1
|
Kang HY, Yeh AI, Pan MH. Enhancing the Physicochemical Properties, Bioactivity, and Functional Applications of Fresh Jujube Juice Using Media Milling. ACS OMEGA 2025; 10:12603-12614. [PMID: 40191370 PMCID: PMC11966583 DOI: 10.1021/acsomega.5c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/12/2025] [Accepted: 03/11/2025] [Indexed: 04/09/2025]
Abstract
This study systematically evaluated the effects of media milling on the physicochemical properties, bioactive compound content, and functional applications of fresh jujube (Ziziphus jujuba Mill.) juice. Optimization experiments identified ideal conditions for nanoparticle production, including 5% solid content and a 180 min milling duration, resulting in significantly reduced particle sizes-volume-weighted average diameter (from 229.0 ± 1.0 to 25.0 ± 0.2 μm) and number-weighted average diameter (from 7.2 ± 0.0 to 0.1 ± 0.0 μm)-and improved dispersion stability. Media milling enhanced key physicochemical properties such as zeta potential, viscosity, and suspension stability, while also modifying color and pH. The process notably increased the content of bioactive compounds, including total flavonoids (from 2.9 ± 0.1 to 3.8 ± 0.0 mg catechin equivalent (CE)/g dry weight (DW)) and triterpenoids (from 15.4 ± 1.2 to 28.0 ± 4.9 mg oleanolic acid equivalent (OAE)/g DW). The antioxidant activity before and after media milling, assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays, remained comparable. Fermentation with Lactiplantibacillus plantarum demonstrated that both blended and media-milled jujube juice can serve as effective substrates for substrate utilization and lactic acid production. Anti-inflammatory assays using RAW 264.7 macrophages revealed reduced nitric oxide production and lower levels of pro-inflammatory cytokines such as IL-1β, showcasing the juice's potential to modulate inflammation. In a dextran sodium sulfate (DSS)-induced colitis mouse model, media-milled jujube juice demonstrated safety, though it did not show significant protective effects. These findings position media-milled jujube juice as a promising functional food ingredient with potential applications in health promotion and disease management.
Collapse
Affiliation(s)
- Hong-Yi Kang
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - An-I Yeh
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Medical Research, China Medical University
Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
2
|
Xu Y, Yang Y, Song H, Li M, Shi W, Yu T, Lin J, Yu Y. The Role of Exerkines in the Treatment of Knee Osteoarthritis: From Mechanisms to Exercise Strategies. Orthop Surg 2025; 17:1021-1035. [PMID: 39854050 PMCID: PMC11962297 DOI: 10.1111/os.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
With the increasing prevalence of knee osteoarthritis (KOA), the limitations of traditional treatments, such as their limited efficacy in halting disease progression and their potential side effects, are becoming more evident. This situation has prompted scientists to seek more effective strategies. In recent years, exercise therapy has gained prominence in KOA treatment due to its safety, efficacy, and cost-effectiveness, which are underpinned by the molecular actions of exerkines. Unlike conventional therapies, exerkines offer specific advantages by targeting inflammatory responses, enhancing chondrocyte proliferation, and slowing cartilage degradation at the molecular level. This review explores the potential mechanisms involved in and application prospects of exerkines in KOA treatment and provides a comprehensive analysis of their role. Studies show that appropriate exercise not only promotes overall health, but also positively impacts KOA by stimulating exerkine production. The effectiveness of exerkines, however, is influenced by exercise modality, intensity, and duration of exercise, making the development of personalized exercise plans crucial for KOA patients. Based on these insights, this paper proposes targeted exercise strategies designed to maximize exerkine benefits, aiming to provide novel perspectives for KOA prevention and treatment.
Collapse
Affiliation(s)
- Yuxiong Xu
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Yizhuo Yang
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Hanan Song
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Ming Li
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Weihao Shi
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Tongwu Yu
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Jianhao Lin
- Arthritis Clinic & Research CenterPeking University People's HospitalBeijingChina
| | - Yanli Yu
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| |
Collapse
|
3
|
Lin M, Zhang C, Li H, Li K, Gou S, He X, Lv C, Gao K. Pyroptosis for osteoarthritis treatment: insights into cellular and molecular interactions inflammatory. Front Immunol 2025; 16:1556990. [PMID: 40236711 PMCID: PMC11996656 DOI: 10.3389/fimmu.2025.1556990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025] Open
Abstract
Osteoarthritis (OA) is a widely prevalent chronic degenerative disease often associated with significant pain and disability. It is characterized by the deterioration of cartilage and the extracellular matrix (ECM), synovial inflammation, and subchondral bone remodeling. Recent studies have highlighted pyroptosis-a form of programmed cell death triggered by the inflammasome-as a key factor in sustaining chronic inflammation. Central to this process are the inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18), which play crucial roles mediating intra-articular pyroptosis through the NOD-like receptor protein 3 (NLRP3) inflammasome. This paper investigates the role of the pyroptosis pathway in perpetuating chronic inflammatory diseases and its linkage with OA. Furthermore, it explores the mechanisms of pyroptosis, mediated by nuclear factor κB (NF-κB), the purinergic receptor P2X ligand-gated ion channel 7 (P2X7R), adenosine monophosphate (AMP)-activated protein kinase (AMPK), and hypoxia-inducible factor-1α (HIF-1α). Additionally, it examines the interactions among various cellular components in the context of OA. These insights indicate that targeting the regulation of pyroptosis presents a promising therapeutic approach for the prevention and treatment of OA, offering valuable theoretical perspectives for its effective management.
Collapse
Affiliation(s)
- Minghui Lin
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cunxin Zhang
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Haiming Li
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kang Li
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Shuao Gou
- Jining No.1 People's Hospital, affiliated with Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao He
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Chaoliang Lv
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Kai Gao
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
4
|
Zheng Z, Gao J, Ma Y, Hou X. Cellular and Molecular Mechanisms of Phytochemicals Against Inflammation-Associated Diseases and Viral Infection. Cell Biol Int 2025. [PMID: 40091269 DOI: 10.1002/cbin.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Inflammation-associated diseases have become widespread and pose a significant threat to human health, and the therapeutic methods for diverse diseases are inadequate due to the undesirable effects of synthetic ingredients. Recently, more and more evidence indicated that phytochemicals, plant secondary metabolites, have numerous therapeutic functions against human diseases via affecting a variety of mechanisms with their distinct advantages of high efficiency and low toxicity. Here, we highlight the mechanisms of phytochemicals to hinder inflammation-associated diseases (including Inflammatory diseases, cardiovascular diseases, metabolic syndrome, neurological disorders, skin diseases, respiratory diseases, kidney diseases, gastrointestinal diseases, retinal diseases, viral infections) by regulating the crosstalk among various signal cascades (including MicroRNAs, SIRT1, DNMTs, NF-κB, NLRP3, TGF-β, the Gasdermin-mediated pyroptosis pathway), which can be considered as a novel and potential therapeutic strategy. Furthermore, phytochemicals could prevent virus infection by disturbing different targets in the virus replication cycle. However, natural plants have shown limited bioavailability due to their low water solubility, the use of adjuvants such as liposomal phytochemicals, phytochemical nanoparticles and phytochemicals-phospholipid complex promote their bioavailability to exhibit beneficial effects against various diseases. The purpose of this review is to explore the molecular mechanisms and promising applications of phytochemicals in the fields of inflammation-associated diseases and virus infection to provide some direction.
Collapse
Affiliation(s)
- Zhaodi Zheng
- College of Medical Imaging and Laboratory, Jining Medical University, Jining, China
| | - Junying Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yubing Ma
- College of Medical Imaging and Laboratory, Jining Medical University, Jining, China
| | - Xitan Hou
- College of Medical Imaging and Laboratory, Jining Medical University, Jining, China
| |
Collapse
|
5
|
Park YB, Kim JH. Effectiveness and Safety of SYSADOAs Used in Eastern and Western Regions for the Treatment of Knee Osteoarthritis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials-SYSADOAs Are Effective and Safe for Knee OA. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:331. [PMID: 40005447 PMCID: PMC11857085 DOI: 10.3390/medicina61020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
Background and Objective: According to international guidelines, glucosamine and chondroitin, regarded as slow-acting drugs for osteoarthritis (SYSADOAs), have been first-line treatments for knee osteoarthritis (OA); however, their efficacies remain controversial. Additionally, the efficacies of plant extract cocktails, SKI306X, and its newer formulation, SKCPT, have not been well investigated. To evaluate the effectiveness and safety of symptomatic slow-acting drugs for osteoarthritis (SYSADOAs) in patients with knee OA. Materials and Methods: Electronic databases were systematically searched to identify randomized controlled trials (RCTs) assessing the effectiveness and safety of SYSADOAs, including chondroitin sulfate, glucosamine sulfate, and SKCPT/SKI306X. The outcomes included pain relief, functional improvements, and safety profiles. The outcome measurements were compared between the treatment and control groups, including placebo and non-placebo groups, within and after 3 months of follow-up. Results: Analysis of 21 RCTs showed significantly greater improvement in pain relief in the treatment group compared with the placebo group both within (standard mean difference [SMD], 0.38; 95% confidence interval [CI], 0.18-0.57; p < 0.001) and after 3 months of follow-up (SMD, 0.22; 95%CI, 0.03-0.42 p = 0.023). The treatment group also showed significantly greater functional improvements regardless of follow-up. Pain and functional improvement did not differ significantly between the treatment and non-placebo groups. Regarding the safety profile, the risk ratios did not differ significantly between the treatment and control groups, including the placebo and non-placebo subgroups. Conclusions: Glucosamine, chondroitin, and SKCPT/SKI306X improved the pain and function and were non-inferior to pharmacologic drugs for up to 12 months. These findings support the clinical use of these SYSADOAs to treat knee OA. Level of Evidence: Therapeutic Level II.
Collapse
Affiliation(s)
- Yong-Beom Park
- Department of Orthopedic Surgery, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Seoul 14353, Republic of Korea;
| | - Jun-Ho Kim
- Department of Orthopedic Surgery, Hallym University Sacred Heart Hospital, Hallym University, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, Anyang-si 13496, Republic of Korea
| |
Collapse
|
6
|
Park YB, Kim JH. Efficacy and Safety of Celecoxib and a Korean SYSADOA (JOINS) for the Treatment of Knee Osteoarthritis: A Systematic Review and Meta-Analysis. J Clin Med 2025; 14:1036. [PMID: 40004567 PMCID: PMC11856201 DOI: 10.3390/jcm14041036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/03/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Background: The efficacy of cyclooxygenase-2 (COX-2) inhibitors, including celecoxib, in managing knee osteoarthritis (KO) is well-established. Recently, the plant extract cocktail JOINS (SKI306X and its newer formulation, SKCPT) has been shown to be an effective slow-acting drug for KO. Aims: To compare the efficacy and safety of celecoxib and JOINS in patients with KO. Methods: A systematic search of the MEDLINE, Embase, and Cochrane Library databases identified randomized controlled trials (RCTs) assessing the effectiveness and safety of celecoxib and JOINS. The outcomes included pain relief, functional improvement, and safety profiles. Outcome measurements were compared between the celecoxib and JOINS cohorts at the short-term (closest to 3 months) and mid-term (closest to 12 months). Results: Overall, 23 RCTs involving 3367 patients were included in this systematic review. The efficacy of JOINS in reducing pain, as indicated by the visual analog scale (VAS) score, was comparable to that of celecoxib. Regarding functional improvement assessed using the Western Ontario and McMaster University Arthritis Index (WOMAC), JOINS showed improvement comparable to that of celecoxib regardless of follow-up. In addition, no significant difference was observed in the incidence of adverse events between the celecoxib and JOINS cohorts. Conclusions: The results of this study suggest that JOINS could be considered as a pharmacological agent with significant efficacy for pain relief and functional improvement in patients with KO in clinical practice.
