1
|
Giannakodimos A, Oikonomou E, Pantelidis P, Theofilis P, Katsiki N, Goliopoulou A, Zakynthinos GE, Korakas E, Kalogera V, Banach M, Lampadiari V, Kassi E, Ikonomidis I, Siasos G. Arterial stiffness as a complication of metabolic dysfunction-associated steatotic liver disease: a systematic review and meta-analysis. Expert Rev Gastroenterol Hepatol 2025; 19:413-426. [PMID: 39988816 DOI: 10.1080/17474124.2025.2471871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION The purpose of this systematic review and meta-analysis is to investigate the association of metabolic dysfunction-associated steatotic liver disease (MASLD) with arterial stiffness and enlighten on potential cardiometabolic co-factors. METHODS A literature search in PubMed/Medline, Embase, Scopus, and Web of Science databases was conducted. All the observational studies comparing arterial stiffness indices between adults with Non-alcoholic Fatty Liver Disease (NAFLD), Metabolic Dysfunction Associated-Fatty Liver Disease (MAFLD), or MASLD and apparently healthy individuals with normal liver function were included. Pulse wave velocity (PWV) and augmentation index (AIx) were mainly used as arterial stiffness indices. RESULTS Fourty one unique studies were included in the systematic review, with 27 deemed eligible for meta-analysis. Patients with MASLD had increased carotid-femoral PWV (14 studies, Mean difference (MD): 0.96 m/s, 95% confidence interval (CI) 0.65-1.27, p < 0.001) compared with healthy individuals. This finding was independent from body mass index, triglycerides, high-density lipoprotein, systolic blood pressure, and fasting plasma glucose. Moreover, patients with MASLD had higher brachial-ankle PWV (13 studies, MD: 78.14 cm/s, 95% CI 60.37-95.90, p < 0.001) and AIx (7 studies, MD: 3.85%, 95% CI 0.87-6.82, p = 0.0195) compared with controls. CONCLUSIONS MASLD is correlated with increased arterial stiffness. This relation is unaffected by common cardiometabolic risk factors. REGISTRATION PROSPERO (ID: CRD42023468258).
Collapse
Affiliation(s)
- Alexios Giannakodimos
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panteleimon Pantelidis
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Theofilis
- 1st Department of Cardiology, Hippokration General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Athina Goliopoulou
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios E Zakynthinos
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Korakas
- 2nd Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Kalogera
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vaia Lampadiari
- 2nd Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ignatios Ikonomidis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Sun M, Ma H, Miao Y, Zhang M. Quinoa bran polyphenol extract attenuates high-fat diet induced non-alcoholic fatty liver disease in mice. Food Funct 2025; 16:2291-2302. [PMID: 39981953 DOI: 10.1039/d4fo02647k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Quinoa bran is a by-product of quinoa processing and is rich in polyphenolic bioactives. Previous studies have shown that polyphenol compounds can help alleviate metabolic diseases, but studies on quinoa bran polyphenols intervening in non-alcoholic fatty liver disease (NAFLD) have not yet been reported. In this study, a C57BL/6J mouse NAFLD model was established using a high-fat diet (HFD) to explore the interventional effects of quinoa bran polyphenol extract (QBP) on NAFLD in mice. The results showed that QBP was effective in attenuating abnormal lipid metabolism and hepatic fat accumulation and reducing inflammation in NAFLD mice. 16S rRNA sequencing analysis showed that QBP regulated the composition of the gut microbiota by increasing the abundance of beneficial bacteria Clostridium_innocuum_group, Clostridium_sensu_stricto_13, Ruminococcus_gnavus_group, Coriobacteriaceae_UCG_002 and UBA1819. Untargeted metabolomics identified 51 differential metabolites due to QBP supplementation. Functional predictions indicated that starch and sucrose metabolism and pentose and gluconate interconversion are key metabolic pathways for QBP to attenuate NAFLD, which may be influenced by the gut microbiota. These results demonstrated the potential application of QBP interventions for NAFLD.
Collapse
Affiliation(s)
- Minjun Sun
- College of Food Science and Engineering, Inner Mongolia Agriculture University, Hohhot 010018, China.
| | - Haoyuan Ma
- College of Food Science and Engineering, Inner Mongolia Agriculture University, Hohhot 010018, China.
| | - Ying Miao
- College of Food Science and Engineering, Inner Mongolia Agriculture University, Hohhot 010018, China.
| | - Meili Zhang
- College of Food Science and Engineering, Inner Mongolia Agriculture University, Hohhot 010018, China.
| |
Collapse
|
3
|
Sabini JH, Timotius KH. Hepatoprotective and Fat-Accumulation-Reductive Effects of Curcumin on Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Curr Issues Mol Biol 2025; 47:159. [PMID: 40136412 PMCID: PMC11940900 DOI: 10.3390/cimb47030159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/06/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Fat accumulation is the hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD). Given the intimidating nature of its treatment, curcumin (CUR) emerges as a potential therapeutic agent due to its proven effectiveness in managing MASLD. This review aimed to evaluate previous reports on the hepatoprotective and fat-accumulation-reductive effects of CUR administration in preventing or treating MASLD. CUR administration can modulate serum liver enzymes and lipid profiles. The fat accumulation of MASLD is the primary cause of oxidative stress and inflammation. By reducing fat accumulation, CUR may attenuate the inflammation and oxidative stress in MASLD. In addition, CUR has been proven to restore the dysfunctional cellular energy metabolism capacity and attenuate fibrogenesis (antifibrotic agent). Their hepatoprotective effects are associated with fat accumulation in MASLD. Lipid metabolism (lipogenesis, lipolysis, and lipophagy) is correlated with their hepatoprotective effects. CUR has prophylactic and therapeutic effects, particularly in early-stage MASLD, primarily when it is used as a fat reducer. It can be considered an excellent natural therapeutic drug for MASLD because it protects the liver and attenuates fat accumulation, especially in the early stage of MASLD development.
Collapse
Affiliation(s)
| | - Kris Herawan Timotius
- Faculty of Medicine and Health Sciences, Krida Wacana Christian University, Jakarta 11510, Indonesia;
| |
Collapse
|
4
|
Wayal V, Wang SD, Hsieh CC. Novel bioactive peptides alleviate Western diet-induced MAFLD in C57BL/6J mice by inhibiting NLRP3 inflammasome activation and pyroptosis via TLR4/NF-κB and Keap1/Nrf2/HO-1 signaling pathways. Int Immunopharmacol 2025; 148:114177. [PMID: 39874846 DOI: 10.1016/j.intimp.2025.114177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
Metabolic-associated fatty liver disease (MAFLD) has emerged as a leading chronic liver disease. This condition is characterized by an abnormal accumulation of fat within liver and can progress from simple steatosis to more severe stages involving chronic inflammation and oxidative stress. In this study, we investigated the potential therapeutic effects and underlying mechanism of novel bioactive peptides (EWYF and EWFY) on Western diet-induced MAFLD in C57BL/6J mice. Mice fed a normal chow diet (ND group) and Western diet (WD and treatment groups) for 8 weeks. Treatment groups received EWYF and EWFY peptides in low (10 mg/kg/day) and high (50 mg/kg/day) doses were divided into four groups: EWYF10, EWYF50, EWFY10, and EWFY50. Western diet-induced body weight gain and increased liver weight along with visceral adiposity, which were markedly reversed by bioactive peptides in a dose-dependent manner. Additionally, bioactive peptides significantly reduced hepatic steatosis, liver injury and proinflammatory response. Western diet-induced glucose tolerance and insulin resistance, whereas bioactive peptides significantly improved glucose tolerance and insulin sensitivity. Persistent intake of Western diet triggered chronic inflammation and severe oxidative stress, which were significantly alleviated by bioactive peptides treatment via inhibiting NOD-like receptor protein 3 (NLRP3) inflammasome activation and mitigated pyroptosis by modulating TLR4/NF-κB and Keap1/Nrf2/HO-1 signaling pathways. Furthermore, molecular docking studies suggest that EWYF and EWFY act as fructokinase antagonists and TLR4 inhibitors, which potentially alleviates Western diet-induced MAFLD. Collectively, these findings highlight EWYF and EWFY as promising candidates for MAFLD treatment due to their potent antioxidant and anti-inflammatory properties via specific molecular inhibition.
Collapse
Affiliation(s)
- Vipul Wayal
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407224 Taiwan
| | - Shulhn-Der Wang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404328 Taiwan; Green Abiotechnology Co. Ltd, Taichung 429010 Taiwan
| | - Chang-Chi Hsieh
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407224 Taiwan.
| |
Collapse
|
5
|
Yi X, Han L, Li L, Zhu H, Li M, Gao S. Adipokine/hepatokines profiling of fatty liver in adolescents and young adults: cross-sectional and prospective analyses of the BCAMS study. Hepatol Int 2025; 19:143-155. [PMID: 39400684 DOI: 10.1007/s12072-024-10736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE The underlying connections between obesity and non-alcoholic fatty liver disease (NAFLD) are not fully understood. One potential link might be the imbalanced adipokines and hepatokines. We aimed to explore the associations between specific adipokines/hepatokines and NAFLD in Chinese youth and to determine how these biomarkers mediate the obesity-NAFLD relationship. METHODS We analyzed data from the 10-year follow-up visit of the Beijing Children and Adolescents Metabolic Syndrome (BCAMS) study (n = 509; mean age = 20.2 years) for a comprehensive metabolic risk assessment, including liver ultrasound and plasma measurements of adiponectin, leptin, fibroblast growth factor 21 (FGF21), retinol-binding protein 4 (RBP4), and angiopoietin-like protein 8 (ANGPTL8). Longitudinal analysis was performed on a subgroup (n = 307), with complete baseline (mean age = 12.2 years) and follow-up data. Mediation models assessed how obesity at baseline and follow-up influence NAFLD through these biomarkers. RESULTS Participants with NAFLD exhibited a high prevalence of central obesity (90.9%). Both cross-sectional and prospective analyses identified increased RBP4, FGF21, leptin, and decreased adiponectin levels as significant predictors of NAFLD. More adipokine/hepatokine abnormalities were linked to higher NAFLD risk. Furthermore, ratios reflecting adipokine/hepatokine imbalances, including leptin/adiponectin, FGF21/adiponectin, and RBP4/adiponectin, demonstrated stepwise changes correlating with NAFLD severity (all p < 0.05). Mediation analysis indicated that these four adipokines/hepatokines accounted for approximately 72.4% of the central obesity-NAFLD relationship and 80.1% in the subgroup analysis using baseline childhood data. CONCLUSIONS Dysregulated adipokines/hepatokines may explain the onset or progression of obesity-related NAFLD in youths. Higher RBP4, FGF21 and leptin, alongside lower adiponectin, could serve as early biomarkers for NAFLD.
Collapse
Affiliation(s)
- Xinghao Yi
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Lanwen Han
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100043, People's Republic of China
| | - Lianxia Li
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100043, People's Republic of China
| | - Haoxue Zhu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Ming Li
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| | - Shan Gao
- Department of Endocrinology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China.
| |
Collapse
|
6
|
Hasan AH, Abid MA, Abid MH, Suhail L, Nazir A. A New Hope for the Patients of Non-Alcoholic Steatohepatitis: FDA Gives Green Signal for Resmetirom Use. Health Sci Rep 2025; 8:e70394. [PMID: 39846038 PMCID: PMC11752137 DOI: 10.1002/hsr2.70394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 11/24/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Background and Aims Non-Alcoholic Steatohepatitis (NASH), a severe form of Non-Alcoholic Fatty Liver Disease (NAFLD), is characterized by inflammation and fibrosis in the liver, often progressing to cirrhosis and hepatocellular carcinoma. Despite its rising prevalence and significant disease burden, effective pharmacological treatments have been limited to lifestyle modifications and surgical interventions. Recently, resmetirom, a thyroid hormone receptor-β agonist, received FDA approval for treating NASH, offering new hope to patients. This review explores the current understanding of NASH and the role of resmetirom as a breakthrough therapeutic option. Methods This study is a comprehensive literature review analyzing peer-reviewed articles, clinical trial data, and public health reports. No original analyses were conducted, and no statistical software was utilized in this review. Results Resmetirom demonstrated efficacy in resolving NASH without fibrosis progression and improving fibrosis scores in patients with biopsy-confirmed NASH. In a randomized Phase 3 trial, significant histological improvements were observed in 25.9% and 29.9% of patients receiving 80 and 100 mg doses, respectively, compared to 9.7% in the placebo group. Similar trends were noted in fibrosis improvement, with 24.2% and 25.9% of patients showing ≥ 1 stage improvement compared to 14.2% in the placebo group. Adverse effects, including nausea and diarrhea, were reported more frequently in the treatment groups, but the rates of serious adverse events were comparable across groups. Conclusion The approval of resmetirom marks a significant advancement in the treatment of NASH, addressing the limitations of lifestyle-based interventions. As the obesity epidemic drives the increasing prevalence of NASH, resmetirom provides a promising therapeutic option, paving the way for improved patient outcomes and future research.
