1
|
Jin J, Zhang H, Lu Q, Tian L, Yao S, Lai F, Liang Y, Liu C, Lu Y, Tian S, Zhao Y, Ren W. Nanocarrier-mediated siRNA delivery: a new approach for the treatment of traumatic brain injury-related Alzheimer's disease. Neural Regen Res 2025; 20:2538-2555. [PMID: 39314170 PMCID: PMC11801294 DOI: 10.4103/nrr.nrr-d-24-00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024] Open
Abstract
Traumatic brain injury and Alzheimer's disease share pathological similarities, including neuronal loss, amyloid-β deposition, tau hyperphosphorylation, blood-brain barrier dysfunction, neuroinflammation, and cognitive deficits. Furthermore, traumatic brain injury can exacerbate Alzheimer's disease-like pathologies, potentially leading to the development of Alzheimer's disease. Nanocarriers offer a potential solution by facilitating the delivery of small interfering RNAs across the blood-brain barrier for the targeted silencing of key pathological genes implicated in traumatic brain injury and Alzheimer's disease. Unlike traditional approaches to neuroregeneration, this is a molecular-targeted strategy, thus avoiding non-specific drug actions. This review focuses on the use of nanocarrier systems for the efficient and precise delivery of siRNAs, discussing the advantages, challenges, and future directions. In principle, siRNAs have the potential to target all genes and non-targetable proteins, holding significant promise for treating various diseases. Among the various therapeutic approaches currently available for neurological diseases, siRNA gene silencing can precisely "turn off" the expression of any gene at the genetic level, thus radically inhibiting disease progression; however, a significant challenge lies in delivering siRNAs across the blood-brain barrier. Nanoparticles have received increasing attention as an innovative drug delivery tool for the treatment of brain diseases. They are considered a potential therapeutic strategy with the advantages of being able to cross the blood-brain barrier, targeted drug delivery, enhanced drug stability, and multifunctional therapy. The use of nanoparticles to deliver specific modified siRNAs to the injured brain is gradually being recognized as a feasible and effective approach. Although this strategy is still in the preclinical exploration stage, it is expected to achieve clinical translation in the future, creating a new field of molecular targeted therapy and precision medicine for the treatment of Alzheimer's disease associated with traumatic brain injury.
Collapse
Affiliation(s)
- Jie Jin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Huajing Zhang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Linqiang Tian
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Sanqiao Yao
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Feng Lai
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Chuanchuan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yujia Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sijia Tian
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Wenjie Ren
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
| |
Collapse
|
2
|
van Hattem T, Verkaar L, Krugliakova E, Adelhöfer N, Zeising M, Drinkenburg WHIM, Claassen JAHR, Bódizs R, Dresler M, Rosenblum Y. Targeting Sleep Physiology to Modulate Glymphatic Brain Clearance. Physiology (Bethesda) 2025; 40:0. [PMID: 39601891 DOI: 10.1152/physiol.00019.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/12/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Sleep has been postulated to play an important role in the removal of potentially neurotoxic molecules, such as amyloid-β, from the brain via the glymphatic system. Disturbed sleep, on the other hand, may contribute to the accumulation of neurotoxins in brain tissue, eventually leading to neuronal death. A bidirectional relationship has been proposed between impaired sleep and neurodegenerative processes, which start years before the onset of clinical symptoms associated with conditions like Alzheimer's and Parkinson's diseases. Given the heavy burden these conditions place on society, it is imperative to develop interventions that promote efficient brain clearance, thereby potentially aiding in the prevention or slowing of neurodegeneration. In this review, we explore whether the metabolic clearance function of sleep can be enhanced through sensory (e.g., auditory, vestibular) or transcranial (e.g., magnetic, ultrasound, infrared light) stimulation, as well as pharmacological (e.g., antiepileptics) and behavioral (e.g., sleeping position, physical exercise, cognitive intervention) modulation of sleep physiology. A particular focus is placed on strategies to enhance slow-wave activity during nonrapid eye movement sleep as a driver of glymphatic brain clearance. Overall, this review provides a comprehensive overview on the potential preventative and therapeutic applications of sleep interventions in combating neurodegeneration, cognitive decline, and dementia.
Collapse
Affiliation(s)
- Timo van Hattem
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lieuwe Verkaar
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elena Krugliakova
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nico Adelhöfer
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Zeising
- Klinikum Ingolstadt, Centre of Mental Health, Ingolstadt, Germany
| | - Wilhelmus H I M Drinkenburg
- Groningen Institute for Evolutionary Life Sciences, Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Jurgen A H R Claassen
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yevgenia Rosenblum
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Sirimaharaj N, Thiankhaw K, Chattipakorn N, Chattipakorn SC. Unveiling the Protective Roles of Melatonin on Glial Cells in the Battle Against Alzheimer's Disease-Insights from In Vivo and In Vitro Studies. Mol Neurobiol 2025:10.1007/s12035-025-04904-7. [PMID: 40208552 DOI: 10.1007/s12035-025-04904-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder that predominantly affects the elderly. Characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles, AD leads to memory loss, cognitive decline, and severe behavioral changes. As the most common form of dementia, AD imposes a significant global health burden, highlighting the need for interventions that address underlying disease mechanisms rather than only symptomatic treatment. Glial cells, including microglia and astrocytes, play a crucial role in AD progression by mediating neuroinflammatory responses and modulating Aβ clearance and neuronal health. Dysfunction in these cells can exacerbate neuroinflammation and neuronal damage, making glial cells an important target for therapeutic intervention. This review synthesizes findings from in vivo and in vitro studies on melatonin's effects on glial cell dysfunction in AD, emphasizing the multi-mechanistic nature of its neuroprotective properties. Recent studies highlight melatonin's potential as a therapeutic agent that addresses AD-related mechanisms through its interactions with glial cells. Melatonin has demonstrated protective effects, including reducing oxidative stress, apoptosis, and inflammation, inhibiting Aβ fibrillogenesis, and modulating amyloid precursor proteins. Additionally, its influence on glial cell activity, through melatonin receptor pathways, suggests it can alleviate neuroinflammation, a key component of AD progression. The collective evidence points to melatonin's promise as a therapeutic tool with potential roles in both preventive and adjunctive treatments for AD. However, further research is necessary to establish its efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Nopdanai Sirimaharaj
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kitti Thiankhaw
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
4
|
Li Y, Wang T, Li H, Jiang Y, Shen X, Kang N, Guo Z, Zhang R, Lu X, Kang T, Li M, Hou Y, Wu Y. Targeting LKB1-AMPK-SIRT1-induced autophagy and mitophagy pathways improves cerebrovascular homeostasis in APP/PS1 mice. Free Radic Biol Med 2025; 233:400-418. [PMID: 40180019 DOI: 10.1016/j.freeradbiomed.2025.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/14/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common and severe degenerative disorder of the central nervous system in the elderly, profoundly impacting patients' quality of life. However, effective therapeutic agents for AD are still lacking. Bazi Bushen capsule (BZBS) is a traditional Chinese herbal compound with potential neuroprotective effects, yet its underlying mechanisms remain poorly understood. METHODS In this study, we utilized APP/PS1 transgenic mice to assess the therapeutic efficacy of BZBS. Initially, we evaluated the spatial learning and memory of the mice using the Barnes maze. The brain microcirculation was assessed through a small-animal ultrasound system, two-photon in vivo imaging, and micro-computed tomography angiography. Molecular, biochemical, and pathological analyses were conducted on brain tissues. Through network pharmacology, we identified potential intervention pathways and targets for BZBS in the treatment of AD, which we subsequently validated both in vivo and in vitro. Additionally, we employed molecular virtual docking screening and biolayer interferometry to elucidate the direct interactions of ginsenoside Rg5 and ginsenoside Ro in BZBS with AMPK and LKB1 proteins. RESULTS The BZBS intervention significantly enhanced spatial learning and memory in APP/PS1 mice while decreasing Aβ deposition. Furthermore, BZBS protected cerebrovascular homeostasis and mitigated neuroinflammation, as evidenced by decreased blood-brain barrier permeability, increased expression of tight-junction proteins, and restored cerebral blood flow. Mechanistically, ginsenosides Rg5 and Ro in BZBS directly bind to AMPK and LKB1 proteins, activating the LKB1-AMPK-SIRT1 signaling pathway, promoting autophagy and mitochondrial autophagy, and alleviating oxidative stress damage in endothelial cells. CONCLUSIONS BZBS enhances autophagy-related activity, decreases Aβ deposition, and improves endothelial cell homeostasis through the activation of the LKB1-AMPK-SIRT1 signaling pathway, ultimately leading to improved cognitive function in mice with AD. This study highlights the importance of enhancing autophagic activity and maintaining cerebrovascular homeostasis in mitigating cognitive decline in AD, providing evidence and new insights into the application of compound medicines for treating age-related neurological disorders.
Collapse
Affiliation(s)
- Yawen Li
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Tongxing Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Hongrong Li
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China; Hebei Yiling Hospital, Shijiazhuang, 050035, China
| | - Yuning Jiang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaogang Shen
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Ning Kang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Zhifang Guo
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Runtao Zhang
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Xuan Lu
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Tianyu Kang
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Mengnan Li
- Hebei Medical University, Shijiazhuang, 050017, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China.
| | - Yunlong Hou
- Hebei Medical University, Shijiazhuang, 050017, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China.
| | - Yiling Wu
- Hebei Medical University, Shijiazhuang, 050017, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China.
| |
Collapse
|
5
|
Li Z, Li X, Su L, Zhang Z, Guo H, Ge Y, Dong F, Zhang F. From genes to drugs: targeting Alzheimer's with circadian insights. Front Aging Neurosci 2025; 17:1527636. [PMID: 40207046 PMCID: PMC11979290 DOI: 10.3389/fnagi.2025.1527636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/03/2025] [Indexed: 04/11/2025] Open
Abstract
Background Alzheimer's disease (AD) is a typical neurodegenerative disease that presents challenges due to the lack of biomarkers to identify AD. A growing body of evidence highlights the critical role of circadian rhythms in AD. Methods The differentially expressed clock genes (DECGs) were identified between AD and ND groups (non-demented controls). Functional enrichment analysis was executed on the DECGs. Candidate diagnostic biomarkers for AD were screened by machine learning. ROC and nomograms were constructed to evaluate candidate biomarkers. In addition, therapeutics targeting predictive biomarkers were screened through the DGIdb website. Finally, the mRNA-miRNA network was constructed. Results Nine genes were identified through the DECG analysis between the AD and ND groups. Enrichment analysis of nine genes indicated that the pathways were enriched in long-term potentiation and circadian entrainment. Four clock genes (GSTM3, ERC2, PRKCG, and HLA-DMA) of AD were screened using Lasso regression, random forest, SVM, and GMM. The diagnostic performance of four genes was evaluated by the ROC curve. Furthermore, the nomogram indicated that ERC2, PRKCG, and HLA-DMA are good biomarkers in diagnosing AD. Single-gene GSEA indicated that the main enrichment pathways were oxidative phosphorylation, pathways of neurodegeneration-multiple diseases, etc. The results of immune cell infiltration analysis indicated that there were significant differences in 15 immune cell subsets between AD and ND groups. Moreover, 23 drugs targeting HLA-DMA and 8 drugs targeting PRKCG were identified through the DGIdb website. Conclusion We identified three predictive biomarkers for AD associated with clock genes, thus providing promising therapeutic targets for AD.
Collapse
Affiliation(s)
- Zekun Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaohan Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Su
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Zibo Zhang
- Metabolic Diseases and Cancer Research Center, Hebei Medical University, Shijiazhuang, China
| | - Hongmin Guo
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yihao Ge
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Khowdiary MM, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Elhenawy AA, Rashwan EK, Alexiou A, Papadakis M, Fetoh MEAE, Batiha GES. The Peripheral Amyloid-β Nexus: Connecting Alzheimer's Disease with Atherosclerosis through Shared Pathophysiological Mechanisms. Neuromolecular Med 2025; 27:20. [PMID: 40032716 DOI: 10.1007/s12017-025-08836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
Alzheimer's disease (AD) and atherosclerosis (AS) are two chronic diseases with seemingly distinct pathologies. However, emerging research points to a bidirectional relationship driven by common mechanisms, such as inflammation, oxidative stress, and dysregulation of Amyloid-Beta (Aβ). This review focuses on the role of Aβ as a critical molecular link between AD and AS, emphasizing its contribution to neuronal impairment and vascular damage. Specifically, peripheral Aβ produced in the pancreas and skeletal muscle tissues exacerbates AS by promoting endothelial dysfunction and insulin resistance (IR). Furthermore, AS accelerates AD progression by impairing cerebral blood flow and inducing chronic hypoxia, causing Aβ accumulation. This review critically evaluates recent findings, highlighting inconsistencies in clinical studies and suggesting future research directions. Understanding the bidirectional influence of AD and AS could pave the way for novel therapeutic approaches targeting shared molecular pathways, particularly emphasizing Aβ clearance and inflammation.