Collapse
Affiliation(s)
- Yong-Beom Park
- Department of Orthopedic Surgery, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Seoul 14353, Republic of Korea;
| | - Jun-Ho Kim
- Department of Orthopedic Surgery, Hallym Sacred Heart University Hospital, Hallym University, Anyang-si 13496, Republic of Korea
| |
Collapse
|
7
|
Bin SI, Lee MC, Kang SB, Moon YW, Yoon KH, Han SB, In Y, Chang CB, Bae KC, Sim JA, Seon JK, Park KK, Lee SJ, Kim YM. Efficacy and safety of SKCPT in patients with knee osteoarthritis: A multicenter, randomized, double-blinded, active-controlled phase III clinical trial. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118843. [PMID: 39303963 DOI: 10.1016/j.jep.2024.118843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/29/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osteoarthritis (OA) is the most prevalent type of arthritis worldwide and a leading cause of years lost to pain and disability. Among the current pharmacological treatments for OA, symptomatic slow-acting drugs for OA (SYSADOA) induce pain relief and aim to improve joint function by relieving inflammation while causing fewer gastrointestinal and cardiovascular adverse events than non-steroidal anti-inflammatory drugs (NSAIDs). SKCPT is a herbal SYSADOA formulated from Clematis mandshurica, Trichosanthes kirilowii, and Prunella vulgaris powdered extracts. This preparation has been shown to induce cartilage protection and anti-inflammatory effects in preclinical studies and inhibit glycosaminoglycan degradation and catabolic gene expression in human OA chondrocytes and cartilage. AIM OF THE STUDY We aimed to evaluate the non-inferiority of SKCPT to celecoxib and safety for treating knee OA. MATERIALS AND METHODS This multicenter, randomized, double-blind, phase III clinical trial enrolled adults with primary knee OA who were randomized (1:1) to SKCPT 300 mg twice daily or celecoxib 200 mg once daily for 12 weeks. RESULTS In total, 278 patients were assigned to treatment (SKCPT, 136; celecoxib, 142) for approximately 12 weeks. The primary endpoint was the mean change of Korean Western Ontario and McMaster Universities Osteoarthritis Index (K-WOMAC) pain subscale scores from baseline to Day 84. The mean change (least squares [LS] mean ± standard error) from baseline to Day 84 was -23.74 ± 1.48 for SKCPT and -25.88 ± 1.44 for celecoxib. The two-sided 95% confidence interval of the difference (LS mean) between groups was [-1.94, 6.20], confirming that the upper limit was less than the non-inferiority margin of 10. Additionally, there were no significant differences in the secondary endpoints (mean changes of K-WOMAC pain, physical, stiffness subscale, and total score, and the frequency and number of doses of rescue medications) between groups at all time points. Differences between groups in adverse events and adverse drug reactions were not significant, and no serious adverse events occurred. CONCLUSIONS SKCPT efficacy was non-inferior, and its safety profile was similar, to celecoxib. Building on previous results showing that SYSADOA reduce NSAID intake, the present results suggest that the SYSADOA SKCPT could effectively replace NSAIDs in knee OA treatment while avoiding long-term side effects.
Collapse
Affiliation(s)
- Sung Ii Bin
- Department of Orthopedic Surgery, Asan Medical Center, 05505, Seoul, Republic of Korea.
| | - Myung Chul Lee
- Department of Orthopedic Surgery, Seoul National University Hospital, 03080, Seoul, Republic of Korea.
| | - Seung-Baik Kang
- Department of Orthopedic Surgery, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, 07061, Seoul, Republic of Korea.
| | - Young-Wan Moon
- Department of Orthopedic Surgery, Samsung Medical Center, 06351, Seoul, Republic of Korea.
| | - Kyoung Ho Yoon
- Department of Orthopedic Surgery, Kyung Hee University Hospital, 02447, Seoul, Republic of Korea.
| | - Seung-Beom Han
- Department of Orthopedic Surgery, Korea University Anam Hospital, 02841, Seoul, Republic of Korea.
| | - Yong In
- Department of Orthopedic Surgery, The Catholic University of Korea Seoul St. Mary's Hospital, 06591, Seoul, Republic of Korea.
| | - Chong Bum Chang
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, 13620, Seongnam, Republic of Korea.
| | - Ki-Cheor Bae
- Department of Orthopedic Surgery, Keimyung University Dongsan Hospital, 42601, Daegu, Republic of Korea.
| | - Jae-Ang Sim
- Department of Orthopedic Surgery, Gachon University Gil Medical Center, 21565, Incheon, Republic of Korea.
| | - Jong-Keun Seon
- Department of Orthopedic Surgery, Chonnam National University Hwasun Hospital, 58128, Hwasun, Republic of Korea.
| | - Kwan Kyu Park
- Department of Orthopedic Surgery, Severance Hospital, 03722, Seoul, Republic of Korea.
| | - Sang Jin Lee
- Department of Orthopedic Surgery, Inje University Haeundae Paik Hospital, 48108, Busan, Republic of Korea.
| | - Young-Mo Kim
- Department of Orthopedic Surgery, Chungnam National University Hospital, Chungnam National University, College of Medicine, 35015, Daejeon, Republic of Korea.
| |
Collapse
|
8
|
Xue L, Carreiro B, Mia MS, Paetau-Robinson I, Khoo C, Neto C. Pentacyclic Triterpenoid Content in Cranberry Raw Materials and Products. Foods 2024; 13:3136. [PMID: 39410168 PMCID: PMC11475460 DOI: 10.3390/foods13193136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Cranberry fruit extracts have been shown to inhibit expression of pro-inflammatory cytokines in THP-1 cells and reduce colonic tumor burden and tissue inflammation in a mouse model of colitis. These activities are attributed to both the triterpenoid and polyphenol constituents of the fruit. The pentacyclic triterpenoids ursolic acid (UA), oleanolic acid (OA), corosolic acid (CA), maslinic acid (MA), and esters of UA and OA occur in the waxy layer of cranberry peel, and their content in cranberry products is likely to vary with the fruit source and processing methods. UPLC-MS (ultra performance liquid chromatography-mass spectrometry) was applied to determine the four triterpenoid acids and their esters in cranberry products and raw materials. Cranberry pomace, a side stream in juice production, was a rich source at 64,090 µg total triterpenoids/g DW. Cranberry juice beverages ranged from 0.018 to 0.26 µg/g of product, fruit samples ranged from 6542 to 17,070 µg/g DW, and whole berry products contained up to 2665 µg/g DW. Free UA was the most plentiful triterpenoid in all samples. These analyses illustrate the potential value of an underutilized side stream in cranberry juice production and highlight potential benefits of whole fruit products.
Collapse
Affiliation(s)
- Liang Xue
- Department of Chemistry and Biochemistry and Cranberry Health Research Center, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA; (L.X.); (B.C.); (M.S.M.)
| | - Bianca Carreiro
- Department of Chemistry and Biochemistry and Cranberry Health Research Center, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA; (L.X.); (B.C.); (M.S.M.)
| | - Md Sagir Mia
- Department of Chemistry and Biochemistry and Cranberry Health Research Center, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA; (L.X.); (B.C.); (M.S.M.)
| | | | - Christina Khoo
- Ocean Spray Cranberries, Inc., Lakeville, MA 02349, USA; (I.P.-R.); (C.K.)
| | - Catherine Neto
- Department of Chemistry and Biochemistry and Cranberry Health Research Center, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA; (L.X.); (B.C.); (M.S.M.)
| |
Collapse
|
9
|
Chen L, Li F, Ni JH, Hao YX, Feng G, Shen XY, You Y. Ursolic acid alleviates lupus nephritis by suppressing SUMO1-mediated stabilization of NLRP3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155556. [PMID: 38810552 DOI: 10.1016/j.phymed.2024.155556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease that affects multiple organs and cause a wide range of severe clinical manifestations, including lupus nephritis (LN), which is a major risk factor for morbidity and mortality in individual with SLE. Ursolic acid (UA) is a natural compound with favorable anti-inflammatory properties and has been employed to treat multiple disease, including inflammatory diseases, diabetes, and Parkinson's disease. However, its therapeutic potential on LN and the underlying mechanisms remains unclear. PURPOSE This aim of this study was to investigate the impact of UA on LN and its underlying mechanism. METHODS MRL/lpr lupus-prone mouse model was used and UA was administered orally for 8 weeks. Dexamethasone was used as a positive control. After 8 weeks of administration, the spleen-to-body-weight ratio, renal function, urine albumin excretion, cytokines levels, and the deposition of immune complex were measured. The primary mouse glomerular mesangial cells (GMCs) and SV40-MES-13 were stimulated by lipopolysaccharide (LPS), either alone or in combination with nigericin, to establish an in vitro model. The activation of NLRP3 inflammasome were investigated both in vivo and in vitro using qRT-PCR, immunoblotting, and immunofluorescence. RESULTS Our results revealed that UA prominently alleviated LN in MRL/lpr lupus-prone mice, leading to a significant reduction in proteinuria production, infiltration of immune cells infiltration, and histopathological damage in the renal tissue. In addition, UA exerted inhibitory effects on the secretion of IL-1β, IL-18, and caspase-1, pyroptosis, and ASC speck formation in primary mouse GMCs and SV40-MES-13 cells. Furthermore, UA facilitated the degradation of NLRP3 by suppressing SUMO1-mediated SUMOylation of NLRP3. CONCLUSION UA possess a therapeutical effect on LN in MRL/lpr mice by enhancing the degradation of NLRP3 through inhibition of SUMO1-mediated SUMOylation of NLRP3. Our findings provide a basis for proposing UA as a potential candidate for the treatment of LN.
Collapse
Affiliation(s)
- Luo Chen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Fei Li
- Dermatology Department Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Hui Ni
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yu-Xuan Hao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Guize Feng
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiao-Yan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Minhang Hospital, Fudan University, Shanghai, China.
| | - Yan You
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Chauhan A, Pathak VM, Yadav M, Chauhan R, Babu N, Chowdhary M, Ranjan A, Mathkor DM, Haque S, Tuli HS, Ramniwas S, Yadav V. Role of ursolic acid in preventing gastrointestinal cancer: recent trends and future perspectives. Front Pharmacol 2024; 15:1405497. [PMID: 39114347 PMCID: PMC11303223 DOI: 10.3389/fphar.2024.1405497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/03/2024] [Indexed: 08/10/2024] Open
Abstract
Gastrointestinal malignancies are one of the major worldwide health concerns. In the present review, we have assessed the plausible therapeutic implication of Ursolic Acid (UA) against gastrointestinal cancer. By modulating several signaling pathways critical in cancer development, UA could offer anti-inflammatory, anti-proliferative, and anti-metastatic properties. However, being of low oral bioavailability and poor permeability, its clinical value is restricted. To deliver and protect the drug, liposomes and polymer micelles are two UA nanoformulations that can effectively increase medicine stability. The use of UA for treating cancers is safe and appropriate with low toxicity characteristics and a predictable pharmacokinetic profile. Although the bioavailability of UA is limited, its nanoformulations could emerge as an alternative to enhance its efficacy in treating GI cancers. Further optimization and validation in the clinical trials are necessary. The combination of molecular profiling with nanoparticle-based drug delivery technologies holds the potential for bringing UA to maximum efficacy, looking for good prospects with GI cancer treatment.
Collapse
Affiliation(s)
- Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | | | - Monika Yadav
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ritu Chauhan
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Neelesh Babu
- Department of Microbiology, Baba Farid Institute of Technology, Dehradun, Uttarakhand, India
| | - Manish Chowdhary
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
11
|
Li Z, Cheng W, Gao K, Liang S, Ke L, Wang M, Fan J, Li D, Zhang P, Xu Z, Li N. Pyroptosis: A spoiler of peaceful coexistence between cells in degenerative bone and joint diseases. J Adv Res 2024:S2090-1232(24)00247-9. [PMID: 38876191 DOI: 10.1016/j.jare.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND As people age, degenerative bone and joint diseases (DBJDs) become more prevalent. When middle-aged and elderly people are diagnosed with one or more disorders such as osteoporosis (OP), osteoarthritis (OA), and intervertebral disc degeneration (IVDD), it often signals the onset of prolonged pain and reduced functionality. Chronic inflammation has been identified as the underlying cause of various degenerative diseases, including DBJDs. Recently, excessive activation of pyroptosis, a form of programed cell death (PCD) mediated by inflammasomes, has emerged as a primary driver of harmful chronic inflammation. Consequently, pyroptosis has become a potential target for preventing and treating DBJDs. AIM OF REVIEW This review explored the physiological and pathological roles of the pyroptosis pathway in bone and joint development and its relation to DBJDs. Meanwhile, it elaborated the molecular mechanisms of pyroptosis within individual cell types in the bone marrow and joints, as well as the interplay among different cell types in the context of DBJDs. Furthermore, this review presented the latest compelling evidence supporting the idea of regulating the pyroptosis pathway for DBJDs treatment, and discussed the potential, limitations, and challenges of various therapeutic strategies involving pyroptosis regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW In summary, an interesting identity for the unregulated pyroptosis pathway in the context of DBJDs was proposed in this review, which was undertaken as a spoiler of peaceful coexistence between cells in a degenerative environment. Over the extended course of DBJDs, pyroptosis pathway perpetuated its activity through crosstalk among pyroptosis cascades in different cell types, thus exacerbating the inflammatory environment throughout the entire bone marrow and joint degeneration environment. Correspondingly, pyroptosis regulation therapy emerged as a promising option for clinical treatment of DBJDs.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jilin Fan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000 China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300 China.
