1
|
Upadhayay S, Soni D, Dhureja M, Temgire P, Kumar V, Arthur R, Kumar P. Role of Fibroblast Growth Factors in Neurological Disorders: Insight into Therapeutic Approaches and Molecular Mechanisms. Mol Neurobiol 2025:10.1007/s12035-025-04962-x. [PMID: 40281300 DOI: 10.1007/s12035-025-04962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
In the last few decades, the incidence and progression of neurological disorders have consistently increased, which mainly occur due to environmental pollution, genetic abnormalities, and modern lifestyles. Several case reports suggested that these factors enhanced oxidative stress, mitochondrial dysfunction, inflammation, and apoptosis, leading to neurological disease. The pathophysiology of neurological disorders is still not understood, mainly due to the diversity within affected populations. Existing treatment options primarily provide symptomatic relief but frequently come with considerable side effects, including depression, anxiety, and restlessness. Fibroblast growth factors (FGFs) are key signalling molecules regulating various cellular functions, including cell proliferation, differentiation, electrical excitability, and injury responses. Hence, several investigations claimed a relationship between FGFs and neurological disorders, and their findings indicated that they could be used as therapeutic targets for neurological disorders. The FGFs are reported to activate various signalling pathways, including Ras/MAPK/PI3k/Akt, and downregulate the GSK-3β/NF-κB pathways responsible for anti-oxidant, anti-inflammatory, and anti-apoptotic effects. Therefore, researchers are interested in developing novel treatment options for neurological disorders. The emergence of unreported FGFs contributes to our understanding of their involvement in these conditions and encourages further exploration of innovative therapeutic approaches. All the data were obtained from published articles using PubMed, Web of Science, and Scopus databases using the search terms Fibroblast Growth Factor, PD, HD, AD, ALS, signalling pathways, and neurological disorders.
Collapse
Affiliation(s)
- Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Divya Soni
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Pooja Temgire
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Vishal Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
2
|
Guha A, Si Y, Smith R, Kazamel M, Jiang N, Smith KA, Thalacker-Mercer A, Singh BK, Ho R, Andrabi SA, Pereira JDTDS, Salgado JS, Agrawal M, Velic EH, King PH. The myokine FGF21 associates with enhanced survival in ALS and mitigates stress-induced cytotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.611693. [PMID: 39314333 PMCID: PMC11419072 DOI: 10.1101/2024.09.11.611693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is an age-related and fatal neurodegenerative disease characterized by progressive muscle weakness. There is marked heterogeneity in clinical presentation, progression, and pathophysiology with only modest treatments to slow disease progression. Molecular markers that provide insight into this heterogeneity are crucial for clinical management and identification of new therapeutic targets. In a prior muscle miRNA sequencing investigation, we identified altered FGF pathways in ALS muscle, leading us to investigate FGF21. We analyzed human ALS muscle biopsy samples and found a large increase in FGF21 expression with localization to atrophic myofibers and surrounding endomysium. A concomitant increase in FGF21 was detected in ALS spinal cords which correlated with muscle levels. FGF21 was increased in the SOD1G93A mouse beginning in presymptomatic stages. In parallel, there was dysregulation of the co-receptor, β-Klotho. Plasma FGF21 levels were increased and high levels correlated with slower disease progression, prolonged survival, and increased body mass index. In NSC-34 motor neurons and C2C12 muscle cells expressing SOD1G93A or exposed to oxidative stress, ectopic FGF21 mitigated loss of cell viability. In summary, FGF21 is a novel biomarker in ALS that correlates with slower disease progression and exerts trophic effects under conditions of cellular stress.
Collapse
Affiliation(s)
- Abhishek Guha
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ying Si
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Reed Smith
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Mohamed Kazamel
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Nan Jiang
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
| | - Katherine A. Smith
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Anna Thalacker-Mercer
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Brijesh K. Singh
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ritchie Ho
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shaida A Andrabi
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joao D Tavares Da Silva Pereira
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Juliana S. Salgado
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Manasi Agrawal
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Emina Horvat Velic
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Peter H. King
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
3
|
Wang D, Chen K, Wang Z, Wu H, Li Y. Research progress on interferon and cellular senescence. FASEB J 2024; 38:e70000. [PMID: 39157951 DOI: 10.1096/fj.202400808rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Since the 12 major signs of aging were revealed in 2023, people's interpretation of aging will go further, which is of great significance for understanding the occurrence, development, and intervention in the aging process. As one of the 12 major signs of aging, cellular senescence refers to the process in which the proliferation and differentiation ability of cells decrease under stress stimulation or over time, often manifested as changes in cell morphology, cell cycle arrest, and decreased metabolic function. Interferon (IFN), as a secreted ligand for specific cell surface receptors, can trigger the transcription of interferon-stimulated genes (ISGs) and play an important role in cellular senescence. In addition, IFN serves as an important component of SASP, and the activation of the IFN signaling pathway has been shown to contribute to cell apoptosis and senescence. It is expected to delay cellular senescence by linking IFN with cellular senescence and studying the effects of IFN on cellular senescence and its mechanism. This article provides a review of the research on the relationship between IFN and cellular senescence by consulting relevant literature.
