1
|
Wang M, Wan M, Liu M, Zhou W, Zhang X, Liu W, Liu Y, Jiang S, Shang E, Duan J. Integrated network pharmacology and metabolomics analysis to reveal the potential mechanism of Ershen Wan in ameliorating ulcerative colitis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119690. [PMID: 40158827 DOI: 10.1016/j.jep.2025.119690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ershen Wan (ESW), a classic traditional Chinese medicine (TCM) prescription composed of Psoralea corylifolia Linn. and Myristica fragrans Houtt., has been applied to treat gastrointestinal disorders in clinical practices for thousands of years. However, its potential molecular mechanism in alleviating ulcerative colitis (UC) remains to be elusive. AIM OF THE STUDY The purpose of the study is to explore the underlying mechanism of ESW in treating UC. MATERIALS AND METHODS The protective effect of ESW on dextran sodium sulfate (DSS)-induced UC mice was assessed by body weight, disease activity index (DAI), colon length, colon tissue pathology, and colonic inflammatory factors. Furthermore, network pharmacology was applied to dissect the possible targets and biological pathways regulated by ESW. The plasma and fecal metabolomics were comprehensively analyzed by UPLC-Q-TOF/MS. Subsequently, an efficient and feasible approach integrating network pharmacology, metabolomics, and molecular docking was used to explore the key targets obtained from the metabolite-reaction-enzyme-gene network. And the effect of ESW on the MAPK signaling mediated intestinal epithelial cell apoptosis was further investigated by in vitro and in vivo experiments. RESULTS ESW could notably alleviate colon injury and inflammation of UC mice. Network pharmacology suggested that the bioactive components of ESW could mainly modulate signaling pathways associated with inflammation and metabolism. Consistently, plasma and fecal metabolomics further indicated that ESW could regulate the metabolic pathways of arachidonic acid, linoleic acid, sphingolipid, tryptophan, and glycerophospholipid. And the combined analysis of network pharmacology and metabolomics revealed that 14 pivotal targets were modulated by ESW, including PTGS1, PTGS2, CYP1A1, FADS1, CBR1, ALOX5, EPHX1, EPHX2, HPGD, PLA2G1B, PLA2G7, MGLL, ACHE, and SPHK1. Additionally, molecular docking suggested that bioactive components of ESW could bind well to these potential targets. And in vitro and in vivo experiments further verified that ESW could markedly ameliorate pathological symptoms of UC mice through inhibiting MAPK signaling mediated colonic epithelial cell apoptosis. CONCLUSION Collectively, these findings indicated that ESW could effectively alleviate the pathological symptoms of UC mice, mainly involving in the modulation of lipid and amino acid metabolism pathways, and the suppression of MAPK signaling-mediated apoptosis. In this study, the potential mechanism of ESW for the treatment of UC was first clarified, which provided a solid scientific foundation for its clinical application. Notably, the proposed strategy facilitated a comprehensive prediction and validation of the efficacy and molecular mechanism of TCMs, and also provided a novel approach for revealing the intricate biological pathogenesis of diseases.
Collapse
Affiliation(s)
- Mingyang Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Meiyu Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Meijuan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Wenwen Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Xiaoxiao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Weijie Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Ying Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| |
Collapse
|
2
|
Li T, Zhou SY, Quan W, Zhou Y, Wu J, Zhao LP, Qiao CM, Zhao WJ, Cui C, Shen YQ. Six Weeks of Moderate-Intensity Treadmill Exercise Improves Intestinal Barrier and Intestinal Inflammation in Parkinson's Disease Mice. Mol Neurobiol 2025:10.1007/s12035-025-04938-x. [PMID: 40232644 DOI: 10.1007/s12035-025-04938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
More than 80% of patients with Parkinson's disease (PD) exhibit severe gastrointestinal symptoms, which seriously affect life quality of life. Several large-scale epidemiological studies have confirmed that exercise can improve motor symptoms of PD patients, but the influence on gastrointestinal symptoms has not been reported. To clarify whether exercise can enhance intestinal barrier and ameliorate intestinal inflammation in PD mice, we examined whether moderate-intensity treadmill exercise for 6 weeks could alleviate gastrointestinal symptoms in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subacute PD mice. Our results demonstrated that 6 weeks moderate-intensity treadmill exercise enhanced the expression of Muc-2 and tight junction proteins, while reducing the expression of cytokines and chemokines, in the distal colon. Moreover, 6 weeks of treadmill exercise reduced the concentrations of short-chain fatty acids (SCFAs) and the expression of G protein-coupled receptor 43 (GPR43) to maintain the intestinal barrier and alleviate intestinal inflammation. Further data showed that 6 weeks of moderate-intensity treadmill exercise enhanced insulin-like growth factor 1 (IGF-1) expression and activated the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. Taken as a whole, these results revealed that 6 weeks of moderate-intensity treadmill exercise enhanced intestinal barrier function, reduced intestinal inflammation and corrected abnormal concentrations of SCFAs by activating IGF-1/PI3K/Akt pathway in MPTP-induced subacute PD mice.
Collapse
Affiliation(s)
- Ting Li
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Sheng-Yang Zhou
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Quan
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yu Zhou
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Wu
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Li-Ping Zhao
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chen-Meng Qiao
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei-Jiang Zhao
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chun Cui
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yan-Qin Shen
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, 214151, China.
| |
Collapse
|
3
|
Qu Q, Liu M, Hu Y, Huang G, Xuan Z, Lun J, Chen X, Lv W, Guo S. Modulatory effects of polyherbal mixture on the immuno-antioxidant capacity and intestinal health of chicks infected with Escherichia coli O78. Poult Sci 2025; 104:105156. [PMID: 40239311 PMCID: PMC12032338 DOI: 10.1016/j.psj.2025.105156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025] Open
Abstract
A total of 180 one-day-old white-feathered broiler chicks were selected and randomly divided into 4 treatments, namely the control group (CON), Escherichia coli groups (E. coli), 2 g/kg polyherbal mixture group (PHM2), and the 4 g/kg polyherbal mixture group (PHM4). The CON and E. coli groups were fed a basal diet, while the PHM2 and PHM4 groups were fed the basal diet supplemented with 2 g/kg and 4 g/kg PHM, respectively. Each group had 3 replicates, with 15 broilers per replicate. On day 17 of the experiment, broilers in the E. coli, PHM2, and PHM4 groups were intraperitoneally injected with 0.8 mL of 1 × 108 CFU/mL of E. coli O78. Broilers in the control group received an equivalent volume of saline. Chicks were euthanized 48 h postinjection for collecting serum, liver, spleen, jejunum, ileum, ileal mucosa, and cecal contents. Our results showed that PHM significantly reversed the weight loss and decreased the diarrhea rate and the mortality of chicks caused by E. coli infection (P < 0.05). In the serum of chicks infected with E. coli, PHM significantly enhanced the antioxidant capacity (P < 0.05), increased the levels of immunoglobulins and anti-inflammatory cytokines (P < 0.05), and decreased the concentrations of proinflammatory cytokines (P < 0.05). Meanwhile, PHM also promoted the mRNA expression of antioxidant-related genes and decreased the expression of proinflammatory cytokines and apoptosis-related genes in the liver, spleen, jejunum, and ileum (P < 0.05). In addition, PHM repaired the intestinal barrier and injury to further reduce the serum concentrations of d-lactate (DAO) and lipopolysaccharide (LPS) (P < 0.05). More importantly, PHM significantly regulated the composition of cecal microbiota, especially by up-regulating the relative abundance of beneficial bacteria, including Faecalibacterium, Bacteroides, Butyricicoccus, and Lactobacillus, and down-regulating the relative abundance of pathogenic bacteria, including Enterococcus, Escherichia, and Shigella (P < 0.05). These beneficial bacteria were significantly positively correlated with antioxidant capacity and intestinal barrier function, while pathogenic bacteria were significantly positively correlated with proinflammatory cytokines (P < 0.05). In conclusion, PHM may be a potential preventive strategy for E. coli-infected poultry, which is closely related to its modulation of gut microbiota.
Collapse
Affiliation(s)
- Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mengjie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; School of Animal Science and Technology, Foshan University, Foshan, China
| | - Yifan Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Gengxiong Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoying Xuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianchi Lun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoli Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Boehm E, Droessler L, Vollstaedt ML, Stein L, Amasheh S. Barrier-Strengthening Effects of Cannabidiol on Porcine Peyer's Patches. Int J Mol Sci 2025; 26:3360. [PMID: 40244215 PMCID: PMC11989848 DOI: 10.3390/ijms26073360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Cannabidiol (CBD), a major non-psychoactive cannabinoid of the Cannabis sativa L. plant, has demonstrated anti-inflammatory effects in various studies. However, the therapeutic use of CBD is still limited. Despite its potential, little is known about the molecular mechanisms of CBD on epithelial integrity, particularly concerning effects in native intestinal tissue. To accomplish this, our study aimed to investigate the effects of CBD ex vivo on the follicle-associated epithelium of Peyer's Patches (PP) and villus epithelium (VE) from porcine intestine. To measure the epithelial barrier, the Ussing chamber technique was employed, followed by immunoblotting and confocal laser-scanning immunofluorescence microscopy of tight junction proteins and specific receptors. The results revealed that CBD significantly strengthens the epithelial barrier of PP by upregulation of sealing tight junction proteins, including occludin, claudin-1, -3, and -7. Additionally, the study showed the potential of CBD to decrease the expression of Tumor necrosis factor alpha (TNFɑ) receptor 1 (TNFR-1) in PP that plays a key role in chronic inflammatory diseases. The study highlights the potential of CBD in the prevention of inflammatory conditions and underlines the important role of PP as a target for bioactive compounds.
Collapse
Affiliation(s)
- Elisa Boehm
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (E.B.); (L.D.); (M.-L.V.); (L.S.)
| | - Linda Droessler
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (E.B.); (L.D.); (M.-L.V.); (L.S.)
| | - Marie-Luise Vollstaedt
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (E.B.); (L.D.); (M.-L.V.); (L.S.)
| | - Laura Stein
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (E.B.); (L.D.); (M.-L.V.); (L.S.)
| | - Salah Amasheh
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (E.B.); (L.D.); (M.-L.V.); (L.S.)
- Marine Science Station, The University of Jordan, Aqaba Branch, Aqaba 77110, Jordan
| |
Collapse
|
5
|
Chen S, Qin Z, Zhou S, Xu Y, Zhu Y. The emerging role of intestinal stem cells in ulcerative colitis. Front Med (Lausanne) 2025; 12:1569328. [PMID: 40201327 PMCID: PMC11975877 DOI: 10.3389/fmed.2025.1569328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic idiopathic inflammatory disease affecting the colon and rectum. Characterized by recurrent attacks, UC is often resistant to traditional anti-inflammatory therapies, imposing significant physiological, psychological, and economic burdens on patients. In light of these challenges, innovative targeted therapies have become a new expectation for patients with UC. A crucial pathological feature of UC is the impairment of the intestinal mucosal barrier, which underlies aberrant immune responses and inflammation. Intestinal stem cells (ISCs), which differentiate into intestinal epithelial cells, play a central role in maintaining this barrier. Growing studies have proved that regulating the regeneration and differentiation of ISC is a promising approach to treating UC. Despite this progress, there is a dearth of comprehensive articles describing the role of ISCs in UC. This review focuses on the importance of ISCs in maintaining the intestinal mucosal barrier in UC and discusses the latest findings on ISC functions, markers, and their regulatory mechanisms. Key pathways involved in ISC regulation, including the Wnt, Notch, Hedgehog (HH), Hippo/Yap, and autophagy pathways, are explored in detail. Additionally, this review examines recent advances in ISC-targeted therapies for UC, such as natural or synthetic compounds, microbial preparations, traditional Chinese medicine (TCM) extracts and compounds, and transplantation therapy. This review aims to offer novel therapeutic insights and strategies for patients who have long struggled with UC.
Collapse
Affiliation(s)
- Siqing Chen
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhang Qin
- The Fourth Hospital of Changsha (Changsha Hospital Affiliated with Hunan Normal University), Changsha, Hunan, China
| | - Sainan Zhou
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
6
|
Xu H, Zhu J, Lin X, Chen C, Tao J. A Comprehensive Review of Traditional Chinese Medicine in the Management of Ulcerative Colitis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:435-473. [PMID: 40066486 DOI: 10.1142/s0192415x2550017x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
Ulcerative colitis (UC) is a chronic, nonspecific inflammatory disorder characterized by symptoms such as abdominal pain, diarrhea, hematochezia, and urgency during defecation. While the primary site of involvement is the colon, UC can extend to encompass the entire rectum and colon. The causes and development mechanisms of UC are still not well understood; nonetheless, it is currently held that factors including environmental influences, genetic predispositions, intestinal mucosal integrity, gut microbiota composition, and immune dysregulation contribute to its development. Dysregulated immune responses are pivotal in the pathophysiology of UC, and these aberrant responses are considered key contributors to the disease onset. In patients with UC, immune cells become hyperactive and erroneously target normal intestinal tissue, resulting in inflammatory cascades and damage to the intestinal mucosa. The therapeutic strategies currently employed for UC include immunosuppressive agents such as aminosalicylates and corticosteroids. However, these treatments often prove costly and carry significant adverse effects - imposing a considerable burden on patients. Traditional Chinese Medicine (TCM) has attracted worldwide attention because of its multi-target approach, minimal side effects, cost-effectiveness, and favorable efficacy profiles. In this review, the ways in which TCM modulates inflammatory responses in the treatment of ulcerative colitis have been outlined. Research into TCM modalities for modulating inflammatory pathways in the treatment of UC, which has yielded promising advancements, including individual herbs, herbal formulations, and their derivatives, has been summarized. TCM has been utilized to treat UC and the immune system plays a key role in regulating intestinal homeostasis. It is imperative to facilitate large-scale evidence-based medical research and promote the clinical application of TCM in the management of UC.