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
12
|
Zahran EM, Mohamad SA, Elsayed MM, Hisham M, Maher SA, Abdelmohsen UR, Elrehany M, Desoukey SY, Kamel MS. Ursolic acid inhibits NF-κB signaling and attenuates MMP-9/TIMP-1 in progressive osteoarthritis: a network pharmacology-based analysis. RSC Adv 2024; 14:18296-18310. [PMID: 38863821 PMCID: PMC11165403 DOI: 10.1039/d4ra02780a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease, characterized by infiltration of monocytes into the synovial joint which promotes inflammation, stiffness, joint swelling, cartilage degradation and further bone destruction. The leaves of Ocimum forskolei have been used for inflammation-related disease management in traditional medicine. Additionally, the downregulation of NF-κB and the MMP/TIMP-1 ratio has been shown to protect against OA. The LC-HR-MS metabolic analysis of Ocimum yielded 19 putative compounds, among which ursolic acid (UA) was detected. Ursolic acid possesses significant anti-inflammatory effects and has been reported to downregulate oxidative stress and inflammatory biomarkers. It was tested on rats in a model of intra-articular carrageenan injection to investigate its efficacy on osteoarthritis progression. The UA emulgel exerted chondroprotective, analgesic and local anaesthetic efficacies confirmed via histopathological investigation and radiographical imaging. A network pharmacology followed by molecular docking highlighted TNF-α, TGF-β and NF-κB as the top filtered genes. Quantitative real-time PCR analysis showed that UA significantly attenuated serum levels of TNF-α, IL-1β, NF-κB, MMP-9/TIMP-1 and elevated levels of TGF-β. Taken together, these results suggest that UA could serve as a functional food-derived phytochemical with a multi-targeted efficacy on progression of OA, regulating the immune and inflammatory responses, particularly, attenuating chondrocytes degeneration via suppression of NF-κB and MMP-9/TIMP-1. Accordingly, UA might be a promising alternative to conventional therapy for safe, easily applicable and effective management of OA.
Collapse
Affiliation(s)
- Eman Maher Zahran
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
| | - Soad A Mohamad
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
| | - Mohamed M Elsayed
- Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
| | - Mohamed Hisham
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
| | - Sherif A Maher
- Department of Biochemistry, Faculty of Pharmacy, New Valley University New Valley Elkharga 71511 Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| | - Mahmoud Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
| | - Samar Yehia Desoukey
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| | - Mohamed Salah Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| |
Collapse
|
13
|
Yuandani, Jantan I, Salim E, Septama AW, Rullah K, Nainu F, Fasihi Mohd Aluwi MF, Emran TB, Roney M, Khairunnisa NA, Nasution HR, Fadhil As'ad M, Shamsudin NF, Abdullah MA, Marwa Rani HL, Al Chaira DM, Aulia N. Mechanistic insights into anti-inflammatory and immunosuppressive effects of plant secondary metabolites and their therapeutic potential for rheumatoid arthritis. Phytother Res 2024; 38:2931-2961. [PMID: 38600726 DOI: 10.1002/ptr.8147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 04/12/2024]
Abstract
The anti-inflammatory and immunosuppressive activities of plant secondary metabolites are due to their diverse mechanisms of action against multifarious molecular targets such as modulation of the complex immune system associated with rheumatoid arthritis (RA). This review discussed and critically analyzed the potent anti-inflammatory and immunosuppressive effects of several phytochemicals and their underlying mechanisms in association with RA in experimental studies, including preliminary clinical studies of some of them. A wide range of phytochemicals including phenols, flavonoids, chalcones, xanthones, terpenoids, alkaloids, and glycosides have shown significant immunosuppressive and anti-inflammatory activities in experimental RA models and a few have undergone clinical trials for their efficacy and safety in reducing RA symptoms and improve patient outcomes. These phytochemicals have potential as safer alternatives to the existing drugs in the management of RA, which possess a wide range of serious side effects. Sufficient preclinical studies on safety and efficacy of these phytochemicals must be performed prior to proper clinical studies. Further studies are needed to address the barriers that have so far limited their human use before the therapeutic potential of these plant-based chemicals as anti-arthritic agents in the treatment of RA is fully realized.
Collapse
Affiliation(s)
- Yuandani
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
- Centre of Excellence for Chitosan and Advanced Materials, Universitas Sumatera Utara, Medan, Indonesia
| | - Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Emil Salim
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Indonesia
| | - Kamal Rullah
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | | | - Talhah Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, USA
- Legorreta Cancer Center, Brown University, Providence, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Malaysia
| | - Nur Aini Khairunnisa
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Halimah Raina Nasution
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Muh Fadhil As'ad
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
- Pelamonia Health Sciences Institute, Makassar, Indonesia
| | - Nur Farisya Shamsudin
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Maryam Aisyah Abdullah
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Haya Luthfiyyah Marwa Rani
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Diany Mahabbah Al Chaira
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Nabila Aulia
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
14
|
Zhang R, Han L, Lin W, Ba X, Yan J, Li T, Yang Y, Huang Y, Huang Y, Qin K, Chen Z, Wang Y, Tu S. Mechanisms of NLRP3 inflammasome in rheumatoid arthritis and osteoarthritis and the effects of traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117432. [PMID: 37992880 DOI: 10.1016/j.jep.2023.117432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE It has been widely reported that various anti-rheumatic traditional Chinese medicines (TCMs) ameliorate rheumatoid arthritis (RA) and osteoarthritis (OA) through regulating the abnormal production, assembly, and activation of the NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome. These TCMs include monomers isolated from Chinese herbs, extracts of Chinese herbs, and Chinese medical formulae with a lengthy application history. AIM OF THE STUDY This review aimed to summarize and analyze the published articles about the NLRP3 inflammasome and its role in the pathogenesis of RA and OA. We also reviewed existing knowledge on the therapeutic mechanism of TCMs in RA and OA via the regulation of the NLRP3 inflammasome. MATERIALS AND METHODS We searched for relevant articles with the keywords "NLRP3 inflammasome", "traditional Chinese medicine," "Chinese herbal drugs," "rheumatoid arthritis," and "osteoarthritis." The information retrieval was conducted in medical Chinese and English databases from the date of construction to April 19, 2023, including PubMed, MEDLINE, Web of Science, Scopus, Ovid, China National Knowledge Infrastructure (CNKI), Chinese Biomedicine Literature Database (CBM), Chinese Science and Technology Periodicals Database (VIP), and China Online Journals (COJ). RESULTS According to retrieval results, 35 TCMs have been demonstrated to relieve RA by targeting the NLRP3 inflammasome, including six traditional Chinese prescriptions, seven extracts of Chinese herbs, and 22 monomers extracted from traditional Chinese herbs and formulae. Additionally, 23 TCMs have shown anti-OA effects with abilities to modulate the NLRP3 inflammasome, including five traditional Chinese prescriptions, one extract of Chinese herbs, and 17 monomers from Chinese herbs. CONCLUSIONS We summarized mechanism research about the pivotal roles of the NLRP3 inflammasome in the pathogenesis of RA and OA. Moreover, a review of TCMs with targets of the NLRP3 inflammasome in RA and OA treatment was also conducted. Our work is conducive to a better application of TCMs in complementary and alternative therapies in RA and OA.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Liang Han
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xin Ba
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiahui Yan
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tingting Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuyao Yang
- Integrated Traditional Chinese and Western Clinical Medicine, Second Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yao Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ying Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kai Qin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhe Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shenghao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Zhao Z, Liu W, Cheng G, Dong S, Zhao Y, Wu H, Cao Z. Knockdown of DAPK1 inhibits IL-1β-induced inflammation and cartilage degradation in human chondrocytes by modulating the PEDF-mediated NF-κB and NLRP3 inflammasome pathway. Innate Immun 2024; 30:21-30. [PMID: 36412004 PMCID: PMC10720599 DOI: 10.1177/17534259221086837] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/23/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease that is characterized by inflammation and cartilage degradation. Death-associated protein kinase 1 (DAPK1) is a multi-domain serine/threonine kinase and has been reported to be involved in the progression of OA. However, its role and mechanism in OA remain unclear. Here, we found the expression of DAPK1 in OA cartilage tissues was higher than that in normal cartilage tissues. The expression of DAPK1 in chondrocytes was up-regulated by IL-1β. Knockdown of DAPK1 promoted cell viability and anti-apoptotic protein expression, while it inhibited the apoptosis rate and pro-apoptotic protein expressions in IL-1β-induced chondrocytes. In addition, DAPK1 inhibition reduced the levels of inflammatory cytokines and expressions of matrix metalloproteinases (MMPs), and increased the expressions of collagen II and aggrecan. The data of mechanistic investigation indicated that the expression of pigment epithelium-derived factor (PEDF) was positively regulated by DAPK1. Overexpression of PEDF attenuated the effects of DAPK1 knockdown on IL-1β-induced cell viability, apoptosis, inflammation, and cartilage degradation. Furthermore, PEDF overexpression restored the activity of the NF-κB pathway and NLRP3 inflammasome after DAPK1 knockdown. Collectively, down-regulation of DAPK1 inhibited IL-1β-induced inflammation and cartilage degradation via the PEDF-mediated NF-κB and NLRP3 inflammasome pathways.
Collapse
Affiliation(s)
- Zhongyuan Zhao
- Department of Articulation Surgery, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Wei Liu
- Department of Pathophysiology, Binzhou Medical University, Yantai, Shandong Province, China
| | - Gong Cheng
- Department of Sports Medicine, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Shengjie Dong
- Department of Articulation Surgery, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Yuchi Zhao
- Department of Articulation Surgery, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Hao Wu
- Department of Sports Medicine, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Zhilin Cao
- Department of Sports Medicine, Yantaishan Hospital, Yantai, Shandong Province, China
| |
Collapse
|
16
|
Xu R, Kuang M, Li N. Phytochemistry and pharmacology of plants in the genus Chaenomeles. Arch Pharm Res 2023; 46:825-854. [PMID: 38062238 DOI: 10.1007/s12272-023-01475-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023]
Abstract
Chaenomeles plants belong to the Rosaceae family and include five species, Chaenomeles speciosa (Sweet) Nakai, Chaenomeles sinensis (Thouin) Koehne, Chaenomeles japonica (Thunb.) Lindl, Chaenomeles cathayensis (Hemsl.) Schneid and Chaenomeles thibetica Yu. Chaenomeles plants are found and cultivated in nearly every country worldwide. China serves as both the origin and distribution hub for the plants in the Chaenomeles genus, and all Chaenomeles species except for C. japonica are indigenous to China. Chaenomeles spp. is a type of edible medicinal plant that has been traditionally used in China to treat various ailments, such as rheumatism, cholera, dysentery, enteritis, beriberi, and scurvy. A variety of chemical constituents have been extracted from this genus, including terpenoids, phenolics, flavonoids, phenylpropanoids and their derivatives, benzoic acid derivatives, biphenyls, oxylipins, and alkaloids. The biological activity of some of these constituents has already been evaluated. Pharmacological investigations have demonstrated that the plants in the genus Chaenomeles exhibit anti-inflammatory, analgesic, antioxidant, antihyperglycemic, antihyperlipidemic, gastrointestinal protective, antitumor, immunomodulatory, antibacterial, antiviral, hepatoprotective, neuroprotective and other pharmacological activities. The objective of this review is to provide a comprehensive and up-to-date summary of the available information on the genus Chaenomeles to serve as a valuable reference for further investigations.
Collapse
Affiliation(s)
- Ruoling Xu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Mengting Kuang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ning Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
17
|
Liu G, Qin P, Cheng X, Wu L, Wang R, Gao W. Ursolic acid: biological functions and application in animal husbandry. Front Vet Sci 2023; 10:1251248. [PMID: 37964910 PMCID: PMC10642196 DOI: 10.3389/fvets.2023.1251248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Ursolic acid (UA) is a plant-derived pentacyclic triterpenoid with 30 carbon atoms. UA has anti-inflammatory, antioxidative, antimicrobial, hepato-protective, anticancer, and other biological activities. Most studies on the biological functions of UA have been performed in mammalian cell (in vitro) and rodent (in vivo) models. UA is used in animal husbandry as an anti-inflammatory and antiviral agent, as well as for enhancing the integrity of the intestinal barrier. Although UA has been shown to have significant in vitro bacteriostatic effects, it is rarely used in animal nutrition. The use of UA as a substitute for oral antibiotics or as a novel feed additive in animal husbandry should be considered. This review summarizes the available data on the biological functions of UA and its applications in animal husbandry.
Collapse
Affiliation(s)
- Guanhui Liu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Peng Qin
- Chenguang Biotechnology Group Handan Co., Ltd., Handan, China
| | - Xinying Cheng
- Chenguang Biotechnology Group Handan Co., Ltd., Handan, China
| | - Lifei Wu
- Hebei Plant Extraction Innovation Center Co., Ltd., Handan, China
- Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan, China
| | - Ruoning Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Wei Gao
- Hebei Plant Extraction Innovation Center Co., Ltd., Handan, China
- Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan, China
| |
Collapse
|
18
|
Xue L, Otieno M, Colson K, Neto C. Influence of the Growing Region on the Phytochemical Composition and Antioxidant Properties of North American Cranberry Fruit ( Vaccinium macrocarpon Aiton). PLANTS (BASEL, SWITZERLAND) 2023; 12:3595. [PMID: 37896058 PMCID: PMC10609726 DOI: 10.3390/plants12203595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
The impact of the growth environment on the production of health-promoting phytochemicals in cranberry fruit (Vaccinium macrocarpon Aiton) is not well established despite increased production worldwide. We investigated the secondary metabolite composition among the cranberry fruit of nine cultivars produced in two major coastal North American growing regions that differ in climate. Using 1H NOESY NMR to generate metabolic fingerprints, principal component analysis revealed variation between the two regions and identified likely contributing metabolites. Triterpenoids ursolic and oleanolic acid, as well as citric and malic acids, were quantified using 1H qNMR, and anthocyanins and flavonols were determined by HPLC-DAD. Total proanthocyanidins (PACs), total soluble phenolics, and DPPH free-radical scavenging antioxidant activity were also evaluated. Across all cultivars, anthocyanins, flavonols, and total phenolic content were significantly higher in West Coast fruit than East Coast fruit, correlating with a regional trend of higher antioxidant activity in fruit grown on the West Coast. The opposite trend was observed for triterpenoids and organic acids, which were significantly higher across cultivars in East Coast fruit. These trends persisted over two growing seasons. The study demonstrates that climate plays an important role in the production of antioxidant and anti-inflammatory phytochemicals in cranberry plants.