Collapse
Affiliation(s)
- Da Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zheng Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, P.R. China
| | - Huali Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
4
|
Shen Y, Zhu Z, Wang Y, Qian S, Xu C, Zhang B. Fibroblast growth factor-21 alleviates proteasome injury via activation of autophagy flux in Parkinson's disease. Exp Brain Res 2024; 242:25-32. [PMID: 37910178 PMCID: PMC10786996 DOI: 10.1007/s00221-023-06709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/13/2023] [Indexed: 11/03/2023]
Abstract
Parkinson's disease (PD) is one of the most common and complex Neurodegeneration, with an inherited metabolic disorder. Fibroblast growth factor 21 (FGF21), an endocrine hormone that belongs to the fibroblast growth factor superfamily, plays an extensive role in metabolic regulation. However, our understandings of the specific function and mechanisms of FGF21 on PD are still quite limited. Here, we aimed to elucidate the actions and the underlying mechanisms of FGF21 on dopaminergic neurodegeneration using cellular models of parkinsonism. To investigate the effects of FGF21 on dopaminergic neurodegeneration in vitro, proteasome impairment models of PD were utilized. Human dopaminergic neuroblastoma SH-SY5Y cells were treated with the proteasome inhibitor lactacystin (5 μmol/L) for 12 h, then with 50 ng/ml FGF-21 with or without 5 mmol/L of 3-methyladenine.The cells were dissected to assess alterations in autophagy using immunofluorescence, immunoblotting and electron microscopy assays. Our data indicate that FGF21 prevents dopaminergic neuron loss and shows beneficial effects against proteasome impairment induced PD syndrome, indicating it might be a potent candidate for developing novel drugs to deal with PD.
Collapse
Affiliation(s)
- Yufei Shen
- College of Medicine, Zhejiang University, Hangzhou, 310009, China
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Zhuoying Zhu
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Yanping Wang
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Shuxia Qian
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Congying Xu
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Baorong Zhang
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
5
|
Chu C, Li T, Yu L, Li Y, Li M, Guo M, Zhao J, Zhai Q, Tian F, Chen W. A Low-Protein, High-Carbohydrate Diet Exerts a Neuroprotective Effect on Mice with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Induced Parkinson's Disease by Regulating the Microbiota-Metabolite-Brain Axis and Fibroblast Growth Factor 21. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267589 DOI: 10.1021/acs.jafc.2c07606] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Parkinson's disease (PD) is closely linked to lifestyle factors, particularly dietary patterns, which have attracted interest as potential disease-modifying factors. Eating a low-protein, high-carbohydrate (LPHC) diet is a promising dietary intervention against brain aging; however, its protective effect on PD remains elusive. Here, we found that an LPHC diet ameliorated 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced motor deficits, decreased dopaminergic neuronal death, and increased the levels of striatal dopamine, serotonin, and their metabolites in PD mice. Levels of fibroblast growth factor 21 (FGF-21), a member of the fibroblast growth factor family, were elevated in PD mice following LPHC treatment. Furthermore, the administration of FGF-21 exerted a protective effect on MPTP-induced PC12 cells, similar to the effect of an LPHC diet in MPTP-induced mice. Sequencing of the 16S rDNA from fecal microbiota revealed that an LPHC diet normalized the gut bacterial composition imbalance in PD mice, as evidenced by the increased abundance of the genera Bifidobacterium, Ileibacterium, Turicibacter, and Blautia and decreased abundance of Bilophila, Alistipes, and Bacteroides. PICRUSt-predicted fecal microbiome function revealed that an LPHC diet suppressed lipopolysaccharide biosynthesis and the citrate cycle (TCA cycle), biosynthesis of ubiquinone and other terpenoid-quinones, and oxidative phosphorylation pathways caused by MPTP, and enhanced the biosynthesis of amino acids, carbohydrate metabolism, and biosynthesis of other secondary metabolites. A nonmetabolomic analysis of the serum and feces showed that an LPHC diet significantly increased the levels of aromatic amino acids (AAAs), including tryptophan, tyrosine, and phenylalanine. In addition, an LPHC diet elevated the serum concentrations of bile acids (BAs), particularly tauroursodeoxycholic acid (TUDCA) and taurine. Collectively, our current findings point to the potential mechanism of administering an LPHC diet in attenuating movement impairments in MPTP-induced PD mice, with AAAs, microbial metabolites (TUDCA and taurine), and FGF-21 as key mediators along the gut-microbiota-brain axis.