Collapse
Affiliation(s)
- Manal M Khowdiary
- Department of Chemistry, Faculty of Applied Science, Lieth Collage, Umm Al-Qura University, 24382, Makkah, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir Ibn Hayyan Medical University, Al-Ameer Qu./Najaf-Iraq, PO. Box13, Kufa, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
- Chemistry Department, Faculty of Science, AlBaha University, 65731, Al Bahah, Saudi Arabia
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Jouf University, Akaka, Saudi Arabia
| | - Athanasios Alexiou
- Department of Research & Development, Funogen, 11741, Athens, Attiki, Greece
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
| | - Marios Papadakis
- University Hospital, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Mohammed E Abo-El Fetoh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
7
|
Gao X, Yu J, Li Y, Shi H, Zhang L, Fang M, Liu Y, Huang C, Fan S. 27-Hydroxymangiferolic Acid Extends Lifespan and Improves Neurodegeneration in Caenorhabditis elegans by Activating Nuclear Receptors. Molecules 2025; 30:1010. [PMID: 40076235 PMCID: PMC11902184 DOI: 10.3390/molecules30051010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
27-Hydroxymangiferolic acid (27-HMA) is a naturally occurring compound in mango fruits that exhibits diverse biological functions. Here, we show that 27-HMA activates the transcriptional activity of farnesoid X receptor (FXR), a nuclear receptor transcription factor, extending the lifespan and healthspan in Caenorhabditis elegans (C. elegans). Meanwhile, the longevity-promoting effect of 27-HMA was attenuated in the mutants of nhr-8 and daf-12, the FXR homologs, indicating that the longevity effects of 27-HMA in C. elegans may depend on nuclear hormone receptors (NHRs). Further analysis revealed potential associations between the longevity effects of 27-HMA and the insulin/insulin-like growth factor-1 signaling (IIS)/TORC1 pathway. Moreover, 27-HMA increased the toxin resistance of nematodes and activated the expression of detoxification genes, which rely on NHRs. Finally, 27-HMA improved the age-related neurodegeneration in Alzheimer's disease (AD) and Parkinson's disease (PD) C. elegans models. Taken together, our findings suggest that 27-HMA is a novel FXR agonist and may prolong lifespan and healthspan via activating NHRs.
Collapse
Affiliation(s)
- Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.G.); (J.Y.); (H.S.); (L.Z.); (M.F.); (Y.L.)
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.G.); (J.Y.); (H.S.); (L.Z.); (M.F.); (Y.L.)
| | - Yin Li
- School of Agriculture and Medicine, Hebei Open University, Shijiazhuang 050080, China;
| | - Hang Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.G.); (J.Y.); (H.S.); (L.Z.); (M.F.); (Y.L.)
| | - Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.G.); (J.Y.); (H.S.); (L.Z.); (M.F.); (Y.L.)
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.G.); (J.Y.); (H.S.); (L.Z.); (M.F.); (Y.L.)
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.G.); (J.Y.); (H.S.); (L.Z.); (M.F.); (Y.L.)
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.G.); (J.Y.); (H.S.); (L.Z.); (M.F.); (Y.L.)
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.G.); (J.Y.); (H.S.); (L.Z.); (M.F.); (Y.L.)
| |
Collapse
|
8
|
Zhang HX, Hamit D, Li Q, Hu X, Li SF, Xu F, Wang MY, Bao GQ, Li HY. Integrative bioinformatic approach reveals novel melatonin-related biomarkers for Alzheimer's disease. Sci Rep 2025; 15:4193. [PMID: 39905093 PMCID: PMC11794634 DOI: 10.1038/s41598-024-80755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/21/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Melatonin (MLT) can improve mitophagy, thereby ameliorating cognitive deficits in Alzheimer's disease (AD) patients. Hence, our research focused on the potential value of MLT-related genes (MRGs) in AD through bioinformatic analysis. METHODS First, the key cells in the single-cell dataset GSE138852 were screened out based on the proportion of annotated cells and Fisher's test between the AD and control groups. The differentially expressed genes (DEGs) in the key cell and GSE5281 datasets were identified, and the MRGs in GSE5281 were selected via weighted gene coexpression network analysis. After intersecting two sets of DEGs and MRGs, we performed Mendelian randomization analysis to identify the MRGs causally related to AD. Biomarkers were further ascertained through receiver operating characteristic curve (ROC) and expression analysis in GSE5281 and GSE48350. Furthermore, gene set enrichment analysis, immune infiltration analysis and correlation analysis with metabolic pathways were conducted, as well as construction of a regulator network and molecular docking. RESULTS According to the Fisher test, oligodendrocytes were regarded as key cells due to their excellent abundance in the GSE138852 dataset, in which there were 281 DEGs between the AD and control groups. After overlapping with 3,490 DEGs and 550 MRGs in GSE5281, four genes were found to be causally related to AD, namely, G protein-coupled receptor, family C, group 5, member B (GPRC5B), Methyltransferase-like protein 7 A (METTL7A), NF-κB inhibitor alpha (NFKBIA) and RAS association domain family 4(RASSF4). Moreover, GPRC5B, NFKBIA and RASSF4 were deemed biomarkers, except for METTL7A, because of their indistinctive expression between the AD and control groups. Biomarkers might be involved in oxidative phosphorylation, adipogenesis and heme metabolism. Moreover, T helper type 17 cells, natural killer cells and CD56dim natural killer cells were significantly correlated with biomarkers. Transcription factors (GATA2, POU2F2, NFKB1, etc.) can regulate the expression of biomarkers. Finally, we discovered that all biomarkers could bind to MLT with a strong binding energy. CONCLUSION Our study identified three novel biomarkers related to MLT for AD, namely, GPRC5B, NFKBIA and RASSF4, providing a novel approach for the investigation and treatment of AD patients.
Collapse
Affiliation(s)
- Hua-Xiong Zhang
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Dilmurat Hamit
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Qing Li
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Xiao Hu
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - San-Feng Li
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Fu Xu
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Ming-Yuan Wang
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Guo-Qing Bao
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Hong-Yan Li
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China.
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
9
|
Chen Y, Guo H, Sun X, Wang S, Zhao M, Gong J, He A, Li J, Liu Y, Wang Z. Melatonin Regulates Glymphatic Function to Affect Cognitive Deficits, Behavioral Issues, and Blood-Brain Barrier Damage in Mice After Intracerebral Hemorrhage: Potential Links to Circadian Rhythms. CNS Neurosci Ther 2025; 31:e70289. [PMID: 39981743 PMCID: PMC11843476 DOI: 10.1111/cns.70289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/13/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a life-threatening cerebrovascular disorder with no specific pharmacological treatment. ICH causes significant behavioral deficits and cognitive impairments. Recent research suggests that circadian rhythm regulation could be a promising therapeutic strategy for ICH. Melatonin has been shown to alleviate glymphatic system (GS) dysfunction by regulating circadian rhythms, thereby improving depressive-like behaviors and postoperative sleep disorders in mice. However, its application in ICH treatment and specific mechanisms are not well understood. METHODS ICH models were created in 8-to-10-week-old mice using collagenase injection. Circadian rhythm modulation was tested with melatonin and luzindole. Behavioral and cognitive impairments were assessed with the modified neurological severity score, corner test, and novel object recognition test. Brain water content was measured by the dry/wet weight method, and cerebral perfusion was assessed by cerebral blood flow measurements. GS function was evaluated using RITC-dextran and Evans blue assays. Immunofluorescence and western blotting were used to analyze GS function and BBB permeability. RESULTS Melatonin restored GS transport after ICH, promoting hematoma and edema absorption, reducing BBB damage, and improving cognitive and behavioral outcomes. However, luzindole partially blocked these benefits and reversed the neuroprotective effects. CONCLUSION Melatonin and luzindole treatment affect GS function, BBB permeability, and cognitive-behavioral outcomes in mice with ICH. The underlying mechanism may involve the regulation of circadian rhythms.
Collapse
Affiliation(s)
- Yunzhao Chen
- Department of Neurosurgery, Tianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
- Department of NeurosurgeryInner Mongolia Autonomous Region People's HospitalHohhotChina
| | - Hexi Guo
- Department of NeurosurgeryOrdos Central HospitalOrdosChina
| | - Xinguo Sun
- Department of Neurosurgery, Tianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
- Department of NeurosurgeryBinzhou People's HospitalBinzhouChina
| | - Shanjun Wang
- Department of Neurosurgery, Tianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
- Department of NeurosurgeryYidu Central Hospital of WeifangQingzhouChina
| | - Mingyu Zhao
- Department of Neurosurgery, Tianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
| | - Junjie Gong
- Department of Neurosurgery, Tianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
| | - Anqi He
- Department of Neurosurgery, Tianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
| | - Jing Li
- Department of Neurosurgery, Tianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
| | - Yuheng Liu
- Department of Neurosurgery, Tianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
10
|
Yue X, Guo H, Wang G, Li J, Zhai Z, Wang Z, Wang W, Zhao Z, Xia X, Chen C, Cui Y, Wu C, Huang Z, Zhang X. A tailored phytosomes based nose-to-brain drug delivery strategy: Silver bullet for Alzheimer's disease. Bioact Mater 2025; 44:97-115. [DOI: 10.1016/j.bioactmat.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
|
11
|
Dao JJ, Zhang W, Liu C, Li Q, Qiao CM, Cui C, Shen YQ, Chen SX, Zhao WJ. Targeted ErbB4 receptor activation prevents D-galactose-induced neuronal senescence via inhibiting ferroptosis pathway. Front Pharmacol 2025; 16:1528604. [PMID: 39959423 PMCID: PMC11825806 DOI: 10.3389/fphar.2025.1528604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/03/2025] [Indexed: 02/18/2025] Open
Abstract
Background Neuronal senescence is a common pathological feature of various neurodegenerative diseases, with ferroptosis playing a significant role. This study aims to investigate the role of ErbB4 receptor activation in preventing D-Galactose (D-gal)-induced neuronal senescence. Methods Mice subjected to D-gal-induced aging were administered a small molecule ErbB4 receptor agonist (E4A), identified via virtual screening, melatonin, or a combination of both. Behavioral assessments were conducted to evaluate therapeutic efficacy in memory and cognitive functions. Immunofluorescence staining, western blot, and biochemical assays were primarily employed to assess changes in both senescence- and ferroptosis-related molecules in mouse hippocampal tissues in response to each treatment. Additionally, mouse hippocampal HT22 neuronal cell cultures were utilized to corroborate the in vivo findings. Results The targeted activation of ErbB4 receptor by E4A significantly ameliorated the behavioral deficits induced by D-gal in mice, demonstrating an effect comparable to that of melatonin, a natural inhibitor of in vivo senescence and ferroptosis. Both E4A and melatonin mitigated D-gal-induced aging in hippocampal neurons of mice. This was evidenced by the upregulation of Lamin B1 and the downregulation of P53, P21, P16, GFAP, and Iba-1 expression levels. Moreover, D-gal treatment markedly decreased the protein expression of the ferroptosis inhibitor Nrf2 while augmenting the expression of the ferroptosis promoter TFRC. These alterations were partially reversed by the individual administration of E4A and melatonin. In vitro studies further corroborated that D-gal treatment significantly and concurrently induced the expression of senescence markers and ferroptosis promoters. However, both E4A and melatonin were able to significantly reverse these changes. Additionally, E4A markedly ameliorated Erastin-induced ferroptosis in mouse hippocampal neuronal cells. Conlusion Our findings suggest that targeted activation of ErbB4 receptor may be a viable strategy for treating neuronal senescence by inhibiting ferroptosis, thereby offering a potential therapeutic avenue for senescence-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Ji-Ji Dao
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Zhang
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Pathogen Biology, Guizhou Nursing Vocational College, Guiyang, Guizhou, China
| | - Chong Liu
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Qian Li
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Chen-Meng Qiao
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Chun Cui
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan-Qin Shen
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Shuang-Xi Chen
- The First Affiliated Hospital, Department of Neurology, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Immune-Related Encephalopathy in Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wei-Jiang Zhao
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
12
|
Wang Z, Wu D, Hu X, Hu X, Zhu Q, Lai B, Zeng C, Long Q. WuYou decoction effectively reduces neuronal damage, synaptic dysfunction, and Aβ production in rats exposed to chronic sleep deprivation by modulating the Aβ-related enzymes and SIRT1/Nrf2/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118939. [PMID: 39413939 DOI: 10.1016/j.jep.2024.118939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic sleep deprivation (CSD) can result in neuronal damage, synaptic dysfunction, Aβ production, neuroinflammation, and ultimately cognitive deterioration. WuYou Decoction (WYD), a contemporary prescription, has shown promise in enhancing sleep quality and cognitive performance in individuals with insomnia. However, the specific molecular mechanisms responsible for the neuroprotective effects of WYD on CSD remain incompletely understood. AIM OF THE STUDY This study aimed to investigate the neuroprotective effects of WYD on the CSD model and its molecular mechanism. MATERIALS AND METHODS UHPLC-MS/MS analysis was utilized to analyze the active ingredients of WYD extract. The study employed the multi-platform water environment method to establish the CSD model in rats. Subsequent to treatment with varying doses of WYD in CSD rats, cognitive function and pathological alterations in hippocampus and cortex, including neuronal damage, synaptic dysfunction, Aβ production, and neuroinflammation, were evaluated through a combination of Morris Water Maze test, HE staining, Nissl staining, Golgi-Cox staining, Transmission electron microscope, ELISA, Immunohistochemistry staining, Immunofluorescence staining and Western blot. RESULTS UHPLC-MS/MS analysis revealed a total of 99 active ingredients were identified from the WYD extract. The administration of WYD exhibited a mitigation of cognitive decline in the model of CSD, as evidenced by increased neuron count in the hippocampus and cortex, and improved density and length of dendritic spines in these brain regions. Furthermore, WYD was found to suppress the Aβ production, and inhibit the expression of BACE1, PS1, GFAP, IBA1, IL-1β, IL-6, TNF-α, phosphorylated IκBα (Ser32) and phosphorylated NF-κB p65 (Ser536) in the hippocampus and cortex, while also increasing the levels of PSD95, SYN1, ADAM10, IDE, SIRT1 and Nrf2. CONCLUSIONS WYD exhibits neuroprotective properties in CSD, potentially through modulation of the Aβ-related enzymes and SIRT1/Nrf2/NF-κB pathway.
