Medicine, Qingdao University, Qingdao, PR China
| | - Nanni Hua
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Shufang Xie
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Yi Wu
- Phase I clinical research center, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China
| | - Lifeng Zhu
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China
| | - Shibing Wang
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital ,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China.
| | - Xiangmin Tong
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital ,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China.
| |
Collapse
|
22
|
Oncolytic Virotherapy and Microenvironment in Multiple Myeloma. Int J Mol Sci 2021; 22:ijms22052259. [PMID: 33668361 PMCID: PMC7956262 DOI: 10.3390/ijms22052259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/28/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by the accumulation of bone marrow (BM) clonal plasma cells, which are strictly dependent on the microenvironment. Despite the improvement of MM survival with the use of new drugs, MM patients still relapse and become always refractory to the treatment. The development of new therapeutic strategies targeting both tumor and microenvironment cells are necessary. Oncolytic virotherapy represent a promising approach in cancer treatment due to tumor-specific oncolysis and activation of the immune system. Different types of human viruses were checked in preclinical MM models, and the use of several viruses are currently investigated in clinical trials in MM patients. More recently, the use of alternative non-human viruses has been also highlighted in preclinical studies. This strategy could avoid the antiviral immune response of the patients against human viruses due to vaccination or natural infections, which could invalid the efficiency of virotherapy approach. In this review, we explored the effects of the main oncolytic viruses, which act through both direct and indirect mechanisms targeting myeloma and microenvironment cells inducing an anti-MM response. The efficacy of the oncolytic virus-therapy in combination with other anti-MM drugs targeting the microenvironment has been also discussed.
Collapse
|
23
|
Xie S, Fan W, Yang C, Lei W, Pan H, Tong X, Wu Y, Wang S. Beclin1‑armed oncolytic Vaccinia virus enhances the therapeutic efficacy of R‑CHOP against lymphoma in vitro and in vivo. Oncol Rep 2021; 45:987-996. [PMID: 33469679 PMCID: PMC7860022 DOI: 10.3892/or.2021.7942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/04/2020] [Indexed: 01/03/2023] Open
Abstract
Non-Hodgkin lymphoma (NHL) is a form of lymphoid malignancy, with diffuse large B cell lymphoma (DLBCL) being the most common NHL isoform. Approximately half of patients with DLBCL are successfully cured via first-line Rituximab, Cyclophosphamide, Epirubicin, Vindesine, Prednisolone (R-CHOP) treatment. However, 30–40% of patients with DLBCL ultimately suffer from treatment-refractory or relapsed disease. These patients often suffer from high mortality rates owing to a lack of suitable therapeutic options, and all patients are at a high risk of serious treatment-associated dose-dependent toxicity. As such, it is essential to develop novel treatments for NHL that are less toxic and more efficacious. Oncolytic Vaccinia virus (OVV) has shown promise as a means of treating numerous types of cancer. Gene therapy strategies further enhance OVV-based therapy by improving tumor cell recognition and immune evasion. Beclin1 is an autophagy-associated gene that, when upregulated, induces excess autophagy and cell death. The present study aimed to develop an OVV-Beclin1 therapy capable of inducing autophagic tumor cell death. OVV-Beclin1 was able to efficiently kill NHL cells and to increase the sensitivity of these cells to R-CHOP, thereby decreasing the dose-dependent toxic side effects associated with this chemotherapeutic regimen. The combination of OVV-Beclin1 and R-CHOP also significantly improved tumor growth inhibition and survival in a BALB/c murine model system owing to the synergistic induction of autophagic cell death. Together, these findings suggest that OVV-Beclin1 infection can induce significant autophagic cell death in NHL, highlighting this as a novel means of inducing tumor cell death via a mechanism that is distinct from apoptosis and necrosis.