Collapse
Affiliation(s)
| | | | | | - Laiba Suhail
- Department of MedicineKing Edward Medical UniversityLahorePakistan
| | - Abubakar Nazir
- Department of MedicineKing Edward Medical UniversityLahorePakistan
- Oli Health Magazine OrganizationKigaliRwanda
| |
Collapse
|
7
|
Asiaei S, Sharifani MS, Ghobadian B, Baghdadi G, Biglari F, Rahimlou M. Association between lifelines diet score with odds of nonalcoholic fatty liver disease and some novel anthropometric indices among adults: a case-control study. Front Nutr 2024; 11:1523651. [PMID: 39723159 PMCID: PMC11669268 DOI: 10.3389/fnut.2024.1523651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Background Nonalcoholic Fatty Liver Disease (NAFLD) is a prevalent condition strongly associated with poor dietary habits and obesity. The Lifelines Diet Score (LLDS), a measure of adherence to a health-promoting diet, may reduce the risk of NAFLD. This study investigates the association between LLDS and NAFLD risk, as well as its relationship with novel anthropometric indices in adults. Methods This case-control study included 180 NAFLD patients and 250 controls aged 20-65 years from Valiasr Hospital, Zanjan, Iran. Dietary intake was assessed using a validated 147-item food frequency questionnaire, and LLDS was calculated by scoring food groups according to dietary guidelines. Anthropometric measurements included Body Mass Index (BMI), Waist Circumference (WC), A Body Shape Index (ABSI), Body Roundness Index (BRI), and Visceral Adiposity Index (VAI). Logistic regression models estimated the odds ratios (ORs) for NAFLD across LLDS quartiles. Results Participants in the highest LLDS quartile had significantly reduced odds of NAFLD compared to those in the lowest quartile (OR = 0.49; 95% CI: 0.30-0.65; p < 0.001). Gender-specific analysis revealed that LLDS had a stronger inverse association with NAFLD in females (OR = 0.45; 95% CI: 0.29-0.64) than in males (OR = 0.63; 95% CI: 0.40-0.79). LLDS was inversely associated with VAI (β = -1.14; 95% CI: -2.89, -0.3; p = 0.036), but no significant associations were observed with ABSI or BRI. Conclusion Higher LLDS scores are associated with a lower risk of NAFLD and reduced visceral adiposity, particularly in females. These findings highlight the importance of improving dietary quality as a preventive strategy for NAFLD.
Collapse
Affiliation(s)
- Sahar Asiaei
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Bijan Ghobadian
- Department of Internal Medicine, School of Medicine, Vali-e-Asr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ghazal Baghdadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Biglari
- Educational Department, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehran Rahimlou
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
8
|
Pomar CA, Trepiana J, Besné-Eseverri I, Castillo P, Palou A, Palou M, Portillo MP, Picó C. Maternal Dietary Improvement or Leptin Supplementation During Suckling Mitigates the Long-Term Impact of Maternal Obesogenic Conditions on Inflammatory and Oxidative Stress Biomarkers in the Offspring of Diet-Induced Obese Rats. Int J Mol Sci 2024; 25:11876. [PMID: 39595945 PMCID: PMC11594198 DOI: 10.3390/ijms252211876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
This study investigates the impact of maternal nutrition during lactation on inflammation and oxidative stress in the offspring of diet-induced obese rats, along with the potential benefits of leptin supplementation during suckling. Dams were fed either a standard diet (SD), a western diet (WD) before and during gestation and lactation (WD-dams), or a WD switched to an SD during lactation (Rev-dams). Offspring were supplemented with leptin or vehicle during suckling and then fed an SD or WD until four months. Offspring of the Rev-dams exhibited improved metabolic indicators, including lower body weight, reduced plasma levels of TNF-alpha, a higher adiponectin/leptin (A/L) ratio, enhanced liver antioxidant defenses, and decreased inflammation markers in white adipose tissue (WAT) compared to WD-dams, with sex differences. Leptin supplementation further modulated these markers, reducing oxidative stress in liver and inflammation in WAT and liver (e.g., hepatic Tnfa expression decreased by 45% (males) and 41% (females) in the WD group on an SD), and improving the A/L ratio, with effects varying by maternal conditions and sex. In conclusion, this study underscores the importance of maternal nutrition and leptin intake during suckling in shaping long-term metabolic and inflammatory health in offspring, offering strategies to mitigate the adverse effects of maternal obesity on future generations.
Collapse
Affiliation(s)
- Catalina Amadora Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (C.A.P.); (P.C.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.T.); (I.B.-E.); (M.P.P.)
| | - Jenifer Trepiana
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.T.); (I.B.-E.); (M.P.P.)
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), 01006 Vitoria, Spain
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain
| | - Irene Besné-Eseverri
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.T.); (I.B.-E.); (M.P.P.)
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), 01006 Vitoria, Spain
| | - Pedro Castillo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (C.A.P.); (P.C.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.T.); (I.B.-E.); (M.P.P.)
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (C.A.P.); (P.C.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.T.); (I.B.-E.); (M.P.P.)
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (C.A.P.); (P.C.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.T.); (I.B.-E.); (M.P.P.)
| | - Maria P. Portillo
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.T.); (I.B.-E.); (M.P.P.)
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), 01006 Vitoria, Spain
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (C.A.P.); (P.C.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.T.); (I.B.-E.); (M.P.P.)
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
| |
Collapse
|
9
|
Moaleș EA, Dima-Cozma LC, Cojocaru DC, Zota IM, Ghiciuc CM, Adam CA, Ciorpac M, Tudorancea IM, Petrariu FD, Leon MM, Cozma RS, Mitu F. Assessment of Metabolic Syndrome in Patients with Chronic Obstructive Pulmonary Disease: A 6-Month Follow-Up Study. Diagnostics (Basel) 2024; 14:2437. [PMID: 39518404 PMCID: PMC11545736 DOI: 10.3390/diagnostics14212437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES The association between chronic obstructive pulmonary disease (COPD) and metabolic syndrome (MetS) is a common one, with long-term therapeutic and prognostic impact. In view of the high pulmonary and cardiovascular morbidity and mortality, self-management contributes to decreasing the risk of an acute cardiac event or pulmonary decompensation. METHODS We conducted a prospective cohort study on 100 patients admitted to Iasi Clinical Rehabilitation Hospital who were divided into two groups according to the presence (67 patients) or absence (33 patients) of MetS. All patients benefited from multidisciplinary counseling sessions on their active role in improving modifiable cardiovascular risk factors and thus increasing quality of life. The aim of this study was to examine the impact of metabolic syndrome on lung function and the role of self-management in a 6-month follow-up period. The demographic, anthropometric, cardiovascular risk factors, and respiratory function were analyzed at baseline and at 6 months. RESULTS The presence of MetS was associated with higher fasting blood glucose (p = 0.004) and triglycerides (p = 0.003) but not with higher levels of interleukins or TNF-alpha. At the 6-month follow-up, abdominal circumference, forced expiratory volume in one second (FEV1), dyspnea severity, and blood pressure values improved in male patients with COPD. Systolic and diastolic blood pressure decreased in the COPD group as a whole, but especially in male patients with and without associated MetS. BMI was positively correlated with FEV1 (r = 0.389, p = 0.001) and the FEV1/forced vital capacity (FVC) ratio (r = 0.508, p < 0.001) in all COPD patients and in the MetS subgroup. In the COPD group as a whole. the six-minute walk test (6MWT) results (m) were positively correlated with FEV1 and FVC. The correlation remained significant for FVC in COPD patients with and without MetS. An increase in BMI by one unit led to an increase in TG values by 3.358 mg/dL, and the presence of metabolic syndrome led to an increase in TG values by 17.433 mg/dL. CONCLUSIONS In our study, MetS is a common comorbidity in patients with COPD and is associated with higher BMI, fasting glucose, and triglycerides but not with the inflammatory parameters. A mixed pulmonary-cardiovascular rehabilitation intervention leads to improvement in various parameters in both female and male COPD patients.
Collapse
Affiliation(s)
- Elena-Andreea Moaleș
- Department of Medical Specialities I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iași, Romania (L.C.D.-C.); (I.M.Z.); (F.M.)
| | - Lucia Corina Dima-Cozma
- Department of Medical Specialities I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iași, Romania (L.C.D.-C.); (I.M.Z.); (F.M.)
- Clinical Rehabilitation Hospital, Pantelimon Halipa Street No. 14, 700661 Iași, Romania
| | - Doina-Clementina Cojocaru
- Department of Medical Specialities I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iași, Romania (L.C.D.-C.); (I.M.Z.); (F.M.)
- Clinical Rehabilitation Hospital, Pantelimon Halipa Street No. 14, 700661 Iași, Romania
| | - Ioana Mădălina Zota
- Department of Medical Specialities I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iași, Romania (L.C.D.-C.); (I.M.Z.); (F.M.)
| | - Cristina Mihaela Ghiciuc
- Pharmacology, Clinical Pharmacology and Algeziology, Department of Morpho-Functional Sciences II, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iași, Romania
- Saint Mary Emergency Children Hospital, 700887 Iași, Romania
| | - Cristina Andreea Adam
- Department of Medical Specialities I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iași, Romania (L.C.D.-C.); (I.M.Z.); (F.M.)
- Clinical Rehabilitation Hospital, Pantelimon Halipa Street No. 14, 700661 Iași, Romania
| | - Mitică Ciorpac
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (I.M.T.)
| | - Ivona Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (I.M.T.)
| | - Florin Dumitru Petrariu
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iași, Romania
| | - Maria-Magdalena Leon
- Department of Medical Specialities I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iași, Romania (L.C.D.-C.); (I.M.Z.); (F.M.)
- Clinical Rehabilitation Hospital, Pantelimon Halipa Street No. 14, 700661 Iași, Romania
| | - Romică Sebastian Cozma
- Department of Otorhinolaryngology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No 16, 700115 Iași, Romania
| | - Florin Mitu
- Department of Medical Specialities I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iași, Romania (L.C.D.-C.); (I.M.Z.); (F.M.)
- Clinical Rehabilitation Hospital, Pantelimon Halipa Street No. 14, 700661 Iași, Romania
- Romanian Academy of Medical Sciences, 030167 Bucharest, Romania
- Romanian Academy of Scientists, 050045 Bucharest, Romania
| |
Collapse
|
10
|
Valencia-Ortega J, Castillo-Santos A, Molerés-Orduña M, Solis-Paredes JM, Saucedo R, Estrada-Gutierrez G, Camacho-Arroyo I. Influence of Maternal Adipokines on Anthropometry, Adiposity, and Neurodevelopmental Outcomes of the Offspring. Int J Mol Sci 2024; 25:11655. [PMID: 39519203 PMCID: PMC11547085 DOI: 10.3390/ijms252111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Pregnancy is distinguished by a multitude of intricate interactions between the mother and the new individual, commencing at implantation and persisting until the maturation and integration of the fetal apparatus and systems. The physiological increase in fat mass during pregnancy and the association of maternal obesity with adverse neonatal outcomes have directed attention to the study of maternal adipokines as participants in fetal development. Interestingly, maternal concentrations of certain adipokines such as adiponectin, leptin, tumor necrosis factor-alpha, and interleukin-6 have been found to be associated with offspring anthropometry and adiposity at birth and at three months of age, even with neurodevelopmental alterations later in life. This is partly explained by the functions of these adipokines in the regulation of maternal metabolism and placental nutrient transport. This review compiles, organizes, and analyzes the most relevant studies on the association between maternal adipokines with anthropometry, adiposity, and neurodevelopmental outcomes of the offspring. Furthermore, it proposes the underlying mechanisms involved in this association.