Collapse
Affiliation(s)
- Zhengyu Wang
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China
| | - Dan Wu
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China
| | - Xinyi Hu
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China
| | - Xuan Hu
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China
| | - Qihang Zhu
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China
| | - Bixuan Lai
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China
| | - Chuhua Zeng
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China; School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, 650500, PR China.
| | - Qinghua Long
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, 445000, PR China.
| |
Collapse
|
13
|
Hoang LN, Lee H, Lee SJ. Improving cognitive impairment through chronic consumption of natural compounds/extracts: a systematic review and meta-analysis of randomized controlled trials. Front Aging Neurosci 2025; 16:1531278. [PMID: 39949865 PMCID: PMC11821934 DOI: 10.3389/fnagi.2024.1531278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 02/16/2025] Open
Abstract
Introduction This systematic review and meta-analysis aimed to compare the efficacy of extended supplementation (≥6 weeks) with natural compounds or extracts in improving cognitive function in patients with mild cognitive impairment (MCI) or Alzheimer's disease (AD). Methods A comprehensive literature search was conducted across Cochrane, PubMed, PsycARTICLES, Scopus, and Web of Science databases from inception to April 10, 2024. Eligible studies were randomized controlled trials evaluating cognitive outcomes in patients with MCI or AD using the Mini-Mental State Examination (MMSE) and the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog). Results From an initial pool of 6,687 articles, 45 were deemed relevant for qualitative analysis. Of these, 37 studies demonstrated improvements or positive trends in cognitive outcomes with natural compound or extract supplementation. A total of 35 studies met the criteria for meta-analysis. The meta-analysis, involving 4,974 participants, revealed significant improvements in ADAS-Cog scores (pooled standardized mean difference = -2.88, 95% confidence interval [CI]: -4.26 to -1.50; t24 = -4.31, p < 0.01) following supplementation. Additionally, a suggestive trend toward improvement in MMSE scores was observed in a subgroup analysis of 1,717 participants (pooled standardized mean difference = 0.76, 95% CI: 0.06 to 1.46, t18 = 2.27, p = 0.04). Conclusion These findings support the potential cognitive benefits of extended (≥6 weeks) supplementation with natural compounds or extracts in individuals with MCI or AD. Further research is warranted to confirm these results and elucidate the underlying mechanisms. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/.
Collapse
Affiliation(s)
| | | | - Sook Jeong Lee
- Department of Bioactive Material Sciences and Research Centre of Bioactive Materials, Jeonbuk National University, Jeonju, Jeonbuk-do, Republic of Korea
| |
Collapse
|
14
|
Shi Y, Mi Z, Zhao W, Hu Y, Xiang H, Gan Y, Yuan S. Melatonin Mitigates Acidosis-Induced Neuronal Damage by Up-Regulating Autophagy via the Transcription Factor EB. Int J Mol Sci 2025; 26:1170. [PMID: 39940940 PMCID: PMC11818126 DOI: 10.3390/ijms26031170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Acidosis, a common feature of cerebral ischemia and hypoxia, results in neuronal damage and death. This study aimed to investigate the protective effects and mechanisms of action of melatonin against acidosis-induced neuronal damage. SH-SY5Y cells were exposed to an acidic environment to simulate acidosis, and a photothrombotic (PT) infarction model was used to establish an animal model of cerebral ischemia of male C57/BL6J mice. Both in vivo and in vitro studies demonstrated that acidosis increased cytoplasmic transcription factor EB (TFEB) levels, reduced nuclear TFEB levels, and suppressed autophagy, as evidenced by elevated p62 levels, a higher LC3-II/LC3-I ratio, decreased synapse-associated proteins (PSD-95 and synaptophysin), and increased neuronal apoptosis. In contrast, melatonin promoted the nuclear translocation of TFEB, enhanced autophagy, and reversed neuronal apoptosis. Moreover, the role of TFEB in melatonin's neuroprotective effects was validated by modulating TFEB nuclear translocation. In conclusion, melatonin mitigates acidosis-induced neuronal damage by promoting the nuclear translocation of TFEB, thereby enhancing autophagy. These findings offer new insights into potential treatments for acidosis.
Collapse
Affiliation(s)
- Yan Shi
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharamceutical Sciences, Health Science Center, Hunan Normal University, Changsha 410013, China;
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Z.M.); (W.Z.); (Y.H.); (H.X.); (Y.G.)
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Health Science Center, Hunan Normal University, Changsha 410013, China
| | - Zhaoyu Mi
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Z.M.); (W.Z.); (Y.H.); (H.X.); (Y.G.)
| | - Wei Zhao
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Z.M.); (W.Z.); (Y.H.); (H.X.); (Y.G.)
| | - Yue Hu
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Z.M.); (W.Z.); (Y.H.); (H.X.); (Y.G.)
| | - Hui Xiang
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Z.M.); (W.Z.); (Y.H.); (H.X.); (Y.G.)
| | - Yaoxue Gan
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Z.M.); (W.Z.); (Y.H.); (H.X.); (Y.G.)
| | - Shishan Yuan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharamceutical Sciences, Health Science Center, Hunan Normal University, Changsha 410013, China;
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Z.M.); (W.Z.); (Y.H.); (H.X.); (Y.G.)
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Health Science Center, Hunan Normal University, Changsha 410013, China
| |
Collapse
|
15
|
Liu YJ, Swaab DF, Zhou JN. Sleep-wake modulation and pathogenesis of Alzheimer disease: Suggestions for postponement and treatment. HANDBOOK OF CLINICAL NEUROLOGY 2025; 206:211-229. [PMID: 39864928 DOI: 10.1016/b978-0-323-90918-1.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Sleep-wake disorders are recognized as one of the earliest symptoms of Alzheimer disease (AD). Accumulating evidence has highlighted a significant association between sleep-wake disorders and AD pathogenesis, suggesting that sleep-wake modulation could be a promising approach for postponing AD onset. The suprachiasmatic nucleus (SCN) and the pineal hormone melatonin are major central modulating components of the circadian rhythm system. Cerebrospinal fluid (CSF) melatonin levels are dramatically decreased in AD. Interestingly, the number of neurofibrillary tangles in the hippocampus, which is one of the two major neuropathologic AD biomarkers, increases in parallel with the decrease in CSF melatonin levels. Furthermore, a decrease in salivary melatonin levels in middle-aged persons is a significant risk factor for the onset of the early stages of AD. Moreover, the disappearance of rhythmic fluctuations in melatonin may be one of the best biomarkers for AD diagnosis. Light therapy combined with melatonin supplementation is the recommended first-line treatment for sleep-wake disorders in AD patients and may be beneficial for ameliorating cognitive impairment. Sleep-wake cycle modulation based on AD risk gene presence is a promising early intervention for AD onset postponement.
Collapse
Affiliation(s)
- Ya-Jing Liu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dick F Swaab
- Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Jiang-Ning Zhou
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Alsaleem MA, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Alrouji M, Yassen ASA, Alexiou A, Papadakis M, Batiha GES. Molecular Signaling Pathways of Quercetin in Alzheimer's Disease: A Promising Arena. Cell Mol Neurobiol 2024; 45:8. [PMID: 39719518 PMCID: PMC11668837 DOI: 10.1007/s10571-024-01526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment and memory deficit. Even with extensive research and studies, presently, there is no effective treatment for the management of AD. Besides, most of drugs used in the treatment of AD did not avert the AD neuropathology, and the disease still in a progressive status. For example, acetyl cholinesterase inhibitors are associated with many adverse effects, such as insomnia and nightmares. As well, acetylcholinesterase inhibitors augment cholinergic neurotransmission leading to the development of adverse effects related to high acetylcholine level, such as salivation, rhinorrhea, vomiting, loss of appetite, and seizure. Furthermore, tacrine has poor bioavailability and causes hepatotoxicity. These commonly used drugs do not manage the original causes of AD. For those reasons, natural products were repurposed for the treatment of AD and neurodegenerative diseases. It has been shown that phytochemicals produce neuroprotective effects against the development and progression of neurodegenerative diseases by different mechanisms, including antioxidant and anti-inflammatory effects. Quercetin (QCN) has been reported to exert an effective neuroprotective effect against AD and other neurodegenerative diseases by lessening oxidative stress. In this review, electronic databases such as PubMed, Scopus, and Web of Science were searched for possible relevant studies and article linking the effect of QCN on AD. Findings from this review highlighted that many studies highlighted different mechanistic signaling pathways regarding the neuroprotective effect of QCN in AD. Nevertheless, the precise molecular mechanism of QCN in AD was not completely clarified. Consequently, this review aims to discuss the molecular mechanism of QCN in AD.
Collapse
Affiliation(s)
- Mansour A Alsaleem
- Unit of Scientific Research, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, Jabir Ibn Hayyan Medical University, Kufa, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia.
| | - Asmaa S A Yassen
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala City, Suez, 43713, Egypt.
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- Department of Research and Development, Funogen, 11741, Athens, Greece
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
17
|
Zhou X, Du K, Mao T, Wang N, Zhang L, Tian Y, Liu T, Wang L, Wang X. BMAL1 upregulates STX17 levels to promote autophagosome-lysosome fusion in hippocampal neurons to ameliorate Alzheimer's disease. iScience 2024; 27:111413. [PMID: 39687016 PMCID: PMC11647228 DOI: 10.1016/j.isci.2024.111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/02/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
We aim to investigate muscle ARNT-like protein 1 (BMAL1) regulation of syntaxin17 (STX17) in mouse hippocampal neurons, focusing on autophagy and amyloid-β (Aβ) deposition. Autophagosome-lysosome fusion in APP/PS1 hippocampal tissues was observed using transmission electron microscopy, while mRNA levels of LC3II and P62 were measured via reverse-transcription PCR (RT-PCR) after Amyloid precursor protein (APP) overexpression. STX17, linked to autophagy and differentially expressed in Alzheimer's disease (AD) brains, was knocked down or overexpressed to assess its effects. The results showed that reduced STX17 impairs autophagosome-lysosome fusion, leading to abnormal Aβ deposition. Coimmunoprecipitation (Co-IP) and immunofluorescence confirmed STX17 interaction with SNAP29 and VAMP8 to form SNARE complexes. Furthermore, BMAL1 binding to STX17 was examined using luciferase assays. Circadian rhythm disturbances and decreased BMAL1 expression in APP/PS1 mice were noted, while BMAL1 overexpression upregulated STX17 expression and promoted autophagy to reduce Aβ deposition. Thus, the BMAL1 protein can promote STX17 transcription to induce STX17-SNAP29-VAMP8 complex formation to clear intracellular Aβ through autophagy.
Collapse
Affiliation(s)
- Xiuya Zhou
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
- Department of Pathology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Kaili Du
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Tian Mao
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
| | - Ning Wang
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
| | - Lifei Zhang
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
| | - Yuan Tian
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
| | - Ting Liu
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Li Wang
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Xiaohui Wang
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
18
|
Liu X, Zhang H, Xiang J, Luo W, Zhang H, Wang P, Xu S. Jiawei Xionggui Decoction promotes meningeal lymphatic vessels clearance of β-amyloid by inhibiting arachidonic acid pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156041. [PMID: 39299091 DOI: 10.1016/j.phymed.2024.156041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is an aging-associated form of dementia characterized by the pathological deposition of toxic misfolded proteins in the central nervous system (CNS), which is closely related to the clearance impairment of meningeal lymphatic vessels (mLVs). Thus, enhancement dural meningeal lymphatic drainage to remove amyloid-β (Aβ) is usually considered as a potential therapeutic target for AD. PURPOSE This study aimed to investigate the mechanisms of Jiawei Xionggui Decoction (JWXG) to attenuate cognitive dificits in APP/PS1 mice with impaired meningeal lymphatic drainage. METHODS Ligation of deep cervical lymph nodes (dcLNs) was performed to establish the mice model of the impaired meningeal lymphatic drainage in APP/PS1 mice. Cognitve behaviors and pathological morphology of mice were assessed. Cerebral blood flow (CBF) of mice was determined using Laser speckle contrast imaging analysis. Serum non-targeted metabolomics analysis was applied to decipher the mechanisms of JWXG in rescuing the impairment of mLVs, and C8-D1A cells were employed to validate in vitro. RESULTS Disruption of mLVs in APP/PS1 mice deteriorated cognitive dysfunction, accelerated Aβ burden and glia activation, accompanied by more severe neuropathological damage, CBF reduction and neuroinflammation exacerbation. Serum non-targeted metabolomics analysis indicates the increase of arachidonic acid (AA) metabolic pathway was the key contributor to the neuropathological exacerbation of dcLNs ligation APP/PS1 mice. Interestingly, clinically equivalent dose of JWXG was sufficient to restore mLVs drainage and rescue cognitive performance by inhibiting neuroinflammation depended by AA metabolic pathway in dcLNs ligation APP/PS1 mice. CONCLUSION Our findings establish a novel mechanism that rescue mLVs by inhibiting AA metabolic pathway to clear brain Aβ, and support JWXG as a feasible treatment strategy for AD by suppressing AA metabolic pathway to improve mLVs drainage efficiency.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haijun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junbao Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
19
|
Li J, Song J, Jia L, Wang M, Ji X, Meng R, Zhou D. Exosomes in Central Nervous System Diseases: A Comprehensive Review of Emerging Research and Clinical Frontiers. Biomolecules 2024; 14:1519. [PMID: 39766226 PMCID: PMC11673277 DOI: 10.3390/biom14121519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Exosomes, nano-sized lipid bilayer vesicles, have garnered significant attention as mediators of cell communication, particularly within the central nervous system (CNS). Their unique properties, including high stability, low immunogenicity, and the ability to traverse the blood-brain barrier (BBB), position them as promising tools for understanding and addressing CNS diseases. This comprehensive review delves into the biogenesis, properties, composition, functions, and isolation of exosomes, with a particular focus on their roles in cerebrovascular diseases, neurodegenerative disorders, and CNS tumors. Exosomes are involved in key pathophysiological processes in the CNS, including angiogenesis, inflammation, apoptosis, and cellular microenvironment modification. They demonstrate promise in mitigating ischemic injury, regulating inflammatory responses, and providing neuroprotection across various CNS conditions. Furthermore, exosomes carry distinct biomolecules, offering a novel method for the early diagnosis and monitoring of CNS diseases. Despite their potential, challenges such as complex extraction processes, the heterogeneity of exosomal contents, and targeted delivery limitations hinder their clinical application. Nevertheless, exosomes hold significant promise for advancing our understanding of CNS diseases and developing novel therapeutic strategies. This manuscript significantly contributes to the field by highlighting exosomes' potential in advancing our understanding of CNS diseases, underscoring their unique value in developing novel therapeutic strategies and mediating cellular communication.