Collapse
Affiliation(s)
- Huate Xu
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P. R. China
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Jinhui Zhu
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Xiangyun Lin
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P. R. China
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Chao Chen
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P. R. China
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Jinhua Tao
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P. R. China
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P. R. China
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
7
|
Li J, Zhang YJ, Zhao X, Yu Y, Xu JH, Hu R, Wu YH, Huang WQ, Wang ZX, Li TT. Impact of sodium butyrate on stroke-related intestinal injury in diabetic mice: Interference with Caspase-1/GSDMD pyroptosis pathway and preservation of intestinal barrier. Eur J Pharmacol 2025; 998:177455. [PMID: 40057153 DOI: 10.1016/j.ejphar.2025.177455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Diabetic stroke-associated acute intestinal injury is characterized by high mortality, disability, and poor prognosis due to the lack of effective therapies. Our prior research demonstrated that administration of 300 mg/kg sodium butyrate (NaB) can improve neurological outcomes post-diabetic stroke. Nonetheless, whether the effect of NaB is related to intestinal regulation, along with its underlying mechanisms, remains uncertain. This study aims to investigate the effects and mechanistic pathways of NaB on diabetic stroke-associated acute intestinal injury. A middle cerebral artery occlusion/reperfusion model was established in mice with streptozotocin-induced diabetes. The results demonstrated that NaB alleviated colonic injury 24 h after reperfusion in diabetic stroke. Pyroptosis-related protein levels in colonic tissues were significantly elevated following diabetic stroke but were markedly reduced with NaB treatment. NaB also improved gut barrier integrity and reduced inflammation, promoting epithelial barrier self-repair. In the NaB combined with lipopolysaccharide group, lipopolysaccharide administration induced a significant inflammatory response in the colonic tissue. Conversely, treatment with NaB and VX-765 (an inhibitor for Caspase-1) led to a notable alleviation in intestinal inflammation. These findings suggest that NaB mitigates colonic injury and enhances barrier function following diabetic stroke, potentially through the Caspase-1/Gasdermin D pyroptosis pathway. This study may provide a novel strategy and direction for intestinal rehabilitation in diabetic stroke patients.
Collapse
Affiliation(s)
- Jing Li
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan-Jia Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xu Zhao
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Yu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Hong Xu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rong Hu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ye-Hui Wu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen-Qi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Zhong-Xing Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Ting-Ting Li
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Wu Y, Sun J, Xie W, Xue S, Li X, Guo J, Shan J, Peng G, Zheng Y. Immunomodulation of Glycyrrhiza Polysaccharides In Vivo Based on Microbiome and Metabolomics Approaches. Foods 2025; 14:874. [PMID: 40077577 PMCID: PMC11898905 DOI: 10.3390/foods14050874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Glycyrrhiza uralensis Fisch. is a medicinal herb that can be added to food to provide therapeutic effects and reduce the burden of medications. Herein, the immunomodulatory effects of Glycyrrhiza polysaccharides (GPs) were verified and illustrated by intervening immunocompromised rats treated with different doses of GPs, which were reflected for adjusting the composition and structure of the intestinal microbiota and altering the metabolic profile. The immunomodulatory effects of GPs were exerted by regulating the intestinal microenvironment. In particular, GPs could promote the growth of probiotic bacteria Allobaculum, norank__o_Clostridia_UCG-014, Dubosiella, and g__norank_o___RF39 and curb the growth of harmful bacteria Enterococcus. The results showed that GPs had a prebiotic effect, which contributed to improving the intestinal environment and maintaining intestinal health. In addition, the content of beneficial differential metabolites was up-regulated, especially short-chain fatty acids, with alanine, aspartate, and glutamate metabolism; arginine biosynthesis; glyoxylate and dicarboxylate metabolism being the most enriched pathways. These metabolic pathways imply the metabolic process of GPs, and the metabolic pathways and differential effector metabolites of it are focused. Overall, the purpose of this article lies in providing support for the application of GPs for regulating immune function.
Collapse
Affiliation(s)
- Yixuan Wu
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jie Sun
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjie Xie
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Simin Xue
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinli Li
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Guoping Peng
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Yunfeng Zheng
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| |
Collapse
|
9
|
Wang T, Meng X, Qian M, Jin S, Bao R, Zhu L, Zhang Q. Helicobacter hepaticus CdtB Triggers Colonic Mucosal Barrier Disruption in Mice via Epithelial Tight Junction Impairment Mediated by MLCK/pMLC2 Signaling Pathway. Vet Sci 2025; 12:174. [PMID: 40005934 PMCID: PMC11860670 DOI: 10.3390/vetsci12020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Background:Helicobacter hepaticus (H. hepaticus) has been demonstrated to have clinical relevance to the development of colitis in rodents. H. hepaticus produces cytolethal distending toxins (CDTs), which are identified as the most important virulence factors to the pathogenicity of CDT-producing bacteria in animals. However, the precise relationship between CDTs of H. hepaticus and intestinal barrier dysfunction remains unclear. The objective of the present study was to ascertain the impact of CdtB, the active subunit of CDTs, on the colonic mucosal barrier during H. hepaticus infection. Materials and Methods: We investigated the infection of male BALB/c mice, intestinal organoids, and IEC-6 cell monolayers by H. hepaticus or CdtB-deficient H. hepaticus (ΔCdtB). A comprehensive histopathological examination was conducted, encompassing the assessment of H. hepaticus colonization, the levels of mRNA expression for inflammatory cytokines, the expression levels of tight junction proteins, and the related signaling pathways. Results: The results demonstrate that the presence of ΔCdtB led to a mitigation of the symptoms associated with H. hepaticus-induced colitis, as evidenced by colon length shortening and the colon histological inflammation score. In addition, the levels of pro-inflammatory cytokines were reduced in the ΔCdtB group. Moreover, a downward trend was observed in the phosphorylation levels of STAT3 and nuclear factor-κB (p65). In vitro, the presence of H. hepaticus resulted in a reduction in the expression of tight junction (TJ) markers (ZO-1 and occludin) and an impairment of the F-actin structure in either the intestinal epithelium or intestinal organoids. However, these effects were reversed by CdtB deletion. Concurrently, both ROS levels and apoptosis levels were found to be significantly reduced in cells treated with the ΔCdtB strain. Mechanistically, myosin light chain kinase (MLCK) activation was observed in the H. hepaticus-infected group in vivo, whereas the MLCK inhibitor ML-7 was found to reverse the CdtB-induced alterations in TJ proteins in IEC6 cells. Conclusions: The collective findings demonstrate that CdtB plays a pivotal role in the H. hepaticus-induced colonic mucosal barrier. This is achieved through the regulation of TJs via the MLCK/pMLC2 signaling pathway, which is linked to elevations in oxidative stress and inflammation within intestinal epithelial cells.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiao Meng
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Miao Qian
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shanhao Jin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ruoyu Bao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Liqi Zhu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Quan Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Transgenic Animal Pharmaceutical Engineering Research Center, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Ni M, Peng W, Wang X, Li J. Role of Aging in Ulcerative Colitis Pathogenesis: A Focus on ETS1 as a Promising Biomarker. J Inflamm Res 2025; 18:1839-1853. [PMID: 39931173 PMCID: PMC11809410 DOI: 10.2147/jir.s504040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/18/2025] [Indexed: 02/13/2025] Open
Abstract
Purpose An increasing proportion of the aging population has led to a rapid increase in the number of elderly patients with ulcerative colitis (UC). However, the molecular mechanisms by which aging causes UC remain unclear. In this study, we explored the role of aging-related genes (ARGs) in UC pathogenesis and diagnosis prediction. Methods Gene expression data were obtained from four independent datasets (GSE75214, GSE87466, GSE94648, and GSE169568) in the GEO database, and ARGs were derived from multiple public databases. After identifying UC-related ARGs, consistent clustering was performed to screen aging-related molecular subtypes, followed by the exploration of differences in the immune microenvironment and pathways between distinct subtypes. Next, core module genes were screened using WGCNA and then the hub genes were characterized using LASSO and random forest methods. Besides, the associations between hub genes, immune cells, and key pathways were explored. Finally, the expression levels of key genes were determined in a dextran sulfate sodium (DSS)-induced UC mouse model by qRT-PCR. Results UC samples were classified into two subtypes (1 and 2), which displayed significant differences in the immune landscape and JAK/STAT signaling pathways. A series of machine learning algorithms was used to screen two feature genes (ETS1 and IL7R) to establish the diagnostic model, which exhibited satisfactory diagnostic efficiency. In addition, these hub genes were closely associated with the infiltration of specific immune cells (such as neutrophils, memory B cells, and M2 macrophages) as well as with the JAK/STAT pathway. Later, experimental validation confirmed that ETS1 expression was markedly increased in a mouse model of UC. Conclusion Overall, aging, immune dysregulation, and UC process are closely associated. The identified feature genes, particularly ETS1, could serve as novel diagnostic biomarkers for UC. These findings have the potential to enhance the understanding of the age-related mechanisms of UC.
Collapse
Affiliation(s)
- Man Ni
- School of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
| | - Weilong Peng
- School of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
| | - Xiaoguang Wang
- School of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
| | - Jingui Li
- School of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
| |
Collapse
|
11
|
Zeng C, Liu F, Huang Y, Liang Q, He X, Li L, Xie Y. Drosophila: An Important Model for Exploring the Pathways of Inflammatory Bowel Disease (IBD) in the Intestinal Tract. Int J Mol Sci 2024; 25:12742. [PMID: 39684456 PMCID: PMC11641265 DOI: 10.3390/ijms252312742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurring lifelong condition, the exact etiology of which remains obscure. However, an increasing corpus of research underscores the pivotal role of cellular signaling pathways in both the instigation and management of intestinal inflammation. Drosophila, owing to its prodigious offspring, abbreviated life cycle, and the conservation of signaling pathways with mammals, among other advantages, has become a model organism for IBD research. This review will expound on the feasibility of utilizing Drosophila as an IBD model, comparing its intestinal architecture with that of mammals, its inflammatory responses, and signaling pathways. Furthermore, it will deliberate on the role of natural products across various biological models of IBD pathways, elucidating the viability of fruit flies as IBD models and the modus operandi of cellular signaling pathways in the context of IBD.
Collapse
Affiliation(s)
- Chuisheng Zeng
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (C.Z.); (F.L.); (Y.H.); (Q.L.); (X.H.); (L.L.)
| | - Fengying Liu
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (C.Z.); (F.L.); (Y.H.); (Q.L.); (X.H.); (L.L.)
| | - Yuhan Huang
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (C.Z.); (F.L.); (Y.H.); (Q.L.); (X.H.); (L.L.)
| | - Qianqian Liang
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (C.Z.); (F.L.); (Y.H.); (Q.L.); (X.H.); (L.L.)
| | - Xiaohong He
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (C.Z.); (F.L.); (Y.H.); (Q.L.); (X.H.); (L.L.)
| | - Lingzhi Li
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (C.Z.); (F.L.); (Y.H.); (Q.L.); (X.H.); (L.L.)
- Jinfeng Laboratory, Chongqing 400065, China
| | - Yongfang Xie
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (C.Z.); (F.L.); (Y.H.); (Q.L.); (X.H.); (L.L.)
| |
Collapse
|
12
|
Peng G, Wang S, Zhang H, Xie F, Jiao L, Yuan Y, Ma C, Wu H, Meng Z. Tremella aurantialba polysaccharides alleviate ulcerative colitis in mice by improving intestinal barrier via modulating gut microbiota and inhibiting ferroptosis. Int J Biol Macromol 2024; 281:135835. [PMID: 39306158 DOI: 10.1016/j.ijbiomac.2024.135835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/27/2024]
Abstract
We aimed to investigate the effect of a polysaccharide from Tremella aurantialba on ulcerative colitis (UC), which targets ferroptosis in epithelial cells. TA 2-1 (127 kDa) was isolated from T. aurantialba and consisted of Man, Xyl, GlcA, Glc, Fuc and Rha with a molar ratio of 59.2: 23.2: 13.9: 1.6: 1.7: 0.4, exhibited a 1, 3-Man structure with branch chains of T-Xylp, 1,3-Xylp, 1,4-GlcAp, and T-Manp at its O-2 position. TA 2-1 (100 μg/mL) inhibited the cell viability of ferroptosis (19.8 %) in RLS3-induced Caco-2 cells and significantly ameliorated symptoms in the colons of mice with dextran sodium sulfate (DSS)-induced UC. TA 2-1 remarkably repaired the intestinal barrier by upregulating claudin-1 and zonula occludens-1 levels. Further analysis found TA 2-1 significantly suppressed lipid peroxidation by regulating ferroptosis-related proteins in UC mice, suggesting that its protective effects are partially mediated by inhibiting ferroptosis. Further analysis of the gut microbiota and fecal microbiota transplantation revealed TA 2-1 might relieve UC symptoms or inhibit ferroptosis by modulating the gut microbiota's composition or metabolites. Results suggest the protective effects of TA 2-1 on the intestinal barrier by inhibiting ferroptosis of epithelial cells, at least by regulating the gut microbiota, highlighting the potential of TA 2-1 in UC treatment.
Collapse
Affiliation(s)
- Gong Peng
- Laboratory of Tumor Immunology, The first Hospital of Jilin University, Changchun 130021, China
| | - Sisi Wang
- Laboratory of Tumor Immunology, The first Hospital of Jilin University, Changchun 130021, China
| | - Hansi Zhang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Xie
- Laboratory of Tumor Immunology, The first Hospital of Jilin University, Changchun 130021, China
| | - Li Jiao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming 650000, China
| | - Ye Yuan
- Department of Laboratory Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun 130031, China
| | - Cheng Ma
- Jilin Yatai Biopharmaceutical Co., Ltd., Changchun 130032, China
| | - Hui Wu
- Department of Neonatology, Children's Medical Center, First Hospital of Jilin University, Changchun 130021, China
| | - Zhaoli Meng
- Department of Neonatology, Children's Medical Center, First Hospital of Jilin University, Changchun 130021, China; Laboratory of Tumor Immunology, The first Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
13
|
Huo J, Feng L, Cheng Y, Miao YL, Liu W, Hou MM, Zhang HF, Yang CH, Li Y, Zhang MS, Fan YY. Delayed simvastatin treatment improves neurological recovery after cryogenic traumatic brain injury through downregulation of ELOVL1 by inhibiting mTOR signaling. Brain Res Bull 2024; 217:111072. [PMID: 39243948 DOI: 10.1016/j.brainresbull.2024.111072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Statins are well-tolerated and widely available lipid-lowering medications with neuroprotective effects against traumatic brain injury (TBI). However, whether delayed statin therapy starting in the subacute phase promotes recovery after TBI is unknown. Elongation of the very long-chain fatty acid protein 1 (ELOVL1) is involved in astrocyte-mediated neurotoxicity, but its role in TBI and the relationship between ELOVL1 and statins are unclear. We hypothesized that delayed simvastatin treatment promotes neurological functional recovery after TBI by regulating the ELOVL1-mediated production of very long-chain fatty acids (VLCFAs). ICR male mice received daily intragastric administration of 1, 2 or 5 mg/kg simvastatin on Days 1-14, 3-14, 5-14, or 7-14 after cryogenic TBI (cTBI). The results showed that simvastatin promoted motor functional recovery in a dose-dependent manner, with a wide therapeutic window of at least 7 days postinjury. Meanwhile, simvastatin inhibited astrocyte and microglial overactivation and glial scar formation, and increased total dendritic length, neuronal complexity and spine density on day 14 after cTBI. The up-regulation of ELOVL1 expression and saturated VLCFAs concentrations in the cortex surrounding the lesion caused by cTBI was inhibited by simvastatin, which was related to the inhibition of the mTOR signaling. Overexpression of ELOVL1 in astrocytes surrounding the lesion using HBAAV2/9-GFAP-m-ELOVL1-3xFlag-EGFP partially attenuated the benefits of simvastatin. These results showed that delayed simvastatin treatment promoted functional recovery and brain tissue repair after TBI through the downregulation of ELOVL1 expression by inhibiting mTOR signaling. Astrocytic ELOVL1 may be a potential target for rehabilitation after TBI.