Collapse
Affiliation(s)
- Chuanqi Chu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tiantian Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yiwen Li
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia 30602, United States
| | - Miaoyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
6
|
Bartl M, Dakna M, Schade S, Otte B, Wicke T, Lang E, Starke M, Ebentheuer J, Weber S, Toischer K, Schnelle M, Sixel-Döring F, Trenkwalder C, Mollenhauer B. Blood Markers of Inflammation, Neurodegeneration, and Cardiovascular Risk in Early Parkinson's Disease. Mov Disord 2023; 38:68-81. [PMID: 36267007 DOI: 10.1002/mds.29257] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Recent studies point toward a significant impact of cardiovascular processes and inflammation on Parkinson's disease (PD) progression. OBJECTIVE The aim of this study was to assess established markers of neuronal function, inflammation, and cardiovascular risk by high-throughput sandwich immune multiplex panels in deeply phenotyped PD. METHODS Proximity Extension Assay technology on 273 markers was applied in plasma of 109 drug-naive at baseline (BL) patients with PD (BL, 2-, 4-, and 6-year follow-up [FU]) and 96 healthy control patients (HCs; 2- and 4-year FU) from the de novo Parkinson's cohort. BL plasma from 74 individuals (37 patients with PD, 37 healthy control patients) on the same platform from the Parkinson Progression Marker Initiative was used for independent validation. Correlation analysis of the identified markers and 6 years of clinical FU, including motor and cognitive progression, was evaluated. RESULTS At BL, 35 plasma markers were differentially expressed in PD, showing downregulation of atherosclerotic risk markers, eg, E-selectin and ß2 -integrin. In contrast, we found a reduction of markers of the plasminogen activation system, eg, urokinase plasminogen activator. Neurospecific markers indicated increased levels of peripheral proteins of neurodegeneration and inflammation, such as fibroblast growth factor 21 and peptidase inhibitor 3. Several markers, including interleukin-6 and cystatin B, correlated with cognitive decline and progression of motor symptoms during FU. These findings were independently validated in the Parkinson Progression Marker Initiative. CONCLUSIONS We identified and validated possible PD plasma biomarker candidates for state, fate, and disease progression, elucidating new molecular processes with reduced endothelial/atherosclerotic processes, increased thromboembolic risk, and neuroinflammation. Further investigations and validation in independent and larger longitudinal cohorts are needed. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Michael Bartl
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Mohammed Dakna
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Sebastian Schade
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.,Paracelsus-Elena-Klinik, Kassel, Germany
| | - Birgit Otte
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | | | | | | | | | - Sandrina Weber
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.,Paracelsus-Elena-Klinik, Kassel, Germany
| | - Karl Toischer
- Department of Cardiology, University Medical Center Goettingen, Goettingen, Germany
| | - Moritz Schnelle
- Department of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Friederike Sixel-Döring
- Paracelsus-Elena-Klinik, Kassel, Germany.,Department of Neurology, Philipps-University, Marburg, Germany
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel, Germany.,Department of Neurosurgery, University Medical Center Goettingen, Goettingen, Germany
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.,Paracelsus-Elena-Klinik, Kassel, Germany
| |
Collapse
|
7
|
Huang W, Qiu W, Chen K, Ye S, Wang D, Hu J, Xu H, Lin L, Li X. Research progress of fibroblast growth factor in nervous system diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:738-749. [PMID: 36915973 PMCID: PMC10262007 DOI: 10.3724/zdxbyxb-2022-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/25/2022] [Indexed: 06/17/2023]
Abstract
Fibroblast growth factors (FGF) are a group of structurally related polypeptides which constitute an elaborate signaling system with their receptors. Evidence accumulated in the years suggests that the FGF family plays a key role in the repair of central nervous system injury. The main protective mechanisms include activating the expression of PI3K-Akt, peroxisome proliferator-activated receptor (PPARγ) and other signals; inhibiting NF-κB-mediated inflammatory response, oxidative stress and apoptosis; regulating neuronal differentiation and neuronal excitability as well as participating in protection of neurovascular units and nerve function repair. This paper comprehensively summarizes the latest research progress in FGF signaling related to diseases of the central nervous system such as cerebral infarction, cerebral hemorrhage, traumatic brain injury, Alzheimer's disease, Parkinson's disease, epilepsy and depression, aiming to provide scientific basis and reference for the development of innovative FGF drugs for the prevention and treatment of neurological diseases.