Collapse
Affiliation(s)
- Jingrun Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jiahao Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lina Jia
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Mengqi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
20
|
Li H, Yao Q, Huang X, Yang X, Yu C. The role and mechanism of Aβ clearance dysfunction in the glymphatic system in Alzheimer's disease comorbidity. Front Neurol 2024; 15:1474439. [PMID: 39655162 PMCID: PMC11626247 DOI: 10.3389/fneur.2024.1474439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Alzheimer's disease (AD) is the leading type of dementia globally, characterized by a complex pathogenesis that involves various comorbidities. An imbalance in the production and clearance of amyloid β-protein (Aβ) peptides in the brain is a key pathological mechanism of AD, with the glymphatic system playing a crucial role in Aβ clearance. Comorbidities associated with AD, such as diabetes, depression, and hypertension, not only affect Aβ production but also impair the brain's lymphatic system. Abnormalities in the structure and function of this system further weaken Aβ clearance capabilities, and the presence of comorbidities may exacerbate this process. This paper aims to review the role and specific mechanisms of impaired Aβ clearance via the glymphatic system in the context of AD comorbidities, providing new insights for the prevention and treatment of AD. Overall, the damage to the glymphatic system primarily focuses on aquaporin-4 (AQP4) and perivascular spaces (PVS), suggesting that maintaining the health of the glymphatic system may help slow the progression of AD and its comorbidities. Additionally, given the ongoing controversies regarding the structure of the glymphatic system, this paper revisits this structure and discusses the principles and characteristics of current detection methods for the glymphatic system.
Collapse
Affiliation(s)
| | | | | | - Xiaoyan Yang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
21
|
Filippini T, Costanzini S, Chiari A, Urbano T, Despini F, Tondelli M, Bedin R, Zamboni G, Teggi S, Vinceti M. Light at night exposure and risk of dementia conversion from mild cognitive impairment in a Northern Italy population. Int J Health Geogr 2024; 23:25. [PMID: 39580439 PMCID: PMC11585219 DOI: 10.1186/s12942-024-00384-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND A few studies have suggested that light at night (LAN) exposure, i.e. lighting during night hours, may increase dementia risk. We evaluated such association in a cohort of subjects diagnosed with mild cognitive impairment (MCI). METHODS We recruited study participants between 2008 and 2014 at the Cognitive Neurology Clinic of Modena Hospital, Northern Italy and followed them for conversion to dementia up to 2021. We collected their residential history and we assessed outdoor artificial LAN exposure at subjects' residences using satellite imagery data available from the Visible Infrared Imaging Radiometer Suite (VIIRS) for the period 2014-2022. We assessed the relation between LAN exposure and cerebrospinal fluid biomarkers. We used a Cox-proportional hazards model to compute the hazard ratio (HR) of dementia with 95% confidence interval (CI) according to increasing LAN exposure through linear, categorical, and non-linear restricted-cubic spline models, adjusting by relevant confounders. RESULTS Out of 53 recruited subjects, 34 converted to dementia of any type and 26 converted to Alzheimer's dementia. Higher levels of LAN were positively associated with biomarkers of tau pathology, as well as with lower concentrations of amyloid β1-42 assessed at baseline. LAN exposure was positively associated with dementia conversion using linear regression model (HR 1.04, 95% CI 1.01-1.07 for 1-unit increase). Using as reference the lowest tertile, subjects at both intermediate and highest tertiles of LAN exposure showed increased risk of dementia conversion (HRs 2.53, 95% CI 0.99-6.50, and 3.61, 95% CI 1.34-9.74). In spline regression analysis, the risk linearly increased for conversion to both any dementia and Alzheimer's dementia above 30 nW/cm2/sr of LAN exposure. Adding potential confounders including traffic-related particulate matter, smoking status, chronic diseases, and apolipoprotein E status to the multivariable model, or removing cases with dementia onset within the first year of follow-up did not substantially alter the results. CONCLUSION Our findings suggest that outdoor artificial LAN may increase dementia conversion, especially above 30 nW/cm2/sr, although the limited sample size suggests caution in the interpretation of the results, to be confirmed in larger investigations.
Collapse
Affiliation(s)
- Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy.
- School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| | - Sofia Costanzini
- DIEF - Department of Engineering 'Enzo Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - Annalisa Chiari
- Neurology Unit, University Hospital of Modena, Modena, Italy
| | - Teresa Urbano
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy
| | - Francesca Despini
- DIEF - Department of Engineering 'Enzo Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Tondelli
- Neurology Unit, University Hospital of Modena, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Bedin
- Neurology Unit, University Hospital of Modena, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanna Zamboni
- Neurology Unit, University Hospital of Modena, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sergio Teggi
- DIEF - Department of Engineering 'Enzo Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
22
|
de Almeida Chuffa LG, Seiva FRF, Silveira HS, Cesário RC, da Silva Tonon K, Simão VA, Zuccari DAPC, Reiter RJ. Melatonin regulates endoplasmic reticulum stress in diverse pathophysiological contexts: A comprehensive mechanistic review. J Cell Physiol 2024; 239:e31383. [PMID: 39039752 DOI: 10.1002/jcp.31383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
The endoplasmic reticulum (ER) is crucial for protein quality control, and disruptions in its function can lead to various diseases. ER stress triggers an adaptive response called the unfolded protein response (UPR), which can either restore cellular homeostasis or induce cell death. Melatonin, a safe and multifunctional compound, shows promise in controlling ER stress and could be a valuable therapeutic agent for managing the UPR. By regulating ER and mitochondrial functions, melatonin helps maintain cellular homeostasis via reduction of oxidative stress, inflammation, and apoptosis. Melatonin can directly or indirectly interfere with ER-associated sensors and downstream targets of the UPR, impacting cell death, autophagy, inflammation, molecular repair, among others. Crucially, this review explores the mechanistic role of melatonin on ER stress in various diseases including liver damage, neurodegeneration, reproductive disorders, pulmonary disease, cardiomyopathy, insulin resistance, renal dysfunction, and cancer. Interestingly, while it alleviates the burden of ER stress in most pathological contexts, it can paradoxically stimulate ER stress in cancer cells, highlighting its intricate involvement in cellular homeostasis. With numerous successful studies using in vivo and in vitro models, the continuation of clinical trials is imperative to fully explore melatonin's therapeutic potential in these conditions.
Collapse
Affiliation(s)
- Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Henrique S Silveira
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Roberta Carvalho Cesário
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Karolina da Silva Tonon
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Vinicius Augusto Simão
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Debora Aparecida P C Zuccari
- Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UTHealth, San Antonio, Texas, USA
| |
Collapse
|
23
|
Wu T, Lin R, Cui P, Yong J, Yu H, Li Z. Deep learning-based drug screening for the discovery of potential therapeutic agents for Alzheimer's disease. J Pharm Anal 2024; 14:101022. [PMID: 39850238 PMCID: PMC11755336 DOI: 10.1016/j.jpha.2024.101022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 01/25/2025] Open
Abstract
Alzheimer's disease (AD) is gradually increasing in prevalence and the complexity of its pathogenesis has led to a lengthy process of developing therapeutic drugs with limited success. Faced with this challenge, we proposed using a state-of-the-art drug screening algorithm to identify potential therapeutic compounds for AD from traditional Chinese medicine formulas with strong empirical support. We developed four deep neural network (DNN) models for AD drugs screening at the disease and target levels. The AD model was trained with compounds labeled for AD activity to predict active compounds at the disease level, while the acetylcholinesterase (AChE), monoamine oxidase-A (MAO-A), and 5-hydroxytryptamine 6 (5-HT6) models were trained for specific AD targets. All four models performed excellently and were used to identify potential AD agents in the Kaixinsan (KXS) formula. High-scoring compounds underwent experimental validation at the enzyme, cellular, and animal levels. Compounds like 2,4-di-tert-butylphenol and elemicin showed significant binding and inhibitory effects on AChE and MAO-A. Additionally, 13 compounds, including α-asarone, penetrated the blood-brain barrier (BBB), indicating potential brain target binding, and eight compounds enhanced microglial β-amyloid phagocytosis, aiding in clearing AD pathological substances. Our results demonstrate the effectiveness of deep learning models in developing AD therapies and provide a strong platform for AD drug discovery.
Collapse
Affiliation(s)
- Tong Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ruimei Lin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pengdi Cui
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jie Yong
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Heshui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
- National Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, China
| |
Collapse
|
24
|
Pawluk H, Tafelska-Kaczmarek A, Sopońska M, Porzych M, Modrzejewska M, Pawluk M, Kurhaluk N, Tkaczenko H, Kołodziejska R. The Influence of Oxidative Stress Markers in Patients with Ischemic Stroke. Biomolecules 2024; 14:1130. [PMID: 39334896 PMCID: PMC11430825 DOI: 10.3390/biom14091130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke is the second leading cause of death worldwide, and its incidence is rising rapidly. Acute ischemic stroke is a subtype of stroke that accounts for the majority of stroke cases and has a high mortality rate. An effective treatment for stroke is to minimize damage to the brain's neural tissue by restoring blood flow to decreased perfusion areas of the brain. Many reports have concluded that both oxidative stress and excitotoxicity are the main pathological processes associated with ischemic stroke. Current measures to protect the brain against serious damage caused by stroke are insufficient. For this reason, it is important to investigate oxidative and antioxidant strategies to reduce oxidative damage. This review focuses on studies assessing the concentration of oxidative stress biomarkers and the level of antioxidants (enzymatic and non-enzymatic) and their impact on the clinical prognosis of patients after stroke. Mechanisms related to the production of ROS/RNS and the role of oxidative stress in the pathogenesis of ischemic stroke are presented, as well as new therapeutic strategies aimed at reducing the effects of ischemia and reperfusion.
Collapse
Affiliation(s)
- Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland
| | - Małgorzata Sopońska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Marta Porzych
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| |
Collapse
|
25
|
Zhang R, Huang X, Zhou C, Zhang Q, Jia D, Xie X, Zhang J. Network pharmacology-based mechanism analysis of dauricine on the alleviating Aβ-induced neurotoxicity in Caenorhabditis elegans. BMC Complement Med Ther 2024; 24:321. [PMID: 39215261 PMCID: PMC11363685 DOI: 10.1186/s12906-024-04589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Dauricine (DAU), a benzyl tetrahydroisoquinoline alkaloid isolated from the root of Menispermum dauricum DC, exhibits promising anti-Alzheimer's disease (AD) effects, but its underlying mechanisms remain inadequately investigated. This paper aims to identify potential targets and molecular mechanisms of DAU in AD treatment. METHODS Network pharmacology and molecular docking simulation method were used to screen and focus core targets. Various transgenic Caenorhabditis elegans models were chosen to validate the anti-AD efficacy and mechanism of DAU. RESULTS There are 66 potential DAU-AD target intersections identified from 100 DAU and 3036 AD-related targets. Subsequent protein-protein interaction (PPI) network analysis identified 16 core targets of DAU for anti-AD. PIK3CA, AKT1 and mTOR were predicted to be the central targets with the best connectivity through the analysis of "compound-target-biological process-pathway network". Molecular docking revealed strong binding affinities between DAU and PIK3CA, AKT1, and mTOR. In vivo experiments demonstrated that DAU effectively reduced paralysis in AD nematodes caused by Aβ aggregation toxicity, downregulated expression of PIK3CA, AKT1, and mTOR homologues (age-1, akt-1, let-363), and upregulated expression of autophagy genes and the marker protein LGG-1. Simultaneously, DAU increased lysosomal content and enhanced degradation of the autophagy-related substrate protein P62. Thioflavin T(Th-T)staining experiment revealed that DAU decreased Aβ accumulation in AD nematodes. Further experiments also confirmed DAU's protein scavenging activity in polyglutamine (polyQ) aggregation nematodes. CONCLUSION Collectively, the mechanism of DAU against AD may be related to the activation of the autophagy-lysosomal protein clearance pathway, which contributes to the decrease of Aβ aggregation and the restoration of protein homeostasis.
Collapse
Affiliation(s)
- Ranran Zhang
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Xiaoyan Huang
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Chunling Zhou
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Qian Zhang
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Dongsheng Jia
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xiaoliang Xie
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Ju Zhang
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China.
| |
Collapse
|
26
|
Barrón-González M, Rivera-Antonio AM, Jarillo-Luna RA, Santiago-Quintana JM, Levaro-Loquio D, Pérez-Capistran T, Guerra-Araiza CH, Soriano-Ursúa MA, Farfán-García ED. Borolatonin limits cognitive deficit and neuron loss while increasing proBDNF in ovariectomised rats. Fundam Clin Pharmacol 2024; 38:730-741. [PMID: 38423984 DOI: 10.1111/fcp.12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Borolatonin is a potential therapeutic agent for some neuronal diseases such as Alzheimer's disease (AD). Its administration exerts ameliorative effects such as those induced by the equimolar administration of melatonin in behavioral tests on male rats and in neuronal immunohistochemistry assays. OBJECTIVE In this study, motivated by sex differences in neurobiology and the incidence of AD, the ability of borolatonin to induce changes in female rats was assessed. METHODS Effects of borolatonin were measured by the evaluation of both behavioral and immunohistopathologic approaches; additionally, its ability to limit amyloid toxicity was determined in vitro. RESULTS Surprisingly, behavioral changes were similar to those reported in male rats, but not those evaluated by immunoassays regarding neuronal survival; while pro-brain-derived neurotrophic factor (BDNF) immunoreactivity and the limitation of toxicity by amyloid in vitro were observed for the first time. CONCLUSION Borolatonin administration induced changes in female rats. Differences induced by the administration of borolatonin or melatonin could be related to the differences in the production of steroid hormones in sex dependence. Further studies are required to clarify the possible mechanism and origin of differences in disturbed memory caused by the gonadectomy procedure between male and female rats.