Collapse
Affiliation(s)
- Jing Huo
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Lin Feng
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Yao Cheng
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Yu-Lu Miao
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Wen Liu
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Miao-Miao Hou
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Hui-Feng Zhang
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Cai-Hong Yang
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Yan Li
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China.
| | - Ming-Sheng Zhang
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China.
| | - Yan-Ying Fan
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
14
|
Yuan L, Li W, Hu S, Wang Y, Wang S, Tian H, Sun X, Yang X, Hu M, Zhang Y. Protective effects of ginsenosides on ulcerative colitis: a meta-analysis and systematic review to reveal the mechanisms of action. Inflammopharmacology 2024; 32:3079-3098. [PMID: 38977646 DOI: 10.1007/s10787-024-01516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory disease of the colon. Ginsenoside may be an ideal agent for UC treatment. However, its efficacy and safety are unknown. We aim to conduct a systematic evaluation to assess the effects and potential mechanisms of ginsenosides in animal models of UC. METHODS Six electronic databases will be searched (PubMed, Embase, Web of Science, China Knowledge Network (CNKI), China Science and Technology Journal Database (CQVIP), and Wanfang Data Knowledge). SYRCLE list will be used to assess the quality of literature, and STATA 15.1 for data analysis. Time-dose effects analysis will be used to reveal the time-dosage response relations between ginsenosides and UC. RESULTS Ultimately, fifteen studies involving 300 animals were included. Preliminary evidence was shown that ginsenosides could reduce Disease Activity Index (DAI) scores, weight loss, histological colitis score (HCS), spleen weight, Malondialdehyde (MDA), Myeloperoxidase (MPO) activity, interleukin-1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and increase colon length (CL), myeloperoxidase (GSH), interleukin 4 (IL-4), interleukin 10 (IL-10), Zonula Occludens-1 (ZO-1) and occludin. Results of time-dose interval analysis indicated that ginsenosides at a dosage of 5-200 mg/kg with an intervention time of 7-28 days were relatively effective. CONCLUSIONS Preclinical evidence suggests that ginsenoside is a novel treatment for UC. And the mechanisms of ginsenosides in treating UC may involve anti-inflammatory, antioxidant, barrier protection, intestinal flora regulation, and immune regulation. Although, due to the high heterogeneity, further large-scale and high-quality preclinical studies are needed to examine the protection of ginsenosides against UC.
Collapse
Affiliation(s)
- Lingling Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangyuan Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingyi Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaofeng Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huai'e Tian
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuhui Sun
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuli Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengyun Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
15
|
Xu F, Hu J, Li Y, Cheng C, Au R, Tong Y, Wu Y, Cui Y, Fang Y, Chen H, Zhu L, Shen H. Qin-Yu-Qing-Chang decoction reshapes colonic metabolism by activating PPAR-γ signaling to inhibit facultative anaerobes against DSS-induced colitis. Chin Med 2024; 19:130. [PMID: 39327592 PMCID: PMC11425999 DOI: 10.1186/s13020-024-01006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Qin-Yu-Qing-Chang decoction (QYQC), an herbal formula from China, is extensively employed to manage ulcerative colitis (UC) and exhibits potential benefits for colonic function. Nevertheless, the fundamental molecular mechanisms of QYQC remain largely uncharted. METHODS The primary constituents of QYQC were determined utilizing UHPLC-MS/MS analysis and the effectiveness of QYQC was assessed in a mouse model of colitis induced by dextran sulfate sodium. Evaluations of colon inflammatory responses and mucosal barrier function were thoroughly assessed. RNA sequencing, molecular docking, colonic energy metabolism, and 16S rRNA sequencing analysis were applied to uncover the complex mechanisms of QYQC in treating UC. Detect the signal transduction of the peroxisome proliferator-activated receptor-γ (PPAR-γ) both in the nucleus and cytoplasm. Furthermore, a PPAR-γ antagonist was strategically utilized to confirm the functional targets that QYQC exerts. RESULTS Utilizing UHPLC-MS/MS, the principal constituents of the nine traditional Chinese medicinal herbs comprising QYQC were systematically identified. QYQC treatment substantially ameliorated colitis in mice, as evidenced by the improvement in symptoms and the reduction in colonic pathological injuries. Besides, QYQC treatment mitigated the inflammatory response and improved mucosal barrier function. Furthermore, QYQC enhanced the mitochondria citrate cycle (TCA cycle) by triggering PPAR-γ signaling and increasing the proportion of PPAR-γ entering the nucleus. This prevented the unconstrained expansion of facultative anaerobes, particularly pathogenic Escherichia coli (E. coli, family Enterobacteriaceae) and thus improved colitis. Results of molecular docking indicated that the representative chemical components of QYQC including Baicalin, Paeoniflorin, Mollugin, and Imperatorin bound well with PPAR-γ. The impact of QYQC on colitis was diminished in the presence of a PPAR-γ antagonist. CONCLUSIONS In summary, QYQC ameliorates UC by activating PPAR-γ signaling and increasing the proportion of PPAR-γ entering the nucleus, which enhances the energy metabolism of intestinal epithelial cells and thereby preventing the uncontrolled proliferation of facultative anaerobes.
Collapse
Affiliation(s)
- Feng Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, 210029, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jingyi Hu
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, 210029, China
| | - Yanan Li
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, 210029, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cheng Cheng
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, 210029, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ryan Au
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, 210029, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Academy of Chinese Culture and Health Sciences, Oakland, CA, 94612, USA
| | - Yiheng Tong
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, 210029, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuguang Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, 210029, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuan Cui
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, 210029, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yulai Fang
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, 210029, China
| | - Hongxin Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, 210029, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lei Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, 210029, China.
| | - Hong Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, 210029, China.
| |
Collapse
|
16
|
Zhang P, Wu D, Zha X, Su S, Zhang Y, Wei Y, Xia L, Fan S, Peng X. Glutamine promotes the proliferation of intestinal stem cells via inhibition of TP53-induced glycolysis and apoptosis regulator promoter methylation in burned mice. BURNS & TRAUMA 2024; 12:tkae045. [PMID: 39328365 PMCID: PMC11427069 DOI: 10.1093/burnst/tkae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/08/2024] [Indexed: 09/28/2024]
Abstract
Background Intestinal stem cells (ISCs) play a pivotal role in maintaining intestinal homeostasis and facilitating the restoration of intestinal mucosal barrier integrity. Glutamine (Gln) is a crucial energy substrate in the intestine, promoting the proliferation of ISCs and mitigating damage to the intestinal mucosal barrier after burn injury. However, the underlying mechanism has not yet been fully elucidated. The objective of this study was to explore the mechanism by which Gln facilitates the proliferation of ISCs. Methods A mouse burn model was established to investigate the impact of Gln on intestinal function. Subsequently, crypts were isolated, and changes in TP53-induced glycolysis and apoptosis regulator (TIGAR) expression were assessed using real-time quantitative polymerase chain reaction (RT-qPCR), western blotting, immunohistochemistry, and immunofluorescence. The effects of TIGAR on cell proliferation were validated through CCK-8, EdU, and clonogenicity assays. Furthermore, the effect of TIGAR on Yes-associated protein (YAP) nuclear translocation and ferroptosis was examined by western blotting and immunofluorescence staining. Finally, dot blot analysis and methylation-specific PCR were performed to evaluate the effect of Gln on TIGAR promoter methylation. Results The mRNA and protein levels of TIGAR decreased after burn injury, and supplementation with Gln increased the expression of TIGAR. TIGAR accelerates the nuclear translocation of YAP, thereby increasing the proliferation of ISCs. Concurrently, TIGAR promotes the synthesis of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione to suppress ferroptosis in ISCs. Subsequent investigations demonstrated that Gln inhibits TIGAR promoter methylation by increasing the expression of the demethylase ten-eleven translocation. This change increased TIGAR transcription, increased NADPH synthesis, and reduced oxidative stress, thereby facilitating the restoration of intestinal mucosal barrier integrity post-burn injury. Conclusions Our data confirmed the inhibitory effect of Gln on TIGAR promoter methylation, which facilitates YAP translocation into the nucleus and suppresses ferroptosis, ultimately promoting the proliferation of ISCs.
Collapse
Affiliation(s)
- Panyang Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Dan Wu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xule Zha
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Sen Su
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yajuan Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yan Wei
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Lin Xia
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Shijun Fan
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xi Peng
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
17
|
Liu R, Luo Y, Ma J, Zhang Q, Sheng Y, Li J, Li H, Zhao T. Traditional Chinese medicine for functional gastrointestinal disorders and inflammatory bowel disease: narrative review of the evidence and potential mechanisms involving the brain-gut axis. Front Pharmacol 2024; 15:1444922. [PMID: 39355776 PMCID: PMC11443704 DOI: 10.3389/fphar.2024.1444922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) and inflammatory bowel disease (IBD) are common clinical disorders characterized by recurrent diarrhea and abdominal pain. Although their pathogenesis has not been fully clarified, disruptions in intestinal motility and immune function are widely accepted as contributing factors to both conditions, and the brain-gut axis plays a key role in these processes. Traditional Chinese Medicine (TCM) employs a holistic approach to treatment, considers spleen and stomach impairments and liver abnormality the main pathogenesis of these two diseases, and offers a unique therapeutic strategy that targets these interconnected pathways. Clinical evidence shows the great potential of TCM in treating FGIDs and IBD. This study presents a systematic description of the pathological mechanisms of FGIDs and IBD in the context of the brain-gut axis, discusses clinical and preclinical studies on TCM and acupuncture for the treatment of these diseases, and summarizes TCM targets and pathways for the treatment of FGIDs and IBD, integrating ancient wisdom with contemporary biomedical insights. The alleviating effects of TCM on FGID and IBD symptoms are mainly mediated through the modulation of intestinal immunity and inflammation, sensory transmission, neuroendocrine-immune network, and microbiota and their metabolism through brain-gut axis mechanisms. TCM may be a promising treatment option in controlling FGIDs and IBD; however, further high-quality research is required. This review provides a reference for an in-depth exploration of the interventional effects and mechanisms of TCM in FGIDs and IBD, underscoring TCM's potential to recalibrate the dysregulated brain-gut axis in FGIDs and IBD.
Collapse
Affiliation(s)
- RuiXuan Liu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - YunTian Luo
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - JinYing Ma
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Sheng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiashan Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongjiao Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - TianYi Zhao
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
18
|
Li S, Feng W, Wu J, Cui H, Wang Y, Liang T, An J, Chen W, Guo Z, Lei H. A Narrative Review: Immunometabolic Interactions of Host-Gut Microbiota and Botanical Active Ingredients in Gastrointestinal Cancers. Int J Mol Sci 2024; 25:9096. [PMID: 39201782 PMCID: PMC11354385 DOI: 10.3390/ijms25169096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The gastrointestinal tract is where the majority of gut microbiota settles; therefore, the composition of the gut microbiota and the changes in metabolites, as well as their modulatory effects on the immune system, have a very important impact on the development of gastrointestinal diseases. The purpose of this article was to review the role of the gut microbiota in the host environment and immunometabolic system and to summarize the beneficial effects of botanical active ingredients on gastrointestinal cancer, so as to provide prospective insights for the prevention and treatment of gastrointestinal diseases. A literature search was performed on the PubMed database with the keywords "gastrointestinal cancer", "gut microbiota", "immunometabolism", "SCFAs", "bile acids", "polyamines", "tryptophan", "bacteriocins", "immune cells", "energy metabolism", "polyphenols", "polysaccharides", "alkaloids", and "triterpenes". The changes in the composition of the gut microbiota influenced gastrointestinal disorders, whereas their metabolites, such as SCFAs, bacteriocins, and botanical metabolites, could impede gastrointestinal cancers and polyamine-, tryptophan-, and bile acid-induced carcinogenic mechanisms. GPRCs, HDACs, FXRs, and AHRs were important receptor signals for the gut microbial metabolites in influencing the development of gastrointestinal cancer. Botanical active ingredients exerted positive effects on gastrointestinal cancer by influencing the composition of gut microbes and modulating immune metabolism. Gastrointestinal cancer could be ameliorated by altering the gut microbial environment, administering botanical active ingredients for treatment, and stimulating or blocking the immune metabolism signaling molecules. Despite extensive and growing research on the microbiota, it appeared to represent more of an indicator of the gut health status associated with adequate fiber intake than an autonomous causative factor in the prevention of gastrointestinal diseases. This study detailed the pathogenesis of gastrointestinal cancers and the botanical active ingredients used for their treatment in the hope of providing inspiration for research into simpler, safer, and more effective treatment pathways or therapeutic agents in the field.
