1
|
Yang SQ, Ge YJ, Shen CY. Disclosing antifungal activity of Huangqin decoction upon Trichophyton mentagrophytes and exploring its potential inhibitory mechanisms through transcriptome sequencing and qRT-PCR. Sci Rep 2025; 15:13321. [PMID: 40246952 PMCID: PMC12006297 DOI: 10.1038/s41598-025-97689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/07/2025] [Indexed: 04/19/2025] Open
Abstract
Trichophyton mentagrophytes (T. mentagrophytes) is a prevalent pathogen that causes human and animal dermatophytosis. The clinical treatment of the infections is challenging due to the prolonged treatment duration, limited efficacy, antifungal resistance and side effects of existing drugs. Modern research has reported that the classic Traditional Chinese medicine (TCM) prescription Huangqin decoction (HQD) along with its principal ingredients could exhibit antifungal properties. Given the valued advantages of TCM such as broad-spectrum antifungal activity, low incidence of drug resistance and low toxicity, this study investigated the antifungal activity of HQD against T. mentagrophytes and explored the potential inhibitory mechanism, aimed to provide new clues for the treatment of dermatophytosis. By detecting minimal inhibitory concentration (MIC) using the broth microdilution method, the results showed that HQD could significantly inhibit the growth of T. mentagrophytes, with a minimal inhibitory concentration (MIC) of 3.13 mg/mL. The transcriptome sequencing and quantitative real-time PCR (qRT-PCR) technology were combined to shed light on the complicated adaptive responses of T. mentagrophytes upon HQD. The results demonstrated that at MIC, compared with the control group, a total of 730 differentially expressed genes (DEGs) were detected in T. mentagrophytes after HQD exposure (FDR adjusted p-value < 0.05), of which 547 were up-regulated and 183 were down-regulated. These DEGs were abundant in "single-organism metabolic process", "catalytic activity" and "oxidoreductase activity", and were significantly enriched in seven signaling pathways including glutathione metabolism, DNA replication, glyoxylate and dicarboxylate metabolism, taurine and hypotaurine metabolism, carotenoid biosynthesis, ubiquitin-mediated proteolysis, and cyanoamino acid metabolism. The results of transcriptome profiling were verified using qRT-PCR for a subset of 10 DEGs. The overall evidence indicated that HQD had a significant anti-dermatophyte activity and the adaptive responses of T. mentagrophytes upon HQD might be related to targeting glutathione S-transferase (GST) gene that could conjugate with toxic xenobiotics to defense oxidative stress, the inhibition of DNA replication pathway by downgrading the DNA replication licensing factors MCM3, MCM5 and ribonuclease H1 (RNaseH1) genes, and the repressed expression of phosphatidylserine decarboxylase (PSD) gene related to phospholipid synthesis which was indispensable for hyphal morphology, hyphal differentiation and cell wall integrity. Our study showed a new theoretical basis for the effective control of T. mentagrophytes infection and the effect of HQD on fungi, which are expected to offer aids for discovering new antifungal agents upon dermatophytosis.
Collapse
Affiliation(s)
- Su-Qing Yang
- Department of Pharmacy, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, P.R. China
| | - You-Jin Ge
- Nanchang People's Hospital (The Third Hospital of Nanchang), Nanchang, 330009, P.R. China
| | - Cheng-Ying Shen
- Department of Pharmacy, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, P.R. China.
| |
Collapse
|
2
|
Li S, Wang S, Zhang L, Ka Y, Zhou M, Wang Y, Tang Z, Zhang J, Wang W, Liu W. Research progress on pharmacokinetics, anti-inflammatory and immunomodulatory effects of kaempferol. Int Immunopharmacol 2025; 152:114387. [PMID: 40054326 DOI: 10.1016/j.intimp.2025.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025]
Abstract
Chronic inflammation (an abnormal state) and autoimmune disease (AD) can both cause multiple organ damage. AD is a heterogeneous group of diseases due to immune dysfunction. Chronic inflammation is closely related to AD and is an important part of AD. With the increasing prevalence of AD, researchers are constantly exploring new drugs with small side effects, considerable curative effects, and lower costs. Kaempferol, a flavonoid, possesses a range of biological functions, including antioxidant, anti-inflammatory, anti-neoplastic, and immunomodulatory capabilities. This compound is prevalent in a variety of plant sources, such as vegetables, fruits, and medicinal herbs traditionally used in Chinese medicine. A plethora of empirical evidence from animal-based research supports the assertion that this particular substance exhibits both anti-inflammatory and immunomodulatory effects, with the curative effect being significant and application prospects. This article mainly summarizes and discusses the pharmacokinetics, drug delivery system, and the mechanism of kaempferol on immune cells, cytokines, signaling pathways, and other aspects. This paper summarizes the existing kaempferol drug delivery system, analyzes the possibility and limitations of kaempferol as a new anti-inflammatory and immunomodulatory drug, and discusses how to apply it in clinical practice. Therefore, kaempferol can more effectively exert its anti-inflammatory and immune-modulating effects, thereby demonstrating therapeutic potential in clinical settings, while reducing patient burden.
Collapse
Affiliation(s)
- Suiran Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Siwei Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Lei Zhang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, China
| | - Yuxiu Ka
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Meijiao Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yiwen Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Zhuo Tang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Jiamin Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wen Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wei Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
3
|
Ou X, Yu Z, Pan C, Zheng X, Li D, Qiao Z, Zheng X. Paeoniflorin: a review of its pharmacology, pharmacokinetics and toxicity in diabetes. Front Pharmacol 2025; 16:1551368. [PMID: 40260393 PMCID: PMC12009869 DOI: 10.3389/fphar.2025.1551368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
The escalating global prevalence of diabetes underscores the urgency of addressing its treatment and associated complications. Paeoniflorin, a monoterpenoid glycoside compound, has garnered substantial attention in recent years owing to its potential therapeutic efficacy in diabetes management. Thus, this study aims to systematically overview the pharmacological effects, pharmacokinetics and toxicity of paeoniflorin in diabetes. Plenty of evidences have verified that paeoniflorin improves diabetes and its complication through reducing blood sugar, enhancing insulin sensitivity, regulating gut microbiota and autophagy, restoration of mitochondrial function, regulation of lipid metabolism, anti-inflammation, anti-oxidative stress, inhibition of apoptosis, immune regulation and so on. Paeoniflorin possess the characteristics of rapid absorption, wide distribution, rapid metabolism and renal excretion. Meanwhile, toxicity studies have suggested that paeoniflorin has low acute toxicity, minimal subacute and chronic toxicity, and no genotoxic or mutational toxic effects. In conclusion, this paper systematically elucidates the potential therapeutic application and safety profile of paeoniflorin in diabetes management.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoyuan Zheng
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
4
|
Ou X, Yu Z, Zheng X, Chen L, Pan C, Li D, Qiao Z, Zheng X. An MXene nanocomposite hydrogel for enhanced diabetic infected wound healing via photothermal antibacterial properties and bioactive molecule integration. Mater Today Bio 2025; 31:101538. [PMID: 40026619 PMCID: PMC11871482 DOI: 10.1016/j.mtbio.2025.101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/10/2025] [Accepted: 02/01/2025] [Indexed: 03/05/2025] Open
Abstract
Diabetic wounds are a major clinical challenge due to their chronic, non-healing nature, which significantly impacts patients' quality of life. Traditional treatments often fail to effectively promote wound healing, highlighting the need for new biomaterials. In this study, we developed a composite hydrogel (KC@PF@TA) that combines the photothermal and antibacterial properties of Ti₃C₂Tx-Ag (Titanium carbide-silver) with the regenerative effects of paeoniflorin (PF). The hydrogel was optimized by adjusting the composition, crosslinking density, and the incorporation of nanoparticles, which enhanced its mechanical strength, photothermal conversion efficiency, antibacterial properties, and biocompatibility. The optimized hydrogel demonstrated enhanced cell proliferation, migration, and robust photothermal and antibacterial properties in vitro. In a diabetic murine model of Staphylococcus aureus-infected wounds, KC@PF@TA exhibited exceptional therapeutic benefits in antibacterial, anti-inflammatory, angiogenic, and tissue regeneration. Overall, our results suggest that composite hydrogels with controlled bioactive agent release and mechanical modulation present a promising solution for treating chronic diabetic wounds.
Collapse
Affiliation(s)
| | | | - Xi Zheng
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Medical College, Chongqing University, Chongqing, 400014, China
| | - Le Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Medical College, Chongqing University, Chongqing, 400014, China
| | - Chuanyu Pan
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Medical College, Chongqing University, Chongqing, 400014, China
| | - Dandan Li
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Medical College, Chongqing University, Chongqing, 400014, China
| | - Zhenzhen Qiao
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Medical College, Chongqing University, Chongqing, 400014, China
| | - Xiaoyuan Zheng
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Medical College, Chongqing University, Chongqing, 400014, China
| |
Collapse
|
5
|
Chen S, Qin Z, Zhou S, Xu Y, Zhu Y. The emerging role of intestinal stem cells in ulcerative colitis. Front Med (Lausanne) 2025; 12:1569328. [PMID: 40201327 PMCID: PMC11975877 DOI: 10.3389/fmed.2025.1569328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic idiopathic inflammatory disease affecting the colon and rectum. Characterized by recurrent attacks, UC is often resistant to traditional anti-inflammatory therapies, imposing significant physiological, psychological, and economic burdens on patients. In light of these challenges, innovative targeted therapies have become a new expectation for patients with UC. A crucial pathological feature of UC is the impairment of the intestinal mucosal barrier, which underlies aberrant immune responses and inflammation. Intestinal stem cells (ISCs), which differentiate into intestinal epithelial cells, play a central role in maintaining this barrier. Growing studies have proved that regulating the regeneration and differentiation of ISC is a promising approach to treating UC. Despite this progress, there is a dearth of comprehensive articles describing the role of ISCs in UC. This review focuses on the importance of ISCs in maintaining the intestinal mucosal barrier in UC and discusses the latest findings on ISC functions, markers, and their regulatory mechanisms. Key pathways involved in ISC regulation, including the Wnt, Notch, Hedgehog (HH), Hippo/Yap, and autophagy pathways, are explored in detail. Additionally, this review examines recent advances in ISC-targeted therapies for UC, such as natural or synthetic compounds, microbial preparations, traditional Chinese medicine (TCM) extracts and compounds, and transplantation therapy. This review aims to offer novel therapeutic insights and strategies for patients who have long struggled with UC.
Collapse
Affiliation(s)
- Siqing Chen
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhang Qin
- The Fourth Hospital of Changsha (Changsha Hospital Affiliated with Hunan Normal University), Changsha, Hunan, China
| | - Sainan Zhou
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
6
|
Owida HA, Abed AY, Altalbawy FMA, H M, Abbot V, Jakhonkulovna SM, Mohammad SI, Vasudevan A, Khalaf RM, Zwamel AH. NLRP3 inflammasome-based therapies by natural products: a new development in the context of cancer therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04030-0. [PMID: 40116873 DOI: 10.1007/s00210-025-04030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/06/2025] [Indexed: 03/23/2025]
Abstract
The leucine-rich repeat containing protein (NLR) canonical inflammasome family includes Nod-like receptor protein 3 (NLRP3). Via the mediation of apoptosis proteins and immunological reactions, it controls the pathogenesis of malignancy. Experimental studies showed a relationship among lymphogenesis, cancer metastasis, and NLRP3 expression. Natural products have also been used as lead-based substances in a number of investigations to speed up the creation of novel, specific NLRP3 inhibitors. Via the mediation of apoptotic proteins and immunological responses, it controls the pathogenesis of malignancy. Moreover, it was recently noted that among human cancers, chemotherapy activates NLRP3. Induction of NLRP3 could encourage the generation of IL-1β and IL-22 to facilitate the propagation of malignancy. Additionally, prior research has demonstrated that the usage of NLRP3 in cancer therapy may result in resistance to drugs. The depletion of NLRP3 could affect the survival of cells. Natural products have been used as lead materials in a number of studies to help generate novel, specific NLRP3 antagonists more quickly. In the present review, we examine the mechanism behind the beneficial effects of the natural substances on the inhibition of cancer growth and progression, with special focus on NLRP3 regulation.
Collapse
Affiliation(s)
- Hamza Abu Owida
- Department of Medical Engineering, Faculty of Engineering, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ahmed Yaseen Abed
- Department of Medical Laboratories Techniques, College of Health and Medical Technology, University of Al Maarif, Ramadi, Al Anbar, 31001, Iraq.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Malathi H
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Vikrant Abbot
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India
| | | | - Suleiman Ibrahim Mohammad
- Electronic Marketing and Social Media, Economic and Administrative Sciences, Zarqa University, Zarqa, Jordan
- Faculty of Business and Communications, INTI International University, 71800, Negeri Sembilan, Malaysia
| | - Asokan Vasudevan
- Faculty of Business and Communications, INTI International University, 71800, Negeri Sembilan, Malaysia
| | | | - Ahmed Hussein Zwamel
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
7
|
Stoycheva C, Batovska D, Malfa GA, Acquaviva R, Statti G, Kozuharova E. Prospective Approaches to the Sustainable Use of Peonies in Bulgaria. PLANTS (BASEL, SWITZERLAND) 2025; 14:969. [PMID: 40265918 PMCID: PMC11944922 DOI: 10.3390/plants14060969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
In Europe, Paeonia officinalis and P. peregrina, along with Chinese P. lactiflora, are commonly used for medicinal purposes. This comprehensive review summarizes the secondary metabolites and biological activities of P. peregrina, P. officinalis, P. tenuifolia, P. mascula, P. lactiflora, and the ornamental cultivars derived from the last taxon. Terpenoids, flavonoids, and phenolic acids are present in all five species, while tannins, lipids, and organic acids have been identified in only some. All five species exhibit antioxidant and antimicrobial potential, alongside anti-inflammatory, anticancer, neuroprotective, antisclerotic, antidiabetic, and various other bioactivities. The data were accessed via Scopus, Web of Science, PubMed, and Google Scholar search engines. The review also reveals that P. officinalis and P. lactiflora have been far more extensively studied than P. peregrina, P. tenuifolia, and P. mascula in terms of their chemical composition and pharmacological properties. The genus Paeonia L. comprises 37 accepted species, many of which are renowned for their ornamental and medicinal value. Native to Bulgaria are P. peregrina, P. tenuifolia, and P. mascula, with the latter two being protected by the Bulgarian Biodiversity Act. The collection of substances from all three species is subject to regulatory restrictions. This review reveals the possible use of P. lactiflora as a substitute for P. peregrina.