Collapse
Affiliation(s)
- Mónica Barrón-González
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Astrid M Rivera-Antonio
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, ESM-IPN, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Rosa A Jarillo-Luna
- Laboratorio de Morfología, Sección de Estudios de Posgrado e Investigación, ESM-IPN, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - José M Santiago-Quintana
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - David Levaro-Loquio
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Teresa Pérez-Capistran
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Christian H Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, Mexico
| | - Marvin A Soriano-Ursúa
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Eunice D Farfán-García
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| |
Collapse
|
27
|
Gao X, Sun H, Wei Y, Niu J, Hao S, Sun H, Tang G, Qi C, Ge J. Protective effect of melatonin against metabolic disorders and neuropsychiatric injuries in type 2 diabetes mellitus mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155805. [PMID: 38851097 DOI: 10.1016/j.phymed.2024.155805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia and progressive cognitive dysfunction, and our clinical investigation revealed that the plasma concentration of melatonin (Mlt) decreased and was closely related to cognition in T2DM patients. However, although many studies have suggested that Mlt has a certain protective effect on glucose and lipid metabolism disorders and neuropsychiatric injury, the underlying mechanism of Mlt against T2DM-related metabolic and cognitive impairments remains unclear. PURPOSE The aim of the present study was to investigate the therapeutic effect of Mlt on metabolic disorders and Alzheimer's disease (AD)-like neuropsychiatric injuries in T2DM mice and to explore the possible underlying molecular mechanism involved. METHODS A T2DM mouse model was established by a combination of a high-fat diet (HFD) and streptozotocin (STZ, 100 mg/kg, i.p.), and Mlt (5, 10 or 20 mg/kg) was intragastrically administered for six consecutive weeks. The serum levels of glycolipid metabolism indicators were measured, behavioral performance was tested, and the protein expression of key molecules involved in the regulation of synaptic plasticity, circadian rhythms, and neuroinflammation in the hippocampus was detected. Moreover, the fluorescence intensities of glial fibrillary acidic protein (GFAP), ionized calcium binding adapter molecule 1 (IBA-1), amyloid β-protein (Aβ) and phosphorylated Tau (p-Tau) in the hippocampus were also observed. RESULTS Treatment with Mlt not only improved T2DM-related metabolic disorders, as indicated by increased serum concentrations of fasting blood glucose (FBG), glycosylated hemoglobin (HbAlc), insulin (INS), total cholesterol (TC) and triglyceride (TG), improved glucose tolerance and liver and pancreas function but also alleviated AD-like neuropsychiatric injuries in a HFD/STZ-induced mouse model, as indicated by decreased immobility time in the tail suspension test (TST) and forced swimming test (FST), increased preference indices of novel objects or novel arms in the novel object recognition test (NOR) and Y-maze test (Y-maze), and improved platform positioning capability in the Morris water maze (MWM) test. Moreover, treatment with Mlt also improved the hyperactivation of astrocytes and microglia in the hippocampus of mice, accompanied by reduced expression of interleukin 1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor (TNF-α), Aβ, and p-Tau and increased expression of brain-derived neurotrophic factor (BDNF), Synapsin I, Synaptotagmin I, melatonin receptor 1B (MT1B), brain muscle arnt-like protein 1 (Bmal1), circadian locomotor output cycles kaput (Clock), period 2 (Per2), and cryptochrome 2 (Cry2). CONCLUSION Mlt alleviated T2DM-related metabolic disorders and AD-like neuropsychiatric injuries in a HFD/STZ-induced mouse model, possibly through a mechanism involving the regulation of glial activation and associated neuroinflammation and the balancing of synaptic plasticity and circadian rhythms in the hippocampus.
Collapse
Affiliation(s)
- Xinran Gao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Huaizhi Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Yadong Wei
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Jiachun Niu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Shengwei Hao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Huimin Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Guozhang Tang
- School of 1st Clinic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China
| | - Congcong Qi
- Department of Laboratory Animal Science, Fudan University, Shanghai, PR China.
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China.
| |
Collapse
|
28
|
Andrani M, Dall’Olio E, De Rensis F, Tummaruk P, Saleri R. Bioactive Peptides in Dairy Milk: Highlighting the Role of Melatonin. Biomolecules 2024; 14:934. [PMID: 39199322 PMCID: PMC11352677 DOI: 10.3390/biom14080934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Melatonin, an endogenous indolamine derived from tryptophan, is primarily synthesized by the pineal gland in mammals and regulated by a complex neural system. Its release follows a circadian rhythm, which is crucial for regulating physiological processes in response to light-dark cycles in both humans and animals. In this review, we report that the presence of this hormone in bovine milk, with significant differences in concentration between daytime and nighttime milking, has increased interest in milk as a natural source of bioactive molecules. Melatonin lowers cortisol levels at night, reduces body temperature and blood pressure, coinciding with decreased alertness and performance, acts as an antioxidant and anti-inflammatory agent, modulates the immune system, offers neuroprotective benefits, and supports gastrointestinal health by scavenging free radicals and reducing oxidative stress in dairy cows. Many factors influence the release of melatonin, such as the intensity of artificial lighting during nighttime milking, the frequency of milkings, milk yield, and genetic differences between animals. Nocturnal milking under low-intensity light boosts melatonin, potentially reducing oxidative damage and mastitis risk. Additionally, ultra-high temperature (UHT) treatment does not significantly affect the melatonin content in milk. However, further research on its stability during milk processing and storage is crucial for ensuring product efficacy. In some countries, nighttime milk with naturally elevated melatonin content is already commercialized as a natural aid for sleep. Thus, naturally melatonin-rich milk may be a promising alternative to synthetic supplements for promoting better sleep and overall well-being.
Collapse
Affiliation(s)
- Melania Andrani
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (E.D.); (F.D.R.); (R.S.)
| | - Eleonora Dall’Olio
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (E.D.); (F.D.R.); (R.S.)
| | - Fabio De Rensis
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (E.D.); (F.D.R.); (R.S.)
| | - Padet Tummaruk
- Centre of Excellence in Swine Reproduction, Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Roberta Saleri
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (E.D.); (F.D.R.); (R.S.)
| |
Collapse
|
29
|
Gáll Z, Boros B, Kelemen K, Urkon M, Zolcseak I, Márton K, Kolcsar M. Melatonin improves cognitive dysfunction and decreases gliosis in the streptozotocin-induced rat model of sporadic Alzheimer's disease. Front Pharmacol 2024; 15:1447757. [PMID: 39135795 PMCID: PMC11317391 DOI: 10.3389/fphar.2024.1447757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Alzheimer's disease (AD) and other forms of dementia have a devastating effect on the community and healthcare system, as neurodegenerative diseases are causing disability and dependency in older population. Pharmacological treatment options are limited to symptomatic alleviation of cholinergic deficit and accelerated clearance of β-amyloid aggregates, but accessible disease-modifying interventions are needed especially in the early phase of AD. Melatonin was previously demonstrated to improve cognitive function in clinical setting and experimental studies also. Methods In this study, the influence of melatonin supplementation was studied on behavioral parameters and morphological aspects of the hippocampus and amygdala of rats. Streptozotocin (STZ) was injected intracerebroventricularly to induce AD-like symptoms in male adult Wistar rats (n = 18) which were compared to age-matched, sham-operated animals (n = 16). Melatonin was administered once daily in a dose of 20 mg/kg body weight by oral route. Behavioral analysis included open-field, novel object recognition, and radial-arm maze tests. TNF-α and MMP-9 levels were determined from blood samples to assess the anti-inflammatory and neuroprotective effects of melatonin. Immunohistological staining of brain sections was performed using anti-NeuN, anti-IBA-1, and anti-GFAP primary antibodies to evaluate the cellular reorganization of hippocampus. Results and Discussion The results show that after 40 days of treatment, melatonin improved the cognitive performance of STZ-induced rats and reduced the activation of microglia in both CA1 and CA3 regions of the hippocampus. STZ-injected animals had higher levels of GFAP-labeled astrocytes in the CA1 region, but melatonin treatment reduced this to that of the control group. In conclusion, melatonin may be a potential therapeutic option for treating AD-like cognitive decline and neuroinflammation.
Collapse
Affiliation(s)
- Zsolt Gáll
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - Bernadett Boros
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - Krisztina Kelemen
- Department of Physiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - Melinda Urkon
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - István Zolcseak
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - Kincső Márton
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - Melinda Kolcsar
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| |
Collapse
|
30
|
Shang C, Su Y, Ma J, Li Z, Wang P, Ma H, Song J, Zhang Z. Huanshaodan regulates microglial glucose metabolism reprogramming to alleviate neuroinflammation in AD mice through mTOR/HIF-1α signaling pathway. Front Pharmacol 2024; 15:1434568. [PMID: 39130642 PMCID: PMC11310104 DOI: 10.3389/fphar.2024.1434568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Abnormal glucose metabolism in microglial is closely associated with Alzheimer's disease (AD). Reprogramming of microglial glucose metabolism is centered on regulating the way in which microglial metabolize glucose to alter microglial function. Therefore, reprogramming microglial glucose metabolism is considered as a therapeutic strategy for AD. Huanshaodan (HSD) is a Chinese herbal compound which shows significant efficacy in treating AD, however, the precise mechanism by which HSD treats AD remains unclear. This study is aim to investigate whether HSD exerts anti-AD effects by regulating the metabolic reprogramming of microglial through the mTOR/HIF-1α signaling pathway. SAMP8 mice and BV2 cells were used to explore the alleviative effect of HSD on AD and the molecular mechanism in vivo and in vitro. The pharmacodynamic effects of HSD was evaluated by behavioral tests. The pathological deposition of Aβ in brain of mice was detected by immunohistochemistry. ELISA method was used to measure the activity of HK2 and the expression of PKM2, IL-6 and TNF-α in hippocampus and cortex tissues of mice. Meanwhile, proteins levels of p-mTOR, mTOR, HIF-1α, CD86, Arg1 and IL-1β were detected by Western-blot. LPS-induced BV2 cells were treated with HSD-containing serum. The analysis of the expression profiles of the CD86 and CD206 markers by flow cytometry allows us to distinguish the BV2 polarization. Glucose, lactic acid, ATP, IL-6 and TNF-α levels, as well as lactate dehydrogenase and pyruvate dehydrogenase activities were evaluated in the BV2. Western-blot analysis was employed to detect mTOR, p-mTOR, HIF-1α and IL-1β levels in BV2. And the mTOR agonist MHY1485 (MHY) was chosen to reverse validate. In this study, it is found that HSD improved cognitive impairment in SAMP8 mice and reduced Aβ deposition, suppressed the levels of glycolysis and neuroinflammation in mice. In LPS-induced BV2 cells, HSD also regulated glycolysis and neuroinflammation, and suppressed the mTOR/HIF-1α signaling pathway. More importantly, these effects were reversed by MHY. It is demonstrated that HSD regulated microglial glucose metabolism reprogramming by inhibiting the mTOR/HIF-1α signaling pathway, alleviated neuroinflammation, and exerted anti-AD effects. This study provided scientific evidence for the clinical application of HSD for treating AD.
Collapse
Affiliation(s)
- Congcong Shang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yunfang Su
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinlian Ma
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zhonghua Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Pan Wang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Huifen Ma
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Junying Song
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zhenqiang Zhang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Yin C, Zhang M, Cheng L, Ding L, Lv Q, Huang Z, Zhou J, Chen J, Wang P, Zhang S, You Q. Melatonin modulates TLR4/MyD88/NF-κB signaling pathway to ameliorate cognitive impairment in sleep-deprived rats. Front Pharmacol 2024; 15:1430599. [PMID: 39101143 PMCID: PMC11294086 DOI: 10.3389/fphar.2024.1430599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Sleep deprivation (SD) is commonplace in today's fast-paced society. SD is a severe public health problem globally since it may cause cognitive decline and even neurodegenerative disorders like Alzheimer's disease. Melatonin (MT) is a natural chemical secreted by the pineal gland with neuroprotective effects. The purpose of this study was to investigate the protective effect and mechanism of MT on chronic sleep deprivation-induced cognitive impairment. A 3-week modified multi-platform method was used to create the SD rat model. The Morris water maze test (MWM), Tissue staining (including Hematoxylin and Eosin (H & E) staining, Nissl staining, and immunofluorescence), Western blot, Enzyme-linked immunosorbent assay (ELISA), and Quantitative real-time polymerase chain reaction (qPCR) were used to investigate the protective effect and mechanism of MT in ameliorating cognitive impairment in SD rats. The results showed that MT (50 and 100 mg/kg) significantly improved cognitive function in rats, as evidenced by a shortening of escape latency and increased time of crossing the platform and time spent in the quadrant. Additionally, MT therapy alleviated hippocampus neurodegeneration and neuronal loss while lowering levels of pathogenic factors (LPS) and inflammatory indicators (IL-1β, IL-6, TNF-α, iNOS, and COX2). Furthermore, MT treatment reversed the high expression of Aβ42 and Iba1 as well as the low expression of ZO-1 and occludin, and inhibited the SD-induced TLR4/MyD88/NF-κB signaling pathway. In summary, MT ameliorated spatial recognition and learning memory dysfunction in SD rats by reducing neuroinflammation and increasing neuroprotection while inhibiting the TLR4/MyD88/NF-κB signaling pathway. Our study supports the use of MT as an alternate treatment for SD with cognitive impairment.