Collapse
Affiliation(s)
- Wenting Huang
- 1. Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Wanhua Qiu
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Kun Chen
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Shasha Ye
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Dongxue Wang
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Jian Hu
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Huiqin Xu
- 1. Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Li Lin
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Xiaokun Li
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| |
Collapse
|
8
|
Tao K, Li M, Gu X, Wang M, Qian T, Hu L, Li J. Activating transcription factor 4 aggravates angiotensin II-induced cell dysfunction in human vascular aortic smooth muscle cells via transcriptionally activating fibroblast growth factor 21. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:347-355. [PMID: 36039735 PMCID: PMC9437364 DOI: 10.4196/kjpp.2022.26.5.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening disorder worldwide. Fibroblast growth factor 21 (FGF21) was shown to display a high level in the plasma of patients with AAA; however, its detailed functions underlying AAA pathogenesis are unclear. An in vitro AAA model was established in human aortic vascular smooth muscle cells (HASMCs) by angiotensin II (Ang-II) stimulation. Cell counting kit-8, wound healing, and Transwell assays were utilized for measuring cell proliferation and migration. RT-qPCR was used for detecting mRNA expression of FGF21 and activating transcription factor 4 (ATF4). Western blotting was utilized for assessing protein levels of FGF21, ATF4, and markers for the contractile phenotype of HASMCs. ChIP and luciferase reporter assays were implemented for identifying the binding relation between AFT4 and FGF21 promoters. FGF21 and ATF4 were both upregulated in Ang-II-treated HASMCs. Knocking down FGF21 attenuated Ang-II-induced proliferation, migration, and phenotype switch of HASMCs. ATF4 activated FGF21 transcription by binding to its promoter. FGF21 overexpression reversed AFT4 silencing-mediated inhibition of cell proliferation, migration, and phenotype switch. ATF4 transcriptionally upregulates FGF21 to promote the proliferation, migration, and phenotype switch of Ang-II-treated HASMCs.
Collapse
Affiliation(s)
- Ke Tao
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu 215500, China
| | - Ming Li
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu 215500, China
| | - Xuefeng Gu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu 215500, China
| | - Ming Wang
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu 215500, China
| | - Tianwei Qian
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu 215500, China
| | - Lijun Hu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu 215500, China
| | - Jiang Li
- Department of Vascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China
| |
Collapse
|
9
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
10
|
Porflitt-Rodríguez M, Guzmán-Arriagada V, Sandoval-Valderrama R, Tam CS, Pavicic F, Ehrenfeld P, Martínez-Huenchullán S. Effects of aerobic exercise on fibroblast growth factor 21 in overweight and obesity. A systematic review. Metabolism 2022; 129:155137. [PMID: 35038422 DOI: 10.1016/j.metabol.2022.155137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor 21 (FGF21) has been suggested to improve metabolism during aerobic exercise in obesity. However, the variability of exercise interventions gives rise to discrepancies in the field. Therefore, we aimed to systematically review the available literature regarding the effects of aerobic exercise on FGF21 in the context of overweight and obesity. Our search included original articles published between 2009 and November 2021 found in PubMed, Science Direct, and Medline. Clinical and preclinical studies were included. Studies, where subjects or animals presented with other conditions (e.g., cancer, stroke), were excluded. From an initial 43 studies, 19 (clinical studies = 9; preclinical studies = 10) were eligible for inclusion in this review. The main findings were that acute exercise tended to increase circulatory levels of FGF21. In contrast, chronic exercise programs (≥4 weeks) had the opposite effect along with inducing mRNA and protein increases of FGF receptors and β-klotho in adipose tissue, liver, and skeletal muscle. In conclusion, both clinical and preclinical studies showed that aerobic exercise exerts changes in circulatory and tissue FGF21, along with its receptors and co-receptor. Future research is needed to elucidate the mechanisms, along with the physiological and clinical implications of these changes.