Collapse
Affiliation(s)
- Jorge Valencia-Ortega
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| | - Andrea Castillo-Santos
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico; (A.C.-S.); (M.M.-O.); (J.M.S.-P.)
| | - Miranda Molerés-Orduña
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico; (A.C.-S.); (M.M.-O.); (J.M.S.-P.)
| | - Juan Mario Solis-Paredes
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico; (A.C.-S.); (M.M.-O.); (J.M.S.-P.)
| | - Renata Saucedo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Guadalupe Estrada-Gutierrez
- Department of Immunobiochemistry, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico;
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| |
Collapse
|
11
|
Hanchang W, Woonnoi W, Saetan J, Suttithumsatid W, Tanasawet S, Sanprick A, Moolsup F, Sukketsiri W. Sangyod rice extract mitigates insulin resistance in HepG2 cells and hepatic steatosis in diabetic rats via AMPK/mTOR/MAPK signaling pathways. FOOD BIOSCI 2024; 61:104662. [DOI: 10.1016/j.fbio.2024.104662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Yu M, Fan R, Yang SM. Effect of tannic acid on adiponectin and gonads in male Brandt's voles (Lasiopodomys brandtii). Gen Comp Endocrinol 2024; 357:114592. [PMID: 39043324 DOI: 10.1016/j.ygcen.2024.114592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/30/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
Adiponectin regulates steroid production and influences gonadal development. This study examined the effects of tannic acid (TA) on the adiponectin levels and gonads of male Brandt's voles. Male Brandt's voles aged 90 d were randomly separated into three groups: a control group (provided distilled water), a group given 600 mg∙kg-1 TA, and a group that received 1200 mg∙kg-1 TA (continuous gavage for 18 d). In this study, we examined the effects of TA on the adiponectin, antioxidant, and inflammatory levels in the testes. Furthermore, we examined the expression of important regulatory elements that influence adiponectin expression and glucose utilisation. In addition, the body weight, reproductive organ weight, and testicular shape were assessed. Our study observed that TA treatment increased serum adiponectin levels, DsbA-L and Ero1-Lα transcription levels, and AdipoR1, AMPK, GLUT1, and MCT4 expression levels in testicular tissue. TA enhanced pyruvate and lactic acid levels in the testicular tissue, boosted catalase activity, and reduced MDA concentrations. TA reduced the release of inflammatory factors in the testicular tissues of male Brandt's voles. TA increased the inner diameter of the seminiferous tubules. In conclusion, TA appears to stimulate adiponectin secretion and gonadal growth in male Brandt's voles while acting as an antioxidant and anti-inflammatory agent.
Collapse
Affiliation(s)
- Minghao Yu
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai 264003, China; Department of College of Biological Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Ruiyang Fan
- Department of College of Biological Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Sheng-Mei Yang
- Department of College of Biological Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
13
|
Wu W, Jian Y, Yuan S, Li X, Tang Y, Zeng F, Liu W, Zhao Z, Wang Y, Wang Y, Liu W. Exercise-promoted adiponectin secretion activates autolysosomes to protect the liver of ApoE -/- mice from a high-fat diet. Food Funct 2024; 15:9796-9812. [PMID: 39229645 DOI: 10.1039/d4fo02984d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Fat is a "double-edged sword": while it is a necessary substance for the body, the long-term intake of excessive fat will cause obesity, with the liver subjected to lipotoxicity as it accumulates. It will then continue to deteriorate, eventually leading to liver failure, which is a negative impact of high-fat food intake. Research has shown that exercise can reverse the side effects of a chronic high-fat diet and help the body to mitigate the harmful effects of lipotoxicity. In our study, it was found that moderate-intensity cardio-training (MICT) and high-intensity interval exercise (HIIT) effectively protected the livers of high-fat diet (HFD) ApoE-/- mice against lipotoxicity. Previous results demonstrated that 12 weeks of HFD resulted in a significant elevation of CD36 in the livers of C57BL/6J mice, while knockdown of CD36 did not reduce the accumulation of fat in the liver. Therefore, we used ApoE-/- mice as experimental subjects. Although HFD caused the development of hyperlipidemia and atherosclerosis, it is interesting to note that, due to the knockdown of ApoE, the livers of ApoE-/- mice in the non-exercise group did not show significant lipid deposition; however, after 12 weeks of MICT and HIIT, the livers of ApoE-/- mice showed significant lipid deposition. After we analyzed the lipid metabolism in their livers, we found that this was caused by the promotion of transport of peripheral fat into the liver due to exercise. Moreover, 12 weeks of exercise effectively reduced atherosclerosis, and the livers of ApoE-/- mice in the exercise group were not damaged by lipotoxicity. The results showed that a 12-week exercise treatment activated AMPK in the livers of HFD ApoE-/- mice through the APN-AdipoR1 signaling pathway, improved hepatic lipid metabolism disorders, and promoted the nuclear translocation of TFEB to enhance autophagic-lysosomal lipid scavenging. After the peripheral lipid is input into the liver due to exercise, the energy generated through gluconeogenesis can be used to replenish the energy consumed by exercise and maintain the normal operation of various functions in the liver, based on which the high autophagic flux in the liver can be maintained and the lipid clearance rate can be enhanced to protect the liver from lipotoxicity.
Collapse
Affiliation(s)
- Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Ye Jian
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Shunling Yuan
- Yangtze University, College of Arts and Sciences, Jingzhou 434020, China
| | - Xuan Li
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Fanqi Zeng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Wenjing Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Zhe Zhao
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yirong Wang
- Hunan Sports Vocational College, Changsha 410019, China
| | - Yiyang Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| |
Collapse
|
14
|
Zheng H, Sechi LA, Navarese EP, Casu G, Vidili G. Metabolic dysfunction-associated steatotic liver disease and cardiovascular risk: a comprehensive review. Cardiovasc Diabetol 2024; 23:346. [PMID: 39342178 PMCID: PMC11439309 DOI: 10.1186/s12933-024-02434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty liver disease (NAFLD), poses a significant global health challenge due to its increasing prevalence and strong association with cardiovascular disease (CVD). This comprehensive review summarizes the current knowledge on the MASLD-CVD relationship, compares analysis of how different terminologies for fatty liver disease affect cardiovascular (CV) risk assessment using different diagnostic criteria, explores the pathophysiological mechanisms connecting MASLD to CVD, the influence of MASLD on traditional CV risk factors, the role of noninvasive imaging techniques and biomarkers in the assessment of CV risk in patients with MASLD, and the implications for clinical management and prevention strategies. By incorporating current research and clinical guidelines, this review provides a comprehensive overview of the complex interplay between MASLD and cardiovascular health.
Collapse
Affiliation(s)
- Haixiang Zheng
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
- Complex Structure of Microbiology and Virology, AOU Sassari, 07100, Sassari, Italy
| | - Eliano Pio Navarese
- Clinical and Experimental Cardiology, Clinical and Interventional Cardiology, University of Sassari, Sassari, Italy
| | - Gavino Casu
- Clinical and Experimental Cardiology, Clinical and Interventional Cardiology, University of Sassari, Sassari, Italy
| | - Gianpaolo Vidili
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, Azienda Ospedaliero, 07100, Sassari, Italy.
| |
Collapse
|
15
|
Bauzá-Thorbrügge M, Amengual-Cladera E, Galmés-Pascual BM, Morán-Costoya A, Gianotti M, Valle A, Proenza AM, Lladó I. Impact of Sex on the Therapeutic Efficacy of Rosiglitazone in Modulating White Adipose Tissue Function and Insulin Sensitivity. Nutrients 2024; 16:3063. [PMID: 39339665 PMCID: PMC11434741 DOI: 10.3390/nu16183063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity and type 2 diabetes mellitus are global public health issues. Although males show higher obesity and insulin resistance prevalence, current treatments often neglect sex-specific differences. White adipose tissue (WAT) is crucial in preventing lipotoxicity and inflammation and has become a key therapeutic target. Rosiglitazone (RSG), a potent PPARγ agonist, promotes healthy WAT growth and mitochondrial function through MitoNEET modulation. Recent RSG-based strategies specifically target white adipocytes, avoiding side effects. Our aim was to investigate whether sex-specific differences in the insulin-sensitizing effects of RSG exist on WAT during obesity and inflammation. We used Wistar rats of both sexes fed a high-fat diet (HFD, 22.5% fat content) for 16 weeks. Two weeks before sacrifice, a group of HFD-fed rats received RSG treatment (4 mg/kg of body weight per day) within the diet. HFD male rats showed greater insulin resistance, inflammation, mitochondrial dysfunction, and dyslipidemia than females. RSG had more pronounced effects in males, significantly improving insulin sensitivity, fat storage, mitochondrial function, and lipid handling in WAT while reducing ectopic fat deposition and enhancing adiponectin signaling in the liver. Our study suggests a significant sexual dimorphism in the anti-diabetic effects of RSG on WAT, correlating with the severity of metabolic dysfunction.
Collapse
Affiliation(s)
- Marco Bauzá-Thorbrügge
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
| | - Emilia Amengual-Cladera
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
| | - Bel Maria Galmés-Pascual
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
| | - Andrea Morán-Costoya
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
| | - Magdalena Gianotti
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Adamo Valle
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana Maria Proenza
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Lladó
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
16
|
Kountouras J, Zavos C, Vardaka E, Kyrailidi F, Mouratidou MC, Tzitiridou-Chatzopoulou M, Orovou E, Touloumtzi M, Papanikolaou IS, Kazakos E. Helicobacter pylori and metabolic syndrome-related adipokines in nonalcoholic fatty liver disease pathophysiology. J Gastroenterol Hepatol 2024; 39:1957-1959. [PMID: 38725326 DOI: 10.1111/jgh.16621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/06/2024] [Accepted: 05/03/2024] [Indexed: 10/01/2024]
Affiliation(s)
- J Kountouras
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Macedonia, Greece
| | - C Zavos
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Macedonia, Greece
| | - E Vardaka
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Macedonia, Greece
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Alexander Campus, Sindos, Macedonia, Greece
| | - F Kyrailidi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Macedonia, Greece
| | - M C Mouratidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Macedonia, Greece
| | - M Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Macedonia, Greece
- School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, Macedonia, Greece
| | - E Orovou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Macedonia, Greece
- School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, Macedonia, Greece
| | - M Touloumtzi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Macedonia, Greece
| | - I S Papanikolaou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - E Kazakos
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Macedonia, Greece
- School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, Macedonia, Greece
| |
Collapse
|
17
|
Algül KF, Şekerler T, Şen A, Gülmez G, Şener A. Effects of Crataegus orientalis fruit extract on lipid accumulation in oleic acid-induced HepG2 cells. ADVANCES IN TRADITIONAL MEDICINE 2024; 24:923-933. [DOI: 10.1007/s13596-024-00750-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 01/03/2025]
|
18
|
Gu W, Wu G, Chen G, Meng X, Xie Z, Cai S. Polyphenols alleviate metabolic disorders: the role of ubiquitin-proteasome system. Front Nutr 2024; 11:1445080. [PMID: 39188976 PMCID: PMC11345163 DOI: 10.3389/fnut.2024.1445080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/04/2024] [Indexed: 08/28/2024] Open
Abstract
Metabolic disorders include obesity, nonalcoholic fatty liver disease, insulin resistance and type 2 diabetes. It has become a major health issue around the world. Ubiquitin-proteasome system (UPS) is essential for nearly all cellular processes, functions as a primary pathway for intracellular protein degradation. Recent researches indicated that dysfunctions in the UPS may result in the accumulation of toxic proteins, lipotoxicity, oxidative stress, inflammation, and insulin resistance, all of which contribute to the development and progression of metabolic disorders. An increasing body of evidence indicates that specific dietary polyphenols ameliorate metabolic disorders by preventing lipid synthesis and transport, excessive inflammation, hyperglycemia and insulin resistance, and oxidative stress, through regulation of the UPS. This review summarized the latest research progress of natural polyphenols improving metabolic disorders by regulating lipid accumulation, inflammation, oxidative stress, and insulin resistance through the UPS. In addition, the possible mechanisms of UPS-mediated prevention of metabolic disorders are comprehensively proposed. We aim to provide new angle to the development and utilization of polyphenols in improving metabolic disorders.
Collapse
Affiliation(s)
- Wei Gu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Guohuo Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Xianghui Meng
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Shanbao Cai
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
19
|
Aguilar EC, Fernandes-Braga W, Santos EA, Leocádio PCL, Dos Santos Aggum Capettini L, Orellano LAA, Campos PP, Lemos VS, Soares FLP, Navia-Pelaez JM, Alvarez-Leite JI. Gluten worsens non-alcoholic fatty liver disease by affecting lipogenesis and fatty acid oxidation in diet-induced obese apolipoprotein E-deficient mice. Mol Cell Biochem 2024; 479:1335-1347. [PMID: 37402020 DOI: 10.1007/s11010-023-04802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Obesity is closely associated with non-alcoholic fatty liver disease (NAFLD), characterized by hepatic fat accumulation and hepatocyte injury. Preclinical studies have shown exacerbated weight gain associated with an obesogenic gluten-containing diet. However, whether gluten affects obesity-induced hepatic lipid accumulation still remains unclear. We hypothesized that gluten intake could affect fatty liver development in high-fat diet (HFD)-induced obese mice. Thus, we aimed to investigate the impact of gluten intake on NAFLD in HFD-induced obese mice. Male apolipoprotein E-deficient (Apoe-/-) mice were fed with a HFD containing (GD) or not (GFD) vital wheat gluten (4.5%) for 10 weeks. Blood and liver were collected for further analysis. We found that gluten exacerbated weight gain, hepatic fat deposition, and hyperglycemia without affecting the serum lipid profile. Livers of the GD group showed a larger area of fibrosis, associated with the expression of collagen and MMP9, and higher expression of apoptosis-related factors, p53, p21, and caspase-3. The expression of lipogenic factors, such as PPARγ and Acc1, was more elevated and factors related to beta-oxidation, such as PPARα and Cpt1, were lower in the GD group compared to the GFD. Further, gluten intake induced a more significant expression of Cd36, suggesting higher uptake of free fatty acids. Finally, we found lower protein expression of PGC1α followed by lower activation of AMPK. Our data show that gluten-containing high-fat diet exacerbated NAFLD by affecting lipogenesis and fatty acid oxidation in obese Apoe-/- mice through a mechanism involving lower activation of AMPK.