Collapse
Affiliation(s)
- Chao Yin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Meiya Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Li Cheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Li Ding
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Qing Lv
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zixuan Huang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiaqi Zhou
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jianmei Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Wang
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Shunbo Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiuyun You
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
32
|
Suleiman Khoury Z, Sohail F, Wang J, Mendoza M, Raake M, Tahoor Silat M, Reddy Bathinapatta M, Sadeghzadegan A, Meghana P, Paul J. Neuroinflammation: A Critical Factor in Neurodegenerative Disorders. Cureus 2024; 16:e62310. [PMID: 39006715 PMCID: PMC11246070 DOI: 10.7759/cureus.62310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
This review offers a comprehensive review of the signals and the paramount role neuroinflammation plays in neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. The study explores the sophisticated interactions between microglial, astrocytic, and dendritic cells and how neuroinflammation affects long-term neuronal damage and dysfunction. There are specific pathways related to the mentioned inflammatory processes, including Janus kinases/signal transducer and activator of transcriptions, nuclear factor-κB, and mitogen-activated protein kinases pathways. Neuroinflammation is argued to be a double-edged sword, being not only a protective agent that prevents further neuron damage but also the causative factor in more cell injury development. This concept of contrasting inflammation with neuroprotection advocates for the use of therapeutic techniques that seek to modulate neuroinflammatory responses as part of the neurodegeneration treatment. The recent research findings are integrated with the established knowledge to help present a comprehensive image of neuroinflammation's impact on neurodegenerative diseases and its implications for future therapy.
Collapse
Affiliation(s)
| | - Fatima Sohail
- Department of Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, USA
| | - Jada Wang
- Department of Medicine, St. George's University, Brooklyn, USA
| | - Moises Mendoza
- Department of Health Sciences, Universidad Centroccidental Lisandro Alvarado, Barquisimeto, VEN
| | - Mohammed Raake
- Department of Medicine, Annamalai University, Chennai, IND
| | | | | | - Amirali Sadeghzadegan
- Department of General Practice, Marmara University School of Medicine, Istanbul, TUR
| | - Patel Meghana
- Department of Medicine, Ramaiah University of Applied Sciences, Bengaluru, IND
| | - Janisha Paul
- Department of Medicine, Punjab Institute of Medical Sciences, Jalandhar, IND
| |
Collapse
|
33
|
Rehman MU, Sehar N, Rasool I, Aldossari RM, Wani AB, Rashid SM, Wali AF, Ali A, Arafah A, Khan A. Glymphatic pathway: An emerging perspective in the pathophysiology of neurodegenerative diseases. Int J Geriatr Psychiatry 2024; 39:e6104. [PMID: 38877354 DOI: 10.1002/gps.6104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
The central nervous system (CNS) is widely recognized as the only organ system without lymphatic capillaries to promote the removal of interstitial metabolic by-products. Thus, the newly identified glymphatic system which provides a pseudolymphatic activity in the nervous system has been focus of latest research in neurosciences. Also, findings reported that, sleep stimulates the elimination actions of glymphatic system and is linked to normal brain homeostatis. The CNS is cleared of potentially hazardous compounds via the glymphatic system, particularly during sleep. Any age-related alterations in brain functioning and pathophysiology of various neurodegenerative illnesses indicates the disturbance of the brain's glymphatic system. In this context, β-amyloid as well as tau leaves the CNS through the glymphatic system, it's functioning and CSF discharge markedly altered in elderly brains as per many findings. Thus, glymphatic failure may have a potential mechanism which may be therapeutically targetable in several neurodegenerative and age-associated cognitive diseases. Therefore, there is an urge to focus for more research into the connection among glymphatic system and several potential brain related diseases. Here, in our current review paper, we reviewed current research on the glymphatic system's involvement in a number of prevalent neurodegenerative and neuropsychiatric diseases and, we also discussed several therapeutic approaches, diet and life style modifications which might be used to acquire a more thorough performance and purpose of the glymphatic system to decipher novel prospects for clinical applicability for the management of these diseases.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Iyman Rasool
- Department of Pathology, Government Medical College (GMC-Srinagar), Srinagar, Jammu and Kashmir, India
| | - Rana M Aldossari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin AbdulAziz University, Al Kharj, Saudi Arabia
| | - Amir Bashir Wani
- Division of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alusteng, Shuhama, Srinagar, Jammu and Kashmir, India
| | - Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Aarif Ali
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alusteng, Shuhama, Srinagar, Jammu and Kashmir, India
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Andleeb Khan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
34
|
Mihaylova R, Angelova VT, Tchekalarova J, Atanasova D, Ivanova P, Simeonova R. Tailored Melatonin- and Donepezil-Based Hybrids Targeting Pathognomonic Changes in Alzheimer's Disease: An In Vitro and In Vivo Investigation. Int J Mol Sci 2024; 25:5969. [PMID: 38892154 PMCID: PMC11172853 DOI: 10.3390/ijms25115969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
A plethora of pathophysiological events have been shown to play a synergistic role in neurodegeneration, revealing multiple potential targets for the pharmacological modulation of Alzheimer's disease (AD). In continuation to our previous work on new indole- and/or donepezil-based hybrids as neuroprotective agents, the present study reports on the beneficial effects of lead compounds of the series on key pathognomonic features of AD in both cellular and in vivo models. An enzyme-linked immunosorbent assay (ELISA) was used to evaluate the anti-fibrillogenic properties of 15 selected derivatives and identify quantitative changes in the formation of neurotoxic β-amyloid (Aβ42) species in human neuronal cells in response to treatment. Among the most promising compounds were 3a and 3c, which have recently shown excellent antioxidant and anticholinesterase activities, and, therefore, have been subjected to further in vivo investigation in mice. An acute toxicity study was performed after intraperitoneal (i.p.) administration of both compounds, and 1/10 of the LD50 (35 mg/kg) was selected for subacute treatment (14 days) with scopolamine in mice. Donepezil (DNPZ) and/or galantamine (GAL) were used as reference drugs, aiming to establish any pharmacological superiority of the multifaceted approach in battling hallmark features of neurodegeneration. Our promising results give first insights into emerging disease-modifying strategies to combine multiple synergistic activities in a single molecule.
Collapse
Affiliation(s)
- Rositsa Mihaylova
- Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria; (R.M.); (V.T.A.); (R.S.)
| | - Violina T. Angelova
- Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria; (R.M.); (V.T.A.); (R.S.)
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.A.); (P.I.)
| | - Dimitrinka Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.A.); (P.I.)
- Department of Anatomy, Faculty of Medicine, Trakia University, 6003 Stara Zagora, Bulgaria
| | - Petja Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.A.); (P.I.)
| | - Rumyana Simeonova
- Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria; (R.M.); (V.T.A.); (R.S.)
| |
Collapse
|
35
|
Tota M, Karska J, Kowalski S, Piątek N, Pszczołowska M, Mazur K, Piotrowski P. Environmental pollution and extreme weather conditions: insights into the effect on mental health. Front Psychiatry 2024; 15:1389051. [PMID: 38863619 PMCID: PMC11165707 DOI: 10.3389/fpsyt.2024.1389051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Environmental pollution exposures, including air, soil, water, light, and noise pollution, are critical issues that may implicate adverse mental health outcomes. Extreme weather conditions, such as hurricanes, floods, wildfires, and droughts, may also cause long-term severe concerns. However, the knowledge about possible psychiatric disorders associated with these exposures is currently not well disseminated. In this review, we aim to summarize the current knowledge on the impact of environmental pollution and extreme weather conditions on mental health, focusing on anxiety spectrum disorders, autism spectrum disorders, schizophrenia, and depression. In air pollution studies, increased concentrations of PM2.5, NO2, and SO2 were the most strongly associated with the exacerbation of anxiety, schizophrenia, and depression symptoms. We provide an overview of the suggested underlying pathomechanisms involved. We highlight that the pathogenesis of environmental pollution-related diseases is multifactorial, including increased oxidative stress, systematic inflammation, disruption of the blood-brain barrier, and epigenetic dysregulation. Light pollution and noise pollution were correlated with an increased risk of neurodegenerative disorders, particularly Alzheimer's disease. Moreover, the impact of soil and water pollution is discussed. Such compounds as crude oil, heavy metals, natural gas, agro-chemicals (pesticides, herbicides, and fertilizers), polycyclic or polynuclear aromatic hydrocarbons (PAH), solvents, lead (Pb), and asbestos were associated with detrimental impact on mental health. Extreme weather conditions were linked to depression and anxiety spectrum disorders, namely PTSD. Several policy recommendations and awareness campaigns should be implemented, advocating for the advancement of high-quality urbanization, the mitigation of environmental pollution, and, consequently, the enhancement of residents' mental health.
Collapse
Affiliation(s)
- Maciej Tota
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Julia Karska
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Szymon Kowalski
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Piątek
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | | - Katarzyna Mazur
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Patryk Piotrowski
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
36
|
Fu TC, Wang GR, Li YX, Xu ZF, Wang C, Zhang RC, Ma QT, Ma YJ, Guo Y, Dai XY, Guo Y. Mobilizing endogenous neuroprotection: the mechanism of the protective effect of acupuncture on the brain after stroke. Front Neurosci 2024; 18:1181670. [PMID: 38737099 PMCID: PMC11084281 DOI: 10.3389/fnins.2024.1181670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/04/2024] [Indexed: 05/14/2024] Open
Abstract
Given its high morbidity, disability, and mortality rates, ischemic stroke (IS) is a severe disease posing a substantial public health threat. Although early thrombolytic therapy is effective in IS treatment, the limited time frame for its administration presents a formidable challenge. Upon occurrence, IS triggers an ischemic cascade response, inducing the brain to generate endogenous protective mechanisms against excitotoxicity and inflammation, among other pathological processes. Stroke patients often experience limited recovery stages. As a result, activating their innate self-protective capacity [endogenous brain protection (EBP)] is essential for neurological function recovery. Acupuncture has exhibited clinical efficacy in cerebral ischemic stroke (CIS) treatment by promoting the human body's self-preservation and "Zheng Qi" (a term in traditional Chinese medicine (TCM) describing positive capabilities such as self-immunity, self-recovery, and disease prevention). According to research, acupuncture can modulate astrocyte activity, decrease oxidative stress (OS), and protect neurons by inhibiting excitotoxicity, inflammation, and apoptosis via activating endogenous protective mechanisms within the brain. Furthermore, acupuncture was found to modulate microglia transformation, thereby reducing inflammation and autoimmune responses, as well as promoting blood flow restoration by regulating the vasculature or the blood-brain barrier (BBB). However, the precise mechanism underlying these processes remains unclear. Consequently, this review aims to shed light on the potential acupuncture-induced endogenous neuroprotective mechanisms by critically examining experimental evidence on the preventive and therapeutic effects exerted by acupuncture on CIS. This review offers a theoretical foundation for acupuncture-based stroke treatment.
Collapse
Affiliation(s)
- Tian-cong Fu
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Guan-ran Wang
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yu-xuan Li
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhi-fang Xu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Can Wang
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Run-chen Zhang
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qing-tao Ma
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ya-jing Ma
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-yu Dai
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yang Guo
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
37
|
Abu-Elfotuh K, Hamdan AME, Mohamed SA, Bakr RO, Ahmed AH, Atwa AM, Hamdan AM, Alanzai AG, Alnahhas RK, Gowifel AMH, Salem MA. The potential anti-Alzheimer's activity of Oxalis corniculata Linn. Methanolic extract in experimental rats: Role of APOE4/LRP1, TLR4/NF-κβ/NLRP3, Wnt 3/β-catenin/GSK-3β, autophagy and apoptotic cues. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117731. [PMID: 38218505 DOI: 10.1016/j.jep.2024.117731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/23/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oxalis corniculata (O. corniculata) is a member of Oxalidaceae family, widely distributed in Asia, Europe, America, and Africa, used extensively as food and its traditional folkloric uses include management of epilepsy, gastric disorders, and neurodegenerative diseases, together with its use in enhancing health. Numerous pharmacological benefits of O. corniculata are linked to its anti-inflammatory and antioxidant abilities. One of the most prevalent neurodegenerative disorders is Alzheimer's disease (AD) in which neuroinflammation and oxidative stress are its main pathogenic processes. AIM OF THE STUDY Our research aimed to study the neuroprotective effect of the methanolic extract of Oxalis corniculata Linn. (O. corniculata ME), compared to selenium (Se) against AlCl3-induced AD. MATERIALS AND METHODS Forty male albino rats were allocated into four groups (Gps). Gp I a control group, the rest of the animals received AlCl3 (Gp II-Gp IV). Rats in Gp III and IV were treated with Se and O. corniculata ME, respectively. RESULTS The chemical profile of O. corniculata ME was studied using ultraperformance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry, allowing the tentative identification of sixty-six compounds, including organic acids, phenolics and others, cinnamic acid and its derivatives, fatty acids, and flavonoids. AlCl3 showed deterioration in short-term memory and brain histological pictures. Our findings showed that O. corniculata ME and selenium helped to combat oxidative stress produced by accumulation of AlCl3 in the brain and in prophylaxis against AD. Thus, Selenium (Se) and O. corniculata ME restored antioxidant defense, via enhancing Nrf2/HO-1 hub, hampered neuroinflammation, via TLR4/NF-κβ/NLRP3, along with dampening apoptosis, Aβ generation, tau hyperphosphorylation, BACE1, ApoE4 and LRP1 levels. Treatments also promoted autophagy and modulated Wnt 3/β-catenin/GSK3β cue. CONCLUSIONS It was noted that O. corniculata ME showed a notable ameliorative effect compared to Se on Nrf2/HO-1, TLR4/NF-κβ/NLRP3, APOE4/LRP1, Wnt 3/β-catenin/GSK-3β and PERK axes.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Clinical Pharmacy Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt; Al-Ayen Iraqi University, Thi-Qar, 64001, Iraq.