Collapse
Affiliation(s)
- Christina Stoycheva
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria;
| | - Daniela Batovska
- Institute of Engineering Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, Bl. 103, 1113 Sofia, Bulgaria;
| | - Giuseppe Antonio Malfa
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (G.A.M.); (R.A.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Rosaria Acquaviva
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (G.A.M.); (R.A.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giancarlo Statti
- Department of Pharmacy, Health Sciences and Nutrition, University of Calabria, Via P. Bucci, 87030 Rende, Italy;
| | - Ekaterina Kozuharova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria;
| |
Collapse
|
8
|
Cao X, Ma R, Wang Y, Huang Y, You K, Zhang L, Li H, Feng G, Chen T, Wang D, Sun K, Fang H, Shen X. Paeoniflorin protects the vascular endothelial barrier in mice with sepsis by activating RXRα signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156384. [PMID: 39826282 DOI: 10.1016/j.phymed.2025.156384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/27/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVE Sepsis is a life-threatening condition characterized by organ dysfunction resulting from the body's aberrant response to infection. A primary indicator of early sepsis is vascular leakage due to endothelial injury. The immunomodulatory effects of paeoniflorin are well established. However, its effect on vascular endothelial injury in sepsis remains to be verified. METHODS The sepsis model was established by cecal ligation and puncture (CLP), along with simultaneous administration of paeoniflorin. The therapeutic effectiveness of paeoniflorin was evaluated by assessing the survival rate, the bacterial load in blood and the histopathological lung tissue injury. The pulmonary vascular endothelial barrier integrity was assessed using immunofluorescence, western blot, Evans blue dye, and qPCR. Human umbilical vein endothelial cells (HUVECs) were used for in vitro validation and exploration of the underlying mechanisms. RESULTS The CLP mice exhibited significant damage to pulmonary tissue and breakdown of endothelial barrier. Administration of paeoniflorin markedly improved survival rates, mitigated lung injury, and preserved the integrity of the pulmonary vascular endothelial barrier in CLP mice which was confirmed by in vitro experiments. Pharmacological mechanism studies showed that the protective effects of paeoniflorin on the vascular endothelium was achieved through activation of RXRα signaling, which could be reversed by RXRα knockdown. CONCLUSION Our experiments demonstrates the protective effect of paeoniflorin on the vascular endothelial barrier through activation of the RXRα, thereby offering potential therapeutic options for sepsis treatment. We also identified RXRα as a novel transcription factor for VE-cadherin, providing a potential new intervention target for vascular endothelial barrier damage in sepsis.
Collapse
Affiliation(s)
- Xinyue Cao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, PR China
| | - Ruihua Ma
- Department of Anesthesiology, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China, 215125
| | - Yirui Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, PR China
| | - Yuran Huang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, PR China
| | - Keyuan You
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, PR China
| | - Lijie Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, PR China
| | - Haidong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, PR China
| | - Guize Feng
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, PR China
| | - Tongqing Chen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, PR China
| | - Dong Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, PR China
| | - Keyu Sun
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, PR China, 201199.
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, PR China, 200032; Department of Anesthesiology, Shanghai Geriatic Medical Center, Shanghai, PR China, 201104; Department of Anesthesiology, Minhang Hospital, Fudan University, Shanghai, PR China, 201199.
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, PR China.
| |
Collapse
|
9
|
Song Y, Luo L, Lin Z, Zhang T, Li Z, Cao Y, Zhu X. Paeoniflorin sensitizes imatinib mesylate-resistant chronic myeloid leukemia cells via the inhibition of Cyr61 production. Anticancer Drugs 2025; 36:190-198. [PMID: 39773616 DOI: 10.1097/cad.0000000000001681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Imatinib mesylate (IM) is a first-line therapy for chronic myeloid leukemia (CML) and exhibits good therapeutic effects, but not in all patients with CML owing to drug resistance. Our previous study showed that Cyr61 plays a key role in IM resistance in CML cells. Paeoniflorin (PF) is a bioactive compound isolated from the traditional Chinese medicine Paeonia lactiflora Pall that displays anticancer activity. Little is, however, known regarding the role of PF in IM-resistant CML cells. This study aimed to evaluate whether PF could decrease Cyr61 production and improve IM-resistant CML cell sensitivity to IM and to investigate the underlying mechanisms. CML cell lines (K562 and KCL22) and IM-resistant cell lines (K562G and KCL22R) were used as CML study models. Cyr61 expression was assessed in both parental and IM-resistant CML cells by western blotting, real-time quantitative PCR , and ELISA. Lentiviral vectors were used to induce the knockdown of Cyr61 expression, followed by a comprehensive evaluation of cell proliferation and apoptosis. The results showed that PF decreased the production of Cyr61 in the presence of IM by inhibiting extracellular regulated protein kinases 1/2 activation. PF significantly decreased the IC50 value of IM and increased IM-induced apoptosis of IM-resistant CML cells. Importantly, PF also improved the sensitivity of CML cells to bosutinib and dasatinib via inhibition of Cyr61 production. In conclusion, we report for the first time that PF may effectively improve the sensitivity of IM-resistant CML cells to IM, bosutinib, and dasatinib, at least in part, by subsequently downregulating Cyr61.
Collapse
Affiliation(s)
- Yanfang Song
- Department of Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine
| | - Li Luo
- Department of Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine
| | - Zhen Lin
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Taigang Zhang
- Department of Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine
| | - Zhaozhong Li
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yinping Cao
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xianjin Zhu
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
10
|
Li B, Dong B, Xie L, Li Y. Exploring Advances in Natural Plant Molecules for Allergic Rhinitis Immunomodulation in Vivo and in Vitro. Int J Gen Med 2025; 18:529-565. [PMID: 39911299 PMCID: PMC11796455 DOI: 10.2147/ijgm.s493021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/20/2024] [Indexed: 02/07/2025] Open
Abstract
Allergic rhinitis (AR) is a prevalent allergic disease that imposes significant economic burdens and life pressures on individuals, families, and society, particularly in the context of accelerating globalization and increasing pathogenic factors. Current clinical therapies for AR include antihistamines, glucocorticoids administered via various routes, leukotriene receptor antagonists, immunotherapy, and several decongestants. These treatments have demonstrated efficacy in alleviating clinical symptoms and pathological states. However, with the growing awareness of AR and rising expectations for improvements in quality of life, these treatments have become associated with a higher incidence of side effects and an elevated risk of drug resistance. Furthermore, the development of AR is intricately associated with dysregulation of the immune system, yet the underlying pathogenetic mechanisms remain incompletely understood. In contrast, widely available natural plant molecules offer multiple targeting pathways that uniquely modify the typical pathophysiology of AR through immunomodulatory processes. This review presents a comprehensive analysis of both in vivo and in vitro studies on natural plant molecules that modulate immunity for treating AR. Additionally, we examine their specific mechanisms of action in animal models to provide new insights for developing safe and effective targeted therapies while guiding experimental and clinical applications against AR.
Collapse
Affiliation(s)
- Bingquan Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Boyang Dong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Liangzhen Xie
- Ear-Nose-Throat Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Yan Li
- Ear-Nose-Throat Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| |
Collapse
|
11
|
Shen S, Fu B, Tian G, Qin S, Tan Z, Song C, Yi P, Peng L. Paeoniflorin inhibits APEC-induced inflammation in HD11 cells through the NF-κB signaling pathway by activating CB 2R. Poult Sci 2025; 104:104683. [PMID: 39721268 PMCID: PMC11730855 DOI: 10.1016/j.psj.2024.104683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a bacterial pathogen that threatens poultry reproduction by inciting systemic inflammation and leading to chicken colibacillosis. The endocannabinoid system (ECS) is an immunomodulator system that regulates inflammatory responses. In this study, we aimed to investigate the anti-inflammatory effect of paeoniflorin on APEC-infected HD11 cells and its underlying mechanism. The results showed that paeoniflorin significantly reduced the expression levels of pro-inflammatory factors (IL-1β, IL-6, TNF-α), M1-type macrophage-associated markers (IL-12, iNOS, CD86), and chemokines (CXCL8, CXCL12, CCL1, CCL5, CCL17). Additionally, paeoniflorin significantly reduced the expression of MAGL and restored that of DAGL and CB2R, thereby activating the ECS. Furthermore, we found that paeoniflorin and CB2R exhibited stable conformations through molecular docking and molecular dynamics simulations. The addition of the CB2R inhibitor AM630 notably diminished paeoniflorin's inhibitory effects on the phosphorylation levels of proteins in the NF-κB signaling pathway and on inflammatory responses. These results indicate that the anti-inflammatory effects of paeoniflorin on APEC-induced HD11 cells may be mediated by the inhibition of the NF-κB signaling pathway through the activation of CB2R. This work has the potential to provide a new agent for the control and prevention of chicken colibacillosis, as well as contribute to modern research in traditional Chinese medicine.
Collapse
Affiliation(s)
- Siyang Shen
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Bendong Fu
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Guang Tian
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Shiyuan Qin
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Zhengfei Tan
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Chengwen Song
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Pengfei Yi
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Luyuan Peng
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| |
Collapse
|
12
|
Kuo SL, Su CH, Lai KH, Chang YC, You JS, Peng HH, Chen CH, Lin CC, Chen PJ, Hwang TL. Guizhi Fuling Wan ameliorates concanavalin A-induced autoimmune hepatitis in mice. Biomed J 2025; 48:100731. [PMID: 38677491 PMCID: PMC11745949 DOI: 10.1016/j.bj.2024.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Autoimmune hepatitis (AIH) is an immune-mediated hepatic disease associated with intense complications. AIH is more common in females and needs effective drugs to treat. Guizhi Fuling Wan (GZFLW) is a traditional Chinese herbal formula for treating various gynecologic diseases. In this study, we aim to extend the new use of GZFLW for AIH. METHODS The tandem MS-based analysis was used to identify secondary metabolites in GZFLW. Therapeutic effects of GZFLW were tested in a concanavalin A (Con A)-induced AIH model in mice. Ethnopharmacological mechanisms underlying the antiapoptotic, antioxidant, and immunomodulatory protective effects were determined. RESULTS Oral administration of GZFLW attenuates AIH in a Con A-induced hepatotoxic model in vivo. The tandem MS-based analysis identified 15 secondary metabolites in GZFLW. The Con A-induced AIH syndromes, including hepatic apoptosis, inflammation, reactive oxygen species accumulation, function failure, and mortality, were significantly alleviated by GZFLW in mice. Mechanistically, GZFLW restrained the caspase-dependent apoptosis, restored the antioxidant system, and decreased pro-inflammatory cytokine production in the livers of Con A-treated mice. Besides, GZFLW repressed the Con A-induced hepatic infiltration of inflammatory cells, splenic T cell activation, and splenomegaly in mice. CONCLUSIONS Our findings demonstrate the applicable potential of GZFLW in treating AIH. It prompts further investigation of GZFLW as a treatment option for AIH and possibly other hepatic diseases.
Collapse
Affiliation(s)
- Shun-Li Kuo
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Chinese Medicine Obstetrics and Gynecology, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Han Su
- Department of Food Science, College of Human Ecology, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Chia Chang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Jyh-Sheng You
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Taoyuan, Taiwan
| | - Hsin-Hsin Peng
- Division of Chinese Medicine Obstetrics and Gynecology, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Chi-Chen Lin
- Program in Translational Medicine, National Chung-Hsing University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, I-Shou University, Kaohsiung, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
13
|
Tang Q, Chu H, Sun N, Fan X, Han B, Li Y, Yu X, Li L, Wang X, Liu L, Chang H. The effects and mechanisms of chai shao jie yu granules on chronic unpredictable mild stress (CUMS)-induced depressive rats based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119268. [PMID: 39706355 DOI: 10.1016/j.jep.2024.119268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chai Shao Jie Yu Granules (CSJY) is a renowned and time-honored formula employed in clinical practice for the management of various conditions, notably depression. Depression, a prevalent psychiatric disorder, poses challenges with limited effective treatment options. Traditional herbal medicines have garnered increasing attention in the realm of combating depression, being perceived as safer alternatives to pharmacotherapy. AIM OF THE STUDY To explore the effects and mechanisms of CSJY in chronic unpredictable mild stress (CUMS)-induced depression. MATERIALS AND METHODS Rat models of CUMS-induced depression were established, and the rats were randomly allocated into six groups: Control, CUMS, CUMS + Paroxetine (PX), CUMS + CSJY-L, CUMS + CSJY-M, and CUMS + CSJY-H. Throughout the study, the rats' body weight was monitored. Depression-related behaviors were assessed using the sucrose preference test (SPT) and open field test (OFT). High-performance liquid chromatography-mass spectrometry (HPLC-MS) measured monoamine neurotransmitters in the rat cortex and hippocampus. We measured adrenocorticotropic hormone (ACTH), corticosterone (CORT), and corticotropin-release hormone (CRH) levels in rat serum. Additionally, network pharmacology was employed to predict relevant molecular targets and potential mechanisms, followed by in vivo validation. Western blot analysis was conducted to evaluate the protein levels of 5-hydroxytryptamine/serotonin receptor 1A (5-HT1A) and Glutamate (Glu)-related proteins, such as p-GluA1, GluA1, p-GluN1, GluN1, p-GluN2A and GluN2A in the hippocampus. RESULTS In behavioral assessments, CUMS rats exhibited depressive behaviors, which were ameliorated by CSJY or PX treatment. Moreover, CSJY or PX treatment increased serotonin (5-HT) levels. It reduced the kynurenine/tryptophan (KYN/TRP) and gamma-aminobutyric acid/glutamate (GABA/Glu) in the hippocampus and cortex, as well as reduced serum levels of ACTH, CORT and CRH. Furthermore, CSJY or PX administration enhanced the decreased expression of p-GluN1/GluN1 while upregulating 5-HT1A and p-GluA1/GluA1 levels in the CUMS group. CONCLUSION CSJY demonstrated the ability to alleviate depressive behaviors in CUMS-induced depression rats, potentially through the inhibition of the hypothalamic-pituitary-adrenal (HPA) axis, modulation of monoamine neurotransmitters, and glutamatergic neurons. These findings suggest that CSJY could serve as a promising treatment option for depression.