Collapse
Affiliation(s)
- Edenil Costa Aguilar
- Department of Biochemistry and Immunology, ICB - Federal University of Minas Gerais, Caixa Postal 486, Belo Horizonte, 30161-970, Brazil.
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology, ICB - Federal University of Minas Gerais, Caixa Postal 486, Belo Horizonte, 30161-970, Brazil
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elandia Aparecida Santos
- Department of Biochemistry and Immunology, ICB - Federal University of Minas Gerais, Caixa Postal 486, Belo Horizonte, 30161-970, Brazil
| | - Paola Caroline Lacerda Leocádio
- Department of Biochemistry and Immunology, ICB - Federal University of Minas Gerais, Caixa Postal 486, Belo Horizonte, 30161-970, Brazil
| | | | | | - Paula Peixoto Campos
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Virginia Soares Lemos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Juliana Maria Navia-Pelaez
- Department of Pharmacology, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Medicine, University of California San Diego, San Diego, USA
| | - Jacqueline I Alvarez-Leite
- Department of Biochemistry and Immunology, ICB - Federal University of Minas Gerais, Caixa Postal 486, Belo Horizonte, 30161-970, Brazil
| |
Collapse
|
20
|
Kountouras J, Boziki M, Kazakos E, Theotokis P, Kesidou E, Nella M, Bakirtzis C, Karafoulidou E, Vardaka E, Mouratidou MC, Kyrailidi F, Tzitiridou-Chatzopoulou M, Orovou E, Giartza-Taxidou E, Deretzi G, Grigoriadis N, Doulberis M. Impact of Helicobacter pylori and metabolic syndrome on mast cell activation-related pathophysiology and neurodegeneration. Neurochem Int 2024; 175:105724. [PMID: 38508416 DOI: 10.1016/j.neuint.2024.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/03/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Both Helicobacter pylori (H. pylori) infection and metabolic syndrome (MetS) are highly prevalent worldwide. The emergence of relevant research suggesting a pathogenic linkage between H. pylori infection and MetS-related cardio-cerebrovascular diseases and neurodegenerative disorders, particularly through mechanisms involving brain pericyte deficiency, hyperhomocysteinemia, hyperfibrinogenemia, elevated lipoprotein-a, galectin-3 overexpression, atrial fibrillation, and gut dysbiosis, has raised stimulating questions regarding their pathophysiology and its translational implications for clinicians. An additional stimulating aspect refers to H. pylori and MetS-related activation of innate immune cells, mast cells (MC), which is an important, often early, event in systemic inflammatory pathologies and related brain disorders. Synoptically, MC degranulation may play a role in the pathogenesis of H. pylori and MetS-related obesity, adipokine effects, dyslipidemia, diabetes mellitus, insulin resistance, arterial hypertension, vascular dysfunction and arterial stiffness, an early indicator of atherosclerosis associated with cardio-cerebrovascular and neurodegenerative disorders. Meningeal MC can be activated by triggers including stress and toxins resulting in vascular changes and neurodegeneration. Likewise, H.pylori and MetS-related MC activation is linked with: (a) vasculitis and thromboembolic events that increase the risk of cardio-cerebrovascular and neurodegenerative disorders, and (b) gut dysbiosis-associated neurodegeneration, whereas modulation of gut microbiota and MC activation may promote neuroprotection. This narrative review investigates the intricate relationship between H. pylori infection, MetS, MC activation, and their collective impact on pathophysiological processes linked to neurodegeneration. Through a comprehensive search of current literature, we elucidate the mechanisms through which H. pylori and MetS contribute to MC activation, subsequently triggering cascades of inflammatory responses. This highlights the role of MC as key mediators in the pathogenesis of cardio-cerebrovascular and neurodegenerative disorders, emphasizing their involvement in neuroinflammation, vascular dysfunction and, ultimately, neuronal damage. Although further research is warranted, we provide a novel perspective on the pathophysiology and management of brain disorders by exploring potential therapeutic strategies targeting H. pylori eradication, MetS management, and modulation of MC to mitigate neurodegeneration risk while promoting neuroprotection.
Collapse
Affiliation(s)
- Jannis Kountouras
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece.
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelos Kazakos
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Maria Nella
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Eleni Karafoulidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Elisabeth Vardaka
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Alexander Campus, 57400, Macedonia, Greece
| | - Maria C Mouratidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Foteini Kyrailidi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Eirini Orovou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Evaggelia Giartza-Taxidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Georgia Deretzi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Neurology, Papageorgiou General Hospital, Thessaloniki, Macedonia, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Gastroklinik, Private Gastroenterological Practice, 8810, Horgen, Switzerland; Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001, Aarau, Switzerland
| |
Collapse
|
21
|
Han Y, Sun Q, Chen W, Gao Y, Ye J, Chen Y, Wang T, Gao L, Liu Y, Yang Y. New advances of adiponectin in regulating obesity and related metabolic syndromes. J Pharm Anal 2024; 14:100913. [PMID: 38799237 PMCID: PMC11127227 DOI: 10.1016/j.jpha.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 05/29/2024] Open
Abstract
Obesity and related metabolic syndromes have been recognized as important disease risks, in which the role of adipokines cannot be ignored. Adiponectin (ADP) is one of the key adipokines with various beneficial effects, including improving glucose and lipid metabolism, enhancing insulin sensitivity, reducing oxidative stress and inflammation, promoting ceramides degradation, and stimulating adipose tissue vascularity. Based on those, it can serve as a positive regulator in many metabolic syndromes, such as type 2 diabetes (T2D), cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), sarcopenia, neurodegenerative diseases, and certain cancers. Therefore, a promising therapeutic approach for treating various metabolic diseases may involve elevating ADP levels or activating ADP receptors. The modulation of ADP genes, multimerization, and secretion covers the main processes of ADP generation, providing a comprehensive orientation for the development of more appropriate therapeutic strategies. In order to have a deeper understanding of ADP, this paper will provide an all-encompassing review of ADP.
Collapse
Affiliation(s)
- Yanqi Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qianwen Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanmin Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tingting Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
22
|
Quetglas-Llabrés MM, Monserrat-Mesquida M, Bouzas C, García S, Argelich E, Casares M, Ugarriza L, Llompart I, Tur JA, Sureda A. Impact of Adherence to the Mediterranean Diet on Antioxidant Status and Metabolic Parameters in NAFLD Patients: A 24-Month Lifestyle Intervention Study. Antioxidants (Basel) 2024; 13:480. [PMID: 38671927 PMCID: PMC11047536 DOI: 10.3390/antiox13040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The Mediterranean Diet (MedDiet) is recognized as a healthy dietary pattern. Non-alcoholic fatty liver disease (NAFLD) is characterized by the excessive accumulation of fat in the liver. OBJECTIVES To assess the antioxidant status in erythrocytes, plasma, and peripheral blood mononuclear cells (PBMCs) of NAFLD patients following a 24-month lifestyle intervention based on the MedDiet. Adult patients (n = 40; aged 40-60 years) diagnosed with NAFLD by magnetic resonance imaging were divided into two groups based on their adherence to the MedDiet. Consumption was assessed using a validated 143-item semiquantitative Food Frequency Questionnaire. Anthropometrics, biochemistry parameters, intrahepatic fat contents (IFC), antioxidants, and inflammatory biomarkers were measured in plasma and erythrocytes before and after the intervention. RESULTS After the intervention, body mass index (BMI) and plasma levels of total cholesterol, low-density lipoprotein cholesterol (LDL-chol), triglycerides, malondialdehyde (MDA), and cytokeratin-18 (CK18) decreased, and high-density lipoprotein cholesterol (HDL-chol) increased. Participants with high adherence to MedDiet showed lower IFC, hepatic enzyme (AST, ALT, and GGT), glycemia, oxidase LDL (oxLDL) plasma levels, and erythrocyte MDA levels. Higher antioxidant activity (erythrocyte catalase-CAT, superoxide dismutase-SOD, glutathione peroxidase-GPx, glutathione reductase-GRd, and total glutathione-GSH as well as PBMCs-CAT gene expression) was observed in these patients, along with a reduction of PBMCs reactive oxygen species production and Toll-like receptor 4 (TLR4) expression. Inverse associations were observed between adherence to the MedDiet and BMI, glycemia, AST, IFC, and CK18 plasma levels and oxLDL, CAT, SOD, and GRd activities in erythrocytes. A significant linear regression was observed between adherence to the MedDiet and antioxidant score. CONCLUSIONS Adherence to the MedDiet is associated with improved plasma and PBMC antioxidant and inflammatory biomarker profiles and high antioxidant defences in erythrocytes.
Collapse
Affiliation(s)
- Maria Magdalena Quetglas-Llabrés
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain (M.M.-M.); (I.L.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Margalida Monserrat-Mesquida
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain (M.M.-M.); (I.L.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Cristina Bouzas
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain (M.M.-M.); (I.L.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Silvia García
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain (M.M.-M.); (I.L.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Emma Argelich
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain (M.M.-M.); (I.L.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Miguel Casares
- Radiodiagnosis Service, Red Asistencial Juaneda, 07011 Palma de Mallorca, Spain
| | - Lucía Ugarriza
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain (M.M.-M.); (I.L.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- C.S. Camp Redó, IBSalut, 07010 Palma de Mallorca, Spain
| | - Isabel Llompart
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain (M.M.-M.); (I.L.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Clinical Analysis Service, University Hospital Son Espases, 07198 Palma de Mallorca, Spain
| | - Josep A. Tur
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain (M.M.-M.); (I.L.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Antoni Sureda
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain (M.M.-M.); (I.L.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
| |
Collapse
|
23
|
Laurindo LF, Sosin AF, Lamas CB, de Alvares Goulart R, Dos Santos Haber JF, Detregiachi CRP, Barbalho SM. Exploring the logic and conducting a comprehensive evaluation of AdipoRon-based adiponectin replacement therapy against hormone-related cancers-a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2067-2082. [PMID: 37864589 DOI: 10.1007/s00210-023-02792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
The potential benefits of adiponectin replacement therapy extend to numerous human diseases, with current research showing particular interest in its effectiveness against specific cancer forms, especially hormone-related. However, limitations in the pharmacological use of the intact protein have led to a focus on alternative options. AdipoRon is an extensively studied non-peptidic drug candidate for adiponectin replacement therapy. While researchers have explored the efficacy and therapeutic applications of AdipoRon in various disease conditions, their effects against cancer models advanced more, with no review regarding AdipoRon's efficacy against hormone-related cancers being published. The present systematic review aims to fill this gap. Preclinical evidence was compiled from PubMed, EMBASE, COCHRANE, and Google Scholar following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the manuscript's quality assessment was conducted using the Joanna Briggs Institute (JBI) Checklist Critical Appraisal Tool for Systematic Reviews' Quality. The included nine studies incorporated various cell and animal models of the pancreas, gynaecological system, and osteosarcoma cancers. AdipoRon demonstrated effectiveness against pancreatic cancer by activating p44/42 MAPK, mitochondrial dysfunction, and AMPK-mediated inhibition of ACC1. In gynaecological cancers, it exhibited promising anticancer effects through the activation of AMPK, potential inhibition of mTOR, and modulation of the SET1B/BOD1/AdipoR1 signaling cascade. Against osteosarcoma, AdipoRon worked by perturbing ERK1/2 signaling and reducing p70S6K phosphorylation. AdipoRon shows promise in preclinical studies, but human trials are crucial for clinical safety and effectiveness. Caution is needed due to potential off-target effects, especially in cancer therapy with multi-target approaches. Structural biology and computational methods can help predict these effects.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
| | - Andreline Franchi Sosin
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, 13565-905, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | | | - Claudia Rucco Penteado Detregiachi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
| |
Collapse
|
24
|
Chui ZSW, Xue Y, Xu A. Hormone-based pharmacotherapy for metabolic dysfunction-associated fatty liver disease. MEDICAL REVIEW (2021) 2024; 4:158-168. [PMID: 38680683 PMCID: PMC11046571 DOI: 10.1515/mr-2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 05/01/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has reached epidemic proportions globally in parallel to the rising prevalence of obesity. Despite its significant burden, there is no approved pharmacotherapy specifically tailored for this disease. Many potential drug candidates for MAFLD have encountered setbacks in clinical trials, due to safety concerns or/and insufficient therapeutic efficacy. Nonetheless, several investigational drugs that mimic the actions of endogenous metabolic hormones, including thyroid hormone receptor β (THRβ) agonists, fibroblast growth factor 21 (FGF21) analogues, and glucagon-like peptide-1 receptor agonists (GLP-1RAs), showed promising therapeutic efficacy and excellent safety profiles. Among them, resmetirom, a liver-targeted THRβ-selective agonist, has met the primary outcomes in alleviation of metabolic dysfunction-associated steatohepatitis (MASH), the advanced form of MAFLD, and liver fibrosis in phase-3 clinical trials. These hormone-based pharmacotherapies not only exhibit varied degrees of therapeutic efficacy in mitigating hepatic steatosis, inflammation and fibrosis, but also improve metabolic profiles. Furthermore, these three hormonal agonists/analogues act in a complementary manner to exert their pharmacological effects, suggesting their combined therapies may yield synergistic therapeutic benefits. Further in-depth studies on the intricate interplay among these metabolic hormones are imperative for the development of more efficacious combination therapies, enabling precision management of MAFLD and its associated comorbidities.