| | - Ahmed M E Hamdan
- Pharmacy Practice Department, Faculty of Pharmacy, University of Tabuk, Tabuk 74191, Saudi Arabia.
| | - Shaza A Mohamed
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt.
| | - Riham O Bakr
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) University, Giza 11787, Egypt.
| | - Amal H Ahmed
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt.
| | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, Cairo 11829, Egypt.
| | - Amira M Hamdan
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | | | | | - Ayah M H Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| | - Maha A Salem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| |
Collapse
|
38
|
Adamu A, Li S, Gao F, Xue G. The role of neuroinflammation in neurodegenerative diseases: current understanding and future therapeutic targets. Front Aging Neurosci 2024; 16:1347987. [PMID: 38681666 PMCID: PMC11045904 DOI: 10.3389/fnagi.2024.1347987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Neuroinflammation refers to a highly complicated reaction of the central nervous system (CNS) to certain stimuli such as trauma, infection, and neurodegenerative diseases. This is a cellular immune response whereby glial cells are activated, inflammatory mediators are liberated and reactive oxygen and nitrogen species are synthesized. Neuroinflammation is a key process that helps protect the brain from pathogens, but inappropriate, or protracted inflammation yields pathological states such as Parkinson's disease, Alzheimer's, Multiple Sclerosis, and other neurodegenerative disorders that showcase various pathways of neurodegeneration distributed in various parts of the CNS. This review reveals the major neuroinflammatory signaling pathways associated with neurodegeneration. Additionally, it explores promising therapeutic avenues, such as stem cell therapy, genetic intervention, and nanoparticles, aiming to regulate neuroinflammation and potentially impede or decelerate the advancement of these conditions. A comprehensive understanding of the intricate connection between neuroinflammation and these diseases is pivotal for the development of future treatment strategies that can alleviate the burden imposed by these devastating disorders.
Collapse
Affiliation(s)
| | | | | | - Guofang Xue
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
39
|
Thangwaritorn S, Lee C, Metchikoff E, Razdan V, Ghafary S, Rivera D, Pinto A, Pemminati S. A Review of Recent Advances in the Management of Alzheimer's Disease. Cureus 2024; 16:e58416. [PMID: 38756263 PMCID: PMC11098549 DOI: 10.7759/cureus.58416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative condition and a form of dementia encountered in medical practice. Despite many proposed and attempted treatments, this disease remains a major puzzle in the public health systems worldwide. The initial part of this article provides an overview and illustration of the primary mechanisms responsible for neuronal damage in AD. Subsequently, it offers a critical evaluation of the most noteworthy studies on pharmacological therapy for AD and outlines recent advancements and novel approaches to managing this condition. Main properties, categorization, Food and Drug Administration (FDA) status, mechanisms of action, benefits, and common side effects of the classical and the most recently proposed pharmacological treatments for AD are described. The conventional pharmacological agents revised comprise cholinesterase inhibitors, monoclonal antibodies, and other therapies, such as memantine, valproic acid, and rosiglitazone. The innovative reviewed pharmacological agents comprise the monoclonal antibodies: donanemab, gantenerumab, solanezumab, bapineuzumab, crenezumab, and semorinemab. Nutritional supplements such as alpha-tocopherol (vitamin E) and caprylidene are also revised. Tau and amyloid-targeting treatments include methylthioninium moiety (MT), leuco-methylthioninium bis (LMTM), an oxidized form of MT, and tramiprosate, which inhibits the beta-amyloid (Aβ) monomer aggregation into toxic oligomers. Antidiabetic and anti-neuroinflammation drugs recently proposed for AD treatment are discussed. The antidiabetic drugs include NE3107, an anti-inflammatory and insulin sensitizer, and the diabetes mainstream drug metformin. The anti-neuroinflammatory AD therapies include the use of sodium oligomannate (GV-971), infusions with intravenous immunoglobulin aiming to decrease plasma levels of the constituents of Aβ plaques, and masitinib, a tyrosine kinase inhibitor that impacts mast and microglia cells. Additional anti-inflammatory agents being currently tested in phase-2 clinical trials, such as atomoxetine (selective norepinephrine reuptake inhibitor), losartan (angiotensin 2 receptor agonist), genistein (anti-inflammatory isoflavone neuroprotective agent), trans-resveratrol (polyphenol antioxidant plant estrogen), and benfotiamine (synthetic thiamine precursor), were reviewed. Lastly, drugs targeting Alzheimer's-associated symptoms, such as brexpiprazole (serotonin dopamine activity modulator) and suvorexant (orexin receptor antagonist), respectively, used for agitation and insomnia in AD patients, are reviewed. As experimental investigations and clinical research progress, there is a possibility that a combination of newly tested medications and traditional ones may emerge as a promising treatment option for AD in the future.
Collapse
Affiliation(s)
- Skylynn Thangwaritorn
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Christopher Lee
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Elena Metchikoff
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Vidushi Razdan
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Suliman Ghafary
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Dominic Rivera
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Alvaro Pinto
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Sudhakar Pemminati
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| |
Collapse
|
40
|
Shen H, Jiang Y, Qiu C, Xie X, Zhang H, He Z, Song Z, Zhou W. Abnormal amyloid precursor protein processing in periodontal tissue in a murine model of periodontitis induced by Porphyromonas gingivalis. J Periodontal Res 2024; 59:395-407. [PMID: 38311599 DOI: 10.1111/jre.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 02/06/2024]
Abstract
OBJECTIVE The study aimed to investigate the change of amyloid precursor protein (APP) processing and amyloid β (Aβ) metabolites in linking periodontitis to Alzheimer's disease (AD). BACKGROUND Aβ is one of the main pathological features of AD, and few studies have discussed changes in its expression in peripheral tissues or analyzed the relationship between the peripheral imbalance of Aβ production and clearance. METHODS A murine model of periodontitis was established by oral infection with Porphyromonas gingivalis (P. gingivalis). Micro-computed tomography (Micro-CT) was used to observe the destruction of the alveolar bone. Nested quantitative polymerase chain reaction (qPCR) was used to measure small quantities of P.gingivalis DNA in different tissues. Behavioral experiments were performed to measure cognitive function in the mice. The mRNA levels of TNF-α, IL-6, IL-8, RANKL, OPG, APP695, APP751, APP770, and BACE1 in the gingival tissues or cortex were detected by RT-PCR. The levels of Aβ1-40 and Aβ1-42 in gingival crevicular fluid (GCF) and plasma were tested by ELISA. RESULTS P. gingivalis oral infection was found to cause alveolar bone resorption and impaired learning and memory. P.gingivalis DNA was detected in the gingiva, blood and cortex of the P.gingivalis group by nested qPCR (p < .05). The mRNA expression of TNF-α, IL-6, IL-8, RANKL/OPG, and BACE1 in the gingival tissue was significantly higher than that in the control group (p < .05). Similarly, upregulated mRNA levels of APP695 and APP770 were observed in the gingival tissuses and cortex of the P. gingivalis group (p < .05). The levels of Aβ1-40 and Aβ1-42 in the GCF and plasma of the P. gingivalis group were significantly higher than those in the control group (p < .05). CONCLUSION P. gingivalis can directly invade the brain via hematogenous infection. The invasion of P. gingivalis could trigger an immune response and lead to an imbalance between Aβ production and clearance in peripheral tissues, which may trigger an abnormal Aβ metabolite in the brain, resulting in the occurrence and development of AD.
Collapse
Affiliation(s)
- Hui Shen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yiting Jiang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Che Qiu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xinyi Xie
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Huanyu Zhang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhiyan He
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Zhou
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
41
|
Mergenthaler P, Balami JS, Neuhaus AA, Mottahedin A, Albers GW, Rothwell PM, Saver JL, Young ME, Buchan AM. Stroke in the Time of Circadian Medicine. Circ Res 2024; 134:770-790. [PMID: 38484031 DOI: 10.1161/circresaha.124.323508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 03/19/2024]
Abstract
Time-of-day significantly influences the severity and incidence of stroke. Evidence has emerged not only for circadian governance over stroke risk factors, but also for important determinants of clinical outcome. In this review, we provide a comprehensive overview of the interplay between chronobiology and cerebrovascular disease. We discuss circadian regulation of pathophysiological mechanisms underlying stroke onset or tolerance as well as in vascular dementia. This includes cell death mechanisms, metabolism, mitochondrial function, and inflammation/immunity. Furthermore, we present clinical evidence supporting the link between disrupted circadian rhythms and increased susceptibility to stroke and dementia. We propose that circadian regulation of biochemical and physiological pathways in the brain increase susceptibility to damage after stroke in sleep and attenuate treatment effectiveness during the active phase. This review underscores the importance of considering circadian biology for understanding the pathology and treatment choice for stroke and vascular dementia and speculates that considering a patient's chronotype may be an important factor in developing precision treatment following stroke.
Collapse
Affiliation(s)
- Philipp Mergenthaler
- Center for Stroke Research Berlin (P.M., A.M.B.), Charité - Universitätsmedizin Berlin, Germany
- Department of Neurology with Experimental Neurology (P.M.), Charité - Universitätsmedizin Berlin, Germany
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Joyce S Balami
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Ain A Neuhaus
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, United Kingdom (A.A.N.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Amin Mottahedin
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences (A.M., P.M.R.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Gregory W Albers
- Department of Neurology, Stanford Hospital, Palo Alto, CA (G.W.A.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Peter M Rothwell
- Nuffield Department of Clinical Neurosciences (A.M., P.M.R.), University of Oxford, United Kingdom
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences (P.M.R.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Jeffrey L Saver
- Department of Neurology and Comprehensive Stroke Center, Geffen School of Medicine, University of Los Angeles, CA (J.L.S.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham (M.E.Y.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Alastair M Buchan
- Center for Stroke Research Berlin (P.M., A.M.B.), Charité - Universitätsmedizin Berlin, Germany
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| |
Collapse
|
42
|
Zhao B, Wei D, Long Q, Chen Q, Wang F, Chen L, Li Z, Li T, Ma T, Liu W, Wang L, Yang C, Zhang X, Wang P, Zhang Z. Altered synaptic currents, mitophagy, mitochondrial dynamics in Alzheimer's disease models and therapeutic potential of Dengzhan Shengmai capsules intervention. J Pharm Anal 2024; 14:348-370. [PMID: 38618251 PMCID: PMC11010627 DOI: 10.1016/j.jpha.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 04/16/2024] Open
Abstract
Emerging research suggests a potential association of progression of Alzheimer's disease (AD) with alterations in synaptic currents and mitochondrial dynamics. However, the specific associations between these pathological changes remain unclear. In this study, we utilized Aβ42-induced AD rats and primary neural cells as in vivo and in vitro models. The investigations included behavioural tests, brain magnetic resonance imaging (MRI), liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis, Nissl staining, thioflavin-S staining, enzyme-linked immunosorbent assay, Golgi-Cox staining, transmission electron microscopy (TEM), immunofluorescence staining, proteomics, adenosine triphosphate (ATP) detection, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) assessment, mitochondrial morphology analysis, electrophysiological studies, Western blotting, and molecular docking. The results revealed changes in synaptic currents, mitophagy, and mitochondrial dynamics in the AD models. Remarkably, intervention with Dengzhan Shengmai (DZSM) capsules emerged as a pivotal element in this investigation. Aβ42-induced synaptic dysfunction was significantly mitigated by DZSM intervention, which notably amplified the frequency and amplitude of synaptic transmission. The cognitive impairment observed in AD rats was ameliorated and accompanied by robust protection against structural damage in key brain regions, including the hippocampal CA3, primary cingular cortex, prelimbic system, and dysgranular insular cortex. DZSM intervention led to increased IDE levels, augmented long-term potential (LTP) amplitude, and enhanced dendritic spine density and length. Moreover, DZSM intervention led to favourable changes in mitochondrial parameters, including ROS expression, MMP and ATP contents, and mitochondrial morphology. In conclusion, our findings delved into the realm of altered synaptic currents, mitophagy, and mitochondrial dynamics in AD, concurrently highlighting the therapeutic potential of DZSM intervention.