Collapse
Affiliation(s)
| | | | | | - Charmaine S Tam
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Francisca Pavicic
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Chile
| | - Sergio Martínez-Huenchullán
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Chile; Locomotor Apparatus and Rehabilitation Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Cardiorespiratory and Metabolic Function Laboratory - Neyün, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
11
|
Kakoty V, C SK, Yang CH, Kumari S, Dubey SK, Taliyan R. Neuroprotective Effect of Lentivirus-Mediated FGF21 Gene Delivery in Experimental Alzheimer's Disease is Augmented when Concerted with Rapamycin. Mol Neurobiol 2022; 59:2659-2677. [PMID: 35142986 DOI: 10.1007/s12035-022-02741-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/07/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer type of dementia is accompanied with progressive loss of cognitive function that directly correlates with accumulation of amyloid beta plaques. It is known that Fibroblast growth factor 21 (FGF21), a metabolic hormone, with strong neuroprotective potential, is induced during oxidative stress in Alzheimer's disease. Interestingly, FGF21 cross-talks with autophagy, a mechanism involved in the clearance of abnormal protein aggregate. Moreover, autophagy activation by Rapamycin delivers neuroprotective role in Alzheimer's disease. However, the synergistic neuroprotective efficacy of overexpressed FGF21 along with Rapamycin is not yet investigated. Therefore, the present study examined whether overexpressed FGF21 along with autophagy activation ameliorated neurodegenerative pathology in Alzheimer's disease. We found that cognitive deficits in rats with intracerebroventricular injection of Amyloid beta1-42 oligomers were restored when injected with FGF21-expressing lentiviral vector combined with Rapamycin. Furthermore, overexpression of FGF21 along with Rapamycin downregulated protein levels of Amyloid beta1-42 and phosphorylated tau and expression of major autophagy proteins along with stabilization of oxidative stress. Moreover, FGF21 overexpressed rats treated with Rapamycin revamped the neuronal density as confirmed by histochemical, cresyl violet and immunofluorescence analysis. These results generate compelling evidence that Alzheimer's disease pathology exacerbated by oligomeric amyloid beta may be restored by FGF21 supplementation combined with Rapamycin and thus present an appropriate treatment paradigm for people affected with Alzheimer's disease.
Collapse
Affiliation(s)
- Violina Kakoty
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India, 333031
| | - Sarathlal K C
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India, 333031
| | - Chih-Hao Yang
- Department of Pharmacology, Taipei Medical University, Taipei, Taiwan, 110
| | - Shobha Kumari
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India, 333031
| | | | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India, 333031.
| |
Collapse
|
12
|
Taliyan R, Kakoty V, Sarathlal KC, Kharavtekar SS, Karennanavar CR, Choudhary YK, Singhvi G, Riadi Y, Dubey SK, Kesharwani P. Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer's disease. J Control Release 2022; 343:528-550. [PMID: 35114208 DOI: 10.1016/j.jconrel.2022.01.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
For the past several years, dementia, is one of the predominantly observed groups of symptoms in a geriatric population. Alzheimer's disease (AD) is a progressive memory related neurodegenerative disease, for which the current Food and drug administration approved therapeutics are only meant for a symptomatic management rather than targeting the root cause of AD. These therapeutics belong to two classes, Acetylcholine Esterase inhibitors and N-methyl D-aspartate antagonist. Furthermore, to facilitate neuroprotective action in AD, the drugs are majorly expected to reach the specific target area in the brain for the desired efficacy. Thus, there is a huge requirement for drug discovery and development for facilitating the entry of drugs more in brain to exert a specific action. The very first line of defense and the major limitation for the entry of drugs into the brain is the Blood Brain Barrier, followed by Blood-Cerebrospinal Fluid Barrier. More than a barrier, these mainly act as selectively permeable membranes, which allows entry of specific molecules into the brain. Furthermore, specific enzymes result in the degradation of xenobiotics. All these mechanisms pose as hurdles in the way of effective drug delivery in the brain. Thus, novel techniques need to be harbored for the facilitation of the delivery of such drugs into the brain. Nanocarriers are advantageous for facilitating the specific targeted drug treatment in AD. As nanomedicines are one of the novels and most useful approaches for AD, thus the present review mainly focuses on understanding the advanced use of nanocarriers for targeted drug delivery in the management of AD.