Collapse
Affiliation(s)
- Liang Xue
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA; (L.X.); (M.O.)
| | - Maureen Otieno
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA; (L.X.); (M.O.)
| | | | - Catherine Neto
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA; (L.X.); (M.O.)
| |
Collapse
|
19
|
Shen J, Fu Y, Liu F, Ning B, Jiang X. Ursolic Acid Promotes Autophagy by Inhibiting Akt/mTOR and TNF-α/TNFR1 Signaling Pathways to Alleviate Pyroptosis and Necroptosis in Mycobacterium tuberculosis-Infected Macrophages. Inflammation 2023; 46:1749-1763. [PMID: 37212951 DOI: 10.1007/s10753-023-01839-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/02/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
As a lethal infectious disease, tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb). Its complex pathophysiological process limits the effectiveness of many clinical treatments. By regulating host cell death, Mtb manipulates macrophages, the first line of defense against invading pathogens, to evade host immunity and promote the spread of bacteria and intracellular inflammatory substances to neighboring cells, resulting in widespread chronic inflammation and persistent lung damage. Autophagy, a metabolic pathway by which cells protect themselves, has been shown to fight intracellular microorganisms, such as Mtb, and they also play a crucial role in regulating cell survival and death. Therefore, host-directed therapy (HDT) based on antimicrobial and anti-inflammatory interventions is a pivotal adjunct to current TB treatment, enhancing anti-TB efficacy. In the present study, we showed that a secondary plant metabolite, ursolic acid (UA), inhibited Mtb-induced pyroptosis and necroptosis of macrophages. In addition, UA induced macrophage autophagy and enhanced intracellular killing of Mtb. To investigate the underlying molecular mechanisms, we explored the signaling pathways associated with autophagy as well as cell death. The results showed that UA could synergistically inhibit the Akt/mTOR and TNF-α/TNFR1 signaling pathways and promote autophagy, thus achieving its regulatory effects on pyroptosis and necroptosis of macrophages. Collectively, UA could be a potential adjuvant drug for host-targeted anti-TB therapy, as it could effectively inhibit pyroptosis and necroptosis of macrophages and counteract the excessive inflammatory response caused by Mtb-infected macrophages via modulating the host immune response, potentially improving clinical outcomes.
Collapse
Affiliation(s)
- Jingjing Shen
- Department of Immunology and Microbiology, Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan Fu
- Department of Immunology and Microbiology, Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fanglin Liu
- Department of Immunology and Microbiology, Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bangzuo Ning
- Department of Immunology and Microbiology, Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Jiang
- Department of Immunology and Microbiology, Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
20
|
Wang J, Sun T. Mir-25-3p in extracellular vesicles from fibroblast-like synoviocytes alleviates pyroptosis of chondrocytes in knee osteoarthritis. J Bioenerg Biomembr 2023; 55:365-380. [PMID: 37725203 DOI: 10.1007/s10863-023-09964-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/29/2023] [Indexed: 09/21/2023]
Abstract
Knee osteoarthritis (KOA) is defined as a joint disease that occurs mostly among elderly people. Fibroblast-like synoviocytes-derived extracellular vesicles (FLS-EVs) have impacts on the treatment of OA. This study elucidated the mechanism of miR-25-3p in pyroptosis of chondrocytes in KOA. FLSs and EVs were extracted from neonatal mice; destabilization of the medial meniscus (DMM) was used to simulate KOA in mice, followed by the evaluation of cartilage damage and the contents of MMP-3 and MMP-13 in KOA mice. Lipopolysaccharide (LPS) was used to induce inflammation damage in mouse chondrocytes ATDC5, and the cell viability and the expressions of NLRP3, Cleaved-Caspase-1, GSDMD-N, IL-18, and IL-1β were examined. We found that FLS-EV treatment mitigated the knee-joint damage and symptoms of KOA mice, decreased MMP-3 and MMP-13, and inhibited pyroptosis of chondrocytes in DMM mice and LPS-induced ATD5 cells. Then, Cy3-labeled miR-25-3p in mice chondrocytes was observed and the expressions and the binding relation of miR-25-3p and cytoplasmic polyadenylation element-binding protein 1 (CPEB1) were verified. It showed that FLS-EVs carried miR-25-3p into chondrocytes, and upregulated miR-25-3p expression while inhibited CPEB1 transcription, resulting in mitigation of pyroptosis of chondrocytes, and CPEB1 overexpression reversed the inhibition of FLS-EVs on pyroptosis of chondrocytes in KOA.
Collapse
Affiliation(s)
- Jianhang Wang
- Trauma department of orthopedics Yantaishan Hospital, 10087 Keji Avenue, Laishan District, Yantai, Shandong, 264003, China
| | - Tao Sun
- Trauma department of orthopedics Yantaishan Hospital, 10087 Keji Avenue, Laishan District, Yantai, Shandong, 264003, China.
| |
Collapse
|
21
|
Faustino C, Pinheiro L, Duarte N. Triterpenes as Potential Drug Candidates for Rheumatoid Arthritis Treatment. Life (Basel) 2023; 13:1514. [PMID: 37511889 PMCID: PMC10381804 DOI: 10.3390/life13071514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by joint inflammation, swelling and pain. Although RA mainly affects the joints, the disease can also have systemic implications. The presence of autoantibodies, such as anti-cyclic citrullinated peptide antibodies and rheumatoid factors, is a hallmark of the disease. RA is a significant cause of disability worldwide associated with advancing age, genetic predisposition, infectious agents, obesity and smoking, among other risk factors. Currently, RA treatment depends on anti-inflammatory and disease-modifying anti-rheumatic drugs intended to reduce joint inflammation and chronic pain, preventing or slowing down joint damage and disease progression. However, these drugs are associated with severe side effects upon long-term use, including immunosuppression and development of opportunistic infections. Natural products, namely triterpenes with anti-inflammatory properties, have shown relevant anti-arthritic activity in several animal models of RA without undesirable side effects. Therefore, this review covers the recent studies (2017-2022) on triterpenes as safe and promising drug candidates for the treatment of RA. These bioactive compounds were able to produce a reduction in several RA activity indices and immunological markers. Celastrol, betulinic acid, nimbolide and some ginsenosides stand out as the most relevant drug candidates for RA treatment.
Collapse
Affiliation(s)
- Célia Faustino
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Lídia Pinheiro
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Noélia Duarte
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
22
|
Jiang J, Li J, Xiong C, Zhou X, Liu T. Isorhynchophylline alleviates cartilage degeneration in osteoarthritis by activating autophagy of chondrocytes. J Orthop Surg Res 2023; 18:154. [PMID: 36864518 PMCID: PMC9979446 DOI: 10.1186/s13018-023-03645-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
CONTEXT Osteoarthritis is a common degenerative disease, the cause of it is still unknown, and the treatment mainly focuses on improving symptoms. Studies have found that Isorhynchophylline (Isorhy) has antioxidant, anti-inflammatory, antiproliferative and neuroprotective effects. OBJECTIVE This study investigates the role and mechanism of Isorhy in OA. METHODS The destabilized medial meniscus model was used to mimic OA. Fifteen male Sprague Dawley rats were partitioned into three portions: Normal group, OA group (surgery; normal saline treatment) and OA + Isorhy group (surgery; 50 μM Isorhy treatment) were performed on the first day of every week from the 5th to the 8th week after surgery. After 4 weeks of drug treatment, the rats have been processed without debridement of the knee specimens and fixed using 4% paraformaldehyde for two days. The morphological analysis was performed by H&E, Safranin O-Fast green staining and micro-CT analysis. The specimens were researched employing Micro-CT. In the part of the aggregate methods that were evaluated by qRT-PCR and western blot of the following proteins LC3II/LC3I, Beclin-1, ATG5, ATG7, MMP3 andMMP13. Akt/PI3K signaling related proteins (p-AKT, AKT, p-PI3K, PI3K, p-mTOR, mTOR) were detected by Western blot. BECLIN1 and MMP3 were detected by Immunofluorescence assay. RESULTS In this present research, it was proved that autophagy-related and cartilage matrix-related proteins in osteoarthritis could be regulated by Isorhynchophylline treatment. The transcriptome sequencing results suggested the regulation was closely associated with PI3K/AKT/mTOR pathway, thereby alleviating osteoarticular inflammation. In-depth study showed that Isorhy could also affect OA in rat OA models, that was indicated by H&E, Safranin O-Fast green staining, and also micro-CT analysis. CONCLUSION Our findings indicated that Isorhy could be regarded as a prospective candidate for OA treatment.
Collapse
Affiliation(s)
- Jieyun Jiang
- grid.411870.b0000 0001 0063 8301Medical Development Department, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000 China
| | - Jin Li
- grid.411870.b0000 0001 0063 8301Department of Orthopedic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000 China
| | - Chenwei Xiong
- grid.89957.3a0000 0000 9255 8984Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, 213000 China ,grid.89957.3a0000 0000 9255 8984Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000 China
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China. .,Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China. .,Department of Orthopedics, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture, 811800, Qinghai Province, China.
| | - Ting Liu
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China. .,Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
23
|
Xie W, Qi S, Dou L, Wang L, Wang X, Bi R, Li N, Zhang Y. Achyranthoside D attenuates chondrocyte loss and inflammation in osteoarthritis via targeted regulation of Wnt3a. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154663. [PMID: 36657317 DOI: 10.1016/j.phymed.2023.154663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Achyranthes bidentata Blume (A. bidentata) is a common Chinese herb used to treat osteoarthritis (OA). Achyranthoside D (Ach-D) is a glucuronide saponin isolated from A. bidentata. PURPOSE To assess the mechanisms of action of Ach-D and its effects on OA. METHODS The effects of Ach-D were evaluated in rats underwent anterior cruciate ligament transection (ACLT) with medial meniscectomy (MMx) and in interleukin (IL)-1β-induced chondrocytes. Histological changes in rat cartilage tissues were detected using Safranin O-Fast green and haematoxylin-eosin staining. Immunohistochemical staining, qRT-PCR, ELISA, immunoblotting, and immunofluorescence were conducted to examine cartilage degeneration-related and inflammation-related factor expression. CCK-8, LDH assay, and EdU staining were performed to detect chondrocyte death. RESULTS Ach-D dose-dependently reduced the Osteoarthritis Research Society International (OARSI) scores, alleviated cartilage injury, and decreased the serum concentrations of CTX-II and COMP in ACLT-MMx models. Ach-D increased the expression levels of collagen II and aggrecan and decreased the levels of cartilage degeneration-related proteins, ADAMTS-5, MMP13, and MMP3, in rat cartilage tissues. Additionally, nod-like receptor protein 3 (NLRP3)-related inflammation was reduced by Ach-D, as shown by the significantly inhibited expression levels of NLRP3, ASC, GSDMD, IL-6, TNF-α, IL-1β, and IL-18 in rat cartilage tissues. In primary rat chondrocytes, Ach-D protected against IL-1β-induced viability loss and LDH release. Wnt3a is the target protein of Ach-D. Mechanistically, Ach-D alleviated OA by inhibiting Wnt signalling. CONCLUSION ACH-D may reduce inflammation and cartilage degeneration by inhibiting the Wnt signalling pathway, thereby reducing OA.