Collapse
Affiliation(s)
- Binbin Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qinghua Long
- Medical School, Hubei Minzu University, Enshi, Hubei, 445000, China
| | - Qingjie Chen
- HuBei University of Science and Technology, Xianning, Hubei, 437100, China
| | - Fushun Wang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, 610066, China
| | - Linlin Chen
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zefei Li
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Tong Li
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Tao Ma
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Wei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Linshuang Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Caishui Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Xiaxia Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Ping Wang
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
43
|
Li Y, Wu H, Liu M, Zhang Z, Ji Y, Xu L, Liu Y. Polysaccharide from Polygala tenuifolia alleviates cognitive decline in Alzheimer's disease mice by alleviating Aβ damage and targeting the ERK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117564. [PMID: 38081400 DOI: 10.1016/j.jep.2023.117564] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygala tenuifolia is used in a variety of Chinese medicine prescriptions for the classic dementia treatment, and polysaccharide is an important active component in the herb. AIM OF THE STUDY This study investigated the in vivo anti-Alzheimer's disease (AD) activity of the polysaccharide PTPS from Polygala tenuifolia using the senescence-accelerated mouse/prone8 (SAMP8) model and explored its molecular mechanism to lay the foundation for the development of polysaccharide-based anti-AD drugs. MATERIALS AND METHODS The Morris water maze test (MWM)was used to detect changes in the spatial cognitive ability of mice, and Nissl staining was applied to observe the state of neurons in the classic hippocampus. The levels of acetylcholine (ACh) and acetylcholinesterase (AChE) were measured by ELISA. Immunofluorescence was used to reflect β-amyloid (Aβ) levels in brain tissue. Apoptosis was evaluated by TdT-mediated dUTP Nick-End Labeling (TUNEL) method. The status of dendritic branches and spines was observed by Golgi staining. Meanwhile, the expression levels of recombinant human insulin-degrading enzyme (IDE), brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor B (TrkB), extracellular regulated protein kinases (ERK), and cAMP-response element binding protein (CREB) proteins were determined by Western blotting. RESULTS PTPS improves spatial cognitive deficits in AD mice, reduces cellular damage in the CA3 region of the hippocampus, maintains the balance of the cholinergic system, and exerts an anti-AD effect in vivo. The molecular mechanism of its action may be related to the reduction of Aβ deposition as well as the activation of ERK pathway-related proteins with enhanced synaptic plasticity. CONCLUSIONS PTPS is able to exert anti-AD activity in vivo by mitigating Aβ damage and targeting the ERK pathway.
Collapse
Affiliation(s)
- Yuanyuan Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Jinan 250355, China
| | - Haoran Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Maoxuan Liu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiyuan Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Jinan 250355, China
| | - Yuning Ji
- School of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jina, China
| | - Lingchuan Xu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Jinan 250355, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Jinan 250355, China.
| |
Collapse
|
44
|
Qi S, Peng Y, Wang G, Zhang X, Liu M, He L. A tale of dual functions of SERF family proteins in regulating amyloid formation. Chembiochem 2024; 25:e202300727. [PMID: 38100267 DOI: 10.1002/cbic.202300727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
The abnormal aggregation of proteins is a significant pathological hallmark of diseases, such as the amyloid formation associated with fused in sarcoma protein (FUS) in frontotemporal lobar degeneration and amyotrophic lateral sclerosis diseases. Understanding which cellular components and how these components regulate the process of abnormal protein aggregation in living organisms is crucial for the prevention and treatment of neurodegenerative diseases. MOAG-4/SERF is a conserved family of proteins with rich positive charged residues, which was initially identified as an enhancer for the formation of amyloids in C. elegans. Knocking out SERF impedes the amyloid formation of various proteins, including α-synuclein and β-amyloid, which are linked to Parkinson's and Alzheimer's diseases, respectively. However, recent studies revealed SERF exhibited dual functions, as it could both promote and inhibit the fibril formation of the neurodegenerative disease-related amyloidogenic proteins. The connection between functions and structure basis of SERF in regulating the amyloid formation is still unclear. This review will outline the hallmark proteins in neurodegenerative diseases, summarize the contradictory role of the SERF protein family in promoting and inhibiting the aggregation of neurodegenerative proteins, and finally explore the potential structural basis and functional selectivity of the SERF protein.
Collapse
Affiliation(s)
- Shixing Qi
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yun Peng
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guan Wang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Optics Valley Laboratory, Wu Han Shi, 430074, Hubei, China
| | - Lichun He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
45
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Sandouka D, Heeh M, Idais TI. AMPA receptor neurotransmission and therapeutic applications: A comprehensive review of their multifaceted modulation. Eur J Med Chem 2024; 266:116151. [PMID: 38237342 DOI: 10.1016/j.ejmech.2024.116151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
The neuropharmacological community has shown a strong interest in AMPA receptors as critical components of excitatory synaptic transmission during the last fifteen years. AMPA receptors, members of the ionotropic glutamate receptor family, allow rapid excitatory neurotransmission in the brain. AMPA receptors, which are permeable to sodium and potassium ions, manage the bulk of the brain's rapid synaptic communications. This study thoroughly examines the recent developments in AMPA receptor regulation, focusing on a shift from single chemical illustrations to a more extensive investigation of underlying processes. The complex interplay of these modulators in modifying the function and structure of AMPA receptors is the main focus, providing insight into their influence on the speed of excitatory neurotransmission. This research emphasizes the potential of AMPA receptor modulation as a therapy for various neurological disorders such as epilepsy and Alzheimer's disease. Analyzing these regulators' sophisticated molecular details enhances our comprehension of neuropharmacology, representing a significant advancement in using AMPA receptors for treating intricate neurological conditions.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Tala Iyad Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
46
|
Zang WB, Wei HL, Zhang WW, Ma W, Li J, Yao Y. Curcumin hybrid molecules for the treatment of Alzheimer's disease: Structure and pharmacological activities. Eur J Med Chem 2024; 265:116070. [PMID: 38134747 DOI: 10.1016/j.ejmech.2023.116070] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease among the elderly. Contemporary treatments can only relieve symptoms but fail to delay disease progression. Curcumin is a naturally derived compound that has demonstrated significant therapeutic effects in AD treatment. Recently, molecular hybridization has been utilized to combine the pharmacophoric groups present in curcumin with those of other AD drugs, resulting in a series of novel compounds that enhance the therapeutic efficacy through multiple mechanisms. In this review, we firstly provide a concise summary of various pathogenetic hypotheses of AD and the mechanism of action of curcumin in AD, as well as the concept of molecular hybridization. Subsequently, we focus on the recent development of hybrid molecules derived from curcumin, summarizing their structures and pharmacological activities, including cholinesterase inhibitory activity, Aβ aggregation inhibitory activity, antioxidant activity, and other activities. The structure-activity relationships were further discussed.
Collapse
Affiliation(s)
- Wei-Biao Zang
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Hui-Ling Wei
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Wei-Wei Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Wei Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Juan Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Characteristic Chinese Medicine, and Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| | - Yao Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
47
|
Tchekalarova J, Ivanova P, Krushovlieva D, Kortenska L, Angelova VT. Protective Effect of the Novel Melatonin Analogue Containing Donepezil Fragment on Memory Impairment via MT/ERK/CREB Signaling in the Hippocampus in a Rat Model of Pinealectomy and Subsequent Aβ 1-42 Infusion. Int J Mol Sci 2024; 25:1867. [PMID: 38339146 PMCID: PMC10855364 DOI: 10.3390/ijms25031867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
A reduction in melatonin function contributes to the acceleration of Alzheimer's disease (AD), and understanding the molecular processes of melatonin-related signaling is critical for intervention in AD progression. Recently, we synthesized a series of melatonin analogues with donepezil fragments and tested them in silico and in vitro. In this study, one of the most potent compounds, 3c, was evaluated in a rat model of pinealectomy (pin) followed by icvAβ1-42 infusion. Melatonin was used as the reference drug. Treatment with melatonin and 3c (10 mg/kg, i.p. for 14 days) had a beneficial effect on memory decline and the concomitant increase in hippocampal Aβ1-42 and pTAU in the pin+icvAβ1-42 rats. Melatonin supplementation facilitated non-amyloidogenic signaling via non-receptor (histone deacetylase sirtuin 1, SIRT1) and receptor-related signaling (MT/ERK/CREB). The hybrid 3c analogue up-regulated the MT1A and MT2B receptors, pERK and pCREB. Our results strongly support the hypothesis that melatonin-related analogues may become a promising drug candidate for Alzheimer's disease therapy.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.I.); (D.K.); (L.K.)
| | - Petya Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.I.); (D.K.); (L.K.)
| | - Desislava Krushovlieva
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.I.); (D.K.); (L.K.)
| | - Lidia Kortenska
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.I.); (D.K.); (L.K.)
| | - Violina T. Angelova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| |
Collapse
|
48
|
Asti AL, Crespi S, Rampino T, Zelini P, Gregorini M, Pascale A, Marchesi N, Saccucci S, Colombani C, Vitalini S, Iriti M. Yet another in vitro evidence that natural compounds introduced by diet have anti-amyloidogenic activities and can counteract neurodegenerative disease depending on aging. Nat Prod Res 2024; 38:861-866. [PMID: 36964661 DOI: 10.1080/14786419.2023.2192493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/11/2023] [Indexed: 03/26/2023]
Abstract
A major issue in Alzheimer's disease (AD) research is to find some new therapeutic drug which decrease Amyloid-beta (Aβ) aggregation. From a therapeutic point of view the major question is whether pharmacological inhibition of inflammation pathways will be able to safely reverse or slow the course of disease. Natural compounds are capable of binding to different targets implicated in AD and exert neuroprotective effects. Aim of this study was to evaluate the in vitro inhibition of Aβ1-42 fibrillogenesis in presence of Gallic acid, Rutin, Melatonin and ProvinolsTM . We performed the analysis with Transmission and Scanning Electron Microscopy, and with X-ray microanalysis. Samples treated with Rutin, that arises from phenylalanine via the phenylpropanoid pathway, show the best effective result obtained because a significantly fibril inhibition activity is detectable compared to the other compounds. Melatonin shows a better inhibitory activity than ProvinolsTM and Gallic acid at the considered concentrations.
Collapse
Affiliation(s)
- Anna Lia Asti
- Unit of Nephrology, Dialysis and Transplantation, Fondazione I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | - Stefania Crespi
- Department of Earth Sciences Ardito Desio, University of Milan, Milan, Italy
| | - Teresa Rampino
- Unit of Nephrology, Dialysis and Transplantation, Fondazione I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | - Paola Zelini
- Unit of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marilena Gregorini
- Unit of Nephrology, Dialysis and Transplantation, Fondazione I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | | | - Carla Colombani
- Department of Agricultural and Environmental Sciences Territorial Production and Agroenergy, University of Milan, Milan, Italy
| | - Sara Vitalini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
49
|
Karska J, Kowalski S, Gładka A, Brzecka A, Sochocka M, Kurpas D, Beszłej JA, Leszek J. Artificial light and neurodegeneration: does light pollution impact the development of Alzheimer's disease? GeroScience 2024; 46:87-97. [PMID: 37733222 PMCID: PMC10828315 DOI: 10.1007/s11357-023-00932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
Two multidimensional problems of recent times - Alzheimer's disease and light pollution - seem to be more interrelated than previously expected. A series of studies in years explore the pathogenesis and the course of Alzheimer's disease, yet the mechanisms underlying this pathology remain not fully discovered and understood. Artificial lights which accompany civilization on a daily basis appear to have more detrimental effects on both environment and human health than previously anticipated. Circadian rhythm is affected by inappropriate lighting conditions in particular. The consequences are dysregulation of the sleep-wake cycle, gene expression, neuronal restructuring, brain's electricity, blood flow, metabolites' turnover, and gut microbiota as well. All these phenomena may contribute to neurodegeneration and consequently Alzheimer's disease. There is an increasing number of research underlining the complexity of the correlation between light pollution and Alzheimer's disease; however, additional studies to enhance the key tenets are required for a better understanding of this relationship.
Collapse
Affiliation(s)
- Julia Karska
- Department of Psychiatry, Wrocław Medical University, Pasteura 10, 50-367, Wrocław, Poland.
| | - Szymon Kowalski
- Faculty of Medicine, Wrocław Medical University, Pasteura 1, 50-367, Wrocław, Poland
| | - Anna Gładka
- Department of Psychiatry, Wrocław Medical University, Pasteura 10, 50-367, Wrocław, Poland
| | - Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wrocław Medical University, Grabiszyńska 105, 53-439, Wrocław, Poland
| | - Marta Sochocka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Donata Kurpas
- Health Sciences Faculty, Wroclaw Medical University, Bartla 5, 50-996, Wrocław, Poland
| | - Jan Aleksander Beszłej
- Department of Psychiatry, Wrocław Medical University, Pasteura 10, 50-367, Wrocław, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wrocław Medical University, Pasteura 10, 50-367, Wrocław, Poland
| |
Collapse
|
50
|
Dong S, Xia J, Wang F, Yang L, Xing S, Du J, Zhang T, Li Z. Discovery of novel deoxyvasicinone derivatives with benzenesulfonamide substituents as multifunctional agents against Alzheimer's disease. Eur J Med Chem 2024; 264:116013. [PMID: 38052155 DOI: 10.1016/j.ejmech.2023.116013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/26/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023]
Abstract
A series of deoxyvasicinone derivatives with benzenesulfonamide substituents were designed and synthesized to find a multifunctional anti-Alzheimer's disease (AD) drug. The results of the biological activity evaluation indicated that most compounds demonstrated selective inhibition of acetylcholinesterase (AChE). Among them, g17 exhibited the most potent inhibitory effect on AChE (IC50 = 0.24 ± 0.04 μM). Additionally, g17 exhibited promising properties as a metal chelator and inhibitor of amyloid β peptides self-aggregation (68.34 % ± 1.16 %). Research on oxidative stress has shown that g17 displays neuroprotective effects and effectively suppresses the intracellular accumulation of reactive oxygen species. Besides, g17 demonstrated remarkable anti-neuroinflammatory effects by significantly reducing the production of pro-inflammatory cytokines (such as NO, IL-1β, and TNF-α) and inhibiting the expression of inflammatory mediators iNOS and COX-2. In vivo studies showed that g17 significantly improved AD model mice's cognitive and memory abilities. Histological examination of mouse hippocampal tissue sections using hematoxylin and eosin staining revealed that g17 effectively mitigates neuronal damage. Considering the multifunctional properties of g17, it is regarded as a promising lead compound for treating AD.
Collapse
Affiliation(s)
- Shuanghong Dong
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jucheng Xia
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Fang Wang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lili Yang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Siqi Xing
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jiyu Du
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Tingting Zhang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zeng Li
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
| |
Collapse
|