Collapse
Affiliation(s)
- Qin Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China; Pharmacy Department, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| | - Haolin Chu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Nan Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xiaoxu Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Bing Han
- Heilongjiang Jiren Pharmaceutical Co., Ltd, Heilongjiang, 150025, China
| | - Yu Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lina Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiuli Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liying Liu
- Heilongjiang Jiren Pharmaceutical Co., Ltd, Heilongjiang, 150025, China
| | - Hongsheng Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
14
|
Yu C, Yang F, Zou Y, Zhang Y, Pan S. The therapeutic effects of Paeoniae Radix Rubra on chronic hepatitis through network pharmacology and molecular docking. Medicine (Baltimore) 2024; 103:e40796. [PMID: 39654159 PMCID: PMC11630941 DOI: 10.1097/md.0000000000040796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUNDS Chronic hepatitis (CH) refers to liver inflammation lasting at least 6 months caused by various factors, significantly impacting patients' daily lives. Paeoniae Radix Rubra (CS) is a classic blood-activating and stasis-dissolving herb known for its protective effects on the liver. This research seeks to investigate the underlying mechanisms by which CS treat CH, employing network pharmacology and molecular docking. METHODS The active constituents of CS for CH treatment were identified through the TCMSP database. Targets associated with CH were gathered from GeneCards, the Therapeutic Target Database, and OMIM databases. The intersecting genes between these targets and the components of CS were considered potential therapeutic targets. Protein-protein interaction analysis was performed with the use of the STRING database and Cytoscape software, leading to the identification of core targets. These core targets underwent KEGG and GO enrichment analysis, and the top 10 pathways were chosen for building a drug-compound-target-pathway-disease' network. Finally, molecular docking was utilized to evaluate the binding affinities between the compounds and the core targets. RESULTS From the TCMSP database, 29 compounds were screened, and 101 potential intersection targets of CS for treating CH were identified. The protein-protein interaction network analysis revealed that the core targets included EGFR, HSP90AA1, SRC, TNF, ALB, ESR1, CASP3, PTGS2, ERBB2, and FGF2. Pathway analysis indicated that CS's treatment of CH is mainly associated with the pathway in cancer. Molecular docking results indicated that Paeoniflorin and Baicalin exhibited strong binding affinity with EGFR and HSP90AA1. CONCLUSION This research uncovers the possible mechanisms of CS in CH treatment, offering new avenues for future studies.
Collapse
Affiliation(s)
- Chunlei Yu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - Fan Yang
- Clinical Pathological Diagnosis Center, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - Yu Zou
- College of Pharmacy, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - Yingbo Zhang
- College of Pathology, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - Siwen Pan
- College of Pathology, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| |
Collapse
|
15
|
Xie R, Ponnampalam EN, Ahmadi F, Dunshea FR, Suleria HAR. Antioxidant Potential and Characterization of Polyphenol Compounds in Moringa oleifera Pods. Food Sci Nutr 2024; 12:10881-10902. [PMID: 39723086 PMCID: PMC11666903 DOI: 10.1002/fsn3.4628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 12/28/2024] Open
Abstract
The aim of this investigation was to comparatively assess the antioxidant and polyphenol compounds in fresh moringa pods sourced from two different regions in Australia, namely Queensland (QLD) and Western Australia (WAU). Total polyphenol content varied between 1.64 and 5.97 mg GAE/g in moringa pod samples from QLD, while it ranged from 2.84 to 4.31 mg GAE/g in WAU samples. Total flavonoid content in QLD and WAU samples averaged 4.62 and 4.24 mg QE/g, respectively. Total condensed tannin content in QLD and WAU samples averaged 2.07 and 1.60 mg CE/g, respectively. The QLD samples had higher DPPH (2.87 vs. 2.74 mg AAE/g), ABTS (15.0 vs. 12.9 mg AAE/g), and total antioxidant capacity (2.34 vs. 1.46 mg AAE/g) than WAU samples. LC-ESI-QTOF-MS/MS analysis identified 111 polyphenol compounds in moringa pod samples, including phenolic acids, flavonoids, and tannins. Some compounds were prevalent across most samples, such as 3-sinapoylquinic acid and theaflavin. The study revealed that moringa pods contain a high concentration of polyphenols with strong antioxidant capacity. These findings highlight the substantial influence of regional effects on the polyphenol content and bioactive properties of moringa pods.
Collapse
Affiliation(s)
- Rongjia Xie
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
| | - Eric N. Ponnampalam
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
- Agrifeed Animal ProductionVictoriaAustralia
| | - Farhad Ahmadi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
| | - Frank R. Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
- Faculty of Biological SciencesThe University of LeedsLeedsUK
| | - Hafiz A. R. Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
- Centre for Sustainable BioproductsDeakin UniversityWaurn PondsVictoriaAustralia
| |
Collapse
|
16
|
Zhou M, Chen Y, Jin W, Li P, Hu J, Guo X. Traditional Chinese Medicine: A Promising Treatment Option for Intestinal Fibrosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2107-2129. [PMID: 39581857 DOI: 10.1142/s0192415x24500812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Intestinal fibrosis, a common complication of inflammatory bowel disease, in particular in Crohn's disease, arises from chronic inflammation, leading to intestinal narrowing, structural damage, and functional impairment that significantly impact patients' quality of life. Current treatment options for intestinal fibrosis are limited, with surgery being the primary intervention. Traditional Chinese Medicine (TCM) has emerged as a promising approach in preventing and treating intestinal fibrosis. However, there is a scarcity of literature summarizing the mechanisms underlying TCM's efficacy in this context. To address this gap, we conducted a comprehensive review, uncovering multiple mechanisms through which TCM mitigates intestinal fibrosis. These mechanisms include immune cell balance regulation, suppression of inflammatory responses, reduction of inflammatory mediators, alleviation of colon tissue damage, restoration of intestinal function, modulation of growth factors to inhibit fibroblast activation, dynamic regulation of TIMPs and MMPs to reduce extracellular matrix deposition, inhibition of epithelial-mesenchymal transition and endothelial-mesenchymal transition, autophagy modulation, maintenance of the intestinal mucosal barrier, prevention of tissue damage by harmful factors, and regulation of cell proliferation and apoptosis. This study aims to bridge existing knowledge gaps by presenting recent evidence supporting the utilization of TCM in both clinical and experimental research settings.
Collapse
Affiliation(s)
- Meng'en Zhou
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yan Chen
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Wenqi Jin
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Peng Li
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Jie Hu
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xiutian Guo
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
17
|
Liu J, Li M, Chen G, Yang J, Jiang Y, Li F, Hua H. Jianwei Xiaoyan granule ameliorates chronic atrophic gastritis by regulating HIF-1α-VEGF pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118591. [PMID: 39025161 DOI: 10.1016/j.jep.2024.118591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jianwei Xiaoyan Granule (JWXYG) is the traditional Chinese medicine preparation in Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, which has been widely used in clinical treatment of chronic atrophic gastritis (CAG). However, the material basis and potential mechanism of JWXYG in the treatment of CAG are not clear. PURPOSE To explore the material basis and potential mechanism of JWXYG in the treatment of CAG. METHODS In this study, the components of JWXYG were analyzed by HPLC-Q-TOF-MS/MS. Then, the CAG model in rats established by a composite modeling method and MC cell model induced by MNNG were used to explore the improvement effect of JWXYG on CAG. Finally, the potential mechanism of JWXYG in the treatment of CAG was preliminarily predicted based on network pharmacology and validated experimentally. RESULTS Thirty-one components of JWXYG were analyzed through HPLC-Q-TOF-MS/MS, such as albiflorin, paeoniflorin, lobetyolin firstly. Research results in vivo showed that the gastric mucosa became thinner, intestinal metaplasia appeared, the number of glands was reduced, the serum levels of PG I and PG II increased and the contents of G17 and IL-6 reduced in CAG model rats. After 4 weeks of JWXYG (2.70 g/kg) administration, these conditions were significantly improved. In addition, cell viability, migration, and invasion of MNNG-induced MC cells was inhibited by JWXYG treatment (800 μg/mL). Furthermore, the results of network pharmacology indicated that HIF-1 and VEGF signaling pathways might play important roles in the therapeutic process. Then the results of Western blot, immunohistochemistry and immunofluorescence confirmed that with JWXYG treatment, the increased expression of HIF-1α, VEGF and VEGFR2 in gastric issue of CAG rats were restrained. Eventually, potential components of JWXYG in the treatment of CAG were predicted through molecular docking to elucidate the material basis. CONCLUSION JWXYG could inhibit angiogenesis by regulating HIF-1α-VEGF pathway to exert therapeutic effects on CAG. Our study explored the potential mechanisms and material basis of JWXYG in the treatment of CAG and provides experimental data for the clinical rational application of JWXYG.
Collapse
Affiliation(s)
- Jia Liu
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, 214400, Jiangsu Province, China.
| | - Mengyu Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Guobao Chen
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, 214400, Jiangsu Province, China.
| | - Junhui Yang
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, 214400, Jiangsu Province, China.
| | - Ying Jiang
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, 214400, Jiangsu Province, China.
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Haibing Hua
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, 214400, Jiangsu Province, China.
| |
Collapse
|
18
|
Song M, Ruan Q, Wang D. Paeoniflorin alleviates toxicity and accumulation of 6-PPD quinone by activating ACS-22 in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117226. [PMID: 39442254 DOI: 10.1016/j.ecoenv.2024.117226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
6-PPD quinone (6-PPDQ) is extensively existed in various environments. In Caenorhabditis elegans, exposure to 6-PPDQ could cause multiple toxic effects. In the current study, we further used C. elegans to investigate the effect of paeoniflorin (PF) treatment on 6-PPDQ toxicity and accumulation and the underlying mechanism. Treatment with PF (25-100 mg/L) inhibited 6-PPDQ toxicity on reproduction capacity and locomotion behavior and in inducing reactive oxygen species (ROS) production. Additionally, PF (25-100 mg/L) alleviated the dysregulation in expression of genes governing oxidative stress caused by 6-PPDQ exposure. Moreover, PF (25-100 mg/L) inhibited the enhancement in intestinal permeability caused by 6-PPDQ exposure and the accumulation of 6-PPDQ in the body of nematodes. In 6-PPDQ exposed nematodes, PF (25-100 mg/L) increased expression of acs-22 encoding a fatty acid transporter. RNAi of acs-22 could inhibit the beneficial effect of PF against 6-PPDQ toxicity in decreasing reproductive capacity and locomotion behavior, in inducing intestinal ROS production, and in enhancing intestinal permeability. RNAi of acs-22 could also suppress the PF beneficial effect against 6-PPDQ accumulation in the body of nematodes. Therefore, our results demonstrate the function of PF treatment against 6-PPDQ toxicity and accumulation in nematodes by activating the ACS-22.
Collapse
Affiliation(s)
- Mingxuan Song
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinli Ruan
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
19
|
Cao Y, Yang X, Shi P, Niu G, Zhang S, Gu Z, Guo Q. Tissue-specific chemical expression and quantitative analysis of bioactive components of Moutan Cortex by laser-microdissection combined with UPLC-Q-Orbitrap-MS technique. J Pharm Biomed Anal 2024; 253:116537. [PMID: 39461064 DOI: 10.1016/j.jpba.2024.116537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Moutan Cortex, is the root bark of Paeonia suffruticosa Andrews, which is classified into three specifications according to whether or not it is peeled and cored: Liandanpi, Guadanpi and whole root. In this study, the cork layer, cortex, phloem and xylem of P. suffruticosa fresh root were precisely separated by laser microdissection technique. UPLC-Q-Orbitrap-MS and UPLC-QQQ-MS techniques were used to analyse the differences in the chemical composition of different tissue parts of P. suffruticosa fresh root and Liandanpi, and to determine the optimal processing method of P. suffruticosa root. As a result, a total of 90 compounds were characterised, among which the cork layer had more types and higher contents of chemical constituents, and the xylem had fewer types and lower contents of chemical constituents. The proportion of xylem is larger, while the type and content of active ingredients is smaller. Therefore, the processing method of removing the wood core and retaining the cork bark can be used in the processing of Moutan Cortex. In this study, laser microdissection and ultra performance liquid chromatography-mass spectrometry were used to provide a theoretical basis for optimising the processing method of Moutan Cortex to enhance its pharmacological effects.