Collapse
Affiliation(s)
- Zara Siu Wa Chui
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Yaqian Xue
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
25
|
Xie L, Wang H, Hu J, Liu Z, Hu F. The role of novel adipokines and adipose-derived extracellular vesicles (ADEVs): Connections and interactions in liver diseases. Biochem Pharmacol 2024; 222:116104. [PMID: 38428826 DOI: 10.1016/j.bcp.2024.116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Adipose tissues (AT) are an important endocrine organ that secretes various functional adipokines, peptides, non-coding RNAs, and acts on AT themselves or other distant tissues or organs through autocrine, paracrine, or endocrine manners. An accumulating body of evidence has suggested that many adipokines play an important role in liver metabolism. Besides the traditional adipokines such as adiponectin and leptin, many novel adipokines have recently been identified to have regulatory effects on the liver. Additionally, AT can produce extracellular vesicles (EVs) that act on peripheral tissues. However, under pathological conditions, such as obesity and diabetes, dysregulation of adipokines is associated with functional changes in AT, which may cause liver diseases. In this review, we focus on the newly discovered adipokines and EVs secreted by AT and highlight their actions on the liver under the context of obesity, nonalcoholic fatty liver diseases (NAFLD), and some other liver diseases. Clarifying the action of adipokines and adipose tissue-derived EVs on the liver would help to identify novel therapeutic targets or biomarkers for metabolic diseases.
Collapse
Affiliation(s)
- Lijun Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huiying Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jinying Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhuoying Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Health Law Research Center, School of Law, Central South University, Changsha, China.
| | - Fang Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
26
|
Chondrogianni ME, Kyrou I, Androutsakos T, Flessa CM, Menenakos E, Chatha KK, Aranan Y, Papavassiliou AG, Kassi E, Randeva HS. Anti-osteoporotic treatments in the era of non-alcoholic fatty liver disease: friend or foe. Front Endocrinol (Lausanne) 2024; 15:1344376. [PMID: 38524631 PMCID: PMC10957571 DOI: 10.3389/fendo.2024.1344376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/05/2024] [Indexed: 03/26/2024] Open
Abstract
Over the last years non-alcoholic fatty liver disease (NAFLD) has grown into the most common chronic liver disease globally, affecting 17-38% of the general population and 50-75% of patients with obesity and/or type 2 diabetes mellitus (T2DM). NAFLD encompasses a spectrum of chronic liver diseases, ranging from simple steatosis (non-alcoholic fatty liver, NAFL) and non-alcoholic steatohepatitis (NASH; or metabolic dysfunction-associated steatohepatitis, MASH) to fibrosis and cirrhosis with liver failure or/and hepatocellular carcinoma. Due to its increasing prevalence and associated morbidity and mortality, the disease-related and broader socioeconomic burden of NAFLD is substantial. Of note, currently there is no globally approved pharmacotherapy for NAFLD. Similar to NAFLD, osteoporosis constitutes also a silent disease, until an osteoporotic fracture occurs, which poses a markedly significant disease and socioeconomic burden. Increasing emerging data have recently highlighted links between NAFLD and osteoporosis, linking the pathogenesis of NAFLD with the process of bone remodeling. However, clinical studies are still limited demonstrating this associative relationship, while more evidence is needed towards discovering potential causative links. Since these two chronic diseases frequently co-exist, there are data suggesting that anti-osteoporosis treatments may affect NAFLD progression by impacting on its pathogenetic mechanisms. In the present review, we present on overview of the current understanding of the liver-bone cross talk and summarize the experimental and clinical evidence correlating NAFLD and osteoporosis, focusing on the possible effects of anti-osteoporotic drugs on NAFLD.
Collapse
Affiliation(s)
- Maria Eleni Chondrogianni
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Endocrine Unit, 1st Department of Propaupedic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Kyrou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Centre for Health & Life Sciences, Coventry University, Coventry, United Kingdom
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
- College of Health, Psychology and Social Care, University of Derby, Derby, United Kingdom
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Menenakos
- 5th Surgical Clinic, Department of Surgery, ‘Evgenidion Hospital’, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Kamaljit Kaur Chatha
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Department of Biochemistry and Immunology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Yekaterina Aranan
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Endocrine Unit, 1st Department of Propaupedic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Centre for Health & Life Sciences, Coventry University, Coventry, United Kingdom
| |
Collapse
|
27
|
Doulberis M, Papaefthymiou A, Polyzos SA, Boziki M, Kazakos E, Tzitiridou-Chatzopoulou M, Vardaka E, Hammrich C, Kulaksiz H, Riva D, Kiosses C, Linas I, Touloumtzi M, Stogianni A, Kountouras J. Impact of Helicobacter pylori and metabolic syndrome-related mast cell activation on cardiovascular diseases. FRONTIERS IN GASTROENTEROLOGY 2024; 3. [DOI: 10.3389/fgstr.2024.1331330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Helicobacter pylori, a widely renowned bacterium, has recently gained attention owing to its potential impact on extragastric health. The emergence of research linking H. pylori infection with metabolic syndrome (MetS)-related cardiovascular diseases (CVDs) has raised intriguing questions about the pathogenic linkage and its translational implications for clinicians. MetS encompasses a collection of metabolic abnormalities that considerably elevate the risk of CVDs and cerebrovascular diseases. Emerging evidence supports a potential pathogenetic role of H. pylori for MetS-related disorders through mechanisms implicating chronic smoldering inflammation, insulin resistance (IR), and modulation of immune responses. One intriguing aspect of this possible connection is the role of mast cells (MCs), a subset of immune cells representing innate immune system effector cells. They play a fundamental role in innate immune responses and the modulation of adaptive immunity. Activated MCs are commonly found in patients with MetS-related CVD. Recent studies have also suggested that H. pylori infection may activate MCs, triggering the release of pro-inflammatory mediators that contribute to IR and atherosclerosis. Understanding these intricate interactions at the cellular level provides new insights into the development of therapeutic strategies targeting both H. pylori infection and MetS-related MCs activation. This review investigates the current state of research regarding the potential impact of H. pylori infection and MetS-related MCs activation on the pathophysiology of CVD, thereby opening up new avenues for related research and paving the way for innovative approaches to prevention and treatment in clinical practice
Collapse
|
28
|
Fehsel K, Bouvier ML. Sex-Specific Effects of Long-Term Antipsychotic Drug Treatment on Adipocyte Tissue and the Crosstalk to Liver and Brain in Rats. Int J Mol Sci 2024; 25:2188. [PMID: 38396865 PMCID: PMC10889281 DOI: 10.3390/ijms25042188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Antipsychotic drug (APD) medication can lead to metabolic dysfunctions and weight gain, which together increase morbidity and mortality. Metabolically active visceral adipose tissue (VAT) in particular plays a crucial role in the etiopathology of these metabolic dysregulations. Here, we studied the effect of 12 weeks of drug medication by daily oral feeding of clozapine and haloperidol on the perirenal fat tissue as part of VAT of male and female Sprague Dawley rats in the context of complex former investigations on brain, liver, and blood. Adipocyte area values were determined, as well as triglycerides, non-esterified fatty acids (NEFAs), glucose, glycogen, lactate, malondialdehyde equivalents, ferric iron and protein levels of Perilipin-A, hormone-sensitive-lipase (HSL), hepcidin, glucose transporter-4 (Glut-4) and insulin receptor-ß (IR-ß). We found increased adipocyte mass in males, with slightly higher adipocyte area values in both males and females under clozapine treatment. Triglycerides, NEFAs, glucose and oxidative stress in the medicated groups were unchanged or slightly decreased. In contrast to controls and haloperidol-medicated rats, perirenal adipocyte mass and serum leptin levels were not correlated under clozapine. Protein expressions of perilipin-A, Glut-4 and HSL were decreased under clozapine treatment. IR-ß expression changed sex-specifically in the clozapine-medicated groups associated with higher hepcidin levels in the perirenal adipose tissue of clozapine-treated females. Taken together, clozapine and haloperidol had a smaller effect than expected on perirenal adipose tissue. The perirenal adipose tissue shows only weak changes in lipid and glucose metabolism. The main changes can be seen in the proteins examined, and probably in their effect on liver metabolism.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstraße 2, 40629 Düsseldorf, Germany;
| | | |
Collapse
|
29
|
Zhao P, Yang W, Xiao H, Zhang S, Gao C, Piao H, Liu L, Li S. Vitamin K2 protects mice against non-alcoholic fatty liver disease induced by high-fat diet. Sci Rep 2024; 14:3075. [PMID: 38321064 PMCID: PMC10847165 DOI: 10.1038/s41598-024-53644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/03/2024] [Indexed: 02/08/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide and there is a huge unmet need to find safer and more effective drugs. Vitamin K has been found to regulate lipid metabolism in the liver. However, the effects of vitamin K2 on NAFLD is unclear. This study aims to evaluate the preventive and therapeutic effects of vitamin K2 in the process of fatty liver formation and to explore molecular mechanisms the associated with lipid metabolism. A non-alcoholic fatty liver model was established by high-fat diet administration for three months. Vitamin K2 significantly reduced the body weight, abdominal circumference and body fat percentage of NAFLD mice. Vitamin K2 also showed histological benefits in reducing hepatic steatosis. NAFLD mice induced by high-fat diet showed increased HMGR while vitamin K2 intervention could reverse the pathological lterations. Adiponectin (APN) is an endogenous bioactive polypeptide or protein secreted by adipocytes. We detected APN, SOD, AlaDH and other indicators that may affect the state of high-fat diet mice, but the experimental results showed that the above indicators did not change significantly. It is worth noting that the effect of vitamin K2 supplementation on the lipid-lowering effect of uc OC in vivo needs to be further explored. This study first reported the protective effect of vitamin K2 on high-fat diet-induced NAFLD in mice. The protective effect of vitamin K2 may be related to the improvement of lipid metabolism disorder in NAFLD.
Collapse
Affiliation(s)
- Peizuo Zhao
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Weidong Yang
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Huiyu Xiao
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Shuaishuai Zhang
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Chuanzhou Gao
- Central Laboratory, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Hua Piao
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Lihong Liu
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China.
| | - Shuzhuang Li
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China.