Collapse
Affiliation(s)
- Wenpeng Xie
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250000, Shandong, PR China
| | - Shangfeng Qi
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250000, Shandong, PR China
| | - Luming Dou
- Bone traumatology department, Yantai Penglai Traditional Chinese Medicine Hospital, Yantai, 265600, Shandong, PR China
| | - Lei Wang
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Second Affiliated Hospital, Jinan, 250000, Shandong, PR China
| | - Xiangpeng Wang
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250000, Shandong, PR China
| | - Rongxiu Bi
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250000, Shandong, PR China
| | - Nianhu Li
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250000, Shandong, PR China.
| | - Yongkui Zhang
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250000, Shandong, PR China.
| |
Collapse
|
24
|
Mulberroside A alleviates osteoarthritis via restoring impaired autophagy and suppressing MAPK/NF-κB/PI3K-AKT-mTOR signaling pathways. iScience 2023; 26:105936. [PMID: 36698724 PMCID: PMC9868682 DOI: 10.1016/j.isci.2023.105936] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Osteoarthritis (OA) is a trauma-/age-related degenerative disease characterized by chronic inflammation as one of its pathogenic mechanisms. Mulberroside A (MA), a natural bioactive withanolide, demonstrates anti-inflammatory properties in various diseases; however, little is known about the effect of MA on OA. We aim to examine the role of MA on OA and to identify the potential mechanisms through which it protects articular cartilage. In vitro, MA improved inflammatory response, anabolism, and catabolism in IL-1β-induced OA chondrocytes. The chondroprotective effects of MA were attributed to suppressing the MAPK, NF-κB, and PI3K-AKT-mTOR signaling pathways, as well as promoting the autophagy process. In vivo, intra-articular injection of MA reduced the cartilage destruction and reversed the change of anabolic and catabolic-related proteins in destabilized medial meniscus (DMM)-induced OA models. Thus, the study indicates that MA exhibits a chondroprotective effect and might be a promising agent for OA treatment.
Collapse
|
25
|
Farhadi F, Baradaran Rahimi V, Mohamadi N, Askari VR. Effects of rosmarinic acid, carnosic acid, rosmanol, carnosol, and ursolic acid on the pathogenesis of respiratory diseases. Biofactors 2022. [PMID: 36564953 DOI: 10.1002/biof.1929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
This review aimed to identify preclinical and clinical studies examining the effects of rosmarinic acid (RA), carnosic acid (CaA), rosmanol (RO), carnosol (CA), and ursolic acid (UA) against allergic and immunologic disorders. Various online databases, including PubMed, Science Direct, EMBASE, Web of Sciences, Cochrane trials, and Scopus, were searched from inception until October 2022. Due to the suppression of the nuclear factor-κB (NF-κB) pathway, the main factor in allergic asthma, RA may be a promising candidate for the treatment of asthma. The other ingredients comprising CA and UA reduce the expression of interleukin (IL)-4, IL-5, and IL-13 and improve airway inflammation. Rosemary's anti-cancer effect is mediated by several mechanisms, including DNA fragmentation, apoptosis induction, inhibition of astrocyte-upregulated gene-1 expression, and obstruction of cell cycle progression in the G1 phase. The compounds, essentially found in Rosemary essential oil, prevent smooth muscle contraction through its calcium antagonistic effects, inhibiting acetylcholine (ACH), histamine, and norepinephrine stimulation. Additionally, CA exhibits a substantially greater interaction with the nicotinic ACH receptor than a family of medications that relax the smooth muscles, making it a potent antispasmodic treatment. The components have demonstrated therapeutic effects on the immune, allergy, and respiratory disorders.
Collapse
Affiliation(s)
- Faegheh Farhadi
- Herbal and Traditional Medicines Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Mohamadi
- Herbal and Traditional Medicines Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Ramirez-Perez S, Reyes-Perez IV, Martinez-Fernandez DE, Hernandez-Palma LA, Bhattaram P. Targeting inflammasome-dependent mechanisms as an emerging pharmacological approach for osteoarthritis therapy. iScience 2022; 25:105548. [PMID: 36465135 PMCID: PMC9708800 DOI: 10.1016/j.isci.2022.105548] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arthritic diseases have attracted enormous scientific interest because of increased worldwide prevalence and represent a significant socioeconomic burden. Osteoarthritis (OA) is the most prevalent form of arthritis. It is a disorder of the diarthrodial joints, characterized by degeneration and loss of articular cartilage associated with adjacent subchondral bone changes. Chronic and unresolving inflammation has been identified as a critical factor driving joint degeneration and pain in OA. Despite numerous attempts at therapeutic intervention, no effective disease-modifying agents targeting OA inflammation are available to the patients. Inflammasomes are protein complexes known to play a critical role in the inflammatory pathology of several diseases, and their roles in OA pathogenesis have become evident over the last decade. In this sense, it is relevant to evaluate the vital role of inflammasomes as potential modulators of pathogenic features in OA. This review will provide an overview and perspectives on why understanding inflammasome activation is critical for identifying effective OA therapies. We elaborate on the contribution of extracellular mediators from the circulatory system and synovial fluid as well as intracellular activators within the synovial fibroblasts and articular chondrocytes toward invoking the inflammasome in OA. We further discuss the merits of emerging inflammasome targeting therapies and speculate on the potential strategies for inflammasome blockade for OA therapy.
Collapse
Affiliation(s)
- Sergio Ramirez-Perez
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Itzel Viridiana Reyes-Perez
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco 44340, México
| | - Diana Emilia Martinez-Fernandez
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco 44430, México
| | - Luis Alexis Hernandez-Palma
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición (IICAN), Centro Universitario del Sur, Universidad de Guadalajara, Guadalajara, Jalisco 49000, México
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco 44340, México
| | - Pallavi Bhattaram
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
27
|
Zafar S, Khan K, Hafeez A, Irfan M, Armaghan M, Rahman AU, Gürer ES, Sharifi-Rad J, Butnariu M, Bagiu IC, Bagiu RV. Ursolic acid: a natural modulator of signaling networks in different cancers. Cancer Cell Int 2022; 22:399. [PMID: 36496432 PMCID: PMC9741527 DOI: 10.1186/s12935-022-02804-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Incidence rate of cancer is estimated to increase by 40% in 2030. Furthermore, the development of resistance against currently available treatment strategies has contributed to the cancer-associated mortality. Scientists are now looking for the solutions that could help prevent the disease occurrence and could provide a pain-free treatment alternative for cancers. Therefore, efforts are now put to find a potent natural compound that could sever this purpose. Ursolic acid (UA), a triterpene acid, has potential to inhibit the tumor progression and induce sensitization to conventional treatment drugs has been documented. Though, UA is a hydrophobic compound therefore it is usually chemically modified to increase its bioavailability prior to administration. However, a thorough literature indicating its mechanism of action and limitations for its use at clinical level was not reviewed. Therefore, the current study was designed to highlight the potential mechanism of UA, its anti-cancer properties, and potential applications as therapeutic compound. This endeavour is a valuable contribution in understanding the hurdles preventing the translation of its potential at clinical level and provides foundations to design new studies that could help enhance its bioavailability and anti-cancer potential for various cancers.
Collapse
Affiliation(s)
- Sameen Zafar
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Khushbukhat Khan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Amna Hafeez
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Muhammad Irfan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Muhammad Armaghan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Anees ur Rahman
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Eda Sönmez Gürer
- grid.411689.30000 0001 2259 4311Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Javad Sharifi-Rad
- grid.442126.70000 0001 1945 2902Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Monica Butnariu
- University of Life Sciences “King Mihai I” from Timisoara, 300645 Calea Aradului 119, Timis, Romania
| | - Iulia-Cristina Bagiu
- grid.22248.3e0000 0001 0504 4027Department of Microbiology, Victor Babes University of Medicine and Pharmacy of Timisoara, Timisoara, Romania ,Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- grid.22248.3e0000 0001 0504 4027Department of Microbiology, Victor Babes University of Medicine and Pharmacy of Timisoara, Timisoara, Romania ,Preventive Medicine Study Center, Timisoara, Romania
| |
Collapse
|
28
|
Tan Z, Zhang B. Echinacoside alleviates osteoarthritis in rats by activating the Nrf2-HO-1 signaling pathway. Immunopharmacol Immunotoxicol 2022; 44:850-859. [PMID: 35815581 DOI: 10.1080/08923973.2022.2088384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) is a progressive disease characterized by degeneration of cartilage and echinacoside (Ech) has anti-inflammatory and antioxidant effects in various human diseases. This study aimed to reveal the effect and potential mechanism of Ech on OA. MATERIALS AND METHODS The in vitro OA model was established by rat chondrocytes treated with IL-1β, and the in vivo OA model was established by anterior cruciate ligament transaction. The effect of Ech on the viability, inflammatory response, extracellular matrix (ECM) degradation, and oxidative stress of IL-1β-treated rat chondrocytes were evaluated by Cell Counting Kit-8 assay, enzyme-linked immunosorbent assay, quantitative real-time PCR, Western blot, and immunofluorescence assay. Meanwhile, the mechanism of Ech was assessed using Western blot, Cell Counting Kit-8 assay, enzyme-linked immunosorbent assay, and immunofluorescence analysis. Moreover, the function of Ech in vivo was analyzed in rat models of OA. RESULTS Functionally, Ech enhanced the viability of rat chondrocytes, repressed the inflammatory response and ECM degradation of rat chondrocytes induced by IL-1β with restrained oxidative stress. Mechanically, Ech repressed IL-1β-induced chondrocyte injury by activating the Nrf2/HO-1 signaling pathway. Meanwhile, Ech alleviated the degree of articular cartilage injury in rats and exerted protective effects on the rat model of OA in vivo. DISCUSSION AND CONCLUSIONS Ech alleviated OA in rats by activating the Nrf2-HO-1 signaling pathway.
Collapse
Affiliation(s)
- Zhijun Tan
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Zhang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Zhou J, Wang Q. Daphnoretin relieves IL-1β-mediated chondrocytes apoptosis via repressing endoplasmic reticulum stress and NLRP3 inflammasome. J Orthop Surg Res 2022; 17:487. [PMID: 36384642 PMCID: PMC9670399 DOI: 10.1186/s13018-022-03316-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background Osteoarthritis (OA), mainly caused by severe joint degeneration, is often accompanied by joint pain and dysfunction syndrome. Inflammatory mediators and apoptosis play key roles in the evolution of OA. It is reported that daphnoretin has significant antiviral and anti-tumor values. The present study aims at investigating the role of daphnoretin in OA. Methods The OA mouse model was constructed by performing the destabilization of the medial meniscus through surgery, and the OA cell model was induced in ATDC5 chondrocytes with IL-1β (10 ng/mL) in vitro. Chondrocyte viability and apoptosis were measured by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT), Caspase-3 activity, and flow cytometry. The levels of COX-2, iNOS, TNF-α, IL-6, Bax, Bcl2, cleaved-Caspase3, endoplasmic reticulum stress (ERS) proteins (GRP78, CHOP, ATF6, and Caspase-12), and NLRP3-ASC-Caspase1 inflammasome were determined by quantitative real-time PCR or western blot. The concentrations of TNF-α, IL-6, and PGE2 were tested by enzyme-linked immunosorbent assay. The content of nitrates was detected by the Griess method. In vivo, morphologic differences in knee joint sections and the thickness of the subchondral bone density plate in mice were observed by hematoxylin–eosin (H&E) staining and safranin O-fast green staining. Results Daphnoretin effectively choked IL-1β-induced chondrocyte apoptosis and facilitated cell viability. Daphnoretin dose-dependently abated ERS, inflammatory mediators, and the activation of NLRP3 inflammasomes in IL-1β-induced chondrocytes. What’s more, in vivo experiments confirmed that daphnoretin alleviated OA progression in a murine OA model by mitigating inflammation and ERS. Conclusion Daphnoretin alleviated IL-1β-induced chondrocyte apoptosis by hindering ERS and NLRP3 inflammasome. Graphical abstract ![]()
Collapse
|
30
|
Li Q, Liu P, Wu C, Bai L, Zhang Z, Bao Z, Zou M, Ren Z, Yuan L, Liao M, Lan Z, Yin S, Chen L. Integrating network pharmacology and pharmacological validation to explore the effect of Shi Wei Ru Xiang powder on suppressing hyperuricemia. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115679. [PMID: 36058481 DOI: 10.1016/j.jep.2022.115679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shi Wei Ru Xiang powder (SWR) is a traditional Tibetan medicinal formula with the effect of dispelling dampness and dispersing cold. In clinical practice, SWR is generally used for the treatment of hyperuricemia (HUA). However, its exact pharmacological mechanism remains unclear. AIMS OF THE STUDY To preliminarily elucidate the regulatory effects and possible mechanisms of SWR on hyperuricemia using network pharmacology and experimental validation. MATERIALS AND METHODS A mouse model of hyperuricemia was used to evaluate the alleviating effect of SWR on hyperuricemia. The major components of SWR were acquired by UPLC-Q/TOF-MS. The potential molecular targets and associated signaling pathways were predicted through network pharmacology. The mechanism of action of SWR in ameliorating hyperuricemia was further investigated by pharmacological evaluation. RESULTS Mice with hyperuricemia and renal dysfunction were ameliorated by SWR. The 36 components of SWR included phenolic acids, terpenoids, alkaloids and flavonoids were identified. Network pharmacological analysis showed the involvement of the above compounds, and 115 targets were involved to treat hyperuricemia, involving multiple biological processes and different signaling pathways. Pharmacological experiments validated that SWR ameliorated hyperuricemic nephropathy in mice by modulating the mitogen-activated protein kinase (MAPK) signaling pathway, nuclear factor kappaB (NF-κB) signaling pathway and NOD-like receptor signaling pathway. CONCLUSION MAPK signaling pathway, NF-κB signaling pathway and NOD-like receptor signaling pathway play important roles in the therapeutic effects of SWR on hyperuricemia.