Collapse
Affiliation(s)
- Shufang Xie
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, P.R. China
| | - Weimin Fan
- Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Chen Yang
- Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Wen Lei
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| | - Hongying Pan
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiangmin Tong
- Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yi Wu
- Department of Hematology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Shibing Wang
- Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
24
|
Jin KT, Tao XH, Fan YB, Wang SB. Crosstalk between oncolytic viruses and autophagy in cancer therapy. Biomed Pharmacother 2020; 134:110932. [PMID: 33370632 DOI: 10.1016/j.biopha.2020.110932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses have attracted attention as a promising strategy in cancer therapy owing to their ability to selectively infect and kill tumor cells, without affecting healthy cells. They also exert their anti-tumor effects by releasing immunostimulatory molecules from dying cancer cells. Several regulatory mechanisms, such as autophagy, contribute to the anti-tumor properties of oncolytic viruses. Autophagy is a conserved catabolic process in responses to various stresses, such as nutrient deprivation, hypoxia, and infection that produces energy by lysosomal degradation of intracellular contents. Autophagy can support infectivity and replication of the oncolytic virus and enhance their anti-tumor effects via mediating oncolysis, autophagic cell death, and immunogenic cell death. On the other hand, autophagy can reduce the cytotoxicity of oncolytic viruses by providing survival nutrients for tumor cells. In his review, we summarize various types of oncolytic viruses in clinical trials, their mechanism of action, and autophagy machinery. Furthermore, we precisely discuss the interaction between oncolytic viruses and autophagy in cancer therapy and their combinational effects on tumor cells.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, PR China
| | - Xiao-Hua Tao
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, PR China
| | - Yi-Bin Fan
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, PR China.
| | - Shi-Bing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, PR China.
| |
Collapse
|
25
|
Oncolytic Viruses and Hematological Malignancies: A New Class of Immunotherapy Drugs. ACTA ACUST UNITED AC 2020; 28:159-183. [PMID: 33704184 PMCID: PMC7816176 DOI: 10.3390/curroncol28010019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
The use of viruses for tumour treatment has been imagined more than one hundred years ago, when it was reported that viral diseases were occasionally leading to a decrease in neoplastic lesions. Oncolytic viruses (OVs) seem to have a specific tropism for tumour cells. Previously, it was hypothesised that OVs’ antineoplastic actions were mainly due to their ability to contaminate, proliferate and destroy tumour cells and the immediate destructive effect on cells was believed to be the single mechanism of action of OVs’ action. Instead, it has been established that oncolytic viruses operate via a multiplicity of systems, including mutation of tumour milieu and a composite change of the activity of immune effectors. Oncolytic viruses redesign the tumour environment towards an antitumour milieu. The aim of our work is to evaluate the findings present in the literature about the use of OVs in the cure of haematological neoplastic pathologies such as multiple myeloma, acute and chronic myeloid leukaemia, and lymphoproliferative diseases. Further experimentations are essential to recognize the most efficient virus or treatment combinations for specific haematological diseases, and the combinations able to induce the strongest immune response.
Collapse
|
26
|
Cao GD, He XB, Sun Q, Chen S, Wan K, Xu X, Feng X, Li PP, Chen B, Xiong MM. The Oncolytic Virus in Cancer Diagnosis and Treatment. Front Oncol 2020; 10:1786. [PMID: 33014876 PMCID: PMC7509414 DOI: 10.3389/fonc.2020.01786] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/11/2020] [Indexed: 12/28/2022] Open
Abstract
Cancer has always been an enormous threat to human health and survival. Surgery, radiotherapy, and chemotherapy could improve the survival of cancer patients, but most patients with advanced cancer usually have a poor survival or could not afford the high cost of chemotherapy. The emergence of oncolytic viruses provided a new strategy for us to alleviate or even cure malignant tumors. An oncolytic virus can be described as a genetically engineered or naturally existing virus that can selectively replicate in cancer cells and then kill them without damaging the healthy cells. There have been many kinds of oncolytic viruses, such as herpes simplex virus, adenovirus, and Coxsackievirus. Moreover, they have different clinical applications in cancer treatment. This review focused on the clinical application of oncolytic virus and predicted the prospect by analyzing the advantages and disadvantages of oncolytic virotherapy.
Collapse
Affiliation(s)
- Guo-dong Cao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-bo He
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiang Sun
- Jiangsu Key Laboratory of Biological Cancer, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Sihan Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ke Wan
- Department of Oncology, Anhui Medical University, Hefei, China
| | - Xin Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xudong Feng
- Department of Infectious Disease, Zhejiang University, Hangzhou, China
| | - Peng-ping Li
- Department of General Surgery, The First People’s Hospital of Xiaoshan District, Hangzhou, China
| | - Bo Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mao-ming Xiong
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|