| |
Collapse
|
30
|
Ding X, He X, Tang B, Lan T. Integrated traditional Chinese and Western medicine in the prevention and treatment of non-alcoholic fatty liver disease: future directions and strategies. Chin Med 2024; 19:21. [PMID: 38310315 PMCID: PMC10838467 DOI: 10.1186/s13020-024-00894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Traditional Chinese medicine (TCM) has been widely used for several centuries for metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). At present, NAFLD has become the most prevalent form of chronic liver disease worldwide and can progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. However, there is still a lack of effective treatment strategies in Western medicine. The development of NAFLD is driven by multiple mechanisms, including genetic factors, insulin resistance, lipotoxicity, mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, gut microbiota dysbiosis, and adipose tissue dysfunction. Currently, certain drugs, including insulin sensitizers, statins, vitamin E, ursodeoxycholic acid and betaine, are proven to be beneficial for the clinical treatment of NAFLD. Due to its complex pathogenesis, personalized medicine that integrates various mechanisms may provide better benefits to patients with NAFLD. The holistic view and syndrome differentiation of TCM have advantages in treating NAFLD, which are similar to the principles of personalized medicine. In TCM, NAFLD is primarily classified into five types based on clinical experience. It is located in the liver and is closely related to spleen and kidney functions. However, due to the multi-component characteristics of traditional Chinese medicine, its application in the treatment of NAFLD has been considerably limited. In this review, we summarize the advances in the pathogenesis and treatment of NAFLD, drawn from both the Western medicine and TCM perspectives. We highlight that Chinese and Western medicine have complementary advantages and should receive increased attention in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Xin Ding
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Xu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Bulang Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
- School of Pharmacy, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
31
|
Zhang H, Sun Y, Zou Y, Chen C, Wang S. Stigmasterol and gastrodin, two major components of banxia-baizhu-tianma decoction, alleviated the excessive phlegm-dampness hypertension by reducing lipid accumulation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117193. [PMID: 37726069 DOI: 10.1016/j.jep.2023.117193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia baizhu tianma decoction (BBTD) originated from the Qing Dynasty Chinese medicine book "Medical Xinwu", which has a clinical application history of more than 300 years. It's a classic prescription for expelling phlegm, extinguishing wind, strengthening the spleen (traditional Chinese medicine, ie, TCM, refers to the spleen channel) and dissipating excessive fluid based on TCM theory. BBTD is particularly effective in the treatment of excessive phlegm-dampness hypertension. However, the precise pharmacological effect of each herb of BBTD on hypertension treatment is not yet fully understood. AIM OF THE STUDY To investigate the pharmacological effects of each herb in BBTD on hypertension treatment and to explore the mechanisms behind them. MATERIALS AND METHODS A high-fat-diet fed animal model was developed to evaluate the efficacy of different groups of drugs in BBTD for the treatment of hypertension. Untargeted metabolism was used to detect the metabolic changes after modeling and drug intervention. Then, Stigmasterol (STI) and gastrodin (GAS), major components of Pinellia Ternate Makino and Gastrodia elata Blume, were selected for treatment on HepG2 cell steatosis model. Real-time quantitative polymerase chain reaction and Western blotting were used to detect changes of corresponding gene and protein after drug intervention to explore the exam anti-hyperlipidemia mechanism of STI and GAS combination. RESULTS The weight gain, elevated blood pressure and increased blood lipids induced by high-fat-diet were significantly decreased (p < 0.05) after each prescription medicine intervention in a dose-dependent manner. In addition, 28 differential metabolites (DMs) were detected after modeling and were regulated to normal at varying degrees after each drug group treatment. In addition, eight of the 28 DMs were significantly different from the model group after the full prescription drug intervention, primarily related to four metabolic pathways, while only two metabolites were significantly different from the model group after the unprincipled drug intervention, related to one metabolic pathway. In HepG2 hyperlipidemia cell model, STI, GAS and their combination significantly decreased TC, TG levels and lipid accumulation (p < 0.05), and decreased sterol regulatory element-binding protein 1c (SREBP-1c), fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD1) and their protein expressions (p < 0.05), increased adenosine monophosphate-activated protein kinase (AMPK) and it's protein expression (p < 0.05). The two drugs work better in combination than alone. CONCLUSION BBTD has been shown to be effective in reducing lipid accumulation in a high-fat rat model, as well as in restoring the model-induced abnormal metabolites to normal levels in a dose-dependent manner. Pinellia ternata Makino and Gastrodia elata Blume, the main components of BBTD, may regulate lipid metabolism through fatty acid biosynthesis, arginine and proline metabolism. Their main active agents, STI and GAS, effectively reduce lipid accumulation and lipid content in cells and regulate the expression levels of genes and proteins associated with lipid metabolism. These results suggest that BBTD may regulate lipid metabolism via AMPK/SREBP-1c pathway.
Collapse
Affiliation(s)
- Honghua Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Yunting Sun
- Hangzhou TCM Hospital Afflitiated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311121, China.
| | - Yuqing Zou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Cheng Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
32
|
Ma X, Yu X, Li R, Cui J, Yu H, Ren L, Jiang J, Zhang W, Wang L. Berberine-silybin salt achieves improved anti-nonalcoholic fatty liver disease effect through regulating lipid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117238. [PMID: 37774895 DOI: 10.1016/j.jep.2023.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/15/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberine (BBR) and silybin (SIY) are natural compounds obtained from Berberidaceae members and Silybum marianum (L.) Gaertn., respectively. These compounds have been demonstrated to regulate lipid metabolism and indue hepatoprotective effects, establishing their importance for the treatment of liver injury. Combination therapy has shown promise in treating ailments with complex pathophysiology, such as liver diseases. However, the inconsistent dissolution and poor absorption of BBR and SIY limit their efficacy. AIM OF THE STUDY This study compared the salt formulation (BSS) and physical mixture (BSP) of BBR and SIY for their efficacy in treating nonalcoholic fatty liver disease (NAFLD). MATERIALS AND METHODS The formation of the BSS was confirmed using various techniques, including nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and powder X-ray diffractometry. In addition, dissolution, trans-epithelial permeability, and bioavailability experiments were conducted to evaluate the absorption and distribution of drugs. Pharmacodynamics and mechanisms were investigated through in vivo experiments. RESULTS BSS form demonstrated synchronized dissolution of both components, unlike BSP. Additionally, the transepithelial permeability results revealed that BSS exhibited superior penetration and absorption of both BBR and SIY in comparison to BSP. Furthermore, BSS significantly increased the bioavailability of SIY in both plasma and the liver (2.2- and 4.5-fold, respectively) when compared with BSP. Moreover, BSS demonstrated a more potent inhibitory effect on lipid production in HepG2 cells than BSP. In mouse models (BALB/c) of NAFLD, BSS improved disease outcomes, as evidenced by decreased adipose levels, normalized blood lipid levels, and reduced liver parenchyma injury. Preliminary transcriptomics analysis suggested that BSS achieved its anti-NAFLD effect by regulating the expression of fatty acid transporter CD36, recombinant fatty acid binding protein 4, and stearyl coenzyme A dehydrogenase 1, which are associated with the synthesis and uptake of fatty acid-related proteins. CONCLUSIONS The study demonstrated that compared with physical mixing, salification improved the efficacy of BBR and SIY, as demonstrated in animal experiments. These findings provide valuable insights into the development of more effective treatments for NAFLD and provide new possibilities for combination therapies.
Collapse
Affiliation(s)
- Xiaolei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaoyou Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Rui Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinjin Cui
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoyang Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ling Ren
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
33
|
Rispo F, De Negri Atanasio G, Demori I, Costa G, Marchese E, Perera-Del-Rosario S, Serrano-Candelas E, Palomino-Schätzlein M, Perata E, Robino F, Ferrari PF, Ferrando S, Letasiova S, Markus J, Zanotti-Russo M, Grasselli E. An extensive review on phenolic compounds and their potential estrogenic properties on skin physiology. Front Cell Dev Biol 2024; 11:1305835. [PMID: 38250328 PMCID: PMC10798251 DOI: 10.3389/fcell.2023.1305835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Polyphenolic compounds constitute a diverse group of natural components commonly occurring in various plant species, known for their potential to exert both beneficial and detrimental effects. Additionally, these polyphenols have also been implicated as endocrine-disrupting (ED) chemicals, raising concerns about their widespread use in the cosmetics industry. In this comprehensive review, we focus on the body of literature pertaining to the estrogenic properties of ED chemicals, with a particular emphasis on the interaction of isoflavones with estrogen receptors. Within this review, we aim to elucidate the multifaceted roles and effects of polyphenols on the skin, exploring their potential benefits as well as their capacity to act as ED agents. By delving into this intricate subject matter, we intend to provoke thoughtful consideration, effectively opening a Pandora's box of questions for the reader to ponder. Ultimately, we invite the reader to contemplate whether polyphenols should be regarded as friends or foes in the realm of skincare and endocrine disruption.
Collapse
Affiliation(s)
- Francesca Rispo
- Department of Earth, Environment and Life Science, University of Genoa, Genova, Italy
| | | | - Ilaria Demori
- Department of Pharmacy, University of Genoa, Genova, Italy
| | - Giosuè Costa
- Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Emanuela Marchese
- Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Simón Perera-Del-Rosario
- ProtoQSAR SL, Centro Europeo de Empresas Innovadoras (CEEI), Parque Tecnológico de Valencia, Valencia, Spain
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Eva Serrano-Candelas
- ProtoQSAR SL, Centro Europeo de Empresas Innovadoras (CEEI), Parque Tecnológico de Valencia, Valencia, Spain
| | | | | | | | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genova, Italy
| | - Sara Ferrando
- Department of Earth, Environment and Life Science, University of Genoa, Genova, Italy
| | | | - Jan Markus
- MatTek In Vitro Life Science Laboratories, Bratislava, Slovakia
| | | | - Elena Grasselli
- Department of Earth, Environment and Life Science, University of Genoa, Genova, Italy
- Interuniversity Center for the Promotion of 3R Principles in Teaching and Research (Centro 3R), Pisa, Italy
- National Center for the Development of New Technologies in Agriculture (Agritech), Napoli, Italy
| |
Collapse
|
34
|
Ferenc K, Jarmakiewicz-Czaja S, Filip R. What Does Sarcopenia Have to Do with Nonalcoholic Fatty Liver Disease? Life (Basel) 2023; 14:37. [PMID: 38255652 PMCID: PMC10820621 DOI: 10.3390/life14010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/24/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease. As the second stage of developing steatosis, nonalcoholic hepatitis (NASH) carries the risk of fibrosis, cirrhosis, and hepatocellular carcinoma. Sarcopenia is defined as a condition characterized by a decrease in muscle mass and functional decline. Both NAFLD and sarcopenia are global problems. The pathophysiological mechanisms that link the two entities of the disease are insulin resistance, inflammation, nutritional deficiencies, impairment of myostatin and adiponectin, or physical inactivity. Furthermore, disorders of the gut-liver axis appear to induce the process of developing NAFLD and sarcopenia. The correlations between NAFLD and sarcopenia appear to be bidirectional, so the main objective of the review was to determine the cause-and-effect relationship between the two diseases.
Collapse
Affiliation(s)
- Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | | | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
35
|
Zheng W, Yang J, Zhang Q, Cheng M, Shaukat H, Qin H. Sesamol Alleviates High-Fat Diet-Induced Hepatic Insulin Resistance in C57BL/6 J Mice Through AMPK Activation Mediated by Adipose Adiponectin. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:720-727. [PMID: 37775709 DOI: 10.1007/s11130-023-01108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Sesamol is the major bioactive constituent isolated from sesame seeds and has a variety of bioactivities. However, its role and mechanism in liver insulin resistance remain unknown. The current study was designed to investigate the underlying adipose-liver crosstalk mechanism of sesamol ameliorating hepatic insulin sensitivity. The therapeutic effect of sesamol was evaluated in high-fat diet (HFD)-fed C57BL/6 J mice (100 mg/kg for 8 weeks, XYGW-2021-75) and the mechanism was further explored in HepG2 cells with/without adiponectin and adenosine 5 '-monophosphate-activated protein kinase (AMPK) inhibitor administration. Our in vivo data showed that sesamol reduced hepatic insulin resistance in HFD-induced mice with obesity by modulating protein expression levels of glycogen synthase (GS), phosphoenolpyruvate carboxykinase (PEPCK) and protein kinase B (AKT). Moreover, sesamol not only increased the serum and adipose tissue adiponectin concentrations but also activated the phosphorylation of AMPK in the liver. Furthermore, in vitro studies using recombinant human adiponectin and an AMPK inhibitor revealed that adiponectin and sesamol have a synergic impact on increasing glycogenesis and reducing gluconeogenesis, of which the effects could be attenuated by the AMPK inhibitor. Taken together, our results suggested that sesamol stimulated adiponectin secretion from adipocytes, whereby exhibited a co-effect on activating the downstream signal of hepatic AMPK, resulting in the alleviation of hepatic insulin resistance. The novel findings of sesamol on hepatic effects provides prospective therapeutic approaches to treat insulin resistance.
Collapse
Affiliation(s)
- Wenya Zheng
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Jinxin Yang
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Quanquan Zhang
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Minghui Cheng
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Horia Shaukat
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Hong Qin
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
36
|
Wayal V, Hsieh CC. Bioactive dipeptides mitigate high-fat and high-fructose corn syrup diet-induced metabolic-associated fatty liver disease via upregulation of Nrf2/HO-1 expressions in C57BL/6J mice. Biomed Pharmacother 2023; 168:115724. [PMID: 37852102 DOI: 10.1016/j.biopha.2023.115724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), formerly referred to as non-alcoholic fatty liver disease (NAFLD), is a common liver disease characterized by an abnormal buildup of fat in liver. This study aimed to investigate whether bioactive dipeptides mitigate high-fat and high-fructose corn syrup diet (HFFD)-induced MAFLD in C57BL/6J mice. Sixty male C57BL/6J mice were randomly divided into six groups. The naïve group (untreated) was fed a standard chow diet and other groups were fed with HFFD along with vehicle and bioactive dipeptides treatment throughout experiment period. The control group received vehicle, YF10 and YF50 groups received Tyr-Phe, 10 and 50 mg/kg/day, FY10 and FY50 groups received Phe-Tyr, 10 and 50 mg/kg/day. At the end of experiment, body weight was recorded, and glucose homeostasis was assessed. Mice were sacrificed and blood samples were collected to measure biochemical parameters. Further, liver, visceral fat pads, and other organs were acutely dissected, weighed, and processed. Histopathological and immunohistochemical changes were analyzed. Long-term HFFD feeding resulted in elevated body weight gain, liver weight, visceral adiposity, liver injury, fasting hyperglycemia, hyperinsulinemia, and hyperlipidemia. It also increased severe hepatic steatosis, chronic low-grade inflammation, oxidative stress, mitochondrial dysfunction, and lipid peroxidation. However, bioactive dipeptides dose-dependently alleviated these complications which are associated with MAFLD by modulating adipokines secretion and antioxidant defense system via upregulation of Nrf2/HO-1 expressions. This study highlights potential of bioactive dipeptides as a promising approach for prevention and/or treatment of MAFLD induced by HFFD, providing novel insights into alternative therapeutic strategies.