Collapse
Affiliation(s)
- Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Jiaqi Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Herong Cui
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Yiting Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Tianzhen Liang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wanling Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| |
Collapse
|
19
|
Li Y, Guo Y, Geng C, Song S, Yang W, Li X, Wang C. Vitamin D/vitamin D receptor protects intestinal barrier against colitis by positively regulating Notch pathway. Front Pharmacol 2024; 15:1421577. [PMID: 39130644 PMCID: PMC11310051 DOI: 10.3389/fphar.2024.1421577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Objective Vitamin D/Vitamin D receptor (VD/VDR) signaling and the Notch pathway are involved in intestinal barrier restoration in colitis; however, their relationship and underlying mechanism are largely unknown. Therefore, this study aimed to investigate the role and mechanism of VD/VDR and the Notch pathways in intestinal barrier protection. Methods Genetic Vdr knockout (VDR KO) and VD deficient (VDd) mice were established, and colitis was induced by feeding 2.5% dextran sodium sulfate (DSS) water. Mechanistic studies, including real-time PCR, immunofluorescence, Western blotting and dual-luciferase reporter assays, were performed on cultured Caco-2 cells and intestinal organoids. Results VD deficiency and VDR genetical KO increased the severity of DSS-induced colitis in mice, which presented a higher disease activity index score, increased intestinal permeability, and more severe intestinal histological damage than controls, accompanied by decreased and disrupted claudin-1 and claudin-3. Moreover, inhibition of Notch pathway by LY411,575 aggravated the severity of DSS-induced colitis and intestinal injury. In Caco-2 cells and intestinal organoids, the expression of Notch-1, N1ICD and Hes1 decreased upon downregulation or KO of VDR but increased upon paricalcitol (PAR, a VDR agonist) treatment. Meanwhile, PAR rescued claudin-1 and claudin-3 impairments that resulted from TNF-α exposure but failed to restore claudin-3 upon Notch inhibition. The dual-luciferase reporter assay further suggested that VD/VDR positively regulated the Notch signaling pathway by modulating Notch-1 transcription. Conclusion VD/VDR positively modulates Notch activation by promoting Notch-1 transcription to maintain intestinal tight junction integrity and barrier function. This highlights the VD/VDR-Notch pathway as a potential new therapeutic target for protecting the intestinal barrier against ulcerative colitis.
Collapse
Affiliation(s)
- Yanni Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Yaoyu Guo
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuailing Song
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjuan Yang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Chen J, Gao Y, Zhang Y, Wang M. Research progress in the treatment of inflammatory bowel disease with natural polysaccharides and related structure-activity relationships. Food Funct 2024; 15:5680-5702. [PMID: 38738935 DOI: 10.1039/d3fo04919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Inflammatory bowel disease (IBD) comprises a group of highly prevalent and chronic inflammatory intestinal tract diseases caused by multiple factors. Despite extensive research into the causes of the disease, IBD's pathogenic mechanisms remain unclear. Moreover, side effects of current IBD therapies restrict their long-term clinical use. In contrast, natural polysaccharides exert beneficial anti-IBD effects and offer advantages over current anti-IBD drugs, including enhanced safety and straightforward isolation from abundant and reliable sources, and thus may serve as components of functional foods and health products for use in IBD prevention and treatment. However, few reviews have explored natural polysaccharides with anti-IBD activities or the relationship between polysaccharide conformation and anti-IBD biological activity. Therefore, this review aims to summarize anti-IBD activities and potential clinical applications of polysaccharides isolated from plant, animal, microorganismal, and algal sources, while also exploring the relationship between polysaccharide conformation and anti-IBD bioactivity for the first time. Furthermore, potential mechanisms underlying polysaccharide anti-IBD effects are summarized, including intestinal microbiota modulation, intestinal inflammation alleviation, and intestinal barrier protection from IBD-induced damage. Ultimately, this review provides a theoretical foundation and valuable insights to guide the development of natural polysaccharide-containing functional foods and nutraceuticals for use as dietary IBD therapies.
Collapse
Affiliation(s)
- Jiaqi Chen
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanan Gao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanqiu Zhang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
21
|
Chenxing W, Jie S, Yajuan T, Ting L, Yuying Z, Suhong C, Guiyuan L. The rhizomes of Atractylodes macrocephala Koidz improve gastrointestinal health and pregnancy outcomes in pregnant mice via modulating intestinal barrier and water-fluid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117971. [PMID: 38403003 DOI: 10.1016/j.jep.2024.117971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baizhu (BZ) is the dried rhizome of Atractylodes macrocephala Koidz (Compositae), which invigorates the spleen, improves vital energy, stabilizes the fetus, and is widely used for treating spleen deficiency syndrome. However, the impact of BZ on gastrointestinal function during pregnancy remains unexplored. AIM OF THE STUDY This study elucidated the ameliorative effects of BZ on gastrointestinal health and pregnancy outcomes in pregnant mice with spleen deficiency diarrhea (SDD). METHODS To simulate an irregular human diet and overconsumption of cold and bitter foods leading to SDD, a model of pregnant mice with SDD was established using an alternate-day fasting and high-fat diet combined with oral administration of Sennae Folium. During the experiment, general indicators and diarrhea-related parameters were measured. Gastric and intestinal motility (small intestinal propulsion and gastric emptying rates) were evaluated. Serum motilin (MTL), ghrelin, growth hormone (GH), gastrin (Gas), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), chorionic gonadotropin β (β-CG), progesterone (P), and estradiol (E2) were quantified using an enzyme-linked immunosorbent assay. Pathological changes were examined by hematoxylin and eosin staining (H&E) and alcian blue periodic acid Schiff staining (AB-PAS). Immunohistochemistry and immunofluorescence were used to measure the expression levels of the intestinal barrier and water metabolism-related proteins in colonic tissues. The pregnancy rate, ovarian organ coefficient, uterus with fetus organ coefficient, small size, average fetal weight, and body length of fetal mice were calculated. RESULTS The results showed that BZ significantly improved general indicators and diarrhea in pregnant mice with SDD, increased gastric emptying rate and small intestinal propulsion rate, elevated the levels of gastrointestinal hormones (AMS, ghrelin, GH, and Gas) in the serum, and reduced lipid levels (TC and LDL-c). It also improved colonic tissue morphology, increased the number of goblet cells, and promoted the mRNA and protein expression of occludin, claudin-1, ZO-1, AQP3, AQP4, and AQP8 in colonic tissues, downregulating the mRNA and protein expression levels of claudin-2, thereby alleviating intestinal barrier damage and regulating the balance of water and fluid metabolism. BZ also held the levels of pregnancy hormones (β-CG, P, and E2) in the serum of pregnant mice with SDD. Moreover, it increased the pregnancy rate, ovarian organ coefficient, uterus with fetus organ coefficient, litter size, average fetal weight, and body length of fetal mice. These findings indicate that BZ can improve spleen deficiency-related symptoms in pregnant mice before and during pregnancy, regulate pregnancy-related hormones, and improve pregnancy outcomes.
Collapse
Affiliation(s)
- Wang Chenxing
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Su Jie
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Tian Yajuan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Li Ting
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Zhong Yuying
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Chen Suhong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.
| | - Lv Guiyuan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China.
| |
Collapse
|
22
|
Xu J, Lin N. HOXD10 regulates intestinal permeability and inhibits inflammation of dextran sulfate sodium-induced ulcerative colitis through the inactivation of the Rho/ROCK/MMPs axis. Open Med (Wars) 2024; 19:20230844. [PMID: 38756247 PMCID: PMC11097047 DOI: 10.1515/med-2023-0844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 05/18/2024] Open
Abstract
Ulcerative colitis (UC) has been identified as a severe inflammatory disease with significantly increased incidence across the world. The detailed role and mechanism of HOXD10 in UC remain unclear. In present study, we found that HOXD10 was lowly expressed in UC samples and was notably decreased by dextran sulfate sodium (DSS) administration. Overexpression of HOXD10 dramatically ameliorated DSS-induced UC symptoms, including the loss of weight, increased disease activity index values, and the shortened colon length. Additionally, terminal-deoxynucleoitidyl transferase mediated nick end labeling and immunohistochemistry staining assays showed that HOXD10 overexpression suppressed cell apoptosis and facilitated proliferation of colon tissues after DSS treatment. Moreover, HOXD10 overexpression obviously suppressed DSS-triggered inflammatory response by decreasing the expression level of TNF-α, IL-6, and IL-1β. Furthermore, overexpression of HOXD10 effectively restored the intestinal permeability, thereby alleviating DSS-induced intestinal barrier dysfunction. Mechanistic study demonstrated that HOXD10 significantly reduced the activities of Rho/ROCK/MMPs axis in colon tissues of mice with UC. In conclusion, this study revealed that HOXD10 might effectively improve DSS-induced UC symptoms by suppressing the activation of Rho/ROCK/MMPs pathway.
Collapse
Affiliation(s)
- Jing Xu
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, No. 469, Shenban Road, Gongshu District, Hangzhou, Zhejiang, 310000, China
| | - Nana Lin
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310000, China
| |
Collapse
|
23
|
Gao F, Deng S, Liu Y, Wu P, Huang L, Zhu F, Wei C, Yuan Y, Gui Y, Tian Y, Fan H, Wu H. Compound sophora decoction alleviates ulcerative colitis by regulating macrophage polarization through cGAS inhibition: network pharmacology and experimental validation. Aging (Albany NY) 2024; 16:6921-6936. [PMID: 38613801 PMCID: PMC11087132 DOI: 10.18632/aging.205734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/18/2024] [Indexed: 04/15/2024]
Abstract
INTRODUCTION Ulcerative colitis (UC) is a refractory disease with complex pathogenesis, and its pathogenesis is not clear. The present study aimed to investigate the potential target and related mechanism of Compound Sophora Decoction (CSD) in treating UC. METHODS A network pharmacology approach predicted the components and targets of CSD to treat UC, and cell and animal experiments confirmed the findings of the approach and a new target for CSD treatment of UC. RESULTS A total of 155 potential targets were identified for CSD treatment of UC, with some related to macrophage polarization, such as nitric oxide synthase (NOS2), also known as inducible nitric oxide synthase (iNOS). GO and KEGG enrichment analysis indicated that oxidative stress response and multiple inflammatory signaling pathways such as TNF-α may play a significant role. In vitro experiments revealed that Interferon-stimulated DNA (ISD) interference can cause polarization imbalances in Raw 264.7 and bone marrow-derived macrophages (BMDMs). Flow cytometry demonstrated that polarization of macrophages in the intestine, spleen, and lymph nodes in vivo was also unbalanced after dextran sulfate sodium (DSS) modeling with pathological intestinal injury. Both in vitro and in vivo studies indicated that after inducing inflammation, the levels of macrophage polarization-related markers (iNOS and Arg1) and inflammation-related factors (CCL17, IL10, TNF-α, and CXCL10) changed, accompanied by increased expression of cGAS. However, CSD treatment based on inflammation can inhibit the expression of cGAS protein and mRNA, lower the level of inflammatory factors, promote the expression of anti-inflammatory factors, and regulate macrophage polarization. CONCLUSION We concluded that CSD alleviated DSS-induced UC by inhibiting cGAS, thus regulating macrophage polarization.
Collapse
Affiliation(s)
- Fei Gao
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuangjiao Deng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yujin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengcheng Wu
- Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lifen Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chunzhu Wei
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuyi Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Gui
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yushi Tian
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
24
|
Liu K, Yin Y, Shi C, Yan C, Zhang Y, Qiu L, He S, Li G. Asiaticoside ameliorates DSS-induced colitis in mice by inhibiting inflammatory response, protecting intestinal barrier and regulating intestinal microecology. Phytother Res 2024; 38:2023-2040. [PMID: 38384110 DOI: 10.1002/ptr.8129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/23/2024]
Abstract
Ulcerative colitis (UC) is one of the most prevalent inflammatory bowel diseases and poses a serious threat to human health. Currently, safe and effective preventive measures are unavailable. In this study, the protective effects of asiaticoside (AS) on dextran sodium sulfate (DSS)-induced colitis in mice and the underlying molecular mechanism were investigated. In this experiment, colitis was induced in mice with DSS. Subsequently, the role of AS in colitis and its underlying mechanisms were examined using H&E staining, immunofluorescence staining, western blot, Elisa, FMT, and other assays. The results showed that AS significantly attenuated the related symptoms of DSS-induced colitis in mice. In addition, AS inhibited the activation of signaling pathways TLR4/NF-κB and MAPK reduced the release of inflammatory factors, thereby attenuating the inflammatory response in mice. AS administration also restored the permeability of the intestinal barrier by increasing the levels of tight junction-associated proteins (claudin-3, occludin, and ZO-1). In addition, AS rebalanced the intestinal flora of DSS-treated mice by increasing the diversity of the flora. AS can alleviate DSS-induced ulcerative colitis in mice by maintaining the intestinal barrier, thus inhibiting the signaling pathways TLR4/NF-κB and MAPK activation, reducing the release of inflammatory factors, and regulating intestinal microecology.
Collapse
Affiliation(s)
- Kunjian Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yu Yin
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chong Shi
- Anorectal Department, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Chengqiu Yan
- Anorectal Department, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yiwen Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Li Qiu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shuangyan He
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Guofeng Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Anorectal Department, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, China
| |
Collapse
|
25
|
Zhou J, Wang J, Wang J, Li D, Hou J, Li J, Bai Y, Gao J. An inulin-type fructan CP-A from Codonopsis pilosula attenuates experimental colitis in mice by promoting autophagy-mediated inactivation of NLRP3 inflammasome. Chin J Nat Med 2024; 22:249-264. [PMID: 38553192 DOI: 10.1016/s1875-5364(24)60556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 04/02/2024]
Abstract
Inulin-type fructan CP-A, a predominant polysaccharide in Codonopsis pilosula, demonstrates regulatory effects on immune activity and anti-inflammation. The efficacy of CP-A in treating ulcerative colitis (UC) is, however, not well-established. This study employed an in vitro lipopolysaccharide (LPS)-induced colonic epithelial cell model (NCM460) and an in vivo dextran sulfate sodium (DSS)-induced colitis mouse model to explore CP-A's protective effects against experimental colitis and its underlying mechanisms. We monitored the clinical symptoms in mice using various parameters: body weight, disease activity index (DAI), colon length, spleen weight, and histopathological scores. Additionally, molecular markers were assessed through enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence (IF), immunohistochemistry (IHC), and Western blotting assays. Results showed that CP-A significantly reduced reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-α), and interleukins (IL-6, IL-1β, IL-18) in LPS-induced cells while increasing IL-4 and IL-10 levels and enhancing the expression of Claudin-1, ZO-1, and occludin proteins in NCM460 cells. Correspondingly, in vivo findings revealed that CP-A administration markedly improved DAI, reduced colon shortening, and decreased the production of myeloperoxidase (MPO), malondialdehyde (MDA), ROS, IL-1β, IL-18, and NOD-like receptor protein 3 (NLRP3) inflammasome-associated genes/proteins in UC mice. CP-A treatment also elevated glutathione (GSH) and superoxide dismutase (SOD) levels, stimulated autophagy (LC3B, P62, Beclin-1, and ATG5), and reinforced Claudin-1 and ZO-1 expression, thereby aiding in intestinal epithelial barrier repair in colitis mice. Notably, the inhibition of autophagy via chloroquine (CQ) diminished CP-A's protective impact against colitis in vivo. These findings elucidate that CP-A's therapeutic effect on experimental colitis possibly involves mitigating intestinal inflammation through autophagy-mediated NLRP3 inflammasome inactivation. Consequently, inulin-type fructan CP-A emerges as a promising drug candidate for UC treatment.