Collapse
Affiliation(s)
- Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Violina Kakoty
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India
| | - K C Sarathlal
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Sanskruti Santosh Kharavtekar
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Chandrashekar R Karennanavar
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India
| | | | - Gautam Singhvi
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sunil Kumar Dubey
- Medical Research, R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
13
|
Liu J, Zhang Y, Ye T, Yu Q, Yu J, Yuan S, Gao X, Wan X, Zhang R, Han W, Zhang Y. Effect of Coffee against MPTP-Induced Motor Deficits and Neurodegeneration in Mice Via Regulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:184-195. [PMID: 35016506 DOI: 10.1021/acs.jafc.1c06998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The mechanisms of coffee against Parkinson disease (PD) remained incompletely elucidated. Numerous studies suggested that gut microbiota played a crucial role in the pathogenesis of PD. Here, we explored the further mechanisms of coffee against PD via regulating gut microbiota. C57BL/6 mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce a PD mouse model, then treated with coffee for 4 consecutive weeks. Behavioral tests consisting of the pole test and beam-walking test were conducted to evaluate the motor function of mice. The levels of tyrosine hydroxylase (TH) and α-synuclein (α-syn) were assessed for dopaminergic neuronal loss. The levels of occludin, glial fibrillary acidic protein (GFAP), Bcl-2, Bax, cleaved caspase-3, and cytochrome c (Cyt c) were detected. Moreover, microbial components were measured by 16s rRNA sequencing. Our results showed that coffee significantly improved the motor deficits and TH neuron loss, and reduced the level of α-syn in the MPTP-induced mice. Moreover, coffee increased the level of BBB tight junction protein occludin and reduced the level of astrocyte activation marker GFAP in the MPTP-induced mice. Furthermore, coffee significantly decreased the levels of proapoptotic proteins, including Bax, cleaved caspase-3, and cytochrome c, while it increased the level of antiapoptotic protein Bcl-2, consequently preventing MPTP-induced apoptotic cascade. Moreover, coffee improved MPTP-induced gut microbiota dysbiosis. These findings suggested that the neuroprotective effects of coffee on PD were involved in the regulation of gut microbiota, which might provide a novel option to elucidate the effects of coffee on PD.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuhe Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tao Ye
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qingxia Yu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiaheng Yu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shushu Yuan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xinxin Gao
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xinxin Wan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Rui Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weihua Han
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yang Zhang
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
14
|
|
15
|
Lu H, Jia C, Wu D, Jin H, Lin Z, Pan J, Li X, Wang W. Fibroblast growth factor 21 (FGF21) alleviates senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the SIRT1-mTOR signaling pathway. Cell Death Dis 2021; 12:865. [PMID: 34556628 PMCID: PMC8460788 DOI: 10.1038/s41419-021-04157-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/28/2021] [Accepted: 09/09/2021] [Indexed: 01/09/2023]
Abstract
Osteoarthritis (OA) is a complex condition that involves both apoptosis and senescence and currently cannot be cured. Fibroblast growth factor 21 (FGF21), known for its role as a potent regulator of glucose and energy metabolism, protects from various diseases, possibly by mediating autophagy. In the present study, the role of FGF21 in the progression of OA was investigated in both in vitro and in vivo experiments. In vitro, the results revealed that FGF21 administration alleviated apoptosis, senescence, and extracellular matrix (ECM) catabolism of the chondrocytes induced by tert-butyl hydroperoxide (TBHP) by mediating autophagy flux. Furthermore, CQ, an autophagy flux inhibitor, could reverse the protective effect of FGF21. It was observed that the FGF21-induced autophagy flux enhancement was mediated by the nuclear translocation of TFEB, which occurs due to the activation of the SIRT1-mTOR signaling pathway. The in vivo experiments demonstrated that FGF21 treatment could reduce OA in the DMM model. Taken together, these findings suggest that FGF21 protects chondrocytes from apoptosis, senescence, and ECM catabolism via autophagy flux upregulation and also reduces OA development in vivo, demonstrating its potential as a therapeutic agent in OA.
Collapse
Affiliation(s)
- Hongwei Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Chao Jia
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Dengying Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Haidong Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Zeng Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Jun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, Zhejiang Province, China.
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China.
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China.
| | - Xiucui Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China.
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China.
| | - Wei Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China.
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China.