Collapse
Affiliation(s)
- Yan Cao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaoxue Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pengliang Shi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guozhong Niu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Suzhen Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhengwei Gu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Qingmei Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
20
|
Chu Z, Gao M, Wang J, Yuan G, Wang M, Gao D. Research progress of traditional Chinese medicine compound "Chaihu Shugan Powder" in the treatment of premenstrual syndrome. Medicine (Baltimore) 2024; 103:e38351. [PMID: 39465719 PMCID: PMC11460882 DOI: 10.1097/md.0000000000038351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND This paper aims to conduct a comprehensive and insightful review and analysis of the potential targets and corresponding pathways of Chaihu Shugan Powder (CSP) for the treatment of premenstrual syndrome (PMS) using a network pharmacology approach. The review will encompass traditional applications, active ingredients of Chinese medicines, clinical applications, pharmacological mechanisms, and active ingredients. METHODS The active ingredients, pharmacological mechanisms, and clinical applications of the herbal ingredients in the CSP formulation were summarized by searching the literature, and the main signaling pathways of the CSP formulation for the treatment of PMS were identified by network pharmacological studies. RESULTS CSP is a representative traditional Chinese medicine formula known for its liver detoxification properties and its effectiveness in alleviating depression. It is also recognized as one of the most widely used formulas for treating PMS. In this study, we systematically summarized the active ingredients and pharmacological mechanisms of the 7 traditional Chinese medicine components present in CSP. Through network pharmacology analysis, we identified 75 common targets of CSP relevant to the treatment of PMS. These targets were predominantly concentrated within 17 specific signaling pathways, elucidating the potential molecular mechanisms underlying CSP's therapeutic effects on PMS. CONCLUSION In this paper, we have reviewed CSP and PMS, investigated the potential targets and corresponding pathways of CSP for the treatment of PMS, and systematically summarized the active ingredients and pharmacological mechanisms of 7 herbal components. In addition, 17 pathways of CSP for PMS were identified for future research and clinical application. However, the specific mechanism of action of CSP for the treatment of PMS is only based on literature and online pharmacological studies, and no basic or clinical experiments have been conducted. In addition, CSP has many components with complex and varied interactions, and the effects of certain compounds may be overlooked. Based on the present findings, it is beneficial to further explore the mechanism of action of the new effector compounds and the prospect of their application in basic research and clinical trials. In conclusion, the revelation of new effector compounds and mechanisms of action is conducive to the further clinical application of CSP, the discovery of new targets for PMS, and the modernization of Chinese medicine.
Collapse
Affiliation(s)
- Zhenhan Chu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Mingzhou Gao
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Jieqiong Wang
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Guoshan Yuan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Mengxuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Dongmei Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| |
Collapse
|
21
|
Ni J, Yang M, Zheng X, Wang M, Xiao Q, Han H, Dong P. Synthesis, Antioxidant Activity, and Molecular Docking of Novel Paeoniflorin Derivatives. Chem Biol Drug Des 2024; 104:e14629. [PMID: 39327238 DOI: 10.1111/cbdd.14629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Paeoniflorin (PF) is one of the active constituents of the traditional Chinese medicine Paeoniae Radix Rubra and has been actively explored in the pharmaceutical area due to its numerous pharmacological effects. However, severe difficulties such as limited bioavailability and low permeability limit its utilization. Therefore, this study developed and synthesized 25 derivatives of PF, characterized them by 1H NMR, 13C NMR, and HR-MS, and evaluated their antioxidant activity. Firstly, the antioxidant capacity of PF derivatives was investigated through DPPH radical scavenging experiment, ABTS radical scavenging experiment, reducing ability experiment, and O2 .- radical scavenging experiment. PC12 cells are routinely used to evaluate the antioxidant activity of medicines, therefore we utilize it to establish a cellular model of oxidative stress. Among all derivatives, compound 22 demonstrates high DPPH radical scavenging capacity, ABTS radical scavenging ability, reduction ability, and O2 .- radical scavenging ability. The results of cell tests reveal that compound 22 has a non-toxic effect on PC12 cells and a protective effect on H2O2-induced oxidative stress models. This might be due to the introduction of 2, 5-difluorobenzene sulfonate group in PF, which helps in scavenging free radicals under oxidative stress. Western blot and molecular docking indicated that compound 22 may exert antioxidant activity by activating Nrf2 protein expression. As noted in the study, compound 22 has the potential to be a novel antioxidant.
Collapse
Affiliation(s)
- Jiating Ni
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meng Yang
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyue Zheng
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mingtao Wang
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qian Xiao
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Han
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Peiliang Dong
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
22
|
Zhang X, Wu Y, Gong H, Xiong Y, Chen Y, Li L, Zhi B, Lv S, Peng T, Zhang H. A Multifunctional Herb-Derived Glycopeptide Hydrogel for Chronic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400516. [PMID: 38686688 DOI: 10.1002/smll.202400516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Chronic wounds constitute an increasingly prevalent global healthcare issue, characterized by recurring bacterial infections, pronounced oxidative stress, compromised functionality of immune cells, unrelenting inflammatory reactions, and deficits in angiogenesis. In response to these multifaceted challenges, the study introduced a stimulus-responsive glycopeptide hydrogel constructed by oxidized Bletilla striata polysaccharide (OBSP), gallic acid-grafted ε-Polylysine (PLY-GA), and paeoniflorin-loaded micelles (MIC@Pae), called OBPG&MP. The hydrogel emulates the structure of glycoprotein fibers of the extracellular matrix (ECM), exhibiting exceptional injectability, self-healing, and biocompatibility. It adapts responsively to the inflammatory microenvironment of chronic wounds, sequentially releasing therapeutic agents to eradicate bacterial infection, neutralize reactive oxygen species (ROS), modulate macrophage polarization, suppress inflammation, and encourage vascular regeneration and ECM remodeling, playing a critical role across the inflammatory, proliferative, and remodeling phases of wound healing. Both in vitro and in vivo studies confirmed the efficacy of OBPG&MP hydrogel in regulating the wound microenvironment and enhancing the regeneration and remodeling of chronic wound skin tissue. This research supports the vast potential for herb-derived multifunctional hydrogels in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Ye Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Heng Gong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yan Xiong
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Yu Chen
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Lin Li
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Biao Zhi
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Saiqun Lv
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Tao Peng
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Hui Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Med-X Center for Manufacturing, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
23
|
Song X, Shen L, Contreras JM, Liu Z, Ma K, Ma B, Liu X, Wang DO. New potential selective estrogen receptor modulators in traditional Chinese medicine for treating menopausal syndrome. Phytother Res 2024; 38:4736-4756. [PMID: 39120263 DOI: 10.1002/ptr.8289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/19/2024] [Accepted: 06/23/2024] [Indexed: 08/10/2024]
Abstract
Women go through several predictable conditions and symptoms during menopause that are caused by age, changes in sex hormone levels, and other factors. Conventional menopause hormone therapy has raised serious concerns about the increased risks of cancers, blood clots, depression, etc. Selective estrogen receptor modulators (SERMs) that can be both agonists and antagonists of estrogen receptors in a tissue-specific manner are being developed to reduce the health concerns associated with menopause hormone therapy. Here, we have searched the Chinese national traditional Chinese medicine (TCM) patent database to identify potential SERM-like compounds with reduced health risks. TCM has been widely used for treating complex symptoms associated with menopause syndrome and thus can be a particularly rich source for pharmaceutical alternatives with SERM properties. After extensive literature review and molecular simulation, we conclude that protopanaxatriol, paeoniflorin, astragalin, catalpol, and hyperoside among others may be particularly promising as SERM-like compounds in treating the menopausal syndrome. Compounds in TCM hold promise in yielding comparable outcomes to hormone therapy but with reduced associated risks, thus presenting promising avenues for their clinical applications.
Collapse
Affiliation(s)
- Xintong Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Lan Shen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | | | - Zhiyuan Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Kai Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Biao Ma
- RIKEN Center for Computational Science, Kobe, Japan
| | - Xiaoling Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
24
|
Li M, Zhu X, Zhang M, Yu J, Jin S, Hu X, Piao H. The analgesic effect of paeoniflorin: A focused review. Open Life Sci 2024; 19:20220905. [PMID: 39220595 PMCID: PMC11365469 DOI: 10.1515/biol-2022-0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 09/04/2024] Open
Abstract
Pain has been a prominent medical concern since ancient times. Despite significant advances in the diagnosis and treatment of pain in contemporary medicine, there is no a therapeutic cure for chronic pain. Chinese herbaceous peony, a traditional Chinese analgesic herb has been in clinical use for millennia, with widespread application and substantial efficacy. Paeoniflorin (PF), the main active ingredient of Chinese herbaceous peony, has antioxidant, anti-inflammatory, anticancer, analgesic, and antispasmodic properties, among others. The analgesic effect of PF, involving multiple critical targets and pain regulatory pathways, has been a hot spot for current research. This article reviews the literature related to the analgesic effect of PF in the past decade and discusses the molecular mechanism of the analgesic effect of PF, including the protective effects of nerve cells, inhibition of inflammatory reactions, antioxidant effects, reduction of excitability in nociceptor, inhibition of the nociceptive excitatory neuroreceptor system, activation of the nociceptive inhibitory neuroreceptor system and regulation of other receptors involved in nociceptive sensitization. Thus, providing a theoretical basis for pain prevention and treatment research. Furthermore, the prospect of PF-based drug development is presented to propose new ideas for clinical analgesic therapy.
Collapse
Affiliation(s)
- Mingzhu Li
- Department of Integrated Traditional Chinese and Western Medicine Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P.R. China
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P.R. China
| | - Mingxue Zhang
- First Clinical College, Liaoning University of Traditional Chinese Medicine, No. 33 Beiling Street, Shenyang, Liaoning, 110032, China
| | - Jun Yu
- College of Acupuncture and Massage of Liaoning Chinese Traditional Medicine, Shenyang, Liaoning, 110847, P.R. China
| | - Shengbo Jin
- College of Acupuncture and Massage of Liaoning Chinese Traditional Medicine, Shenyang, Liaoning, 110847, P.R. China
| | - Xiaoli Hu
- First Clinical College, Liaoning University of Traditional Chinese Medicine, No. 33 Beiling Street, Shenyang, Liaoning, 110032, China
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P.R. China
| |
Collapse
|
25
|
Shi Y, Wang S, Deng D, Wang Y. Taohong Siwu Decoction: a classical Chinese prescription for treatment of orthopedic diseases. Chin J Nat Med 2024; 22:711-723. [PMID: 39197962 DOI: 10.1016/s1875-5364(24)60581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Indexed: 09/01/2024]
Abstract
The pathogenesis of orthopedic diseases is intimately linked to blood stasis, frequently arising from damage to primary and secondary blood channels. This disruption can lead to "blood leaving the meridians" or Qi stagnation, resulting in blood stasis syndrome. Taohong Siwu Decoction (THSWD) is a renowned classical Chinese medicinal formula extensively used to promote blood circulation and mitigate blood stasis. Clinical studies have demonstrated its significant therapeutic effects on various orthopedic conditions, particularly its anti-inflammatory and analgesic properties, as well as its efficacy in preventing deep vein thrombosis post-surgery. Despite these findings, research on THSWD remains fragmented, and its interdisciplinary impact is limited. This review aims to provide a comprehensive evaluation of the efficacy and pharmacological mechanisms of THSWD in treating common orthopedic diseases. Additionally, we employ bibliometric analysis to explore research trends and hotspots related to THSWD. We hope this review will enhance the recognition and application of THSWD in orthopedic treatments and guide future research into its pharmacological mechanisms.
Collapse
Affiliation(s)
- Yunzhen Shi
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China
| | - Disi Deng
- Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
26
|
Shen S, Fu B, Deng L, Zhu G, Shi H, Tian G, Han C, Yi P, Peng L. Paeoniflorin protects chicken against APEC-induced acute lung injury by affecting the endocannabinoid system and inhibiting the PI3K/AKT and NF-κB signaling pathways. Poult Sci 2024; 103:103866. [PMID: 38833957 PMCID: PMC11179074 DOI: 10.1016/j.psj.2024.103866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is the causative agent of chicken colibacillosis. Paeoniflorin, a natural ingredient extracted from Paeonia lactiflora, has a variety of pharmacological effects including anti-inflammatory and immunomodulatory. However, its effects and mechanism in APEC-induced acute lung injury (ALI) in chicken is not clear. The aim of this study was to investigate the protective effect of paeoniflorin on APEC-induced ALI and its possible mechanism. Paeoniflorin (25, 50, and 100 mg/kg) was administered by gavage for 5 d starting at 9 d of age and the chicken were infected with APEC by intraperitoneal injection at 12 d of age. The tissues were collected after APEC infection for 36 h for analysis. The results showed that paeoniflorin significantly alleviated the symptoms, increased the survival rate and body weight gain of APEC-infected chicken, and improved the histopathological damages, and reduced APEC loads in lung tissues. In addition, paeoniflorin restored the gene expression of ZO-1, Occludin and Claudin-3 during APEC infection. Moreover, paeoniflorin pretreatment significantly affected the endocannabinoid system (ECs) by increasing DAGL, decreasing MAGL, increasing secretion of 2-AG. Then, paeoniflorin significantly decreased the secretion of IL-1β, IL-6 and TNF-α in lung tissues, and decreased the mRNA expression of CXCL8, CXCL12, CCL1, CCL5, and CCL17. In addition, paeoniflorin significantly reduced the phosphorylation levels of PI3K, AKT, P65, and IκB. In summary, we found that paeoniflorin inhibited APEC-induced ALI, and its mechanism may be through affecting ECs and inhibiting the activation of PI3K/AKT and NF-κB signaling pathways, which provides a new idea for the prevention and treatment of chicken colibacillosis.