Collapse
Affiliation(s)
- Jiangtao Zhou
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jun Wang
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jiajing Wang
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Deyun Li
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jing Hou
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jiankuan Li
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Yun'e Bai
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jianping Gao
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China.
| |
Collapse
|
26
|
Tian Y, Fu M, Su J, Yan M, Yu J, Wang C, Niu Z, Du Y, Hu X, Zheng J, Tao B, Gao Z, Chen J, Chen S, Lv G. Gut microbiota dysbiosis and intestinal barrier impairment in diarrhea caused by cold drink and high-fat diet. Toxicology 2024; 502:153728. [PMID: 38216112 DOI: 10.1016/j.tox.2024.153728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Abstract
Cold drink and high-fat diet (CDHFD) are common diet patterns. However, the potential risks remain unclear. We investigated the effects of CDHFD in adult mice and explored the mechanisms of action. Twenty adult male mice were randomly divided into control and model groups, and the control group was fed a normal diet, whereas the model group was fed CDHFD for 28 days. We found that mice in the model group developed diarrhea symptoms accompanied by fatigue and weakness. Analysis of the intestinal flora revealed that the model group had a lower diversity and richness of microorganism species in the gut than the control group. Furthermore, the characteristic analysis indicated that CDHFD downregulated specific bacteria, such as norank_f_Muribaculaceae, Muribaculum, and Odoribacter, which are known to be associated with the systemic inflammatory response and mucosal barrier function. Blood tests showed that immune cells and inflammatory cytokines were significantly elevated in the model group, along with increased LPS induced by CDHFD. Pathological investigations demonstrated that CDHFD damages the intestinal mucosa while affecting the expression of tight junction proteins, including ZO-1, Claudin-1, Claudin-2, and Occludin, which may be attributed to the activation of the TRAF6/IκB/p65 signaling pathway. In conclusion, impaired gut microbial and mechanical barrier function is responsible for CDHFD-induced diarrhea. In this study, we constructed a model of diet-induced diarrhea by simulating human dietary patterns, evaluated the long-term effects of CDHFD on human intestinal barriers and immune systems, and revealed its mechanism of action based on chronic inflammation. This study validated the model's fit to provide an effective screening model for drug or functional food development.
Collapse
Affiliation(s)
- Yajuan Tian
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meng Fu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Su
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meiqiu Yan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingjing Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxing Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuangwei Niu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuzhong Du
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xueling Hu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiayi Zheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bai Tao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zengguang Gao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianzhen Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Hangzhou, China.
| | - Guiyuan Lv
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
27
|
Gao Q, Tian W, Yang H, Hu H, Zheng J, Yao X, Hu B, Liu H. Shen-Ling-Bai-Zhu-San alleviates the imbalance of intestinal homeostasis in dextran sodium sulfate-induced colitis mice by regulating gut microbiota and inhibiting the NLRP3 inflammasome activation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117136. [PMID: 37704122 DOI: 10.1016/j.jep.2023.117136] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shen-Ling-Bai-Zhu-San (SLBZS) is a classic formula for strengthening the spleen and dispelling dampness, which has shown excellent efficacy in inflammatory bowel disease (IBD) in traditional Chinese medicine clinical studies. However, its exact pharmacological mechanism needs to be further elucidated. AIM OF THE STUDY This study aims to investigate the restorative effect and mechanism of SLBZS on disturbed intestinal homeostasis in DSS-induced colitis mice. MATERIALS AND METHODS A colitis model was induced by 3% dextran sulfate sodium (DSS) for seven days, and SLBZS was administered by gavage. The influence of SLBZS on DSS-induced clinical symptoms and disease activity index (DAI) was monitored and analyzed. Alcian blue and fluorescein isothiocyanate-conjugated wheat germ agglutinin (FITC-WGA) staining were used to assess intestinal mucus changes. The expression of intestinal barrier function indexes and immune-associated indexes were determined by H&E staining, real-time quantitative PCR (RT-qPCR), and Western blot. And gut microbiota changes were detected by 16S rDNA sequencing technology. The antibiotic experiment was used to explore the role of gut microbiota in SLBZS treatment. RESULTS The results showed that SLBZS significantly improved the physiological indexes including body weight, DAI score, and colon length of colitis mice. We focused on the effects of SLBZS on intestinal homeostasis in colitis mice. First, SLBZS could enhance the secretion of intestinal mucin and the expression levels of tight junctions and adhesive junctions. Second, SLBZS inhibited the expression level of inflammatory factors and reduced the protein expression level of NLRP3 inflammasome. Third, 16S rDNA sequencing analysis revealed that SLBZS repaired the dysfunctional gut microbiota of colitis mice, such as enhancing the abundance of short-chain fatty acid-producing bacteria including Faecalibaculum, Colidextribacter, and Coprococcus. Further, by gut microbiota-depleted mice, we found that SLBZS could not exert an anti-colitis effect when gut microbiota was absent. CONCLUSIONS SLBZS restored intestinal environmental homeostasis by enhancing intestinal barrier function, inhibiting NLRP3 inflammasome, and restoring disturbed gut microbiota. And SLBZS could not ameliorate colitis mice with depleted gut microbiota. Our finding provided a theoretical basis for the clinical application of SLBZS in IBD.
Collapse
Affiliation(s)
- Qianru Gao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| | - Weiyi Tian
- College of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dongqing Road 4, Guiyang, 550025, PR China.
| | - Huabing Yang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| | - Haiming Hu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| | - Junping Zheng
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| | - Xiaowei Yao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| | - Baifei Hu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| | - Hongtao Liu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| |
Collapse
|
28
|
Huang S, Wang Y, Zhu Q, Guo H, Hong Z, Zhong S. Network Pharmacology and Intestinal Microbiota Analysis Revealing the Mechanism of Punicalagin Improving Bacterial Enteritis. Curr Comput Aided Drug Des 2024; 20:104-120. [PMID: 37246319 PMCID: PMC10641859 DOI: 10.2174/1573409919666230526165501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/07/2023] [Accepted: 04/12/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND The Chinese medicine punicalagin (Pun), the most important active ingredient in pomegranate peel, has significant bacteriostatic and anti-inflammatory properties. The potential mechanisms of Pun for bacterial enteritis, however, are unknown. OBJECTIVE The goal of our research is to investigate the mechanism of Pun in the treatment of bacterial enteritis using computer-aided drug technology, as well as to investigate the intervention effect of Pun on mice with bacterial enteritis using intestinal flora sequencing. METHODS The targets of Pun and Bacterial enteritis were obtained by using the specific database, and cross-targets were screened among these targets, followed by PPI and enrichment analysis of the targets. Furthermore, the degree of binding between Pun and key targets was predicted through molecular docking. After successfully establishing the bacterial enteritis model in vivo, mice were randomly assigned to groups. They were treated for 7 days, the symptoms were observed daily, and the daily DAI and body weight change rate were calculated. Following administration, the intestinal tissue was removed, and the contents were separated. The tight junction protein expression was detected in the small intestine by the immunohistochemical method; ELISA and Western Blot (WB) were performed to detect the expressions of tumor necrosis factor-α (TNF-α) and interleukin- 6 (IL-6) in the serum and intestinal wall of mice. The 16S rRNA sequence was used to determine the composition and diversity of the intestinal flora of mice. RESULTS In total, 130 intersection targets of Pun and disease were screened by network pharmacology. The enrichment analysis showed cross genes were closely related and enriched in the cancer regulation and the TNF signal pathway. The active components of Pun could specifically bind to the core targets TNF, IL-6, etc., determined from molecular docking results. In vivo experiment results showed that the symptoms in the PUN group mice were alleviated, and the expression levels of TNF-α and IL-6 were significantly reduced. A Pun can cause substantial changes in the intestinal flora of mice in terms of structure and function. CONCLUSION Pun plays a multi-target role in alleviating bacterial enteritis by regulating intestinal flora.
Collapse
Affiliation(s)
- Shuyun Huang
- Tissue and Embryo Department, Wannan Medical College, Wuhu, 241002, China
| | - Ying Wang
- Tissue and Embryo Department, Wannan Medical College, Wuhu, 241002, China
| | - Qingsong Zhu
- Computer and Information Department, Hohai University, Nanjing, 210024, China
| | - Hongmin Guo
- Tissue and Embryo Department, Wannan Medical College, Wuhu, 241002, China
| | - Zongyuan Hong
- Tissue and Embryo Department, Wannan Medical College, Wuhu, 241002, China
| | - Shuzhi Zhong
- Tissue and Embryo Department, Wannan Medical College, Wuhu, 241002, China
| |
Collapse
|
29
|
Sun W, Li E, Mao X, Zhang Y, Wei Q, Huang Z, Wan A, Zou Y. The oligosaccharides of Xiasangju alleviates dextran sulfate sodium-induced colitis in mice by inhibiting inflammation. PLoS One 2023; 18:e0295324. [PMID: 38060482 PMCID: PMC10703232 DOI: 10.1371/journal.pone.0295324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Xiasangju (XSJ) is a traditional Chinese herbal formula consisted of Prunella spica, Mulberry leaf and Chrysanthemi indici flos, which can be used to treat fever, headache and ulcer. To explore the effects of oligosaccharides from XSJ (OX) on colitis, we used dextran sulfate sodium (DSS) to establish colitis mouse models. After administration of OX with different doses on the control and colitis mice, we measured their body weights, disease activity indexes (DAI), lengths and histopathologic changes of colons, spleen indexes. The inflammatory cytokines and oxidative stress-related factors in serum, and the intestinal microbial community in feces were also detected. We found that colitis mice with oral administration of OX showed higher body weights and lower levels of DAI and spleen index. Tissue damages induced by DSS were also alleviated by OX treatment. The colitis mice with OX treatment exhibited lower levels of AST, ALT, BUN, CR, MDA and a down-regulated expression of IL-6 and IL-1β, while the activity of SOD was up-regulated. Furthermore, OX improved the relative abundance of gut microbiota and restored the proportions of Bacteroidetes and Muribaculaceae. We found that oligosaccharides from XSJ alleviated the symptoms of colitis mice through its inhibitory effects on inflammation and oxidative stress, and also regulated the composition of intestinal flora, which indicates a beneficial role for patients with colitis.
Collapse
Affiliation(s)
- Weiguang Sun
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, 510288, China
| | - Erna Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Xin Mao
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, 510288, China
| | - Yulin Zhang
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, 510288, China
| | - Quxing Wei
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, 510288, China
| | - Zhiyun Huang
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, 510288, China
| | - Anfeng Wan
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, 510288, China
| | - Yuxiao Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| |
Collapse
|
30
|
Qu R, Peng Y, Zhou M, Xu S, Yin X, Qiu Y, Liu B, Gao Y, Bi H, Guo D. MiR-223-3p attenuates M1 macrophage polarization via suppressing the Notch signaling pathway and NLRP3-mediated pyroptosis in experimental autoimmune uveitis. Eur J Pharmacol 2023; 960:176139. [PMID: 38059448 DOI: 10.1016/j.ejphar.2023.176139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 12/08/2023]
Abstract
Autoimmune uveitis is an intraocular inflammatory disease with a high blindness rate in developed countries such as the United States. It is pressing to comprehend the pathogenesis of autoimmune uveitis and develop novel schemes for its treatment. In the present research, we demonstrated that the Notch signaling pathway was activated, and the level of miR-223-3p was significantly reduced in rats with experimental autoimmune uveitis (EAU) compared with the level of normal rats. To investigate the relationship between miR-223-3p and Notch signaling, EAU rats received miR-223-3p-carrying lentivirus, miR-223-3p vector-carrying lentivirus (miR-223-3p-N), and γ-secretase inhibitor (DAPT), respectively. The results of Q-PCR, immunological experiments, and flow cytometry analysis all support the hypothesis that both miR-223-3p and DAPT, a Notch signaling pathway inhibitor, had similar inhibitory effects on the EAU pathological process. That is to say, they could both inhibit the activation of the Notch signaling pathway via modulating recombination signal binding protein-Jκ (RBPJ) to restore the polarization imbalance of M/M2 macrophages in EAU rats. In addition, miR-223-3p could also inhibit NLRP3 inflammasome activation and inflammasome-induced pyroptosis in ocular tissues. Taken together, our findings indicate that miR-223-3p serves as an important regulator in M1 macrophage polarization and pyroptosis, thereby alleviating the inflammatory response in uveitis.
Collapse
Affiliation(s)
- Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Mengxian Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Shuqin Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Xuewei Yin
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Yan Qiu
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Bin Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Yan'e Gao
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| |
Collapse
|
31
|
Zheng C, Zhong Y, Xie J, Wang Z, Zhang W, Pi Y, Zhang W, Liu L, Luo J, Xu W. Bacteroides acidifaciens and its derived extracellular vesicles improve DSS-induced colitis. Front Microbiol 2023; 14:1304232. [PMID: 38098663 PMCID: PMC10720640 DOI: 10.3389/fmicb.2023.1304232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction "Probiotic therapy" to regulate gut microbiota and intervene in intestinal diseases such as inflammatory bowel disease (IBD) has become a research hotspot. Bacteroides acidifaciens, as a new generation of probiotics, has shown beneficial effects on various diseases. Methods In this study, we utilized a mouse colitis model induced by dextran sodium sulfate (DSS) to investigate how B. acidifaciens positively affects IBD. We evaluated the effects ofB. acidifaciens, fecal microbiota transplantation, and bacterial extracellular vesicles (EVs) on DSS-induced colitis in mice. We monitored the phenotype of mouse colitis, detected serum inflammatory factors using ELISA, evaluated intestinal mucosal barrier function using Western blotting and tissue staining, evaluated gut microbiota using 16S rRNA sequencing, and analyzed differences in EVs protein composition derived from B. acidifaciens using proteomics to explore how B. acidifaciens has a positive impact on mouse colitis. Results We confirmed that B. acidifaciens has a protective effect on colitis, including alleviating the colitis phenotype, reducing inflammatory response, and improving intestinal barrier function, accompanied by an increase in the relative abundance of B. acidifaciens and Ruminococcus callidus but a decrease in the relative abundance of B. fragilis. Further fecal bacterial transplantation or fecal filtrate transplantation confirmed the protective effect of eosinophil-regulated gut microbiota and metabolites on DSS-induced colitis. Finally, we validated that EVs derived from B. acidifaciens contain rich functional proteins that can contribute to the relief of colitis. Conclusion Therefore, B. acidifaciens and its derived EVs can alleviate DSS-induced colitis by reducing mucosal damage to colon tissue, reducing inflammatory response, promoting mucosal barrier repair, restoring gut microbiota diversity, and restoring gut microbiota balance in mice. The results of this study provide a theoretical basis for the preclinical application of the new generation of probiotics.