| |
Collapse
|
16
|
Jiang W, Zou W, Hu M, Tian Q, Xiao F, Li M, Zhang P, Chen YJ, Jiang JM. Hydrogen sulphide attenuates neuronal apoptosis of substantia nigra by re-establishing autophagic flux via promoting leptin signalling in a 6-hydroxydopamine rat model of Parkinson's disease. Clin Exp Pharmacol Physiol 2021; 49:122-133. [PMID: 34494284 DOI: 10.1111/1440-1681.13587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 07/30/2021] [Accepted: 09/05/2021] [Indexed: 12/28/2022]
Abstract
Previous studies reveal that hydrogen sulphide (H2 S) exerts neuroprotection against neurotoxin-induced Parkinson's disease (PD), but the underlying mechanism remains elusive. The present study was aimed to investigate whether H2 S inhibits neuronal apoptosis of substantia nigra with the involvement of autophagy via promoting leptin signalling in 6-hydroxydopamine (6-OHDA)-induced PD rats. In this study, neuronal apoptosis was analysed by TUNEL staining, the activity of caspase-3 was measured by Caspase-3 fluorometric assay kit, the expressions of Bax, Bcl-2, Beclin-1, LC3II, P62 and leptin were determined by Western blot analysis, and the numbers of autophagosomes and autolysosomes were assessed by transmission electron microscopy. Results showed that NaHS, a donor of exogenous H2 S, mitigates 6-OHDA-induced the increases in the numbers of TUNEL-positive cells, the activity of caspase-3 and the expression of Bax, and attenuates 6-OHDA-induced a decrease in the expression of Bcl-2 in substantia nigra of rats. In addition, 6-OHDA enhanced the expressions of Beclin-1, LC3-II and P62, increased the number of autophagosomes, and decreased the number of autolysosomes in the substantia nigra, which were also blocked by administration of NaHS. Furthermore, NaHS reversed 6-OHDA-induced the down-regulation of leptin expression in the substantia nigra, and treatment with leptin-OBR, a blocking antibody of leptin receptor, attenuated the inhibition of NaHS on neuronal apoptosis and the improvement of NaHS on the blocked autophagic flux in substantia nigra of 6-OHDA-treated rats. Taken together, these results demonstrated that H2 S attenuates neuronal apoptosis of substantia nigra depending on restoring impaired autophagic flux through up-regulating leptin signalling in PD.
Collapse
Affiliation(s)
- Wu Jiang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wei Zou
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Min Hu
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qing Tian
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Fan Xiao
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Min Li
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ping Zhang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yong-Jun Chen
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jia-Mei Jiang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
17
|
Liu Y, Deng J, Liu Y, Li W, Nie X. FGF, Mechanism of Action, Role in Parkinson's Disease, and Therapeutics. Front Pharmacol 2021; 12:675725. [PMID: 34234672 PMCID: PMC8255968 DOI: 10.3389/fphar.2021.675725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease associated with severe disability and adverse effects on life quality. In PD, motor dysfunction can occur, such as quiescence, muscle stiffness, and postural instability. PD is also associated with autonomic nervous dysfunction, sleep disorders, psychiatric symptoms, and other non-motor symptoms. Degeneration of dopaminergic neurons in the substantia nigra compact (SNPC), Lewy body, and neuroinflammation are the main pathological features of PD. The death or dysfunction of dopaminergic neurons in the dense part of the substantia nigra leads to dopamine deficiency in the basal ganglia and motor dysfunction. The formation of the Lewy body is associated with the misfolding of α-synuclein, which becomes insoluble and abnormally aggregated. Astrocytes and microglia mainly cause neuroinflammation, and the activation of a variety of pro-inflammatory transcription factors and regulatory proteins leads to the degeneration of dopaminergic neurons. At present, PD is mainly treated with drugs that increase dopamine concentration or directly stimulate dopamine receptors. Fibroblast growth factor (FGF) is a family of cellular signaling proteins strongly associated with neurodegenerative diseases such as PD. FGF and its receptor (FGFR) play an essential role in the development and maintenance of the nervous system as well as in neuroinflammation and have been shown to improve the survival rate of dopaminergic neurons. This paper summarized the mechanism of FGF and its receptors in the pathological process of PD and related signaling pathways, involving the development and protection of dopaminergic neurons in SNPC, α-synuclein aggregation, mitochondrial dysfunction, and neuroinflammation. It provides a reference for developing drugs to slow down or prevent the potential of PD.
Collapse
Affiliation(s)
- Yiqiu Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Junyu Deng
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Wei Li
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Lab of the Basic Pharmacology of the Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
18
|
Lee B, Shin M, Park Y, Won SY, Cho KS. Physical Exercise-Induced Myokines in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22115795. [PMID: 34071457 PMCID: PMC8198301 DOI: 10.3390/ijms22115795] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), are disorders characterized by progressive degeneration of the nervous system. Currently, there is no disease-modifying treatments for most NDs. Meanwhile, numerous studies conducted on human and animal models over the past decades have showed that exercises had beneficial effects on NDs. Inter-tissue communication by myokine, a peptide produced and secreted by skeletal muscles during exercise, is thought to be an important underlying mechanism for the advantages. Here, we reviewed studies about the effects of myokines regulated by exercise on NDs and their mechanisms. Myokines could exert beneficial effects on NDs through a variety of regulatory mechanisms, including cell survival, neurogenesis, neuroinflammation, proteostasis, oxidative stress, and protein modification. Studies on exercise-induced myokines are expected to provide a novel strategy for treating NDs, for which there are no adequate treatments nowadays. To date, only a few myokines have been investigated for their effects on NDs and studies on mechanisms involved in them are in their infancy. Therefore, future studies are needed to discover more myokines and test their effects on NDs.