Collapse
Affiliation(s)
- Siyang Shen
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Bendong Fu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, Jilin 130062, China
| | - Ling Deng
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Guoqiang Zhu
- Animal Husbandry and Veterinary Station, Diao town Zhangqiu district, Jinan, Shandong 250204, China
| | - Haitao Shi
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Guang Tian
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Chi Han
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Pengfei Yi
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, Jilin 130062, China
| | - Luyuan Peng
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
27
|
Zhang W, Zou M, Fu J, Xu Y, Zhu Y. Autophagy: A potential target for natural products in the treatment of ulcerative colitis. Biomed Pharmacother 2024; 176:116891. [PMID: 38865850 DOI: 10.1016/j.biopha.2024.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease primarily affecting the mucosa of the colon and rectum. UC is characterized by recurrent episodes, often necessitating lifelong medication use, imposing a significant burden on patients. Current conventional and advanced treatments for UC have the disadvantages of insufficient efficiency, susceptibility to drug resistance, and notable adverse effects. Therefore, developing effective and safe drugs has become an urgent need. Autophagy is an intracellular degradation process that plays an important role in intestinal homeostasis. Emerging evidence suggests that aberrant autophagy is involved in the development of UC, and modulating autophagy can effectively alleviate experimental colitis. A growing number of studies have established that autophagy can interplay with endoplasmic reticulum stress, gut microbiota, apoptosis, and the NLRP3 inflammasome, all of which contribute to the pathogenesis of UC. In addition, a variety of intestinal epithelial cells, including absorptive cells, goblet cells, and Paneth cells, as well as other cell types like neutrophils, antigen-presenting cells, and stem cells in the gut, mediate the development of UC through autophagy. To date, many studies have found that natural products hold the potential to exert therapeutic effects on UC by regulating autophagy. This review focuses on the possible effects and pharmacological mechanisms of natural products to alleviate UC with autophagy as a potential target in recent years, aiming to provide a basis for new drug development.
Collapse
Affiliation(s)
- Wei Zhang
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Menglong Zou
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jia Fu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| |
Collapse
|
28
|
Lu Y, Yin L, Yang W, Wu Z, Niu J. Antioxidant effects of Paeoniflorin and relevant molecular mechanisms as related to a variety of diseases: A review. Biomed Pharmacother 2024; 176:116772. [PMID: 38810407 DOI: 10.1016/j.biopha.2024.116772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Paeoniflorin (PF), which is the main component of the Paeonia lactiflora Pall extract, is one of the traditional Chinese medicines. The pharmacological effects associated with PF include antioxidant, immunomodulatory, anti-inflammatory, anticancer, antidepressant-like and neuroprotective effects. Our previous studies had revealed that PF protected melanocytes and inhibited photodamage through the suppression of oxidative stress (OS). As OS plays a vital role in the progression of a variety of diseases, the capacity for PF to suppress OS may exert important effects upon them. However, no review exists on these antioxidant effects of PF as related to various diseases. Therefore, in this review we summarized studies involved with examining the antioxidant effects and molecular mechanisms of PF. Through its capacity to inhibit OS, PF has been shown to exert beneficial effects upon several systems including nervous, cardiac/vascular, digestive, and respiratory as well as specific diseases such as diabetes, autoimmune, pregnancy related, ocular, kidney, dermatology, along with suppression of distal flap necrosis, postoperative adhesions, and hearing loss. Such findings provide new insights and directions for future research directed at the development of PF as a natural antioxidant for the treatment of clinical diseases.
Collapse
Affiliation(s)
- Yansong Lu
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Lu Yin
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Wei Yang
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Ze Wu
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Jun Niu
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
29
|
OuYang Y, Chen B, Yi J, Zhou S, Liu Y, Tian F, Zeng F, Xiao L, Liu B. Study on the molecular mechanisms of Liuwei Dihuang decoction against aging-related cognitive impairment based on network pharmacology and experimental verification. Heliyon 2024; 10:e32526. [PMID: 38961903 PMCID: PMC11219498 DOI: 10.1016/j.heliyon.2024.e32526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Objective Based on network pharmacology and experimental validation, this study aimed to screen the potential targets of Liuwei Dihuang decoction (LW) against mild cognitive impairment (MCI). Methods Based on network pharmacology, this study preliminarily explored the targets and molecular mechanisms of LW in the treatment of MCI. The results showed that the mechanism of action of LW against MCI may be related to the cAMP pathway. Then, an aging cell and animal model was established to further verify its molecular mechanism. Results A total of 23 active ingredients were identified in LW. In addition, through network pharmacological analysis, we found 22 anti-MCI active ingredients in LW, of which alisol B had the most significant effect, and predicted the potential mechanism pathway by which LW may improve MCI through the cAMP signaling pathway. Further in vivo and in vitro experiments confirmed that LW can alleviate cognitive dysfunction in aging mice and reduce D-galactose-induced senescent cells, which may be through activation of the cAMP/PKA/CREB signaling pathway. Conclusion This study found that the traditional Chinese medicine formula LW may play a role in improving MCI by regulating the cAMP/PKA/CREB signaling pathway, which provides a reference for further clinical research on the anti-MCI effect of LW and its molecular mechanism.
Collapse
Affiliation(s)
- Yin OuYang
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410000, China
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Bowei Chen
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Jian Yi
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Siqian Zhou
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410000, China
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Yingfei Liu
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410000, China
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Fengming Tian
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410000, China
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Fanzuo Zeng
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410000, China
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Lan Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Baiyan Liu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China
- Hunan Academy of Chinese Medicine, Changsha, 410000, China
| |
Collapse
|
30
|
Xu J, Lu L, Jiang S, Qin Z, Huang J, Huang M, Jin J. Paeoniflorin ameliorates oxaliplatin-induced peripheral neuropathy via inhibiting neuroinflammation through influence on gut microbiota. Eur J Pharmacol 2024; 971:176516. [PMID: 38513881 DOI: 10.1016/j.ejphar.2024.176516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/13/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Oxaliplatin (OXA)-induced peripheral neuropathy (OIPN) is a severe side effect that greatly limits OXA clinical use and threatens patients' life and health. Paeoniflorin exhibits extensive anti-inflammatory and neuroprotective effects, but whether it can protect against OIPN and the underlying mechanisms remain unclear. This study aimed to investigate the effects of paeoniflorin on OIPN and probe into the underlying mechanisms. The OIPN model was established through oxaliplatin injection in rats. The ameliorative effects of paeoniflorin on OIPN was assessed by nociceptive hypersensitivities through pain behavioral methods. Neuroinflammation were examined by measuring the levels of inflammatory cytokines and immune cells infiltration. The signaling pathway of TLR4/MyD88/NF-κB was evaluated by Western blotting. Gut microbial changes were detected by 16S rDNA sequencing technology. In addition, antibiotics-induced microbiota eradication and fecal microbial transplantation (FMT) were applied for exploring the function of gut microbiota in the protective effects of paeoniflorin. The results revealed that paeoniflorin significantly alleviated mechanical and cold hypersensitivity, mitigated neuroinflammation and influenced gut microbial composition in OIPN rats. Fecal microbiota transplantation further verified that gut microbiota was required for paeoniflorin ameliorating OIPN and that the underlying mechanism involved downregulation of TLR4/MyD88/NF-κB signaling. Specifically, Akkermansia, Dubosiella and Corynebacterium might serve as crucial genera regulated by paeoniflorin in the treatment of OIPN. In summary, our investigations delineate paeoniflorin's ameliorative effects on OIPN by alleviating neuroinflammation through regulations of gut microbiota. This suggests that paeoniflorin may serve as a new potential strategy for treatment of OIPN in clinical practice.
Collapse
Affiliation(s)
- Jiayue Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Langqing Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shiqin Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhiyan Qin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Junyuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Institute of Clinical Pharmacology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Institute of Clinical Pharmacology, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
31
|
Tan J, Zhu H, Zeng Y, Li J, Zhao Y, Li M. Therapeutic Potential of Natural Compounds in Subarachnoid Haemorrhage. Neuroscience 2024; 546:118-142. [PMID: 38574799 DOI: 10.1016/j.neuroscience.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a common and fatal cerebrovascular disease with high morbidity, mortality and very poor prognosis worldwide. SAH can induce a complex series of pathophysiological processes, and the main factors affecting its prognosis are early brain injury (EBI) and delayed cerebral ischemia (DCI). The pathophysiological features of EBI mainly include intense neuroinflammation, oxidative stress, neuronal cell death, mitochondrial dysfunction and brain edema, while DCI is characterized by delayed onset ischemic neurological deficits and cerebral vasospasm (CVS). Despite much exploration in people to improve the prognostic outcome of SAH, effective treatment strategies are still lacking. In recent years, numerous studies have shown that natural compounds of plant origin have unique neuro- and vascular protective effects in EBI and DCI after SAH and long-term neurological deficits, which mainly include inhibition of inflammatory response, reduction of oxidative stress, anti-apoptosis, and improvement of blood-brain barrier and cerebral vasospasm. The aim of this paper is to systematically explore the processes of neuroinflammation, oxidative stress, and apoptosis in SAH, and to summarize natural compounds as potential targets for improving the prognosis of SAH and their related mechanisms of action for future therapies.
Collapse
Affiliation(s)
- Jiacong Tan
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Huaxin Zhu
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yanyang Zeng
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Jiawei Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yeyu Zhao
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
32
|
Jiao K, Lai Z, Cheng Q, Yang Z, Liao W, Liao Y, Long H, Sun R, Lang T, Shao L, Deng C, She Y. Glycosides of Buyang Huanwu decoction inhibits inflammation associated with cerebral ischemia-reperfusion via the PINK1/Parkin mitophagy pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117766. [PMID: 38266949 DOI: 10.1016/j.jep.2024.117766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A classic stroke formula is Buyang Huanwu Decoction (BYHWD), Glycosides are the pharmacological components found in BYHWD, which are utilized for the prevention and management of cerebral ischemia-reperfusion (CIR), as demonstrated in a previous study. Its neuroprotective properties are closely related to its ability to modulate inflammation, but its mechanism is as yet unclear. AIM OF THE STUDY A research was undertaken to investigate the impact of glycosides on the inflammation of CIR through the PTEN-induced putative kinase-1 (PINK1)/Parkin mitophagy pathway. MATERIALS AND METHODS Analyzing glycosides containing serum components was performed with ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). Glycosides were applied to rat of Middle cerebral artery occlusion/reperfusion (MCAO/R) model and primary neural cell of Oxygen glucose deprivation/reperfusion (OGD/R) model. The neuroprotective effect and the regulation of mitophagy of glycosides were evaluated through neural damage and PINK1/Parkin mitophagy activation. Moreover, the assessment of the relationship between glycosides regulation of mitophagy and its anti-inflammatory effects subsequent to mitophagy blockade was conducted by examining neural damage, PINK1/Parkin mitophagy activation, and levels of pyroptosis. RESULTS (1) It was observed that the administration of glycosides resulted in a decrease in neurological function scores, a reduction in cerebral infarction volume, an increase in mitochondrial autophagosome, and the maintenance of a high expression status of light chain 3 (LC3) II/LC3Ⅰ protein. Additionally, there was a significant inhibition of p62 protein expression and an enhancement of PINK1 and Parkin protein expression. Furthermore, it was found that the effect of glycosides at a dosage of 0.128 g · kg-1 was significantly superior to that of glycosides at a dosage of 0.064 g · kg-1. Notably, the neuroprotective effect and inhibition of pyroptosis protein of glycosides at a dosage of 0.128 g · kg-1 were attenuated when mitochondrial autophagy was blocked. (2) Glycosides repaired cellular morphological damage, enhanced cell survival, and reduced Lactate dehydrogenase (LDH) leakage, with glycosides (2.36 μg·mL-1 and 4.72 μg·mL-1) neuronal protection being the strongest. Glycosides (4.72 μg·mL-1) maintained LC3II/LC3Ⅰ protein high expression state, inhibited p62 protein expression, and promoted PINK1 and Parkin protein expression, which was stronger than glycosides (2.36 μg·mL-1). The blockade of mitophagy resulted in a reduction of neuroprotection and inhibition of pyroptosis protein exerted by glycosides. CONCLUSION Glycosides demonstrate the ability to hinder inflammation through the activation of the PINK1/Parkin mitophagy pathway, thereby leading to subsequent neuroprotective effects on CIR.