Collapse
Affiliation(s)
- Cihua Zheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Yuchun Zhong
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jian Xie
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhuoya Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenming Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yiming Pi
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenjun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li Liu
- Graduate School of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Wei Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
32
|
Li C, Gong L, Jiang Y, Huo X, Huang L, Lei H, Gu Y, Wang D, Guo D, Deng Y. Sanguisorba officinalis ethyl acetate extract attenuates ulcerative colitis through inhibiting PI3K-AKT/NF-κB/ STAT3 pathway uncovered by single-cell RNA sequencing. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155052. [PMID: 37717310 DOI: 10.1016/j.phymed.2023.155052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) accounts for the untreatable illness nowadays. Bloody stools are the primary symptom of UC, and the first-line drugs used to treat UC are associated with several drawbacks and negative side effects. S. officinalis has long been used as a medicine to treat intestinal infections and bloody stools. However, what the precise molecular mechanism, the exact etiology, and the material basis of the disease remain unclear. PURPOSE This work aimed to comprehensively explore pharmacological effects as well as molecular mechanisms underlying the active fraction of S. officinalis, and to produce a comprehensive and brand-new guideline map of its chemical base and mechanism of action. METHODS First, different polarity S. officinalis extracts were orally administered to the DSS-induced UC model mice for the sake of investigating its active constituents. Using the UPLC-orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap-HRMS) technique, the most active S. officinalis (S. officinalis ethyl acetate fraction, SOEA) extract was characterized. Subsequently, the effectiveness of its active fraction on UC was evaluated through phenotypic observation (such as weight loss, colon length, and stool characteristics), and histological examination of pathological injuries, mRNA and protein expression. Cell profile, cell-cell interactions and molecular mechanisms of SOEA in different cell types of the colon tissue from UC mice were described using single-cell RNA sequencing (scRNA-seq). As a final step, the molecular mechanisms were validated by appropriate molecular biological methods. RESULTS For the first time, this study revealed the significant efficacy of SOEA in the treatment of UC. SOEA reduced DAI and body weight loss, recovered the colon length, and mitigated colonic pathological injuries along with mucosal barrier by promoting goblet cell proliferation. Following treatment with SOEA, inflammatory factors showed decreased mRNA and protein expression. SOEA restored the dynamic equilibrium of cell profile and cell-cell interactions in colon tissue. All of these results were attributed to the ability of SOEA to inhibit the PI3K-AKT/NF-κB/STATAT pathway. CONCLUSIONS By integrating the chemical information of SOEA derived from UPLC-Q-Orbitrap-HRMS with single-cell transcriptomic data extracted from scRNA-seq, this study demonstrates that SOEA exerts the therapeutic effect through suppressing PI3K-AKT/NF-B/STAT3 pathway to improve clinical symptoms, inflammatory response, mucosal barrier, and intercellular interactions in UC, and effectively eliminates the interference of cellular heterogeneity.
Collapse
Affiliation(s)
- Congcong Li
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Leiqiang Gong
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Jiang
- Department of Nursing, Sichuan Nursing Vocational College, Deyang 618000, China
| | - Xueyan Huo
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijun Huang
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haoran Lei
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yucheng Gu
- Syngenta Limited, Jealott's Hill International Research Centre, Berkshire RG42 6EY, UK
| | - Dong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dale Guo
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
33
|
Yang WH, Aziz PV, Heithoff DM, Kim Y, Ko JY, Cho JW, Mahan MJ, Sperandio M, Marth JD. Innate mechanism of mucosal barrier erosion in the pathogenesis of acquired colitis. iScience 2023; 26:107883. [PMID: 37752945 PMCID: PMC10518488 DOI: 10.1016/j.isci.2023.107883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
The colonic mucosal barrier protects against infection, inflammation, and tissue ulceration. Composed primarily of Mucin-2, proteolytic erosion of this barrier is an invariant feature of colitis; however, the molecular mechanisms are not well understood. We have applied a recurrent food poisoning model of acquired inflammatory bowel disease using Salmonella enterica Typhimurium to investigate mucosal barrier erosion. Our findings reveal an innate Toll-like receptor 4-dependent mechanism activated by previous infection that induces Neu3 neuraminidase among colonic epithelial cells concurrent with increased Cathepsin-G protease secretion by Paneth cells. These anatomically separated host responses merge with the desialylation of nascent colonic Mucin-2 by Neu3 rendering the mucosal barrier susceptible to increased proteolytic breakdown by Cathepsin-G. Depletion of Cathepsin-G or Neu3 function using pharmacological inhibitors or genetic-null alleles protected against Mucin-2 proteolysis and barrier erosion and reduced the frequency and severity of colitis, revealing approaches to preserve and potentially restore the mucosal barrier.
Collapse
Affiliation(s)
- Won Ho Yang
- Sanford-Burnham-Prebys Medical Discovery Institute, Infectious and Inflammatory Diseases Center; La Jolla, CA 92037, USA
- Glycosylation Network Research Center and Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Peter V. Aziz
- Sanford-Burnham-Prebys Medical Discovery Institute, Infectious and Inflammatory Diseases Center; La Jolla, CA 92037, USA
| | - Douglas M. Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Yeolhoe Kim
- Glycosylation Network Research Center and Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jeong Yeon Ko
- Glycosylation Network Research Center and Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jin Won Cho
- Glycosylation Network Research Center and Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Michael J. Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Markus Sperandio
- Walter Brendel Center for Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig Maximilians University, Munich, Germany
| | - Jamey D. Marth
- Sanford-Burnham-Prebys Medical Discovery Institute, Infectious and Inflammatory Diseases Center; La Jolla, CA 92037, USA
| |
Collapse
|
34
|
Wu S, Wu Z, Chen Y. Effect of Cordyceps militaris Powder Prophylactic Supplementation on Intestinal Mucosal Barrier Impairment and Microbiota-Metabolites Axis in DSS-Injured Mice. Nutrients 2023; 15:4378. [PMID: 37892453 PMCID: PMC10610503 DOI: 10.3390/nu15204378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory disease with an unknown pathogenesis and increasing incidence. The objective of this study is to investigate the impact of prophylactic treatment with Cordyceps militaris on UC. The findings demonstrate that prophylactic supplementation of C. militaris powder effectively mitigates disease symptoms in DSS-injured mice, while also reducing the secretion of pro-inflammatory cytokines. Furthermore, C. militaris powder enhances the integrity of the intestinal mucosal barrier by up-regulating MUC2 protein expression and improving tight junction proteins (ZO-1, occludin, and claudin 1) in DSS-injured mice. Multiomics integration analyses revealed that C. militaris powder not only reshaped gut microbiota composition, with an increase in Lactobacillus, Odoribacter, and Mucispirillum, but also exerted regulatory effects on various metabolic pathways including amino acid, glyoxylates, dicarboxylates, glycerophospholipids, and arachidonic acid. Subsequent analysis further elucidated the intricate interplay of gut microbiota, the intestinal mucosal barrier, and metabolites, suggesting that the microbiota-metabolite axis may involve the effect of C. militaris on intestinal mucosal barrier repair in UC. Moreover, in vitro experiments demonstrated that peptides and polysaccharides, derived from C. militaris, exerted an ability to change the gut microbiota structure of UC patients' feces, particularly by promoting the growth of Lactobacillus. These findings suggest that regulatory properties of C. militaris on gut microbiota may underlie the potential mechanism responsible for the protective effect of C. militaris in UC. Consequently, our study will provide support for the utilization of C. militaris as a whole food-based ingredient against the occurrence and development of UC.
Collapse
Affiliation(s)
- Shujian Wu
- Shenzhen Clinical Research Center for Digestive Disease, Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China;
| | - Zaoxuan Wu
- State Key Laboratory of Organ Failure Research, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China;
| | - Ye Chen
- Shenzhen Clinical Research Center for Digestive Disease, Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China;
- State Key Laboratory of Organ Failure Research, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China;
| |
Collapse
|
35
|
Xu Q, Yao Y, Liu Y, Zhang J, Mao L. The mechanism of traditional medicine in alleviating ulcerative colitis: regulating intestinal barrier function. Front Pharmacol 2023; 14:1228969. [PMID: 37876728 PMCID: PMC10590899 DOI: 10.3389/fphar.2023.1228969] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Ulcerative colitis (UC) is an idiopathic inflammatory disease mainly affects the large bowel and the rectum. The pathogenesis of this disease has not been fully elucidated, while the disruption of the intestinal barrier function triggered by various stimulating factors related to the host genetics, immunity, gut microbiota, and environment has been considered to be major mechanisms that affect the development of UC. Given the limited effective therapies, the treatment of this disease is not ideal and its incidence and prevalence are increasing. Therefore, developing new therapies with high efficiency and efficacy is important for treating UC. Many recent studies disclosed that numerous herbal decoctions and natural compounds derived from traditional herbal medicine showed promising therapeutic activities in animal models of colitis and have gained increasing attention from scientists in the study of UC. Some of these decoctions and compounds can effectively alleviate colonic inflammation and relieve clinical symptoms in animal models of colitis via regulating intestinal barrier function. While no study is available to review the underlying mechanisms of these potential therapies in regulating the integrity and function of the intestinal barrier. This review aims to summarize the effects of various herbal decoctions or bioactive compounds on the severity of colonic inflammation via various mechanisms, mainly including regulating the production of tight junction proteins, mucins, the composition of gut microbiota and microbial-associated metabolites, the infiltration of inflammatory cells and mediators, and the oxidative stress in the gut. On this basis, we discussed the related regulators and the affected signaling pathways of the mentioned traditional medicine in modulating the disruption or restoration of the intestinal barrier, such as NF-κB/MAPK, PI3K, and HIF-1α signaling pathways. In addition, the possible limitations of current studies and a prospect for future investigation and development of new UC therapies are provided based on our knowledge and current understanding. This review may improve our understanding of the current progression in studies of traditional medicine-derived therapies in protecting the intestinal barrier function and their roles in alleviating animal models of UC. It may be beneficial to the work of researchers in both basic and translational studies of UC.
Collapse
Affiliation(s)
- Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yuan Yao
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yongchao Liu
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Jie Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
36
|
Duan Y, Huang J, Sun M, Jiang Y, Wang S, Wang L, Yu N, Peng D, Wang Y, Chen W, Zhang Y. Poria cocos polysaccharide improves intestinal barrier function and maintains intestinal homeostasis in mice. Int J Biol Macromol 2023; 249:125953. [PMID: 37517750 DOI: 10.1016/j.ijbiomac.2023.125953] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/28/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
The function of the intestinal tract is critical to human health. Poria cocos is a widely used functional edible fungus in Asia and has been reported to modulate gastrointestinal function. However, the effects of polysaccharides, the main active constituents of Poria cocos, on the intestinal tract remains unclear and is the focus of the study. Poria cocos polysaccharides (PCP) were extracted, characterized, and administered to mice by gavage. The results show that PCP used in this study has a typical polysaccharide peak with a molecular weight of 11.583 kDa and is composed primarily of mannose, D-glucosamine hydrochloride, glucose, galactose, and fucose with a molar ratio of 15.308: 0.967: 28.723: 31.631: 23.371. The methylation results suggest that the PCP backbone may be t-Gal(p), 6-Gal(p) and 2,6-Gal(p). The effects of PCP on the mucosal barrier function of the mouse intestine (duodenum, jejunum, and ileum) were examined in terms of intestinal physiological status, physical barrier, biochemical barrier, immune barrier, and microbial barrier. The results showed that PCP significantly improved the physiological state of mouse intestine. Moreover, PCP strengthened the intestinal physical barrier by upregulating the expression of intestinal Occludin and ZO-1 and downregulating the levels of serum endotoxin, DAO, D-lactate, and intestinal MPO. Regarding biochemical barrier, PCP could upregulate the expression of MUC2, β-defensin, and SIgA in intestinal tissues. In addition, PCP modulated the immune barrier by increasing IL-2, IL-4, IL-6, IL-10, TGF-β, and IFN-γ expression. Besides, PCP increased the level of SCFAs in small intestinal contents. PCP modulates intestinal barrier function by altering the microbial composition of the gut. We also found that PCP could maintain intestinal barrier function by increasing the expression of Wnt/β-Catenin and Lrp5 proteins. Generally, our findings suggested that PCP may be used as a functional food to regulate intestinal mucosal function, thereby enhancing the health of the intestinal and host.
Collapse
Affiliation(s)
- Yuting Duan
- School of Pharmacy, Anhui University of Chinese Medicine, China
| | - Jiajing Huang
- School of Pharmacy, Anhui University of Chinese Medicine, China
| | - Mingjie Sun
- School of Pharmacy, Anhui University of Chinese Medicine, China
| | - Yuehang Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, China
| | - Shihan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, China; Institute of Traditional Chinese Medicine Resources Protection and Development, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, China
| | - Yanyan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, China.
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, China; Institute of Traditional Chinese Medicine Resources Protection and Development, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, China; Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, China.
| | - Yue Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, China.
| |
Collapse
|
37
|
Gao J, Cao B, Zhao R, Li H, Xu Q, Wei B. Critical Signaling Transduction Pathways and Intestinal Barrier: Implications for Pathophysiology and Therapeutics. Pharmaceuticals (Basel) 2023; 16:1216. [PMID: 37765024 PMCID: PMC10537644 DOI: 10.3390/ph16091216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The intestinal barrier is a sum of the functions and structures consisting of the intestinal mucosal epithelium, mucus, intestinal flora, secretory immunoglobulins, and digestive juices. It is the first-line defense mechanism that resists nonspecific infections with powerful functions that include physical, endocrine, and immune defenses. Health and physiological homeostasis are greatly dependent on the sturdiness of the intestinal barrier shield, whose dysfunction can contribute to the progression of numerous types of intestinal diseases. Disorders of internal homeostasis may also induce barrier impairment and form vicious cycles during the response to diseases. Therefore, the identification of the underlying mechanisms involved in intestinal barrier function and the development of effective drugs targeting its damage have become popular research topics. Evidence has shown that multiple signaling pathways and corresponding critical molecules are extensively involved in the regulation of the barrier pathophysiological state. Ectopic expression or activation of signaling pathways plays an essential role in the process of shield destruction. Although some drugs, such as molecular or signaling inhibitors, are currently used for the treatment of intestinal diseases, their efficacy cannot meet current medical requirements. In this review, we summarize the current achievements in research on the relationships between the intestinal barrier and signaling pathways. The limitations and future perspectives are also discussed to provide new horizons for targeted therapies for restoring intestinal barrier function that have translational potential.