Collapse
Affiliation(s)
- Qiang Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Peng Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Chen Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Lijie Bai
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhongyun Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zilu Bao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Min Zou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhaoxiang Ren
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Lin Yuan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Maochuan Liao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhou Lan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shijin Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| | - Lvyi Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
31
|
Tan C, Li L, Han J, Xu K, Liu X. A new strategy for osteoarthritis therapy: Inhibition of glycolysis. Front Pharmacol 2022; 13:1057229. [PMID: 36438808 PMCID: PMC9685317 DOI: 10.3389/fphar.2022.1057229] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease of the joints. It is primarily caused by age, obesity, mechanical damage, genetics, and other factors, leading to cartilage degradation, synovial inflammation, and subchondral sclerosis with osteophyte formation. Many recent studies have reported that glycolysis disorders are related lead to OA. There is a close relationship between glycolysis and OA. Because of their hypoxic environment, chondrocytes are highly dependent on glycolysis, their primary energy source for chondrocytes. Glycolysis plays a vital role in OA development. In this paper, we comprehensively summarized the abnormal expression of related glycolytic enzymes in OA, including Hexokinase 2 (HK2), Pyruvate kinase 2 (PKM2), Phosphofructokinase-2/fructose-2, 6-Bisphosphatase 3 (PFKFB3), lactate dehydrogenase A (LDHA), and discussed the potential application of glycolysis in treating OA. Finally, the natural products that can regulate the glycolytic pathway were summarized. Targeting glucose transporters and rate-limiting enzymes to glycolysis may play an essential role in treating OA.
Collapse
Affiliation(s)
| | | | | | - Kang Xu
- *Correspondence: Kang Xu, ; Xianqiong Liu,
| | | |
Collapse
|
32
|
The natural product salicin alleviates osteoarthritis progression by binding to IRE1α and inhibiting endoplasmic reticulum stress through the IRE1α-IκBα-p65 signaling pathway. Exp Mol Med 2022; 54:1927-1939. [PMID: 36357568 PMCID: PMC9722708 DOI: 10.1038/s12276-022-00879-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/15/2022] [Accepted: 08/25/2022] [Indexed: 11/11/2022] Open
Abstract
Despite the high prevalence of osteoarthritis (OA) in older populations, disease-modifying OA drugs (DMOADs) are still lacking. This study was performed to investigate the effects and mechanisms of the small molecular drug salicin (SA) on OA progression. Primary rat chondrocytes were stimulated with TNF-α and treated with or without SA. Inflammatory factors, cartilage matrix degeneration markers, and cell proliferation and apoptosis markers were detected at the mRNA and protein levels. Cell proliferation and apoptosis were evaluated by EdU assays or flow cytometric analysis. RNA sequencing, molecular docking and drug affinity-responsive target stability analyses were used to clarify the mechanisms. The rat OA model was used to evaluate the effect of intra-articular injection of SA on OA progression. We found that SA rescued TNF-α-induced degeneration of the cartilage matrix, inhibition of chondrocyte proliferation, and promotion of chondrocyte apoptosis. Mechanistically, SA directly binds to IRE1α and occupies the IRE1α phosphorylation site, preventing IRE1α phosphorylation and regulating IRE1α-mediated endoplasmic reticulum (ER) stress by IRE1α-IκBα-p65 signaling. Finally, intra-articular injection of SA-loaded lactic-co-glycolic acid (PLGA) ameliorated OA progression by inhibiting IRE1α-mediated ER stress in the OA model. In conclusion, SA alleviates OA by directly binding to the ER stress regulator IRE1α and inhibits IRE1α-mediated ER stress via IRE1α-IκBα-p65 signaling. Topical use of the small molecular drug SA shows potential to modify OA progression.
Collapse
|
33
|
Al-kuraishy HM, Al-Gareeb AI, Negm WA, Alexiou A, Batiha GES. Ursolic acid and SARS-CoV-2 infection: a new horizon and perspective. Inflammopharmacology 2022; 30:1493-1501. [PMID: 35922738 PMCID: PMC9362167 DOI: 10.1007/s10787-022-01038-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus type 2) has been identified as the source of a world coronavirus pandemic in 2019. Covid-19 is considered a main respiratory disease-causing viral pneumonia and, in severe cases, leads to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Although, extrapulmonary manifestations of Covid-19 like neurological, cardiovascular, and gastrointestinal have been confirmed. Exaggerated immune response and release of a high amount of pro-inflammatory cytokines may progress, causing a cytokine storm. Consequently, direct and indirect effects of SARS-CoV-2 infection can evolve into systemic complications due to the progression of hyper inflammation, oxidative stress and dysregulation of the renin-angiotensin system (RAS). Therefore, anti-inflammatory and antioxidant agents could be efficient in alleviating these disorders. Ursolic acid has anti-inflammatory, antioxidant, and antiviral effects; it reduces the release of pro-inflammatory cytokines, improves anti-inflammatory cytokines, and inhibits the production of reactive oxygen species (ROS). In virtue of its anti-inflammatory and antioxidant effects, ursolic acid may minimize SARS-CoV-2 infection-induced complications. Also, by regulating RAS and inflammatory signaling pathways, ursolic acid might effectively reduce the development of ALI in ARDS in Covid-19. In this state, this perspective discusses how ursolic acid can mitigate hyper inflammation and oxidative stress in Covid-19.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW Australia
- AFNP Med, Vienna, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AL Beheira, Damanhour, 22511 Egypt
| |
Collapse
|
34
|
Wei X, Lan Y, Nong Z, Li C, Feng Z, Mei X, Zhai Y, Zou M. Ursolic acid represses influenza A virus-triggered inflammation and oxidative stress in A549 cells by modulating the miR-34c-5p/TLR5 axis. Cytokine 2022; 157:155947. [PMID: 35780710 DOI: 10.1016/j.cyto.2022.155947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ursolic acid (UA) is a pentacyclic triterpenoid compound with a wide range of anti-tumor, anti-inflammatory, hypotensive and other pharmacological effects. Here, the biological roles and regulatory mechanisms of UA in influenza A virus (IAV)-treated A549 cells were investigated. METHOD The cytotoxic impacts of UA on A549 cells with or without IAV treatment were determined using MTT and LDH assays. The inflammatory responses and oxidative stress of IAV-treated A549 cells were measured by RT-qPCR, ELISA, DCFH-DA probe, and colorimetric assays. A dual luciferase assay was carried out to validate the molecular interaction between miR-34c-5p and TLR5. Promoter methylation was detected by MSP experiment. Methylation-related proteins were quantified by western blot. Virus replication was assessed by TCID50 and western blot assays. RESULTS UA significantly ameliorated IAV-triggered cell injury and inflammatory response, virus replication and oxidative stress by elevating cell viability, ROS level and the activities of SOD and GSH-Px but reducing the LDH, MDA, and TCID50 values and the expression of virus-related proteins (NP) and cytokines (TNF-α, IL-1β, IL-6, and IL-18). Moreover, UA promoted miR-34c-5p expression by repressing DNMTs-mediated methylation. TLR5 was verified to be a direct target of miR-34c-5p and could be downregulated by UA. Rescue experiments revealed that silencing miR-34c-5p diminished the regulatory roles of UA in IAV-treated A549 cells. CONCLUSION Our data elucidated that UA attenuated IAV-triggered inflammatory responses and oxidative stress in A549 cells by regulating the miR-34c-5p/TLR5 axis, suggesting that UA plays a protective role in IAV-induced pneumonia.
Collapse
Affiliation(s)
- Xing Wei
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi Province, China
| | - Yuying Lan
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi Province, China
| | - Zhifei Nong
- Department of Pediatrics, Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530022, Guangxi Province, China
| | - Chongjin Li
- Department of Pediatrics, Maoming Hospital of Traditional Chinese Medicine, Maoming 525000, Guangdong Province, China
| | - Zhiqiong Feng
- Department of Pediatrics, Jinshazhou Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Xiaoping Mei
- Department of Pediatrics, Guangxi International Zhuang Medicine Hospital, Nanning 530200, Guangxi Province, China
| | - Yang Zhai
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi Province, China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Nanning 530200, Guangxi Province, China; Department of International Medical, Guangxi International Zhuang Medicine Hospital, Nanning 530200, Guangxi Province, China
| | - Min Zou
- Department of Pediatrics, Guangxi International Zhuang Medicine Hospital, Nanning 530200, Guangxi Province, China.
| |
Collapse
|
35
|
Gohari Z, Baghaei A, Mahboudi H, Hashemi J, Rahmati M, Islami M, Mansouri V. Ursolic acid incorporated nanofibers improves chondrogenic differentiation of mesenchymal stem cells. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zahra Gohari
- Department of Animal Science, School of Biology, Faculty of Science University of Tehran Tehran Iran
| | - Ahmadali Baghaei
- Faculty of Medicine, Mashhad Branch Islamic Azad University Mashhad Iran
| | - Hossein Mahboudi
- Department of Biotechnology, School of Pharmacy Alborz University of Medical Sciences karaj Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine North Khorasan University of Medical Sciences Bojnurd Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Paramedicine Guilan University of Medical Sciences Rasht Iran
| | - Maryam Islami
- Department of Biotechnology, School of Medicine Alborz University of Medical Science Karaj Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
36
|
Qu Y, Shen Y, Teng L, Huang Y, Yang Y, Jian X, Fan S, Wu P, Fu Q. Chicoric acid attenuates tumor necrosis factor-α-induced inflammation and apoptosis via the Nrf2/HO-1, PI3K/AKT and NF-κB signaling pathways in C28/I2 cells and ameliorates the progression of osteoarthritis in a rat model. Int Immunopharmacol 2022; 111:109129. [PMID: 35961266 DOI: 10.1016/j.intimp.2022.109129] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Osteoarthritis (OA) is the most common arthritis, and is characterized by inflammation and cartilage degradation. Chicoric acid (CA), a bioactive caffeic acid derivative isolated from the root of Taraxacum mongolicumHand. - Mazz., has been reported to have anti-inflammatory effects. However, the therapeutic effects of CA on chondrocyte inflammation remain unknown. Our study aimed to explore the effect of CA on OA both in vivo and in vitro. In vitro, CA treatment significantly suppressed the overproduction of nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and IL-12 in tumor necrosis factor alpha (TNF-α)-induced human C28/I2 chondrocytes. Moreover, CA attenuated TNF-α induced degradation of the extracellular matrix (ECM) by upregulating the expression of collagen Ⅱ and aggrecan, and downregulating ADAMTS-5 and matrix metalloproteinases (MMPs). Additionally, CA treatment inhibited apoptosis in C28/I2 cells by upregulating of Bcl-2 levels, downregulating Bax and ROS levels, and activating the Nrf2/HO-1 pathway. Mechanistically, CA exerted an anti-inflammatory effect by inhibiting the PI3K/AKT and NF-κB signaling pathways, enhancing Nrf-2/HO-1 to limit the activation of NF-κB. In vivo experiments also proved the therapeutic effects of CA on OA in rats. These findings indicate that CA may become a new drug for the treatment of OA.
Collapse
Affiliation(s)
- Yuhan Qu
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yue Shen
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Li Teng
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuehui Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yuting Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xi Jian
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Shengli Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Ping Wu
- Department of Pharmacy, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu 610041, China.
| | - Qiang Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
37
|
Chang X, Kang Y, Yang Y, Chen Y, Shen Y, Jiang C, Shen Y. Pyroptosis: A Novel Intervention Target in the Progression of Osteoarthritis. J Inflamm Res 2022; 15:3859-3871. [PMID: 35845090 PMCID: PMC9285853 DOI: 10.2147/jir.s368501] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common chronic joint diseases and is gradually becoming the main cause of disability and joint pain in the elderly worldwide. Pyroptosis is a regulated programmed cell death triggered by inflammasomes. It leads to cell swelling, lysis, and bioactive molecule secretion. Studies found that the damaged chondrocytes in OA joints had morphological characteristics of pyroptosis, and the cytokines associated with pyroptosis in synovial fluid increased, indicating that pyroptosis may have certain impacts on the pathological progression of OA. This review briefly summarizes the molecular mechanisms of pyroptosis and the epidemiology and pathogenesis of OA. Furthermore, we discussed the role of pyroptosis in articular cartilage and synovium during OA and reviewed the progress of pyroptosis-related molecules in the targeted therapy of OA joints, hoping to provide feasible directions for the diversified treatment of OA.