Collapse
Affiliation(s)
- Banseok Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (B.L.); (M.S.); (Y.P.)
| | - Myeongcheol Shin
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (B.L.); (M.S.); (Y.P.)
| | - Youngjae Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (B.L.); (M.S.); (Y.P.)
| | - So-Yoon Won
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (B.L.); (M.S.); (Y.P.)
- Korea Hemp Institute, Konkuk University, Seoul 05029, Korea
- Correspondence: (S.-Y.W.); (K.S.C.); Tel.: +82-10-3688-5474 (S.-Y.W.); Tel.: +82-2-450-3424 (K.S.C.)
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (B.L.); (M.S.); (Y.P.)
- Korea Hemp Institute, Konkuk University, Seoul 05029, Korea
- Correspondence: (S.-Y.W.); (K.S.C.); Tel.: +82-10-3688-5474 (S.-Y.W.); Tel.: +82-2-450-3424 (K.S.C.)
| |
Collapse
|
19
|
Kakoty V, K C S, Dubey SK, Yang CH, Kesharwani P, Taliyan R. The gut-brain connection in the pathogenicity of Parkinson disease: Putative role of autophagy. Neurosci Lett 2021; 753:135865. [PMID: 33812929 DOI: 10.1016/j.neulet.2021.135865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/13/2021] [Accepted: 03/25/2021] [Indexed: 01/09/2023]
Abstract
Parkinson disease (PD) is a progressive movement functionality disorder resulting in tremor and inability to execute voluntary functions combined with the preponderant non-motor disturbances encompassing constipation and gastrointestinal irritation. Despite continued research, the pathogenesis of PD is not yet clear. The available class of drugs for effective symptomatic management of PD includes a combination of levodopa and carbidopa. In recent past, the link between gut with PD has been explored. According to recent preclinical evidence, pathogens such as virus or bacterium may initiate entry into the gut via the nasal cavity that may aggravate lewy pathology in the gut that eventually propagates and progresses towards the brain via the vagus nerve resulting in the prodromal non-motor symptoms. Additionally, experimental evidence also suggests that alpha-synuclein misfolding commences at a very early stage in the gut and is transported via the vagus nerve prior to seeding PD pathology in the brain. However, this progression and resultant deterioration of the neurones can effectively be altered by an autophagy inducer, Trehalose, although the mechanism behind it is still enigmatic. Hence, this review will mainly focus on analysing the basic components of the gut that might be responsible for aggravating lewy pathology, the mediator(s) responsible for transmission of PD pathology from gut to brain and the important role of trehalose in ameliorating gut dysbiosis related PD complications that would eventually pave the way for therapeutic management of PD.
Collapse
Affiliation(s)
- Violina Kakoty
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Sarathlal K C
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, Kolkatta, India; Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Chih Hao Yang
- Department of Pharmacology, Taipei Medical University, Taiwan
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India.
| |
Collapse
|
20
|
Kakoty V, K C S, Dubey SK, Yang CH, Kesharwani P, Taliyan R. Lentiviral mediated gene delivery as an effective therapeutic approach for Parkinson disease. Neurosci Lett 2021; 750:135769. [PMID: 33636285 DOI: 10.1016/j.neulet.2021.135769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/07/2021] [Accepted: 02/19/2021] [Indexed: 11/28/2022]
Abstract
Continual strategies to devise a complete therapeutic cure for neurodegenerative conditions has been a challenge, majorly due to the presence of blood brain barrier. Lack of targeted delivery in order to minimize loss of dopamine (DA) neurones has been a major challenge to overcome anomalies in Parkinson Disease (PD). PD is a neuromotor degenerative disorder deteriorating motor coordination in affected individuals. Recent research has highlighted the use of lentiviral vectors (LVs) for selective delivery of neuroprotective substance for complete halt of disease progression in PD. LVs have the ability to infect both dividing and non-dividing cells along with non-encoding capability of viral protein that might elicit an immune response. This review will mainly focus on understanding the basic mechanism of action of LVs and its therapeutic aid in PD.
Collapse
Affiliation(s)
- Violina Kakoty
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Sarathlal K C
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Sunil Kumar Dubey
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India; R&D Healthcare Division, Emami Ltd, Kolkatta, India
| | - Chih Hao Yang
- Department of Pharmacology, Taipei Medical University, Taiwan
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India.
| |
Collapse
|