Collapse
Affiliation(s)
- Jingwang Gao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Ruiyang Zhao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Hanghang Li
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Qixuan Xu
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Wei
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
| |
Collapse
|
38
|
Chen H, Li Y, Wang J, Zheng T, Wu C, Cui M, Feng Y, Ye H, Dong Z, Dang Y. Plant Polyphenols Attenuate DSS-induced Ulcerative Colitis in Mice via Antioxidation, Anti-inflammation and Microbiota Regulation. Int J Mol Sci 2023; 24:10828. [PMID: 37446006 DOI: 10.3390/ijms241310828] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
The pathogenesis of ulcerative colitis (UC) is associated with inflammation, oxidative stress, and gut microbiota imbalance. Although most researchers have demonstrated the antioxidant bioactivity of the phenolic compounds in plants, their UC-curing ability and underlying mechanisms still need to be further and adequately explored. Herein, we studied the antioxidation-structure relationship of several common polyphenols in plants including gallic acid, proanthocyanidin, ellagic acid, and tannic acid. Furthermore, the in vivo effects of the plant polyphenols on C57BL/6 mice with dextran-sulfate-sodium-induced UC were evaluated and the action mechanisms were explored. Moreover, the interplay of several mechanisms was determined. The higher the number of phenolic hydroxyl groups, the stronger the antioxidant activity. All polyphenols markedly ameliorated the symptoms and pathological progression of UC in mice. Furthermore, inflammatory cytokine levels were decreased and the intestinal barrier was repaired. The process was regulated by the antioxidant-signaling pathway of nuclear-erythroid 2-related factor 2. Moreover, the diversity of the intestinal microbiota, Firmicutes-to-Bacteroides ratio, and relative abundance of beneficial bacteria were increased. An interplay was observed between microbiota regulation and oxidative stress, immunity, and inflammatory response. Furthermore, intestinal barrier repair was found to be correlated with inflammatory responses. Our study results can form a basis for comprehensively developing plant-polyphenol-related medicinal products.
Collapse
Affiliation(s)
- Huan Chen
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Ying Li
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| | - Jinrui Wang
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Tingting Zheng
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Chenyang Wu
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Mengyao Cui
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yifan Feng
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Hanyi Ye
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Zhengqi Dong
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| | - Yunjie Dang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
39
|
Wei C, Zhu F, Yu J, Gao F, Yuan Y, Zhang Y, Liu X, Chu S, Cui D, Fan H, Wang W. Tongqiao Huoxue Decoction ameliorates traumatic brain injury-induced gastrointestinal dysfunction by regulating CD36/15-LO/NR4A1 signaling, which fails when CD36 and CX3CR1 are deficient. CNS Neurosci Ther 2023; 29 Suppl 1:161-184. [PMID: 37157929 PMCID: PMC10314107 DOI: 10.1111/cns.14247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/15/2022] [Accepted: 04/20/2023] [Indexed: 05/10/2023] Open
Abstract
AIMS Gastrointestinal (GI) dysfunction, as a common peripheral-organ complication after traumatic brain injury (TBI), is primarily characterized by gut inflammation and damage to the intestinal mucosal barrier (IMB). Previous studies have confirmed that TongQiao HuoXue Decoction (TQHXD) has strong anti-inflammatory properties and protects against gut injury. However, few have reported on the therapeutic effects of TQHXD in a TBI-induced GI dysfunction model. We aimed to explore the effects of TQHXD on TBI-induced GI dysfunction and the underlying mechanism thereof. METHODS We assessed the protective effects and possible mechanism of TQHXD in treating TBI-induced GI dysfunction via gene engineering, histological staining, immunofluorescence (IF), 16S ribosomal ribonucleic acid (rRNA) sequencing, real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), Western blot (WB), and flow cytometry (FCM). RESULTS TQHXD administration ameliorated TBI-induced GI dysfunction by modulating the abundance and structure of bacteria; reconstructing the destroyed epithelial and chemical barriers of the IMB; and improving M1/M2 macrophage, T-regulatory cell (Treg)/T helper 1 cell (Th1 ), as well as Th17 /Treg ratios to preserve homeostasis of the intestinal immune barrier. Notably, Cluster of Differentiation 36 (CD36)/15-lipoxygenase (15-LO)/nuclear receptor subfamily 4 group A member 1 (NR4A1) signaling was markedly stimulated in colonic tissue of TQHXD-treated mice. However, insufficiency of both CD36 and (C-X3-C motif) chemokine receptor 1 (CX3CR1) worsened GI dysfunction induced by TBI, which could not be rescued by TQHXD. CONCLUSION TQHXD exerted therapeutic effects on TBI-induced GI dysfunction by regulating the intestinal biological, chemical, epithelial, and immune barriers of the IMB, and this effect resulted from the stimulation of CD36/NR4A1/15-LO signaling; however, it could not do so when CX3CR1 and CD36 were deficient. TQHXD might therefore be a potential drug candidate for treating TBI-induced GI dysfunction.
Collapse
Affiliation(s)
- Chunzhu Wei
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Feng Zhu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jintao Yu
- Department of Otolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fei Gao
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuyi Yuan
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanlong Zhang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xinjie Liu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Si Chu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dandan Cui
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Heng Fan
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wenzhu Wang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
40
|
Zhao J, Wu R, Wei P, Ma Z, Pei H, Hu J, Wen F, Wan L. Ethanol extract of Piper wallichii ameliorates DSS-induced ulcerative colitis in mice: Involvement of TLR4/NF-κB/COX-2 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116293. [PMID: 36806346 DOI: 10.1016/j.jep.2023.116293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/29/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Piper wallichii (family: Piperaceae), a folk herbal medicine with anti-inflammatory and anti-thrombotic properties, has been traditionally used to treat rheumatic arthralgia, lumbocrural pain, gastrointestinal flatulence, and other intestinal diseases in China, Thailand, and India. However, there is no scientific report on the efficacy and potential mechanisms of Piper wallichii for ulcerative colitis (UC). AIM OF THE STUDY The study aims to investigate the therapeutic effect and possible molecular mechanisms of the ethanol extract of Piper wallichii (EEPW) on DSS-induced UC in BALB/c mice. MATERIALS AND METHODS The main components in EEPW were characterized by UPLC-QE-Orbitrap-MS. Subsequently, the anti-inflammatory effect of EEPW in vitro was preliminarily evaluated in RAW264.7 cells stimulated with LPS. UC model mice were triggered by free access to 4% DSS aqueous solution for 12 consecutive days, and simultaneously, EEPW (25, 50, and 100 mg/kg) and tofacitinib (positive control, 30 mg/kg) were orally administrated, respectively. The therapeutic efficacy of EEPW on UC was assessed by body weight, DAI, colon length, and pathological morphology. Besides, we investigated the effects of EEPW on intestinal barrier function, inflammatory factors, and immune systems of UC mice through immunohistochemistry (IHC), flow cytometry, and other techniques. Moreover, the expression of related proteins in the TLR4/NF-κB/COX-2 pathway was analyzed by Western blot. RESULTS A total of 14 components were identified in the positive and negative modes, including isofutoquinol A (11), hancinone C (12), and futoquinol (14) which characterized by references. In the RAW264.7 cells experiments, the extract significantly suppressed the levels of TNF-α and IL-6. More importantly, EEPW distinctly improved the symptoms of DSS-induced UC mice as reflected by a significant recovery from body weight, colon length, pathological injuries of the colon, and so on. Further research found that EEPW remarkably restored the levels of occludin, promoted proliferation, and inhibited apoptosis in colon to maintain the integrity of intestinal barrier. In addition, the down-regulation of TNF-α and IL-1β in colon, Th1 and Th17 cells in spleen, as well as the up-regulation of IL-10 in colon and Th2 cells in spleen were distinctly observed in EEPW-treated groups. Furthermore, the protein expression of TLR4, p-IκB-α, p-p65, and COX-2 were significantly inhibited by EEPW. CONCLUSIONS This study confirmed for the first time that EEPW effectively ameliorated DSS-induced UC in mice, which might be related to improving intestinal barrier function, maintaining the levels of inflammatory factors, and regulating the immune system. In addition, we found that the anti-inflammatory effect of EEPW on UC mice was involved in the TLR4/NF-κB/COX-2 signaling pathway. In conclusion, Piper wallichii can be used as a candidate for the treatment of UC.
Collapse
Affiliation(s)
- Jiajia Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Panhong Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ziyan Ma
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Heying Pei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jingwen Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Feiyan Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Li Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
41
|
Liu M, Zhou J, Li Y, Ding Y, Lian J, Dong Q, Qu Q, Lv W, Guo S. Effects of dietary polyherbal mixtures on growth performance, antioxidant capacity, immune function and jejunal health of yellow-feathered broilers. Poult Sci 2023; 102:102714. [PMID: 37172360 DOI: 10.1016/j.psj.2023.102714] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/14/2023] Open
Abstract
This study aimed to investigate the effects of polyherbal mixtures (PHM) on growth performance, antioxidant capacities, immune function, and intestinal health in yellow-feathered broilers. PHM is composed of five traditional Chinese medicine herbs (Portulaca oleracea L., Radix Sophora flavescens, Thalictrum glandulosissimum, Terra flava usta, and Pogostemon cablin). A total of 270 one-day-old yellow-feathered broilers were randomly allotted into 3 treatments for a 42-d feeding trial, each with 6 replicates of 15 birds. The dietary treatments consisted of a basal diet (CON), a basal diet supplemented with 50 mg/kg chlortetracycline (CTC), and a basal diet supplemented with 1000 mg/kg PHM. The results showed that dietary PHM supplementation increased body weight, ADG, and decreased F/G compared to the CON. PHM also increased spleen index and mRNA expression of IL-4 (d 21), and thymus index, serum IgA (d 42) and IgG, IL-4 and sIgA in jejunal mucosa (d 21 and 42), but decreased serum IFN-γ and mRNA expression of IFN-γ (d 21 and 42). In addition, PHM increased serum SOD, GSH-Px (d 21 and 42) and T-AOC (d 42), but decreased the content of serum MDA (d 21), the up-regulated mRNA expression of GSH-Px, CAT (d 21), SOD and CAT (d 42). Furthermore, PHM also improved the intestinal epithelial barrier indicators by the up-regulated mRNA expression of CLDN-1, OCLN (d 21 and 42) and ZO-1 (d 21), and the increased of villus height and villus height to crypt depth in jejunum (d 42). The high-throughput sequencing results showed that dietary PHM supplementation increased the alpha diversity and relative abundance of Oscillospira and Ruminococcus (d 21) and Lactobacillus (d 42), whereas decreasing that of Enterococcus (d 21) compared with CON. PICRUSt analysis revealed that metabolic pathways of carbohydrate, energy, lipid, cofactors, and vitamins were significantly enriched in the PHM group. Spearman's correlation analysis revealed that the genera Lactobacillus, Enterococcus, Ruminococcus, Oscillospira, and Faecalibacterium were related to growth performance, intestinal integrity, immune-related factors, antioxidant indices, and tight junction proteins. In conclusion, the results indicated that dietary PHM supplementation improved growth performance and immune status of yellow-feathered broilers by enhancing antioxidant capacities, barrier function, and modulated jejunal microbial communities. PHM used in our study has the potential to replace prophylactic antibiotic use in poultry production systems.
Collapse
Affiliation(s)
- Mengjie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jing Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yue Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yiqing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jiale Lian
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Qi Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Guangdong Technology Research center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, People's Republic of China.
| |
Collapse
|
42
|
Pharmacology Mechanism of Polygonum Bistorta in Treating Ulcerative Colitis Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022. [DOI: 10.1155/2022/6461560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aim. Ulcerative colitis (UC) is a refractory gastrointestinal disease. The study aimed to expound the mechanism of Polygonum bistorta (PB) in treating UC by network pharmacology, molecular docking, and experiment verification. Methods. The compositions and targets of PB and UC-associated targets were obtained by searching the websites and the literature. The potential mechanism of PB in the treatment of UC was predicted by protein-protein interaction network construction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Molecule docking was performed by AutoDock. In vitro experiments explored the mechanism of quercetin (Que), the main active composition of PB, in treating UC. Results. Six compositions, 139 PB targets, and 934 UC-associated targets were obtained. 93 overlapping targets between PB and UC were identified, and 18 of them were the core targets. 467 biological processes, 10 cell components, and 30 molecular functions were obtained by GO analysis. 102 pathways were enriched through KEGG analysis. Among them, the IL-17 signaling pathway had high importance. The core targets FOS, JUN, IL-1β, CCL2, CXCL8, and MMP9 could dock with Que successfully. Act1, TRAF6, FOS, and JUN were identified by KEGG as the key proteins of the IL-17 signaling pathway. The expressions of the abovementioned proteins were increased in Caco-2 cells stimulated by Dextran sulfate sodium and decreased after being treated by Que. Conclusion. PB might treat UC by downregulating the IL-17 signaling pathway. It is worth doing further research on PB treating UC in vivo.