Collapse
Affiliation(s)
- Xingyu Chang
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Yuchen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Yuxuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Yajie Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Yanyu Shen
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Chenjun Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Yi Shen
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|
38
|
Sun W, Yue M, Xi G, Wang K, Sai J. Knockdown of NEK7 alleviates anterior cruciate ligament transection osteoarthritis (ACLT)-induced knee osteoarthritis in mice via inhibiting NLRP3 activation. Autoimmunity 2022; 55:398-407. [PMID: 35798413 DOI: 10.1080/08916934.2022.2093861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Osteoarthritis is thought to be a NLRP3-related disease. NEK7 is an essential mediator for NLRP3 inflammasome activation. This study aimed to demonstrate whether NEK7 has regulatory roles in the pathogenesis of osteoarthritis. C57BL/6 mice were subjected to anterior cruciate ligament transection osteoarthritis (ACLT) for constructing animal models of osteoarthritis. Injection of adeno-associated virus (AAV) expressing NEK7-specific shRNA into the knee joints of mice, following of which immunohistochemistry, qRT-PCR, western blotting, Safranin-O Fast Green staining, ELISA, and co-immunoprecipitation were performed to determine the effects of NEK7. NEK7 was highly expressed in the joint tissues of ACLT mice. As compared with shScr, AAV delivery of NEK7 shRNA significantly inhibited cartilage degeneration, OARSI score, and serum CTX-II and COMP levels. AAV delivery of NEK7 shRNA downregulated the expression of matrix-degrading enzymes (ADAMTS-4, MMP3, and MMP13) and upregulated the expression of ECM-related molecules (SOX9, collagen II, and aggrecan). In addition, AAV delivery of NEK7 shRNA alleviated ACLT-induced synovial inflammation, as was evidenced by the decreased levels of TNF-α, IL-6, IL-1β, and IL-18 and increased levels of IL-10. In the joint tissues of ACLT mice, NEK7 interacted with NLRP3 proteins. AAV delivery of NEK7 shRNA inhibited the protein interaction, and thereby inhibited the activation of the NLRP3 inflammasome. AAV delivery of NEK7 shRNA has no significant effects on cartilage degeneration and synovial inflammation in Nlrp3-/- mice. In conclusion, knockdown of NEK7 exerted anti-osteoarthritic effects, possibly via inhibiting the activation of the NLRP3 inflammasome. This study provided a novel mechanism of NEK7-NLRP3 interaction affecting osteoarthritis.
Collapse
Affiliation(s)
- Wei Sun
- Department of Sports Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, P.R. China
| | - Maoxing Yue
- Pingyi County Traditional Chinese Medicine, Pingyi, Shandong, P.R. China
| | - Guangmin Xi
- Qi Lu Normal University, Jinan, Shandong, P.R. China
| | - Kai Wang
- Department of Traumatic Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Jiaming Sai
- Department of Hand and Foot Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, P.R. China
| |
Collapse
|
39
|
Chaenomeles Fructus (CF), the Fruit of Chaenomeles sinensis Alleviates IL-1β Induced Cartilage Degradation in Rat Articular Chondrocytes. Int J Mol Sci 2022; 23:ijms23084360. [PMID: 35457176 PMCID: PMC9025567 DOI: 10.3390/ijms23084360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoarthritis (OA) causes persistent pain, joint dysfunction, and physical disability. It is the most prevalent type of degenerative arthritis, affecting millions of people worldwide. OA is currently treated with a focus on pain relief, inflammation control, and artificial joint surgery. Hence, a therapeutic agent capable of preventing or delaying the progression of OA is needed. OA is strongly associated with the degeneration of the articular cartilage and changes in the ECM, which are primarily associated with a decrease in proteoglycan and collagen. In the progress of articular cartilage degradation, catabolic enzymes, such as matrix metalloproteinases (MMPs), are activated by IL-1β stimulation. Given the tight relationship between IL-1β and ECM (extra-cellular matrix) degradation, this study examined the effects of Chaenomeles Fructus (CF) on IL-1β-induced OA in rat chondrocytes. The CF treatment reduced IL-1β-induced MMP3/13 and ADAMTS-5 production at the mRNA and protein levels. Similarly, CF enhanced col2a and aggrecan accumulation and chondrocyte proliferation. CF inhibited NF-κB (nuclear factor kappa B) activation, nuclear translocation induced by IL-1β, reactive oxygen species (ROS) production, and ERK phosphorylation. CF demonstrated anti-OA and articular regeneration effects on rat chondrocytes, thus, suggesting that CF is a viable and fundamental therapeutic option for OA.
Collapse
|
40
|
Miranda RDS, Jesus BDSM, Silva Luiz SR, Viana CB, Adão Malafaia CR, Figueiredo FDS, Carvalho TDSC, Silva ML, Londero VS, Costa‐Silva TA, Lago JHG, Martins RCC. Antiinflammatory activity of natural triterpenes—An overview from 2006 to 2021. Phytother Res 2022; 36:1459-1506. [DOI: 10.1002/ptr.7359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Rodrigo de Souza Miranda
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | | | - Sandra Regina Silva Luiz
- Institute of Microbiology Paulo de Góes Federal University of Rio de Janeiro (IMPG‐UFRJ) Rio de Janeiro Brazil
| | - Cristina Borges Viana
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | - Camila Rodrigues Adão Malafaia
- Laboratory of Natural Products and Biological Assays, Natural Products and Food Department, Faculty of Pharmacy Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | - Fabiana de Souza Figueiredo
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | | | - Matheus Lopes Silva
- Center of Human and Natural Sciences Federal University of ABC (UFABC) Santo André Brazil
| | - Vinicius Silva Londero
- Institute of Environmental, Chemical and Pharmaceutical Sciences Federal University of São Paulo (UNIFESP) Diadema Brazil
| | | | | | - Roberto Carlos Campos Martins
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| |
Collapse
|
41
|
3 β,23-Dihydroxy-12-ene-28-ursolic Acid Isolated from Cyclocarya paliurus Alleviates NLRP3 Inflammasome-Mediated Gout via PI3K-AKT-mTOR-Dependent Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5541232. [PMID: 35047046 PMCID: PMC8763513 DOI: 10.1155/2022/5541232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 11/01/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Gout is regarded as a painful inflammatory arthritis induced by the deposition of monosodium urate crystals in joints and soft tissues. Nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome-mediated IL-1β production plays a crucial role in the pathological process of gout. Cyclocarya paliurus (CP) tea was found to have an effect on reducing the blood uric acid level of people with hyperuricemia and gout. However, its medicinal ingredients and mechanism for the treatment of gout are still unclear. Thus, this study was designed to investigate the effects of the active triterpenoids isolated from C. paliurus on gout and explore the underlying mechanism. The results showed that compound 2 (3β,23-dihydroxy-12-ene-28-ursolic acid) from C. paliurus significantly decreased the protein expression of IL-1β, caspase-1, pro-IL-1β, pro-caspase-1, and NLRP3. Furthermore, the production of ROS in the intracellular was reduced after compound 2 treatment. However, ROS agonist rotenone remarkably reversed the inhibitory effect of compound 2 on the protein expression of NLRP3 inflammasome. Additionally, the expression level of LC3 and the ratio of LC3II/LC3I were increased, but the expression level of p62 was suppressed by compound 2 whereas an autophagy inhibitor 3-methyladenine (3-MA) significantly abolished the inhibitory effects of compound 2 on the generation of ROS and the protein expression of NLRP3 inflammasome. Moreover, compound 2 could ameliorate the expression ratio of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR. Interestingly, mTOR activator MHY-1485 could block the promotion effect of compound 2 on autophagy regulation and inhibitory effect of compound 2 on induction of ROS and IL-1β. In conclusion, these findings suggested that compound 2 may effectively improve NLRP3 inflammasome-mediated gout via PI3K-AKT-mTOR-dependent autophagy and could be further investigated as a potential agent against gout.
Collapse
|
42
|
Zhu X, Dai S, Xia B, Gong J, Ma B. Activation of the alpha 7 nicotinic acetylcholine receptor mitigates osteoarthritis progression by inhibiting NF-κB/NLRP3 inflammasome activation and enhancing autophagy. PLoS One 2021; 16:e0256507. [PMID: 34941874 PMCID: PMC8699641 DOI: 10.1371/journal.pone.0256507] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by cartilage degradation. Alpha 7 nicotinic acetylcholine receptor (α7nAChR) is associated with inflammatory and metabolic responses in OA. However, the mechanisms underlying the pathological process of OA remain unclear. The aim of the present study was to examine the role and mechanisms of α7nAChR-mediated autophagy and anti-inflammatory response in chondroprotection. Monosodium iodoacetate (MIA)-induced Wistar rat OA model was used to assess the in vivo effects of the ɑ7nAChR agonist (PNU-282987). The histopathological characteristics of OA were evaluated by immunohistochemistry (IHC), and the levels of autophagy markers were determined by western blotting and transmission electron microscopy. The anti-inflammatory effect of the ɑ7nAChR agonist was assessed by IHC, quantitative real-time polymerase chain reaction, and western blotting. Parallel experiments to determine the molecular mechanisms through which the ɑ7nAChR agonist prevents OA were performed using interleukin-1β (IL-1β)-treated chondrocytes. Our results showed that PNU-282987 reduced cartilage degeneration and matrix metalloproteinase (MMP)-1 and MMP-13 expressions. Activating α7nAChR with PNU-282987 significantly promoted MIA/IL-1β-induced chondrocyte autophagy, as demonstrated by the increase in LC3-II/LC3-I ratio, Beclin-1 levels, and autophagosome number. Furthermore, treating chondrocyte with ULK1 siRNA attenuated the PNU282987-induced enhancement of LC3-II/LC3-I ratio and Beclin-1 level. Additionally, PNU282987 suppressed NF-κB/NLRP3 inflammasome activation by inhibiting the ROS/TXNIP pathway and suppressed tumor necrosis factor-ɑ and IL-1β secretion in MIA/IL-1β-treated chondrocytes. Our results demonstrate that the activation of α7nAChR promotes chondrocyte autophagy and attenuates inflammation to mitigate OA progression, providing a novel target for the treatment of OA.
Collapse
Affiliation(s)
- Xianjie Zhu
- Department of Orthopedics, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Shiyou Dai
- Department of Orthopedics, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Baohua Xia
- Department of Clinical Skills Training Center, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Jianbao Gong
- Department of Orthopedics, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Bingzheng Ma
- Department of Orthopedics, Qingdao Municipal Hospital, Qingdao, Shandong, China
- * E-mail:
| |
Collapse
|
43
|
Molecular Mechanistic Pathways Targeted by Natural Antioxidants in the Prevention and Treatment of Chronic Kidney Disease. Antioxidants (Basel) 2021; 11:antiox11010015. [PMID: 35052518 PMCID: PMC8772744 DOI: 10.3390/antiox11010015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic kidney disease (CKD) is the progressive loss of renal function and the leading cause of end-stage renal disease (ESRD). Despite optimal therapy, many patients progress to ESRD and require dialysis or transplantation. The pathogenesis of CKD involves inflammation, kidney fibrosis, and blunted renal cellular antioxidant capacity. In this review, we have focused on in vitro and in vivo experimental and clinical studies undertaken to investigate the mechanistic pathways by which these compounds exert their effects against the progression of CKD, particularly diabetic nephropathy and kidney fibrosis. The accumulated and collected data from preclinical and clinical studies revealed that these plants/bioactive compounds could activate autophagy, increase mitochondrial bioenergetics and prevent mitochondrial dysfunction, act as modulators of signaling pathways involved in inflammation, oxidative stress, and renal fibrosis. The main pathways targeted by these compounds include the canonical nuclear factor kappa B (NF-κB), canonical transforming growth factor-beta (TGF-β), autophagy, and Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid factor 2-related factor 2 (Nrf2)/antioxidant response element (ARE). This review presented an updated overview of the potential benefits of these antioxidants and new strategies to treat or reduce CKD progression, although the limitations related to the traditional formulation, lack of standardization, side effects, and safety.
Collapse
|
44
|
Wu J, Qian Y, Chen C, Feng F, Pan L, Yang L, Wang C. Hesperetin Exhibits Anti-Inflammatory Effects on Chondrocytes via the AMPK Pathway to Attenuate Anterior Cruciate Ligament Transection-Induced Osteoarthritis. Front Pharmacol 2021; 12:735087. [PMID: 34603050 PMCID: PMC8481891 DOI: 10.3389/fphar.2021.735087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023] Open
Abstract
This study aimed to determine whether hesperetin (HPT) has chondroprotective effects against the TNF-α-induced inflammatory response of chondrocytes and related mechanisms and clarify the impact of HPT on osteoarthritis (OA) induced by anterior cruciate ligament transection (ACLT). Under tumor necrosis factor-α (TNF-α) stimulation, rat chondrocytes were treated with or without HPT. The CCK-8 assay was used to detect viability and cytotoxicity. RT-qPCR and Western blot were used to examine the expression of aggrecan, collagen type II, and inflammatory and proliferative genes/proteins in chondrocytes. Flow cytometry was used to check the cell cycle to determine whether HPT protects chondrocytes against the inhibitory effect of TNF-α on chondrocyte proliferation. In addition, RNA sequencing was used to discover possible molecular targets and pathways and then validate these pathways with specific protein phosphorylation levels. Finally, immunofluorescence staining was used to examine the phosphorylation of the AMP-activated protein kinase (AMPK) pathway. The results showed that HPT restored the upregulation of interleukin 1β (IL-1β), PTGS2, and MMP-13 induced by TNF-α. In addition, HPT reversed the degradation of the extracellular matrix of chondrocytes induced by TNF-α. HPT also reversed the inhibitory effect of TNF-α on chondrocyte proliferation. RNA sequencing revealed 549 differentially expressed genes (DEGs), of which 105 were upregulated and 444 were downregulated, suggesting the potential importance of the AMPK pathway. Progressive analysis showed that HPT mediated the repair of TNF-α-induced chondrocyte damage through the AMPK signaling pathway. Thus, local treatment of HPT can improve OA induced by ACLT. These findings indicated that HPT has significant protective and anti-inflammatory effects on chondrocytes through the AMPK signaling pathway, effectively preventing cartilage degradation. Given the various beneficial effects of HPT, it can be used as a potential natural drug to treat OA.