Collapse
Affiliation(s)
- Vipul Wayal
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407224, Taiwan
| | - Chang-Chi Hsieh
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407224, Taiwan.
| |
Collapse
|
37
|
Paine‐Cabrera D, Harvey LK, Robarts DR, Pritchard MT, Thyfault J, Weinman SA, Apte U, Slowik V. Leukocyte cell-derived chemotaxin 2 correlates with pediatric non-alcoholic fatty liver disease. Clin Transl Sci 2023; 16:2719-2728. [PMID: 37877453 PMCID: PMC10719457 DOI: 10.1111/cts.13666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/07/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), newly renamed metabolic dysfunction-associated liver disease (MASLD), is a leading cause of liver disease in children and adults. There is a paucity of data surrounding potential biomarkers and therapeutic targets, especially in pediatric NAFLD. Leukocyte cell-derived chemotaxin 2 (LECT2) is a chemokine associated with both liver disease and skeletal muscle insulin resistance. Our aim was to determine associations between LECT2 and common clinical findings of NAFLD in pediatric patients. Enzyme-linked immunosorbent assay (ELISA) was used to measure serum LECT2 concentrations in children (aged 2-17 years) with and without NAFLD. LECT2 concentrations were then correlated to clinical parameters in NAFLD. Mean LECT2 was significantly elevated in children with NAFLD versus healthy controls (n = 63 vs. 42, 5.83 ± 1.98 vs. 4.02 ± 2.02 ng/mL, p < 0.005). Additionally, LECT2 had strong correlations with body mass index (BMI) (Pearson r = 0.301, p = 0.002). A LECT2 concentration of 3.76 mg/mL predicts NAFLD with a sensitivity of 90.5% and specificity of 54.8%. Principal component analysis and logistic regression models further confirmed associations between LECT2 and NAFLD status. This study demonstrates increased serum LECT2 concentrations in pediatric NAFLD, which correlates with BMI and shows strong predictive value within these patients. Our data indicate that LECT2 is a potential diagnostic biomarker of disease and should be further investigated in pediatric as well as adult NAFLD.
Collapse
Affiliation(s)
- Diego Paine‐Cabrera
- Department of Pharmacology, Toxicology and TherapeuticsUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Lisa K. Harvey
- Division of Gastroenterology, Hepatology, and NutritionChildren's Mercy – Kansas CityKansas CityMissouriUSA
| | - Dakota R. Robarts
- Department of Pharmacology, Toxicology and TherapeuticsUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Michele T. Pritchard
- Department of Pharmacology, Toxicology and TherapeuticsUniversity of Kansas Medical CenterKansas CityKansasUSA
- University of Kansas Liver CenterKansas CityKansasUSA
| | - John Thyfault
- Department of Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
- Children's Center for Healthy Lifestyles and NutritionKansas CityMissouriUSA
| | - Steven A. Weinman
- University of Kansas Liver CenterKansas CityKansasUSA
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and TherapeuticsUniversity of Kansas Medical CenterKansas CityKansasUSA
- University of Kansas Liver CenterKansas CityKansasUSA
- Children's Center for Healthy Lifestyles and NutritionKansas CityMissouriUSA
| | - Voytek Slowik
- Division of Gastroenterology, Hepatology, and NutritionChildren's Mercy – Kansas CityKansas CityMissouriUSA
- Children's Center for Healthy Lifestyles and NutritionKansas CityMissouriUSA
| |
Collapse
|
38
|
Vesković M, Šutulović N, Hrnčić D, Stanojlović O, Macut D, Mladenović D. The Interconnection between Hepatic Insulin Resistance and Metabolic Dysfunction-Associated Steatotic Liver Disease-The Transition from an Adipocentric to Liver-Centric Approach. Curr Issues Mol Biol 2023; 45:9084-9102. [PMID: 37998747 PMCID: PMC10670061 DOI: 10.3390/cimb45110570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The central mechanism involved in the pathogenesis of MAFLD is insulin resistance with hyperinsulinemia, which stimulates triglyceride synthesis and accumulation in the liver. On the other side, triglyceride and free fatty acid accumulation in hepatocytes promotes insulin resistance via oxidative stress, endoplasmic reticulum stress, lipotoxicity, and the increased secretion of hepatokines. Cytokines and adipokines cause insulin resistance, thus promoting lipolysis in adipose tissue and ectopic fat deposition in the muscles and liver. Free fatty acids along with cytokines and adipokines contribute to insulin resistance in the liver via the activation of numerous signaling pathways. The secretion of hepatokines, hormone-like proteins, primarily by hepatocytes is disturbed and impairs signaling pathways, causing metabolic dysregulation in the liver. ER stress and unfolded protein response play significant roles in insulin resistance aggravation through the activation of apoptosis, inflammatory response, and insulin signaling impairment mediated via IRE1/PERK/ATF6 signaling pathways and the upregulation of SREBP 1c. Circadian rhythm derangement and biological clock desynchronization are related to metabolic disorders, insulin resistance, and NAFLD, suggesting clock genes as a potential target for new therapeutic strategies. This review aims to summarize the mechanisms of hepatic insulin resistance involved in NAFLD development and progression.
Collapse
Affiliation(s)
- Milena Vesković
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nikola Šutulović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Dragan Hrnčić
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Olivera Stanojlović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dušan Mladenović
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
39
|
Guo F, Xiong H, Tsao R, Shahidi F, Wen X, Liu J, Jiang L, Sun Y. Green Pea ( Pisum sativum L.) Hull Polyphenol Extract Alleviates NAFLD through VB6/TLR4/NF-κB and PPAR Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16067-16078. [PMID: 37861789 DOI: 10.1021/acs.jafc.3c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Green pea hull is a processing byproduct of green pea and rich in polyphenols. Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic disease characterized by accumulation of lipids in the liver for which there are no effective treatment strategies. Here, a mouse model of NAFLD induced by a DSS+high-fat diet (HFD) was established to investigate the effect of green pea hull polyphenol extract (EGPH). The results show that EGPH relief of NAFLD was a combined effect, including reducing hepatic fat accumulation, improving antioxidant activity and blood lipid metabolism, and maintaining glucose homeostasis. Increased intestinal permeability aggravated NAFLD. Combined metabolomics and transcriptomic analysis showed that vitamin B6 is the key target substance for EGPH to alleviate NAFLD, and it may be the intestinal flora metabolite. After EGPH intervention, the level of vitamin B6 in mice was significantly increased, and more than 60% in the blood enters the liver, which activated or inhibited PPAR and TLR4/NF-κB signaling pathways to relieve NAFLD. Our research could be a win-win for expanding the use of green pea hull and the search for NAFLD prophylactic drugs.
Collapse
Affiliation(s)
- Fanghua Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agricultural and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Xushen Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | | | - Li Jiang
- Jiangxi University of TraditionalChinese Medicine, Nanchang, Jiangxi 330004, China
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
40
|
Khaznadar F, Petrovic A, Khaznadar O, Roguljic H, Bojanic K, Kuna Roguljic L, Siber S, Smolic R, Bilic-Curcic I, Wu GY, Smolic M. Biomarkers for Assessing Non-Alcoholic Fatty Liver Disease in Patients with Type 2 Diabetes Mellitus on Sodium-Glucose Cotransporter 2 Inhibitor Therapy. J Clin Med 2023; 12:6561. [PMID: 37892698 PMCID: PMC10607797 DOI: 10.3390/jcm12206561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
In the current modern era of unhealthy lifestyles, non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease and has become a serious global health problem. To date, there is no approved pharmacotherapy for the treatment of NAFLD, and necessary lifestyle changes such as weight loss, diet, and exercise are usually not sufficient to manage this disease. Patients with type 2 diabetes mellitus (T2DM) have a significantly higher risk of developing NAFLD and vice versa. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are antidiabetic agents that have recently been approved for two other indications: chronic kidney disease and heart failure in diabetics and non-diabetics. They are also emerging as promising new agents for NAFLD treatment, as they have shown beneficial effects on hepatic inflammation, steatosis, and fibrosis. Studies in animals have reported favorable effects of SGLT2 inhibitors, and studies in patients also found positive effects on body mass index (BMI), insulin resistance, glucose levels, liver enzymes, apoptosis, and transcription factors. There are some theories regarding how SGLT2 inhibitors affect the liver, but the exact mechanism is not yet fully understood. Therefore, biomarkers to evaluate underlying mechanisms of action of SGLT2 inhibitors on the liver have now been scrutinized to assess their potential as a future in-label therapy for NAFLD. In addition, finding suitable non-invasive biomarkers could be helpful in clinical practice for the early detection of NAFLD in patients. This is crucial for a positive disease outcome. The aim of this review is to provide an overview of the most recent findings on the effects of SGLT2 inhibitors on NAFLD biomarkers and the potential of SGLT2 inhibitors to successfully treat NAFLD.
Collapse
Affiliation(s)
- Farah Khaznadar
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| | - Omar Khaznadar
- Department of Radiology, “Dr. Juraj Njavro” National Memorial Hospital Vukovar, 32000 Vukovar, Croatia;
| | - Hrvoje Roguljic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Clinical Hospital Center, 31000 Osijek, Croatia
| | - Kristina Bojanic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Health Center Osijek-Baranja County, 31000 Osijek, Croatia
| | - Lucija Kuna Roguljic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| | - Stjepan Siber
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| | - Ines Bilic-Curcic
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Clinical Hospital Center, 31000 Osijek, Croatia
| | - George Y. Wu
- Department of Medicine, Division of Gastrenterology/Hepatology, University of Connecticut Health Center, Farmington, CT 06030, USA;
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| |
Collapse
|
41
|
Demir M, Bornstein SR, Mantzoros CS, Perakakis N. Liver fat as risk factor of hepatic and cardiometabolic diseases. Obes Rev 2023; 24:e13612. [PMID: 37553237 DOI: 10.1111/obr.13612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disorder characterized by excessive accumulation of fat in the liver that can progress to liver inflammation (non-alcoholic steatohepatitis [NASH]), liver fibrosis, and cirrhosis. Although most efforts for drug development are focusing on the treatment of the latest stages of NAFLD, where significant fibrosis and NASH are present, findings from studies suggest that the amount of liver fat may be an important independent risk factor and/or predictor of development and progression of NAFLD and metabolic diseases. In this review, we first describe the current tools available for quantification of liver fat in humans and then present the clinical and pathophysiological evidence that link liver fat with NAFLD progression as well as with cardiometabolic diseases. Finally, we discuss current pharmacological and non-pharmacological approaches to reduce liver fat and present open questions that have to be addressed in future studies.
Collapse
Affiliation(s)
- Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, Berlin, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Christos S Mantzoros
- Division of Endocrinology, Boston VA Healthcare System and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, 02215, USA
| | - Nikolaos Perakakis
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
42
|
Memaj P, Ouzerara Z, Jornayvaz FR. Role of Oxidative Stress and Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:11271. [PMID: 37511031 PMCID: PMC10379080 DOI: 10.3390/ijms241411271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a widely studied subject due to its increasing prevalence and links to diseases such as type 2 diabetes and obesity. It has severe complications, including nonalcoholic steatohepatitis, cirrhosis, hepatocellular carcinoma, and portal hypertension that can lead to liver transplantation in some cases. To better prevent and treat this pathology, it is important to understand its underlying physiology. Here, we identify two main factors that play a crucial role in the pathophysiology of NAFLD: oxidative stress and the key role of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). We discuss the pathophysiology linking these factors to NAFLD pathophysiology.
Collapse
Affiliation(s)
- Plator Memaj
- Division of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Zayd Ouzerara
- Division of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - François R Jornayvaz
- Division of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, Geneva University, 1205 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva University, 1205 Geneva, Switzerland
| |
Collapse
|
43
|
Jin Y, Heo KS. Experimental model and novel therapeutic targets for non-alcoholic fatty liver disease development. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:299-310. [PMID: 37386828 PMCID: PMC10316197 DOI: 10.4196/kjpp.2023.27.4.299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 07/01/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex disorder characterized by the accumulation of fat in the liver in the absence of excessive alcohol consumption. It is one of the most common liver diseases worldwide, affecting approximately 25% of the global population. It is closely associated with obesity, type 2 diabetes, and metabolic syndrome. Moreover, NAFLD can progress to non-alcoholic steatohepatitis, which can cause liver cirrhosis, liver failure, and hepatocellular carcinoma. Currently, there are no approved drugs for the treatment of NAFLD. Therefore, the development of effective drugs is essential for NAFLD treatment. In this article, we discuss the experimental models and novel therapeutic targets for NAFLD. Additionally, we propose new strategies for the development of drugs for NAFLD.