Collapse
Affiliation(s)
- Keyan Jiao
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zili Lai
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qiaochu Cheng
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhengyu Yang
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenxin Liao
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yanhao Liao
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hongping Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ruiting Sun
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ting Lang
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Le Shao
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Changqing Deng
- Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Yan She
- Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
33
|
Yang K, Zeng L, He Q, Wang S, Xu H, Ge J. Advancements in research on the immune-inflammatory mechanisms mediated by NLRP3 inflammasome in ischemic stroke and the regulatory role of natural plant products. Front Pharmacol 2024; 15:1250918. [PMID: 38601463 PMCID: PMC11004298 DOI: 10.3389/fphar.2024.1250918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/11/2024] [Indexed: 04/12/2024] Open
Abstract
Ischemic stroke (IS) is a major cause of mortality and disability among adults. Recanalization of blood vessels to facilitate timely reperfusion is the primary clinical approach; however, reperfusion itself may trigger cerebral ischemia-reperfusion injury. Emerging evidence strongly implicates the NLRP3 inflammasome as a potential therapeutic target, playing a key role in cerebral ischemia and reperfusion injury. The aberrant expression and function of NLRP3 inflammasome-mediated inflammation in cerebral ischemia have garnered considerable attention as a recent research focus. Accordingly, this review provides a comprehensive summary of the signaling pathways, pathological mechanisms, and intricate interactions involving NLRP3 inflammasomes in cerebral ischemia-reperfusion injury. Moreover, notable progress has been made in investigating the impact of natural plant products (e.g., Proanthocyanidins, methylliensinine, salidroside, α-asarone, acacia, curcumin, morin, ginsenoside Rd, paeoniflorin, breviscapine, sulforaphane, etc.) on regulating cerebral ischemia and reperfusion by modulating the NLRP3 inflammasome and mitigating the release of inflammatory cytokines. These findings aim to present novel insights that could contribute to the prevention and treatment of cerebral ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Liuting Zeng
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi He
- Department of Critical Care Medicine, People’s Hospital of Ningxiang City, Ningxiang, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
34
|
Li Q, Lianghao Y, Shijie G, Zhiyi W, Yuanting T, Cong C, Chun-Qin Z, Xianjun F. Self-assembled nanodrug delivery systems for anti-cancer drugs from traditional Chinese medicine. Biomater Sci 2024; 12:1662-1692. [PMID: 38411151 DOI: 10.1039/d3bm01451g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Traditional Chinese medicine (TCM) is a combination of raw herbs and herbal extracts with a plethora of documented beneficial bioactivities, which has unique advantages in anti-tumor therapy, and many of its major bioactive molecules have been identified in recent years due to advances in chemical separation and structural analysis. However, the major chemical classes of plant-derived bioactive compounds frequently possess chemical properties, including poor water solubility, stability, and bioavailability, that limit their therapeutic application. Alternatively, natural small molecules (NSMs) containing these components possess modifiable groups, multiple action sites, hydrophobic side chains, and a rigid skeleton with self-assembly properties that can be exploited to construct self-assembled nanoparticles with therapeutic effects superior to their individual constituents. For instance, the construction of a self-assembled nanodrug delivery system can effectively overcome the strong hydrophobicity and poor in vivo stability of NSMs, thereby greatly improving their bioavailability and enhancing their anti-tumor efficacy. This review summarizes the self-assembly methods, mechanisms, and applications of a variety of NSMs, including terpenoids, flavonoids, alkaloids, polyphenols, and saponins, providing a theoretical basis for the subsequent research on NSMs and the development of SANDDS.
Collapse
Affiliation(s)
- Qiao Li
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Yuan Lianghao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Gao Shijie
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Wang Zhiyi
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Tang Yuanting
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Chen Cong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China.
| | - Zhao Chun-Qin
- Academy of Chinese Medicine Literature and Culture, Key Laboratory of Classical Theory of Traditional Chinese Medicine, Ministry of Education, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Fu Xianjun
- Marine Traditional Chinese Medicine Research Centre, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, P. R. China.
| |
Collapse
|
35
|
Son J, Cha MR, Song S, Oh B, Bang S, Cha J, Lim SD, Yang SY. Efficacy of a mixed extract of Salvia miltiorrhiza and Paeonia lactiflora in inhibiting the aging of vascular wall through in vitro and in vivo experiments. Biosci Biotechnol Biochem 2024; 88:420-428. [PMID: 38281062 DOI: 10.1093/bbb/zbae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/13/2024] [Indexed: 01/29/2024]
Abstract
Vascular wall aging has been strongly associated with cardiovascular diseases. Thus, this study aimed to investigate the efficacy of USCP-GVH-014, a mixed extract of Salvia miltiorrhiza Bunge and Paeonia lactiflora Pall., in inhibiting vascular wall aging through in vitro and in vivo experiments. The results revealed that USCP-GVH-014 inhibited abnormal cell proliferation, collagen overproduction, and MMP-2 and MMP-9 overexpression caused by various stimuli and recovered the antioxidant enzyme superoxide dismutase on human aortic smooth muscle cells. In addition, it inhibited the increase in ICAM-1 and VCAM-1 expression induced by tumor necrosis factor alpha on human aortic endothelial cells and prevented the aging of the vascular wall by regulating related proteins such as epidermal growth factor and interleukin-1ß. Furthermore, it reduced vascular aging in in vivo studies. These results demonstrate that USCP-GVH-014 effectively reduces vascular aging, thereby rendering it a potential therapeutic candidate for cardiovascular diseases.
Collapse
Affiliation(s)
- Juah Son
- USCAREPHARM Co., Ltd., Suwon, Republic of Korea
| | - Mi-Ran Cha
- USCAREPHARM Co., Ltd., Suwon, Republic of Korea
| | - Sukjin Song
- USCAREPHARM Co., Ltd., Suwon, Republic of Korea
| | - Byulnim Oh
- USCAREPHARM Co., Ltd., Suwon, Republic of Korea
| | | | - Jinwook Cha
- USCAREPHARM Co., Ltd., Suwon, Republic of Korea
| | - Sung Don Lim
- Department of Applied Plant Sciences, Graduate School, Sangji University, Wonju, Republic of Korea
| | - Seo Young Yang
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
36
|
Zhu Z, Li C, Gu X, Wang X, Zhang G, Fan M, Zhao Y, Liu X, Zhang X. Paeoniflorin alleviated muscle atrophy in cancer cachexia through inhibiting TLR4/NF-κB signaling and activating AKT/mTOR signaling. Toxicol Appl Pharmacol 2024; 484:116846. [PMID: 38331105 DOI: 10.1016/j.taap.2024.116846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Cancer cachexia is a progressive wasting syndrome, which is mainly characterized by systemic inflammatory response, weight loss, muscle atrophy, and fat loss. Paeoniflorin (Pae) is a natural compound extracted from the dried root of Paeonia lactiflora Pallas, which is featured in anti-inflammatory, antioxidant, and immunoregulatory pharmacological activities. While, the effects of Pae on cancer cachexia had not been reported before. In the present study, the effects of Pae on muscle atrophy in cancer cachexia were observed both in vitro and in vivo using C2C12 myotube atrophy cell model and C26 tumor-bearing cancer cachexia mice model. In the in vitro study, Pae could alleviate myotubes atrophy induced by conditioned medium of C26 colon cancer cells or LLC Lewis lung cancer cells by decreasing the expression of Atrogin-1 and inhibited the decrease of MHC and MyoD. In the in vivo study, Pae ameliorated weight loss and improved the decrease in cross-sectional area of muscle fibers and the impairment of muscle function in C26 tumor-bearing mice. The inhibition of TLR4/NF-κB pathway and the activation of AKT/mTOR pathway was observed both in C2C12 myotubes and C26 tumor-bearing mice treated by Pae, which might be the main basis of its ameliorating effects on muscle atrophy. In addition, Pae could inhibit the release of IL-6 from C26 tumor cells, which might also contribute to its ameliorating effects on muscle atrophy. Overall, Pae might be a promising candidate for the therapy of cancer cachexia.
Collapse
Affiliation(s)
- Zixia Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Cong Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Xiaofan Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Xiaoting Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Gang Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Meng Fan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Yun Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201003, China.
| | - Xiongwen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
37
|
Cheng W, Yuan Z, Wu S, Yu X, Xia K, Zhao L, Wang Y, Kang C, Yang W, Liu L, Li Y. Simultaneous determination of five compounds of fried Radix Paeoniae Alba extract in beagle dogs plasma by Ultra Performance Liquid Chromatography Tandem Mass Spectrometry and its application in a pharmacokinetic study. Biomed Chromatogr 2024; 38:e5803. [PMID: 38098275 DOI: 10.1002/bmc.5803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 02/24/2024]
Abstract
In this present study, we developed a reliable and simple ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay for the simultaneous quantification of paeoniflorin, albiflorin, oxypaeoniflorin, benzoylpaeoniflorin and isomaltopaeoniflorin in beagle dog plasma. We also analyzed the pharmacokinetics of those components after oral administration of fried Radix Paeoniae Alba (FRPA) in beagle dogs. Plasma samples were processed by protein precipitation with methanol. Chromatographic separation was performed with a Waters HSS-T3 C18 column (100 × 2.1 mm, 1.8 μm, kept at 40°C) using multiple reaction monitoring mode. A gradient elution procedure was used with solvent A (0.02% formic acid-water) and solvent B (0.02% formic acid-acetonitrile) as mobile phases. Method validation was performed as US Food and Drug Administration guidelines, and the results met the acceptance criteria. The method we establish in this experiment was successfully applied to the pharmacokinetic study after oral administration of FRPA extract to beagle dogs.
Collapse
Affiliation(s)
- Wenhao Cheng
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Zheng Yuan
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Siyang Wu
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Yu
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kexin Xia
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lifeng Zhao
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyan Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chen Kang
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Yang
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luyang Liu
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yingfei Li
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Hu F, Lin J, Xiong L, Li Z, Liu WK, Zheng YJ. Exploring the molecular mechanism of Xuebifang in the treatment of diabetic peripheral neuropathy based on bioinformatics and network pharmacology. Front Endocrinol (Lausanne) 2024; 15:1275816. [PMID: 38390212 PMCID: PMC10881818 DOI: 10.3389/fendo.2024.1275816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Background Xuebifang (XBF), a potent Chinese herbal formula, has been employed in managing diabetic peripheral neuropathy (DPN). Nevertheless, the precise mechanism of its action remains enigmatic. Purpose The primary objective of this investigation is to employ a bioinformatics-driven approach combined with network pharmacology to comprehensively explore the therapeutic mechanism of XBF in the context of DPN. Study design and Methods The active chemicals and their respective targets of XBF were sourced from the TCMSP and BATMAN databases. Differentially expressed genes (DEGs) related to DPN were obtained from the GEO database. The targets associated with DPN were compiled from the OMIM, GeneCards, and DrugBank databases. The analysis of GO, KEGG pathway enrichment, as well as immuno-infiltration analysis, was conducted using the R language. The investigation focused on the distribution of therapeutic targets of XBF within human organs or cells. Subsequently, molecular docking was employed to evaluate the interactions between potential targets and active compounds of XBF concerning the treatment of DPN. Results The study successfully identified a total of 122 active compounds and 272 targets associated with XBF. 5 core targets of XBF for DPN were discovered by building PPI network. According to GO and KEGG pathway enrichment analysis, the mechanisms of XBF for DPN could be related to inflammation, immune regulation, and pivotal signalling pathways such as the TNF, TLR, CLR, and NOD-like receptor signalling pathways. These findings were further supported by immune infiltration analysis and localization of immune organs and cells. Moreover, the molecular docking simulations demonstrated a strong binding affinity between the active chemicals and the carefully selected targets. Conclusion In summary, this study proposes a novel treatment model for XBF in DPN, and it also offers a new perspective for exploring the principles of traditional Chinese medicine (TCM) in the clinical management of DPN.
Collapse
Affiliation(s)
- Faquan Hu
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jiaran Lin
- Affiliated Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liyuan Xiong
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zhengpin Li
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Wen-ke Liu
- Affiliated Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-jiao Zheng
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
39
|
Feng Y, Dai L, Zhang Y, Sun S, Cong S, Ling S, Zhang H. Buyang Huanwu Decoction alleviates blood stasis, platelet activation, and inflammation and regulates the HMGB1/NF-κB pathway in rats with pulmonary fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117088. [PMID: 37652195 DOI: 10.1016/j.jep.2023.117088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qi deficiency and blood stasis are identified to be pathological factors of pulmonary fibrosis (PF) in traditional Chinese medicine (TCM) theory. Buyang Huanwu Decoction (BYHWD) is a traditional Chinese prescription ameliorating Qi deficiency and blood stasis. AIM OF THE STUDY The objective of this study was to investigate the anti-fibrosis effect of BYHWD and the potential molecular mechanism in rats. MATERIALS AND METHODS Bleomycin was used to construct PF rat models. 27 PF rats were randomly divided into three groups based on treatments: model group (saline solution, n = 9), low-dose BYHWD group (3.5 g/kg, n = 9), and high-dose BYHWD group (14.0 g/kg, n = 9). Moreover, 9 normal rats were used as the blank group. The blood viscosity, coagulation indexes (APTT, TT, PT, and FIB), platelet-related parameters (PLT, PDW, MPV, PCT, and PLCR), platelet microparticles (PMPs), and inflammatory factors (IL-2, IL-10, IL-1β, IL-6, IL-8, IL-17, IFN-γ, TNF-α, PAC-1, HMGB1, NF-κB, and TF) were determined. The lung tissue samples of rats were observed after hematoxylin-eosin (HE) staining. The full component analysis of the BYHWD extract was performed using the ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. The signaling pathway included into the study was selected on the basis of bioinformatics analysis and the results of the phytochemical analysis. The expression levels of genes and proteins involved in the selected signaling pathway were detected. RESULTS Compared to the blank group, the whole blood viscosity, PLR, PDW, MPV, PCT, PLCR, PMPs, and the levels of IL-1β, IL-6, IL-8, IL-17, TNF-α, PAC-1, HMGB1, NF-κB, and TF were increased, while the levels of IL-2 and IL-10 were decreased in the model group. Both low-dose BYHWD and high-dose BYHWD reversed these PF-induced effects in spite of the fact that low-dose BYHWD had no significant effect on the level of NF-κB. In addition, BYHWD ameliorated PF-induced inflammation in the rat lung tissue. The phytochemical analysis of the BYHWD extract combined with the bioinformatics analysis suggested that the therapeutical effect of BYHWD on PF was related to the HMGB1/NF-κB pathway, which consisted of NF-κB, IKBKB, ICAM1, VCAM1, HMGB1, and TLR4. Both RT-qPCR and western blot analyses showed that PF induced increases in the expression levels of NF-κB, ICAM1, VCAM1, HMGB1, and TLR4, but a decrease in the expression level of IKBKB. Moreover, both low-dose BYHWD and high-dose BYHWD exerted the opposite effects, and recovered the expression levels of NF-κB, ICAM1, VCAM1, HMGB1, TLR4, and IKBKB, despite the fact that low-dose BYHWD had no effects on the mRNA expression levels of NF-κB or TLR4. CONCLUSIONS In summary, BYHWD alleviated PF-induced blood stasis, platelet activation, and inflammation in the rats. Our study suggested BYHWD had a therapeutic effect on PF and was a good alternative for the complementary therapy of PF, and the potential molecular mechanism was modulation of HMGB1/NF-κB signaling pathway, and it needs further study.