Collapse
Affiliation(s)
- Jiaqin Wu
- National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yuna Qian
- Engineering Research Center of Clinical Functional Materials and Diagnosis and Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Cheng Chen
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fan Feng
- National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lianhong Pan
- National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Li Yang
- National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Chunli Wang
- National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
45
|
Yu X, Wang Y, Liu X, Ge Y, Zhang S. Ursolic Acid Loaded-Mesoporous Hydroxylapatite/ Chitosan Therapeutic Scaffolds Regulate Bone Regeneration Ability by Promoting the M2-Type Polarization of Macrophages. Int J Nanomedicine 2021; 16:5301-5315. [PMID: 34393482 PMCID: PMC8355748 DOI: 10.2147/ijn.s323033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Mesoporous hydroxylapatite (MHAP) might be important for bone regeneration, and ursolic acid (UA) has anti-inflammatory effects. Accordingly, we developed, for the first time, ursolic acid-loaded MHAP-chitosan (MHAP-CS-UA) scaffolds to treat bone defects. METHODS In vitro, we synthesize biomaterial scaffolds. By SEM, XRD, EDS and FTIR, we test the performance of the hybrid scaffolds. By drug release, flow cytometry, immunofluorescence, alizarin red staining, and Western blotting, we test the anti-inflammatory and osteo-inductive properties of scaffolds. In vivo, we verify osseointegration ability and bone regeneration. RESULTS The MHAP is a rod-shaped structure with a length of 100~300nm and a diameter of 40~60nm. The critical structure gives the micro-scaffold a property of control release due to the pore sizes of 1.6~4.3 nm in hydroxyapatite and the hydrogen bonding between the scaffolds and UA drugs. The released UA drugs could notably inhibit the polarization of macrophages to pro-inflammatory macrophages (M1 type) and promote the expression of osteogenic-related genes (COL1, ALP and OPG) and osteogenic-related proteins (BMP-2, RUNX2 and COL1). CONCLUSION The MHAP-CS-UA scaffolds have good anti-inflammatory, osseointegration, osteo-inductivity and bone regeneration. And they will be the novel and promising candidates to cure the bone disease.
Collapse
Affiliation(s)
- Xijiao Yu
- Department of Oral Surgery, Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People’s Republic of China
- Central Laboratory, Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, People’s Republic of China
| | - Yuxuan Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiaoliang Liu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Yuwei Ge
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Shanyong Zhang
- Department of Oral Surgery, Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People’s Republic of China
| |
Collapse
|
46
|
Xu J, Ma X. Hsa_circ_0032131 knockdown inhibits osteoarthritis progression via the miR-502-5p/PRDX3 axis. Aging (Albany NY) 2021; 13:15100-15113. [PMID: 34032607 PMCID: PMC8221332 DOI: 10.18632/aging.203073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/29/2021] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is a chronic disease characterized by progressive loss of cartilage and failure of the diarthrodial joint. Circular RNAs (circRNAs) are known to participate in the pathogenesis of multiple diseases, including OA. We investigated the functions of hsa_circ_0032131, a circRNA upregulated in OA, using CHON-001 cells and an in vivo OA rat model. CHON-001 cells were treated with interleukin (IL)-1β to mimic OA in vitro. IL-1β-induced inhibition of CHON-001 growth was reversed by silencing hsa_circ_0032131. In addition, hsa_circ_0032131 knockdown reversed IL-1β-induced activation of Trx1, Cyclin D and PRDX3, whereas overexpression of PRDX3, a direct target of miR-502-5p, reversed this effect. Hsa_circ_0032131 served as a competing endogenous RNA for miR-502-5p. Moreover, knockdown of hsa_circ_0032131 attenuated OA symptoms in vivo by inactivating the STAT3 signaling pathway. Thus, silencing of hsa_circ_0032131 inhibited the progression of OA by inactivating the miR-502-5p/PRDX3/Trx1/STAT3 axis, which highlights its potential as a therapeutic target for OA.
Collapse
Affiliation(s)
- Jin Xu
- Department of Pain Treatment, Tianjin Hospital, Tianjin 300211, China
| | - Xinlong Ma
- Department of Pain Treatment, Tianjin Hospital, Tianjin 300211, China
| |
Collapse
|
47
|
Schulze-Tanzil G. Experimental Therapeutics for the Treatment of Osteoarthritis. J Exp Pharmacol 2021; 13:101-125. [PMID: 33603501 PMCID: PMC7887204 DOI: 10.2147/jep.s237479] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) therapy remains a large challenge since no causative treatment options are so far available. Despite some main pathways contributing to OA are identified its pathogenesis is still rudimentary understood. A plethora of therapeutically promising agents are currently tested in experimental OA research to find an opportunity to reverse OA-associated joint damage and prevent its progression. Hence, this review aims to summarize novelly emerging experimental approaches for OA. Due to the diversity of strategies shown only main aspects could be summarized here including herbal medicines, nanoparticular compounds, growth factors, hormones, antibody-, cell- and extracellular vesicle (EV)-based approaches, optimized tools for joint viscosupplementation, genetic regulators such as si- or miRNAs and promising combinations. An abundant multitude of compounds obtained from plants, environmental, autologous or synthetic sources have been identified with anabolic, anti-inflammatory, -catabolic and anti-apoptotic properties. Some ubiquitous signaling pathways such as wingless and Integration site-1 (Wnt), Sirtuin, Toll-like receptor (TLR), mammalian target of rapamycin (mTOR), Nuclear Factor (NF)-κB and complement are involved in OA and addressed by them. Hyaluronan (HA) provided benefit in OA since many decades, and novel HA formulations have been developed now with higher HA content and long-term stability achieved by cross-linking suitable to be combined with other agents such as components from herbals or chemokines to attract regenerative cells. pH- or inflammation-sensitive nanoparticular compounds could serve as versatile slow-release systems of active compounds, for example, miRNAs. Some light has been brought into the intimate regulatory network of small RNAs in the pathogenesis of OA which might be a novel avenue for OA therapy in future. Attraction of autologous regenerative cells by chemokines and exosome-based treatment strategies could also innovate OA therapy.
Collapse
Affiliation(s)
- Gundula Schulze-Tanzil
- Department of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg, Bavaria, Germany
| |
Collapse
|
48
|
P2X7 Receptor Induces Pyroptotic Inflammation and Cartilage Degradation in Osteoarthritis via NF- κB/NLRP3 Crosstalk. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8868361. [PMID: 33532039 PMCID: PMC7834826 DOI: 10.1155/2021/8868361] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/15/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) is an urgent public health problem; however, the underlying causal mechanisms remain unclear, especially in terms of inflammatory mediators in cartilage degradation and chondrocyte imbalance. P2X7 receptor (P2X7R) is a critical inflammation switch, but few studies have examined its function and mechanisms in OA-like pyroptotic inflammation of chondrocytes. In this study, Sprague–Dawley rats were injected in the knee with monosodium iodoacetate (MIA) to induce OA, followed by multiple intra-articular injections with P2X7R antagonist A740003, P2X7R agonist BzATP, NF-κB inhibitor Bay 11-7082, and NLRP3 inhibitor CY-09. Primary rat chondrocytes were harvested and treated similarly. We assessed cell viability, damage, and death via cell viability assay, lactate dehydrogenase (LDH) release, and flow cytometry. Concentrations of adenosine triphosphate (ATP) and interleukin- (IL-) 1β in cell culture supernatant and joint cavity lavage fluid were analyzed by enzyme-linked immunosorbent assay. Changes in expression levels of P2X7 and inflammation-related indicators were analyzed by immunofluorescence, quantitative reverse-transcription polymerase chain reaction, and western blotting. Cell morphology changes and pyroptosis were observed using transmission electron microscopy. Histology, immunohistochemistry, and microcomputed tomography were used to analyze damage to bone and cartilage tissues and assess the severity of OA. Similar to MIA, BzATP reduced cell viability and collagen II expression in a dose-dependent manner. Conversely, A740003 ameliorated MIA-induced cartilage degradation and OA-like pyroptotic inflammation by rescuing P2X7, MMP13, NF-κB p65, NLRP3, caspase-1 (TUNEL-positive and active), and IL-1β upregulation. Additionally, A740003 reduced the caspase-1/propidium iodide double-positive rate, LDH concentration, and reactive oxygen species production. These effects also occurred via coincubation with Bay 11-7082 and CY-09. In conclusion, activated P2X7 promoted extracellular matrix degradation and pyroptotic inflammation in OA chondrocytes through NF-κB/NLRP3 crosstalk, thus, aggravating the symptoms of OA. The study findings suggest P2X7 as a potential target for inflammation treatment, providing new avenues for OA research and therapy.
Collapse
|
49
|
Wang T, Wang J, Sun T, Li Y. Amelioration of Juglanin against LPS-Induced Activation of NLRP3 Inflammasome in Chondrocytes Mediated by SIRT1. Inflammation 2021; 44:1119-1129. [PMID: 33398541 DOI: 10.1007/s10753-020-01407-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/04/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022]
Abstract
Arthritis is characterized by irreversible joint destruction and presents a global health burden. Natural alternatives to synthetic drugs have been gaining popularity for their safety and effectiveness. Juglanin has demonstrated a range of anti-inflammatory effects in various tissues and cell types. However, the pharmacological function of Juglanin in arthritis and chondrocytes has been little studied. ATDC5 cells were treated with 1 μg/mL lipopolysaccharide (LPS) in the presence or absence of juglanin (2.5, 5 μM) for 24 h. The effects of juglanin on cellular nucleotide-binding domain leucin-rich repeat receptor 3 (NLRP3) inflammasome complex and endproduct interleukin 1β (IL-1β) and interleukin (IL-18) were assessed by reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and Western blot experiments. The oxidative stress was measured by super oxide dismutase (SOD) activity and NADPH oxidase 4 (NOX4) expression. The dependent effect of juglanin on silent information regulator 2 homolog 1 (SIRT1) was evaluated by siRNA knockdown approach. Juglanin significantly reduced cellular oxidative stress by downregulating NOX4 expression production and rescuing the decreased activity of total SOD induced by LPS. Juglanin inhibited the activation of the TxNIP/NLRP3/ASC/caspase-1 axis, and decreased production of IL-1β and IL-18. Moreover, juglanin rescued the LPS-induced decrease in SIRT1 expression. SIRT1 silencing abolished the anti-NLRP3 inflammasome effect of juglanin, indicating that the effects of juglanin are dependent on its amelioration on SIRT1 expression. Juglanin possesses an anti-inflammatory and anti-ROS capacity in chondrocytes, and this study provides available evidence that juglanin may be of use in the treatment of arthritis.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Jiakai Wang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, No. 155 Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Tao Sun
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, No. 155 Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Yishuo Li
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, No. 155 Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
50
|
Li H, Wu R, Yu H, Zheng Q, Chen Y. Bioactive Herbal Extracts of Traditional Chinese Medicine Applied with the Biomaterials: For the Current Applications and Advances in the Musculoskeletal System. Front Pharmacol 2021; 12:778041. [PMID: 34776987 PMCID: PMC8581265 DOI: 10.3389/fphar.2021.778041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/15/2021] [Indexed: 02/05/2023] Open
Abstract
Traditional Chinese medicine (TCM) has demonstrated superior therapeutic effect for musculoskeletal diseases for thousands of years. Recently, the herbal extracts of TCM have received rapid advances in musculoskeletal tissue engineering (MTE). A literature review collecting both English and Chinese references on bioactive herbal extracts of TCM in biomaterial-based approaches was performed. This review provides an up-to-date overview of application of TCMs in the field of MTE, involving regulation of multiple signaling pathways in osteogenesis, angiogenesis, anti-inflammation, and chondrogenesis. Meanwhile, we highlight the potential advantages of TCM, opening the possibility of its extensive application in MTE. Overall, the superiority of traditional Chinese medicine turns it into an attractive candidate for coupling with advanced additive manufacturing technology.
Collapse
Affiliation(s)
- Haotao Li
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Rongjie Wu
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Haiyang Yu
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Qiujian Zheng, ; Yuanfeng Chen,
| | - Yuanfeng Chen
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Research Department of Medical Science, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Qiujian Zheng, ; Yuanfeng Chen,
| |
Collapse
|