Collapse
Affiliation(s)
- Yujin Jin
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea
| | - Kyung-Sun Heo
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
44
|
Chen Y, Wang W, Morgan MP, Robson T, Annett S. Obesity, non-alcoholic fatty liver disease and hepatocellular carcinoma: current status and therapeutic targets. Front Endocrinol (Lausanne) 2023; 14:1148934. [PMID: 37361533 PMCID: PMC10286797 DOI: 10.3389/fendo.2023.1148934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Obesity is a global epidemic and overwhelming evidence indicates that it is a risk factor for numerous cancers, including hepatocellular carcinoma (HCC), the third leading cause of cancer-related deaths worldwide. Obesity-associated hepatic tumorigenesis develops from nonalcoholic fatty liver disease (NAFLD), progressing to nonalcoholic steatohepatitis (NASH), cirrhosis and ultimately to HCC. The rising incidence of obesity is resulting in an increased prevalence of NAFLD and NASH, and subsequently HCC. Obesity represents an increasingly important underlying etiology of HCC, in particular as the other leading causes of HCC such as hepatitis infection, are declining due to effective treatments and vaccines. In this review, we provide a comprehensive overview of the molecular mechanisms and cellular signaling pathways involved in the pathogenesis of obesity-associated HCC. We summarize the preclinical experimental animal models available to study the features of NAFLD/NASH/HCC, and the non-invasive methods to diagnose NAFLD, NASH and early-stage HCC. Finally, since HCC is an aggressive tumor with a 5-year survival of less than 20%, we will also discuss novel therapeutic targets for obesity-associated HCC and ongoing clinical trials.
Collapse
Affiliation(s)
- Yinshuang Chen
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Maria P. Morgan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
45
|
Kumar S, Chhimwal J, Kumar S, Singh R, Patial V, Purohit R, Padwad YS. Phloretin and phlorizin mitigates inflammatory stress and alleviate adipose and hepatic insulin resistance by abrogating PPARγ S273-Cdk5 interaction in type 2 diabetic mice. Life Sci 2023; 322:121668. [PMID: 37023949 DOI: 10.1016/j.lfs.2023.121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
AIMS The rising prevalence of type 2 diabetes mellitus (T2DM) and accompanying insulin resistance is alarming globally. Natural and synthetic agonists of PPARγ are potentially attractive candidates for diabetics and are known to efficiently reverse adipose and hepatic insulin resistance, but related side effects and escalating costs are the causes of concern. Therefore, targeting PPARγ with natural ligands is advantageous and promising approach for the better management of T2DM. The present research aimed to assess the antidiabetic potential of phenolics Phloretin (PTN) and Phlorizin (PZN) in type 2 diabetic mice. MAIN METHODS In silico docking was performed to check the effect of PTN and PZN on PPARγ S273-Cdk5 interactions. The docking results were further validated in preclinical settings by utilizing a mice model of high fat diet-induced T2DM. KEY FINDINGS Computational docking and further MD-simulation data revealed that PTN and PZN inhibited the activation of Cdk5, thereby blocking the phosphorylation of PPARγ. Our in vivo results further demonstrated that PTN and PZN administration significantly improved the secretory functions of adipocytes by increasing adiponectin and reducing inflammatory cytokine levels, which ultimately reduced the hyperglycaemic index. Additionally, combined treatment of PTN and PZN decreased in vivo adipocyte expansion and increased Glut4 expression in adipose tissues. Furthermore, PTN and PZN treatment reduced hepatic insulin resistance by modulating lipid metabolism and inflammatory markers. SIGNIFICANCE In summary, our findings strongly imply that PTN and PZN are candidates as nutraceuticals in the management of comorbidities related to diabetes and its complications.
Collapse
Affiliation(s)
- Shiv Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Jyoti Chhimwal
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Suresh Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Rahul Singh
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India.
| | - Yogendra S Padwad
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
46
|
An S, Ko H, Jang H, Park IG, Ahn S, Hwang SY, Gong J, Oh S, Kwak SY, Lee Y, Kim H, Noh M. Prenylated Chrysin Derivatives as Partial PPARγ Agonists with Adiponectin Secretion-Inducing Activity. ACS Med Chem Lett 2023; 14:425-431. [PMID: 37077388 PMCID: PMC10107909 DOI: 10.1021/acsmedchemlett.2c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Decreased circulating adiponectin levels are associated with an increased risk of human metabolic diseases. The chemical-mediated upregulation of adiponectin biosynthesis has been proposed as a novel therapeutic approach to managing hypoadiponectinemia-associated diseases. In preliminary screening, the natural flavonoid chrysin (1) exhibited adiponectin secretion-inducing activity during adipogenesis in human bone marrow mesenchymal stem cells (hBM-MSCs). Here, we provide the 7-prenylated chrysin derivatives, chrysin 5-benzyl-7-prenylether compound 10 and chrysin 5,7-diprenylether compound 11, with the improved pharmacological profile compared with chrysin (1). Nuclear receptor binding and ligand-induced coactivator recruitment assays revealed that compounds 10 and 11 functioned as peroxisome proliferator-activated receptor (PPAR)γ partial agonists. These findings were supported by molecular docking simulation, followed by experimental validation. Notably, compound 11 showed PPARγ binding affinity as potent as that of the PPARγ agonists pioglitazone and telmisartan. This study presents a novel PPARγ partial agonist pharmacophore and suggests that prenylated chrysin derivatives have therapeutic potential in various human diseases associated with hypoadiponectinemia.
Collapse
Affiliation(s)
- Seungchan An
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyejin Ko
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hongjun Jang
- Research
Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - In Guk Park
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungjin Ahn
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seok Young Hwang
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junpyo Gong
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Soyeon Oh
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Soo Yeon Kwak
- Research
Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Yeonjin Lee
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyoungsu Kim
- Research
Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Minsoo Noh
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
47
|
Kosmalski M, Śliwińska A, Drzewoski J. Non-Alcoholic Fatty Liver Disease or Type 2 Diabetes Mellitus—The Chicken or the Egg Dilemma. Biomedicines 2023; 11:biomedicines11041097. [PMID: 37189715 DOI: 10.3390/biomedicines11041097] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
In clinical practice, we often deal with patients who suffer from non-alcoholic fatty liver disease (NAFLD) concurrent with type 2 diabetes mellitus (T2DM). The etiopathogenesis of NAFLD is mainly connected with insulin resistance (IR) and obesity. Similarly, the latter patients are in the process of developing T2DM. However, the mechanisms of NAFLD and T2DM coexistence have not been fully elucidated. Considering that both diseases and their complications are of epidemic proportions and significantly affect the length and quality of life, we aimed to answer which of these diseases appears first and thereby highlight the need for their diagnosis and treatment. To address this question, we present and discuss the epidemiological data, diagnoses, complications and pathomechanisms of these two coexisting metabolic diseases. This question is difficult to answer due to the lack of a uniform procedure for NAFLD diagnosis and the asymptomatic nature of both diseases, especially at their beginning stages. To conclude, most researchers suggest that NAFLD appears as the first disease and starts the sequence of circumstances leading ultimately to the development of T2DM. However, there are also data suggesting that T2DM develops before NAFLD. Despite the fact that we cannot definitively answer this question, it is very important to bring the attention of clinicians and researchers to the coexistence of NAFLD and T2DM in order to prevent their consequences.
Collapse
Affiliation(s)
- Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acids Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
| | - Józef Drzewoski
- Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| |
Collapse
|
48
|
Hnilicova P, Kantorova E, Sutovsky S, Grofik M, Zelenak K, Kurca E, Zilka N, Parvanovova P, Kolisek M. Imaging Methods Applicable in the Diagnostics of Alzheimer's Disease, Considering the Involvement of Insulin Resistance. Int J Mol Sci 2023; 24:3325. [PMID: 36834741 PMCID: PMC9958721 DOI: 10.3390/ijms24043325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease and the most frequently diagnosed type of dementia, characterized by (1) perturbed cerebral perfusion, vasculature, and cortical metabolism; (2) induced proinflammatory processes; and (3) the aggregation of amyloid beta and hyperphosphorylated Tau proteins. Subclinical AD changes are commonly detectable by using radiological and nuclear neuroimaging methods such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and single-photon emission computed tomography (SPECT). Furthermore, other valuable modalities exist (in particular, structural volumetric, diffusion, perfusion, functional, and metabolic magnetic resonance methods) that can advance the diagnostic algorithm of AD and our understanding of its pathogenesis. Recently, new insights into AD pathoetiology revealed that deranged insulin homeostasis in the brain may play a role in the onset and progression of the disease. AD-related brain insulin resistance is closely linked to systemic insulin homeostasis disorders caused by pancreas and/or liver dysfunction. Indeed, in recent studies, linkages between the development and onset of AD and the liver and/or pancreas have been established. Aside from standard radiological and nuclear neuroimaging methods and clinically fewer common methods of magnetic resonance, this article also discusses the use of new suggestive non-neuronal imaging modalities to assess AD-associated structural changes in the liver and pancreas. Studying these changes might be of great clinical importance because of their possible involvement in AD pathogenesis during the prodromal phase of the disease.
Collapse
Affiliation(s)
- Petra Hnilicova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Ema Kantorova
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Stanislav Sutovsky
- 1st Department of Neurology, Faculty of Medicine, Comenius University in Bratislava and University Hospital, 813 67 Bratislava, Slovakia
| | - Milan Grofik
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Kamil Zelenak
- Clinic of Radiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Egon Kurca
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Petra Parvanovova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Martin Kolisek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
49
|
Could Naringenin Participate as a Regulator of Obesity and Satiety? Molecules 2023; 28:molecules28031450. [PMID: 36771113 PMCID: PMC9921626 DOI: 10.3390/molecules28031450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Obesity is a serious health problem worldwide, since it is associated with multiple metabolic disorders and complications such as cardiovascular disease, type 2 diabetes, fatty liver disease and overall metabolic dysfunction. Dysregulation of the hunger-satiety pathway, which includes alterations of central and peripheral signaling, explains some forms of obesity by favoring hyperphagia and weight gain. The present work comprehensively summarizes the mechanisms by which naringenin (NAR), a predominant flavanone in citrus fruits, could modulate the main pathways associated with the development of obesity and some of its comorbidities, such as oxidative stress (OS), inflammation, insulin resistance (IR) and dyslipidemia, as well as the role of NAR in modulating the secretion of enterohormones of the satiety pathway and its possible antiobesogenic effect. The results of multiple in vitro and in vivo studies have shown that NAR has various potentially modulatory biological effects against obesity by countering IR, inflammation, OS, macrophage infiltration, dyslipidemia, hepatic steatosis, and adipose deposition. Likewise, NAR is capable of modulating peptides or peripheral hormones directly associated with the hunger-satiety pathway, such as ghrelin, cholecystokinin, insulin, adiponectin and leptin. The evidence supports the use of NAR as a promising alternative to prevent overweight and obesity.
Collapse
|
50
|
Olivares-Caro L, Nova-Baza D, Radojkovic C, Bustamante L, Duran D, Mennickent D, Melin V, Contreras D, Perez AJ, Mardones C. Berberis microphylla G. Forst Intake Reduces the Cardiovascular Disease Plasmatic Markers Associated with a High-Fat Diet in a Mice Model. Antioxidants (Basel) 2023; 12:antiox12020304. [PMID: 36829862 PMCID: PMC9952125 DOI: 10.3390/antiox12020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Polyphenols are bioactive substances that participate in the prevention of chronic illnesses. High content has been described in Berberis microphylla G. Forst (calafate), a wild berry extensively distributed in Chilean-Argentine Patagonia. We evaluated its beneficial effect through the study of mouse plasma metabolome changes after chronic consumption of this fruit. Characterized calafate extract was administered in water, for four months, to a group of mice fed with a high-fat diet and compared with a control diet. Metabolome changes were studied using UHPLC-DAD-QTOF-based untargeted metabolomics. The study was complemented by the analysis of protein biomarkers determined using Luminex technology, and quantification of OH radicals by electron paramagnetic resonance spectroscopy. Thirteen features were identified with a maximum annotation level-A, revealing an increase in succinic acid, activation of tricarboxylic acid and reduction of carnitine accumulation. Changes in plasma biomarkers were related to inflammation and cardiovascular disease, with changes in thrombomodulin (-24%), adiponectin (+68%), sE-selectin (-34%), sICAM-1 (-24%) and proMMP-9 (-31%) levels. The production of OH radicals in plasma was reduced after calafate intake (-17%), especially for the group fed with a high-fat diet. These changes could be associated with protection against atherosclerosis due to calafate consumption, which is discussed from a holistic and integrative point of view.
Collapse
Affiliation(s)
- Lia Olivares-Caro
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Daniela Nova-Baza
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Claudia Radojkovic
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Luis Bustamante
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Daniel Duran
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Daniela Mennickent
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Victoria Melin
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica 1000007, Chile
| | - David Contreras
- Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4070386, Chile
| | - Andy J. Perez
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Claudia Mardones
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción, Coronel 4191996, Chile
- Correspondence: ; Tel.: +56-983616340
| |
Collapse
|