Collapse
Affiliation(s)
- Yuenan Feng
- Experimental Training Center, Heilongjiang University of Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang Province, China.
| | - Linfeng Dai
- Xiangfang District:Department of Pharmacy, Heilongjiang Provincial Hospital, No.82 Zhongshan Road, Xiangfang District, Harbin, 150036, Heilongjiang Province, China.
| | - Yanli Zhang
- Experimental Training Center, Heilongjiang University of Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang Province, China.
| | - Simiao Sun
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang Province, China.
| | - Shan Cong
- Department of Pharmacy, The Second Affiliated Hospital of Qiqihar Medical University, No.64 Zhonghua West Road, Jianhua District, Qiqihar, 161006, Heilongjiang Province, China.
| | - Shuang Ling
- Jiamusi College, Heilongjiang University of Chinese Medicine, No.53 Guanghua Street, Jiamusi, 154007, China.
| | - Huan Zhang
- Nangang District:Department of Pharmacy, Heilongjiang Provincial Hospital, No. 405 Gogol Street, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
40
|
Xu R, Zhang J, Hu X, Xu P, Huang S, Cui S, Guo Y, Yang H, Chen X, Jiang C. Yi-shen-hua-shi granules modulate immune and inflammatory damage via the ALG3/PPARγ/NF-κB pathway in the treatment of immunoglobulin a nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117204. [PMID: 37757993 DOI: 10.1016/j.jep.2023.117204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Controversy persists regarding the treatment of immunoglobulin A nephropathy (IgAN), thereby highlighting the demand for safer more effective therapeutic drugs. Although supplementary treatment using Yi-Shen-Hua-Shi (YSHS) granules has distinct advantages with respect to improving renal function in IgAN, a lack of clarity regarding the underlying mechanisms limits their clinical application. AIM OF THE STUDY In this study, we aimed to elucidate the therapeutic mechanisms underlying the efficacy of YSHS granules in the treatment of IgAN. MATERIALS AND METHODS A rat model of IgAN was established based on lipopolysaccharide, carbon tetrachloride, and bovine serum albumin induction. In order to evaluate the effects of YSHS granules, we performed a range of techniques, including immunofluorescence assays, hematoxylin and eosin staining, and flow cytometry, to assess inflammation, immunity, and other relevant factors. Direct data-independent acquisition-mass spectrometry (DIA-MS) analysis and parallel reaction monitoring (PRM) were used for functional characterization and quantitative validation of differentially expressed proteins (DEPs), and Western blot analysis is used to identify downstream proteins associated with DEPs. RESULTS Compared with the model group, the levels of proteinuria, urine red blood cells, serum creatinine, blood urea nitrogen, low-density lipoprotein-cholesterol, triglycerides, and pathological kidney damage were reduced in the YSHS group. A high dose of YSHS granules was found to raise the levels of CD8 T cells and reduce the CD4/CD8 ratio in the peripheral serum. To examine the mechanisms underlying the therapeutic effects YSHS granules, we performed direct DIA-MS analysis to identify proteins that were differentially expressed among the model, YSHS, and control groups. A total of 29 proteins were identified as being commonly expressed in all three groups. Further KEGG and protein-protein interaction (PPI) network analysis revealed that YSHS granules can contribute to the regulation of N-glycosylation-associated proteins, such as ALG3 and STT3A, in rats with IgAN. Detected changes in the expression of ALG3 and STT3A were consistent with the PRM results. We also established that the administration of YSHS granules can contribute to regulation of the ALG3-associated PPAR-γ/NF-κB signaling pathway. CONCLUSIONS Our findings in this study provide evidence to indicate the efficacy of YSHS granules in the treatment of IgAN, the putative underlying mechanisms of which involve the modulation of N-glycosylation, mediated via the PPAR-γ/NF-κB pathway.
Collapse
Affiliation(s)
- Rongjia Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Jiajia Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Xingge Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Penghao Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shiqi Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shiyan Cui
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuxin Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongtao Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - Chen Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
41
|
Liu H, Chang Z, Liu S, Zhu R, Ma J, Lu X, Li L, Zhang Z. MEDAG expression in vitro and paeoniflorin alleviates bone loss by regulating the MEDAG/AMPK/PPARγ signaling pathway in vivo. Heliyon 2024; 10:e24241. [PMID: 38226230 PMCID: PMC10788805 DOI: 10.1016/j.heliyon.2024.e24241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Objectives Osteoporosis (OP) is characterized by reduced bone mass and impaired bone microstructure. Paeoniflorin (PF) is isolated from peony root with anti-inflammatory, immunomodulatory, and bone-protective effects. Up to now, the mechanism of anti-OP in PF has not been completely clarified. Methods The expression of MEDAG in osteoclasts, osteoblasts and adipocytes was detected by RT-qPCR. The OVX mouse model was constructed, and oral administration of PF was performed for 15 weeks. Bone microstructure was detected by H&E staining and a micro-CT system, and expression of signaling proteins examined by Western blot and immunohistochemical staining. ELISA and biochemical kits were used to quantify serum metabolite levels. Key findings MEDAG were upregulated in osteoclasts and adipocytes, and downregulated in osteoblasts. PF administration effectively alleviated OVX-induced bone loss, and histological changes in femur tissues. Moreover, PF significantly reduced serum TRAP, CTX-1, P1NP, BALP, and LDL-C levels and increased HDL-C. In addition, PF inhibited the expression of MEDAG, cathepsin K, NFATc1, PPARγ, and C/EBPα and increased p-AMPKα, OPG and Runx2. Conclusions MEDAG is a potential target for bone diseases, and PF might attenuate OVX-induced osteoporosis via MEDAG/AMPK/PPARγ signaling pathway.
Collapse
Affiliation(s)
- Haixia Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiyue Chang
- The 8th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shuling Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruyuan Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayi Ma
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyue Lu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiguo Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Jiang LD, Zhang WD, Wang BS, Cai YZ, Qin X, Zhao WB, Ji P, Yuan ZW, Wei YM, Yao WL. Exploration of the Potential Mechanism of Yujin Powder Treating Dampness-heat Diarrhea by Integrating UPLC-MS/MS and Network Pharmacology Prediction. Comb Chem High Throughput Screen 2024; 27:1466-1479. [PMID: 37818576 DOI: 10.2174/0113862073246096230926045428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/17/2023] [Accepted: 08/23/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Yujin powder (YJP) is a classic prescription for treating dampness-heat diarrhea (DHD) in Traditional Chinese Medicine (TCM), but the main functional active ingredients and the exact mechanisms have not been systematically studied. OBJECTIVES This study aimed to preliminarily explore the potential mechanisms of YJP for treating DHD by integrating UPLC-MS/MS and network pharmacology methods. METHODS Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology was used to determine the ingredients of YJP. And then, the targets of these components were predicted and screened from TCMSP, SwissTargetPrediction databases. The disease targets related to DHD were obtained by using the databases of GeneCards, OMIM, DisGeNET, TTD, and DrugBank. The protein-protein interaction networks (PPI) of YJP-DHD were constructed using the STRING database and Origin 2022 software to identify the cross-targets by screening the core-acting targets and a network diagram by Cytoscape 3.8.2 software was also constructed. Metascape database was used for performing GO and KEGG enrichment anlysis on the core genes. Finally, molecular docking was used to verify the results with AutoDock 4.2.6, AutoDock Tools 1.5.6, PyMOL 2.4.0, and Open Babel 2.3.2 software. RESULTS 597 components in YJP were detected, and 153 active components were obtained through database screening, among them the key active ingredients include coptisine, berberine, baicalein, etc. There were 362 targets treating DHD, among them the core targets included TNF, IL-6, ALB, etc. The enriched KEGG pathways mainly involve PI3K-Akt, TNF, MAPK, etc. Molecular docking results showed that coptisine, berberine, baicalein, etc., had a strong affinity with TNF, IL-6, and MAPK14. Therefore, TNF, IL-6, MAPK14, ALB, etc., are the key targets of the active ingredients of YJP coptisine, baicalein, and berberine, etc. They have the potential to regulate PI3K-Akt, MAPK, and TNF signalling pathways. The component-target-disease network diagram revealed that YJP treated DHD through the effects of anti-inflammation, anti-diarrhea, immunoregulation, and improving intestinal mucosal injury. CONCLUSION It is demonstrated that YJP treats DHD mainly through the main active ingredients coptisine, berberine, baicalein, etc. comprehensively exerting the effects of anti-inflammation, anti-diarrhea, immunoregulation, and improving intestinal mucosal injury, which will provide evidence for further in-depth studying the mechanism of YJP treating DHD.
Collapse
Affiliation(s)
- Li-Dong Jiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wang-Dong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Bao-Shan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yan-Zi Cai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xue Qin
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wen-Bo Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zi-Wen Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
43
|
Maring M, Balaji C, Komala M, Nandi S, Latha S, Raghavendran HB. Aromatic Plants as Potential Resources to Combat Osteoarthritis. Comb Chem High Throughput Screen 2024; 27:1434-1465. [PMID: 37861046 DOI: 10.2174/0113862073267213231004094629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
Osteoarthritis, which affects an estimated 10% of men and 18% of women over the age of 60 and is increasing in genetic prevalence and incidence, is acknowledged as the condition that degrades the quality of life for older adults in the world. There is currently no known treatment for osteoarthritis. The majority of therapeutic methods slow the progression of arthritis or treat its symptoms, making effective treatment to end the degenerative process of arthritis elusive. When non-pharmacological therapy is ineffective, various pharmacological therapies may be used to treat osteoarthritis. Pharmacological therapy, however, can have major adverse effects and be very expensive. As a result, alternative remedies have been researched. The promise for the safe and efficient management of osteoarthritis has been demonstrated by herbal remedies. Experimental research suggests that herbal extracts and compounds can reduce inflammation, inhibit catabolic processes, and promote anabolic processes that are important for treating osteoarthritis. Due to their therapeutic and innate pharmacological qualities, aromatic herbs are frequently employed as herbal remedies. Recent research has shown that aromatic plants have the potency to treat osteoarthritis. Additionally, complex mixtures of essential oils and their bioactive ingredients, which have anti-inflammatory and antioxidant properties and are obtained from aromatic plants, are frequently utilized as complementary therapies for osteoarthritis. To establish new study avenues, the advantageous anti-osteoarthritic effects of aromatic herbal medicines, including plants, essential oils, and their bioactive components, are extensively discussed.
Collapse
Affiliation(s)
- Maphibanri Maring
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - C Balaji
- Department of Rheumatology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - M Komala
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
| | - S Latha
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - H Balaji Raghavendran
- Sri Ramachandra Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| |
Collapse
|
44
|
Cai H, Xu R, Tian P, Zhang M, Zhu L, Yin T, Zhang H, Liu X. Complete Chloroplast Genomes and the Phylogenetic Analysis of Three Native Species of Paeoniaceae from the Sino-Himalayan Flora Subkingdom. Int J Mol Sci 2023; 25:257. [PMID: 38203426 PMCID: PMC10778623 DOI: 10.3390/ijms25010257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Paeonia delavayi var. lutea, Paeonia delavayi var. angustiloba, and Paeonia ludlowii are Chinese endemics that belong to the Paeoniaceae family and have vital medicinal and ornamental value. It is often difficult to classify Paeoniaceae plants based on their morphological characteristics, and the limited genomic information has strongly hindered molecular evolution and phylogenetic studies of Paeoniaceae. In this study, we sequenced, assembled, and annotated the chloroplast genomes of P. delavayi var. lutea, P. delavayi var. angustiloba, and P. ludlowii. The chloroplast genomes of these strains were comparatively analyzed, and their phylogenetic relationships and divergence times were inferred. These three chloroplast genomes exhibited a typical quadripartite structure and were 152,687-152,759 bp in length. Each genome contains 126-132 genes, including 81-87 protein-coding genes, 37 transfer RNAs, and 8 ribosomal RNAs. In addition, the genomes had 61-64 SSRs, with mononucleotide repeats being the most abundant. The codon bias patterns of the three species tend to use codons ending in A/U. Six regions of high variability were identified (psbK-psbL, trnG-UCC, petN-psbM, psbC, rps8-rpl14, and ycf1) that can be used as DNA molecular markers for phylogenetic and taxonomic analysis. The Ka/Ks ratio indicates positive selection for the rps18 gene associated with self-replication. The phylogenetic analysis of 99 chloroplast genomes from Saxifragales clarified the phylogenetic relationships of Paeoniaceae and revealed that P. delavayi var. lutea, P. delavayi var. angustiloba, and P. ludlowii are monophyletic groups and sisters to P. delavayi. Divergence time estimation revealed two evolutionary divergences of Paeoniaceae species in the early Oligocene and Miocene. Afterward, they underwent rapid adaptive radiation from the Pliocene to the early Pleistocene when P. delavayi var. lutea, P. delavayi var. angustiloba, and P. ludlowii formed. The results of this study enrich the chloroplast genomic information of Paeoniaceae and reveal new insights into the phylogeny of Paeoniaceae.
Collapse
Affiliation(s)
| | | | | | | | | | - Tuo Yin
- Key Laboratory of Conservation and Utilization of Southwest Mountain Forest Resources, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (H.C.); (R.X.); (P.T.); (M.Z.); (L.Z.); (T.Y.)
| | - Hanyao Zhang
- Key Laboratory of Conservation and Utilization of Southwest Mountain Forest Resources, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (H.C.); (R.X.); (P.T.); (M.Z.); (L.Z.); (T.Y.)
| | - Xiaozhen Liu
- Key Laboratory of Conservation and Utilization of Southwest Mountain Forest Resources, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (H.C.); (R.X.); (P.T.); (M.Z.); (L.Z.); (T.Y.)
| |
Collapse
|
45
|
Yang C, Yang S, Fang S, Li L, Jing J, Liu W, Wang C, Li R, Lu Y. PLGA nanoparticles enhanced cardio-protection of scutellarin and paeoniflorin against isoproterenol-induced myocardial ischemia in rats. Int J Pharm 2023; 648:123567. [PMID: 37918495 DOI: 10.1016/j.ijpharm.2023.123567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
This study aims to examine the impact of the microfluidic preparation process on the quality of poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) co-delivered with scutellarin (SCU) and paeoniflorin (PAE) in comparison to a conventional emulsification method and to evaluatethe potential cardio-protective effect of SCU-PAE PLGA NPs produced through emulsification method. As compared with microfluidics, the nanoparticles prepared by emulsification method exhibited a smaller size, higher encapsulation efficiency, higher drug loading and lower viscosity for injection. Subsequently, a rat myocardial ischemia (MI) was established using male Sprague-Dawley (SD) rats (250 ± 20 g) subcutaneously injected with 85 mg/kg isoproterenol (ISO) for two consecutive days. The pharmacokinetic findings demonstrated that our SCU-PAE PLGA NPs exhibited prolonged blood circulation time in MI rats, leading to increased levels of SCU and PAE in the heart. This resulted in significant improvements in electrocardiogram and cardiac index, as well as reduced serum levels of CK, LDH, AST. Histopathological analysis using H&E and TUNEL staining provided further evidence of improved cardiac function and decreased apoptosis. Additionally, experiments measuring SOD, MDA, GSH, NO, TNF-α and IL-6 levels indicated that SCU-PAE PLGA NPs may effectively treat MI through oxidative stress and inflammatory pathways, thereby establishing it as a promising therapeutic intervention.
Collapse
Affiliation(s)
- Chang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China.
| | - Shanshan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shumei Fang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Lisu Li
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Jincheng Jing
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Wenting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Cong Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Ruixi Li
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yuan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| |
Collapse
|
46
|
Lv S, Zhang G, Huang Y, Zhong X, Yi Y, Lu Y, Li J, Ma Y, Teng J. Adult hippocampal neurogenesis: pharmacological mechanisms of antidepressant active ingredients in traditional Chinese medicine. Front Pharmacol 2023; 14:1307746. [PMID: 38152691 PMCID: PMC10751940 DOI: 10.3389/fphar.2023.1307746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
Depression is characterized by prominent indicators and manifestations, such as anhedonia, which refers to the inability to experience pleasure, and persistent feelings of hopelessness. In clinical practice, the primary treatment approach involves the utilization of selective serotonin reuptake inhibitors (SSRIs) and related pharmacological interventions. Nevertheless, it is crucial to recognize that these agents are associated with significant adverse effects. Traditional Chinese medicine (TCM) adopts a multifaceted approach, targeting diverse components, multiple targets, and various channels of action. TCM has potential antidepressant effects. Anomalies in adult hippocampal neurogenesis (AHN) constitute a pivotal factor in the pathology of depression, with the regulation of AHN emerging as a potential key measure to intervene in the pathogenesis and progression of this condition. This comprehensive review presented an overview of the pharmacological mechanisms underlying the antidepressant effects of active ingredients found in TCM. Through examination of recent studies, we explored how these ingredients modulated AHN. Furthermore, we critically assessed the current limitations of research in this domain and proposed novel strategies for preclinical investigation and clinical applications in the treatment of depression in future.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xia Zhong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunhao Yi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiamin Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
47
|
Huang Y, Liu Q, Liu M, Xu L, Li Y, Chen Q, Guan D, Xu J, Lin C, Wang S. System pharmacology-based determination of the functional components and mechanisms in chronic heart failure treatment: an example of Zhenwu decoction. J Biomol Struct Dyn 2023; 42:12935-12953. [PMID: 37921741 DOI: 10.1080/07391102.2023.2274515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/17/2023] [Indexed: 11/04/2023]
Abstract
Chronic heart failure (CHF) is the primary cause of death among patients with cardiovascular diseases, representing the advanced stage in the development of several cardiovascular conditions. Zhenwu decoction (ZWD) has gained widespread recognition as an efficacious remedy for CHF due to its potent therapeutic properties and absence of adverse effects. Nevertheless, the precise molecular mechanisms underlying its actions remain elusive. This study endeavors to unravel the intricate pharmacological underpinnings of five herbs within ZWD concerning CHF through an integrated approach. Initially, pertinent data regarding ZWD and CHF were compiled from established databases, forming the foundation for constructing an intricate network of active component-target interactions. Subsequently, a pioneering method for evaluating node significance was formulated, culminating in the creation of core functional association space (CFAS). To discern vital components, a novel dynamic programming algorithm was devised and used to determine the core component group (CCG) within the CFAS. Enrichment analysis of the CCG targets unveiled the potential coordinated molecular mechanisms of ZWD, illuminating its capacity to ameliorate CHF by modulating genes and related signaling pathways involved in pathological remodeling. Notable pathways encompass PI3K-Akt, diabetic cardiomyopathy, cAMP and MAPK signaling. Concluding the computational analyses, in vitro experiments were executed to assess the effects of vanillic acid, paradol, 10-gingerol and methyl cinnamate. Remarkably, these compounds demonstrated efficacy in reducing the production of ANP and BNP within isoprenaline-induced AC 16 cells, further validating their potential therapeutic utility. This investigation underscores the efficacy of the proposed model in enhancing the precision and reliability of CCG selection within ZWD, thereby presenting a novel avenue for mechanistic inquiries, compound refinement and the secondary development of TCM herbs.
Collapse
Affiliation(s)
- Yisheng Huang
- Department of Anesthesiology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou, China
| | - Qinwen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Meiyu Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liqian Xu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Quanlin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Jindong Xu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Chunshui Lin
- Department of Anesthesiology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Sheng Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Geng Y, Fei S, Pei Y, Chen Q, Wang J, Jiang H. Ziqi Dihuang decoction ameliorates thrombosis in septic rats by inhitbiting plasminogen activator inhibitor-1. J Tradit Complement Med 2023; 13:531-537. [PMID: 38020552 PMCID: PMC10658299 DOI: 10.1016/j.jtcme.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Sepsis is now a global medical burden with high morbility and mortality. The focus of this study was to evaluate the effects of Ziqi Dihuang (ZQDH) decoction on inflammatory and thrombosis-related parameters in septic rats. Mothods A rat model of sepsis was established by cecal ligation and puncture (CLP). Male Sprague-Dawley rats were randomly divided into Sham group, CLP group, ZQDH-1ow group (0.735 g/kg) and ZQDH-high group (1.47 g/kg). Rats in ZQDH groups were given ZQDH decoction by gavage for 7 days before CLP. White blood cells (WBC), inflammatory cell infiltration of liver, kidney and lung, as well as serum levels of tumor necrosis factor (TNF-α), interleukin-6 (IL-6) and reactive oxygen species (ROS) were used to assess systemic inflammatory response. Coagulation and fibrinolytic indexes included platelet count, coagulation function, fibrin deposition, and levels of tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) in serum, liver, kidney and lung. Results LPS rats showed significant changes in inflammatory and thrombosis-related parameters such as increased WBC and inflammatory factors, decreased platelet counts, and increased tPA and PAI-1 concentrations in serum and organs. ZQDH decoction pretreatment can significantly inhibit the infiltration of inflammatory cells in the lung, and inhibit the production of TNF-α, IL-6 and ROS in a dose-dependent manner. ZQDH decoction also ameliorated thrombocytopenia, renal fibrin deposition, and tPA and PAI-1 levels in serum and organs. Conclusion These results suggest that ZQDH decoction can dose-dependently relieve systemic inflammatory injury and regulate fibrinolysis system in septic rats, which may be mediated by PAI-1.
Collapse
Affiliation(s)
- YanXia Geng
- Department of Intensive Care Unit, The Affiliated Hospitalof Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, 155 Han Zhong Road, Nanjing, Jiangsu, China
| | - ShuYe Fei
- Nanjing University of Chinese Medicine, 282 Han Zhong Road, Nanjing, Jiangsu, China
| | - YingHao Pei
- Department of Intensive Care Unit, The Affiliated Hospitalof Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, 155 Han Zhong Road, Nanjing, Jiangsu, China
| | - QiuHua Chen
- Department of Intensive Care Unit, The Affiliated Hospitalof Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, 155 Han Zhong Road, Nanjing, Jiangsu, China
| | - Jian Wang
- Nanjing University of Chinese Medicine, 282 Han Zhong Road, Nanjing, Jiangsu, China
| | - Hua Jiang
- Department of Intensive Care Unit, The Affiliated Hospitalof Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, 155 Han Zhong Road, Nanjing, Jiangsu, China
| |
Collapse
|
49
|
Yang K, Zeng L, Zeng J, Deng Y, Wang S, Xu H, He Q, Yuan M, Luo Y, Ge A, Ge J. Research progress in the molecular mechanism of ferroptosis in Parkinson's disease and regulation by natural plant products. Ageing Res Rev 2023; 91:102063. [PMID: 37673132 DOI: 10.1016/j.arr.2023.102063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder of the central nervous system after Alzheimer's disease. The current understanding of PD focuses mainly on the loss of dopamine neurons in the substantia nigra region of the midbrain, which is attributed to factors such as oxidative stress, alpha-synuclein aggregation, neuroinflammation, and mitochondrial dysfunction. These factors together contribute to the PD phenotype. Recent studies on PD pathology have introduced a new form of cell death known as ferroptosis. Pathological changes closely linked with ferroptosis have been seen in the brain tissues of PD patients, including alterations in iron metabolism, lipid peroxidation, and increased levels of reactive oxygen species. Preclinical research has demonstrated the neuroprotective qualities of certain iron chelators, antioxidants, Fer-1, and conditioners in Parkinson's disease. Natural plant products have shown significant potential in balancing ferroptosis-related factors and adjusting their expression levels. Therefore, it is vital to understand the mechanisms by which natural plant products inhibit ferroptosis and relieve PD symptoms. This review provides a comprehensive look at ferroptosis, its role in PD pathology, and the mechanisms underlying the therapeutic effects of natural plant products focused on ferroptosis. The insights from this review can serve as useful references for future research on novel ferroptosis inhibitors and lead compounds for PD treatment.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Yanfang Luo
- The Central Hospital of Shaoyang, Shaoyang, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
50
|
Xing D, Ma Y, Lu M, Liu W, Zhou H. Paeoniflorin alleviates hypoxia/reoxygenation injury in HK-2 cells by inhibiting apoptosis and repressing oxidative damage via Keap1/Nrf2/HO-1 pathway. BMC Nephrol 2023; 24:314. [PMID: 37884904 PMCID: PMC10601317 DOI: 10.1186/s12882-023-03366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Acute kidney injury (AKI) is a serious disorder associated with significant morbidity and mortality. AKI and ischemia/reperfusion (hypoxia/reoxygenation, H/R) injury can be induced due to several reasons. Paeoniflorin (PF) is a traditional herbal medicine derived from Paeonia lactiflora Pall. It exerts diverse therapeutic effects, including anti-inflammatory, antioxidative, antiapoptotic, and immunomodulatory properties; thus, it is considered valuable for treating several diseases. However, the effects of PF on H/R injury-induced AKI remain unknown. In this study, we established an in vitro H/R model using COCL2 and investigated the functions and underlying mechanisms of PF on H/R injury in HK-2 cells. The cell vitality was evaluated using the cell count kit-8 assay. The DCFH-DA fluorescence probe was used to measure the levels of reactive oxygen species (ROS). Oxidative damage was detected using superoxide dismutase (SOD) and malondialdehyde (MDA) assay kits. Apoptotic relative protein and Keap1/Nrf2/HO-1 signaling were evaluated by Western blotting. Our results indicated that PF increased cell viability and SOD activity and decreased the ROS and MDA levels in HK-2 cells with H/R injury. PF inhibits apoptosis by increasing Bcl-2 and decreasing Bax. Furthermore, PF significantly upregulated the expression of HO-1 and Nrf2, but downregulated the expression of HIF-1α and Keap1. PF considerably increased Nrf2 nuclear translocation and unregulated the HO-1 expression. The Nrf2 inhibitor (ML385) could reverse the abovementioned protective effects of PF, suggesting that Nrf2 can be a critical target of PF. To conclude, we found that PF attenuates H/R injury-induced AKI by decreasing the oxidative damage via the Nrf2/HO-1 pathway and inhibiting apoptosis.
Collapse
Affiliation(s)
- Di Xing
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| | - Yihua Ma
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| | - Miaomiao Lu
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| | - Wenlin Liu
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| | - Hongli Zhou
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China.
| |
Collapse
|