Collapse
|
43
|
Wang H, Liu Z, Yu T, Zhang Y, Jiao Y, Wang X, Du H, Jiang R, Liu D, Xu Y, Guan Q, Lu M. The effect of tuina on ulcerative colitis model mice analyzed by gut microbiota and proteomics. Front Microbiol 2022; 13:976239. [PMID: 36523844 PMCID: PMC9745952 DOI: 10.3389/fmicb.2022.976239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/25/2022] [Indexed: 02/13/2024] Open
Abstract
Tuina can effectively alleviate ulcerative colitis-related symptoms, but the mechanism of action is unknown. The purpose of this research is to explore potential pathways for the treatment of tuina through gut microbiota and proteomics techniques. Thirty-two male BALB/c mice were divided into four groups, the control, model, mesalazine, and tuina groups. The ulcerative colitis model was established by freely drinking a 3% dextran sulphate sodium solution for 7 days. The mesalazine group and the tuina group, respectively, received 7 days of mesalazine and tuina treatment. Subsequently, their body weights, feces properties, colon length, histomorphological changes, gut microbiota, and colon proteomics were determined. Body weights, disease activity index score, colon histological scores, and microbiota diversity were restored in the tuina group. At the phylum level, Firmicutes was increased and Bacteroidota decreased. At the family level, Lachnospiraceae increased and Prevotellaceae decreased. At the genus level, the Lachnospiraceae_NK4A136_group was increased. Proteomics detected 370 differentially expressed proteins regulated by tuina, enriched to a total of 304 pathways, including biotin metabolism, Notch signaling pathway, linoleic acid metabolism, and autophagy. Tuina can effectively improve the symptoms of weight loss, fecal properties, and colon inflammation in ulcerative colitis mice and restore the gut microbiota diversity, adjusting the relative abundance of microbiota. The therapeutic effects of tuina may be achieved by modulating the signaling pathways of biotin metabolism, Notch signaling pathway, linoleic acid metabolism, and autophagy.
Collapse
Affiliation(s)
- Hourong Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Zhifeng Liu
- Tuina and Pain Management Department, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Tianyuan Yu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yingqi Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Jiao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xiangyi Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hongjin Du
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ruichen Jiang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Di Liu
- Acupuncture Department, Oriental Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yajing Xu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Guan
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Mengqian Lu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
44
|
Kolba N, Cheng J, Jackson CD, Tako E. Intra-Amniotic Administration-An Emerging Method to Investigate Necrotizing Enterocolitis, In Vivo ( Gallus gallus). Nutrients 2022; 14:nu14224795. [PMID: 36432481 PMCID: PMC9696943 DOI: 10.3390/nu14224795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in premature infants and a leading cause of death in neonates (1-7% in the US). NEC is caused by opportunistic bacteria, which cause gut dysbiosis and inflammation and ultimately result in intestinal necrosis. Previous studies have utilized the rodent and pig models to mimic NEC, whereas the current study uses the in vivo (Gallus gallus) intra-amniotic administration approach to investigate NEC. On incubation day 17, broiler chicken (Gallus gallus) viable embryos were injected intra-amniotically with 1 mL dextran sodium sulfate (DSS) in H2O. Four treatment groups (0.1%, 0.25%, 0.5%, and 0.75% DSS) and two controls (H2O/non-injected controls) were administered. We observed a significant increase in intestinal permeability and negative intestinal morphological changes, specifically, decreased villus surface area and goblet cell diameter in the 0.50% and 0.75% DSS groups. Furthermore, there was a significant increase in pathogenic bacterial (E. coli spp. and Klebsiella spp.) abundances in the 0.75% DSS group compared to the control groups, demonstrating cecal microbiota dysbiosis. These results demonstrate significant physiopathology of NEC and negative bacterial-host interactions within a premature gastrointestinal system. Our present study demonstrates a novel model of NEC through intra-amniotic administration to study the effects of NEC on intestinal functionality, morphology, and gut microbiota in vivo.
Collapse
Affiliation(s)
| | | | | | - Elad Tako
- Correspondence: ; Tel.: +1-607-255-0884
| |
Collapse
|
45
|
Zhan L, Zheng J, Meng J, Fu D, Pang L, Ji C. Toll-like receptor 4 deficiency alleviates lipopolysaccharide-induced intestinal barrier dysfunction. Biomed Pharmacother 2022; 155:113778. [DOI: 10.1016/j.biopha.2022.113778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/02/2022] Open
|
46
|
Luo Z, Liu C, Hu Y, Xia T, Zhang B, Chen F, Tan X, Zheng Z. Gegen Qinlian decoction restores the intestinal barrier in bacterial diarrhea piglets by promoting Lactobacillus growth and inhibiting the TLR2/MyD88/NF-κB pathway. Biomed Pharmacother 2022; 155:113719. [PMID: 36152417 DOI: 10.1016/j.biopha.2022.113719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Acute bacterial diarrhea is a severe global problem with a particularly high incidence rate in children. The microecology inhabiting the intestinal mucosa is the key factor leading to diarrhea. Gegen Qinlian decoction (GQD) is used to treat bacterial diarrhea, however, its underlying mechanism remains unclear. Thus, this study aimed to clarify the restorative effect of GQD on the intestinal barrier from the perspective of gut microbiota. A Tibetan piglet model with bacterial diarrhea was established through orally administered Escherichia coli, and diarrheal piglets were treated with GQD for three days. After treatment, GQD significantly ameliorated the diarrheal symptoms. GQD decreased the levels of IL-6, LPS, and DAO, and increased SIgA, ZO-1, and occludin levels in intestinal mucosa, indicating the restoration of intestinal barrier. GQD modulated the microbial compositions inhabited on the intestinal mucosa, especially an increase of the Lactobacillus. Spearman analysis showed that Lactobacillus was the key genus of intestinal barrier-related bacteria. Bacterial culture in vitro validated that GQD directly promoted Lactobacillus growth and inhibited E. coli proliferation. Moreover, the expressions of TLR2, MyD88, and NF-κB in the colon decreased after GQD treatment. In conclusion, GQD may treat diarrhea and restore the intestinal mucosal barrier by facilitating Lactobacillus growth and inhibiting the TLR2/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhenye Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China.
| | - Changshun Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China.
| | - Yannan Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China.
| | - Ting Xia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China.
| | - Baoping Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China.
| | - Feilong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China.
| | - Xiaomei Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China.
| | - Zezhong Zheng
- South China Agricultural University College of Veterinary Medicine, Guangzhou 510642, PR China.
| |
Collapse
|
47
|
Li C, Wang L, Zhao J, Wei Y, Zhai S, Tan M, Guan K, Huang Z, Chen C. Lonicera rupicola Hook.f.et Thoms flavonoids ameliorated dysregulated inflammatory responses, intestinal barrier, and gut microbiome in ulcerative colitis via PI3K/AKT pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154284. [PMID: 35777121 DOI: 10.1016/j.phymed.2022.154284] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lonicera rupicola Hook.f.et Thoms (LRH) is used as a customary medicinal herb in Tibetans. And LRH flavonoids have excellent anti-inflammatory and antioxidant pharmacological activities. However, the specific effects of LRH and its mechanism remain unknown, and there is a deficiency of systematic research, leading to the waste of LRH as a medicinal resource. PURPOSE In this study, in an attempt to rationalize the development and utilization of Tibetan herbal resources, the therapeutic efficacy and the underlying molecular mechanisms of LRH flavonoids on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) were investigated, establishing the favorable basis for the pharmacodynamic material basis of LRH and providing a scientific basis for the discovery of new drugs for the treatment of UC. METHODS Firstly, ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was used for identification and detection of the flavonoid components of LRH. Meanwhile, their potential targets, biological functions and signaling pathways were predicted with the assistance of network pharmacology analysis. Subsequently, pharmacological efficacy of LRH were evaluated by body weight loss, colon length, disease activity index (DAI), histology observation and the expression levels of inflammatory mediators, messenger RNA (mRNA) and tight junction proteins. Moreover, in the present investigation, we also profiled the gut microbiome via high-throughput sequencing of the V3-V4 region of 16S ribosomal DNA (rDNA) for bacterial community composition and diversity by Illumina MiSeq platforms. Finally, the key regulatory proteins in the PI3K/AKT pathways were measured to investigate their underlying molecular mechanisms. RESULTS A total of 37 LRH flavonoid components were identified and detected by UPLC-MS/MS, and 12 potential active components were obtained after screening. 137 of their common targets with UC were further predicted. GO and KEGG pathway enrichment analysis and molecular docking experiments demonstrated that LRH flavonoids could interfere with UC through "multi-component-multi-target-multi-pathway". In the animal experiments, LRH flavonoids could significantly attenuate UC as demonstrated by reducing the body weight loss and DAI, restoring colon length, decreasing oxidative stress, and improving the intestinal epithelial cell barrier. The mRNA and proteins expression levels of inflammatory mediators were returned to dynamic balance following LRH flavonoids treatment. 16S rDNA sequence analysis indicated that LRH flavonoids promoted the recovery of gut microbiome. And the PI3K/AKT pathway was significantly suppressed by LRH flavonoids. CONCLUSIONS LRH flavonoids exhibited multifaceted protective effects against DSS-induced UC in mice through mitigating colon inflammation and oxidative stress, restoring epithelial barrier function, and improving the gut microenvironment potentially through modulation of the PI3K/AKT pathway. This finding demonstrated that LRH flavonoids possessed great potential for becoming an excellent drug for the treatment of UC.
Collapse
Affiliation(s)
- Congcong Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Lu Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| | - Juebo Zhao
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yucai Wei
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Shuo Zhai
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Min Tan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Kuikui Guan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Zhihong Huang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China.
| | - Chaoxi Chen
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
48
|
Zheng S, Xue T, Wang B, Guo H, Liu Q. Chinese Medicine in the Treatment of Ulcerative Colitis: The Mechanisms of Signaling Pathway Regulations. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1781-1798. [PMID: 35950375 DOI: 10.1142/s0192415x22500756] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ulcerative colitis (UC) is a common clinical inflammatory bowel disease characterized by repeated attacks, difficult treatment, and great harm to the physical and mental health of the patients. The occurrence and development of UC were closely related to the physiological and pathological processes, such as intestinal inflammatory reaction, oxidizing reaction, and immune response. Treatment of ulcerative colitis using Western medicine is often associated with a number of limitations and adverse events. There is a long history of using traditional Chinese medicine in dealing with this medical condition. Commonly used traditional Chinese medicines for the treatment of UC include Caulis Sargentodoxae, Flos Lonicerae, Fructus Cnidii, etc. Additionally, classic prescriptions such as Gegen Qinlian Formulae and Zuojin Pills can also be used to treat UC. To enrich the traditional Chinese medicine theory, the cognitive theory and perspective of network pharmacology and bioinformatics research of cell signal transduction mechanism of UC are emerging rapidly. Modern pharmacological studies focus on underlying mechanisms for the management of UC with Chinese medicine monomers, single Chinese medicines, and traditional Chinese medicine formulations, alleviating the symptoms of UC, controlling the development of intestinal inflammation, and restoring intestinal function through the regulation of key molecular signaling pathways, including PI3K/Akt, NF-[Formula: see text]B, JAK/STAT, MAPK and Notch. By summarizing current research progressions, this review provides key references for the in-depth exploration of the mechanisms focused on signaling pathways for the clinical management of UC using traditional Chinese medicine.
Collapse
Affiliation(s)
- Shihao Zheng
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang 050091, P. R. China
| | - Tianyu Xue
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang 050091, P. R. China
| | - Bin Wang
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang 050091, P. R. China
| | - Haolin Guo
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang 050091, P. R. China
| | - Qiquan Liu
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang 050091, P. R. China
- Department of Spleen and Stomach, First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang 050011, P. R. China
| |
Collapse
|
49
|
Peng C, Li J, Miao Z, Wang Y, Wu S, Wang Y, Wang S, Cheng R, He F, Shen X. Early life administration of Bifidobacterium bifidum BD-1 alleviates long-term colitis by remodeling the gut microbiota and promoting intestinal barrier development. Front Microbiol 2022; 13:916824. [PMID: 35935215 PMCID: PMC9355606 DOI: 10.3389/fmicb.2022.916824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/07/2022] [Indexed: 12/28/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal disease characterized by microbiota disturbance and intestinal mucosal damage. The current study aimed to investigate the preventive effects of Bifidobacterium bifidum BD-1 (BD-1) against long-term IBD and possible mechanism by which it alters the gut microbiota, immune response, and mucosal barrier. Our study found that early treatment of BD-1 + Ceftri (ceftriaxone followed by BD-1) and BD-1 confers a certain protective effect against the occurrence of long-term Dextran sulfate sodium-induced colitis, which manifests as a decrease in inflammation scores and MPO activity levels, as well as a relatively intact intestinal epithelial structure. Moreover, compared to BD-1, Ceftri, and NS, early treatment with BD-1 + Ceftri promoted greater expression levels of mucosal barrier-related proteins [KI67, MUC2, ZO-1, secretory immunoglobulin A (slgA), Clauding-1, and Occludin], better local immune responses activation, and moderately better modulation of systemic immune responses during long-term colitis. This may be due to the fact that BD-1 + Ceftri can deliberately prolong the colonization time of some beneficial microbiota (e.g., Bifidobacterium) and reduce the relative abundance of inflammation-related microbiota (e.g., Escherichia/Shigella and Ruminococcus). Interestingly, we found that the changes in the gut barrier and immunity were already present immediately after early intervention with BD-1 + Ceftri, implying that early effects can persist with appropriate intervention. Furthermore, intervention with BD-1 alone in early life confers an anti-inflammatory effect to a certain degree in the long-term, which may be due to the interaction between BD-1 and the host’s native gut microbiota affecting intestinal metabolites. In conclusion, BD-1 was not as effective as BD-1 + Ceftri in early life, perhaps due to its failure to fully play the role of the strain itself under the influence of the host’s complex microbiota. Therefore, further research is needed to explore specific mechanisms for single strain and native microbiota or the combination between probiotics and antibiotics.
Collapse
|
50
|
Wu J, Wu Y, Feng W, Chen Q, Wang D, Liu M, Yu H, Zhang Y, Wang T. Role of Microbial Metabolites of Histidine in the Development of Colitis. Mol Nutr Food Res 2022; 66:e2101175. [PMID: 35585003 DOI: 10.1002/mnfr.202101175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/17/2022] [Indexed: 12/31/2022]
Abstract
SCOPE Colitis is a chronic relapsing inflammatory disease of colon. Clinical studies show that meat-rich diet plays a critical role in the relapse of colitis. However, it is unclear whether the microbial metabolites of histidine, which is an amino acid widely found in meat, have an impact on the health of the intestine. METHODS AND RESULTS Six metabolites of histidine are given to IEC-6 cells. The cell activity measurement shows that imidazole propionate (IMP) is the most detrimental metabolite. Then, IMP is injected to mice by rectal administration, with blood and colon tissues collected for the measurement of colitis related parameters. The results show that treatment with IMP significantly increased NF-κB, iNOS, and IL-6, decreased number of goblet cell, and inhibited expressions of miR-146b. However, overexpression of miR-146b in mice rescues the decline of the physical condition. Additionally, Notch receptor 1 (Notch1) is identified as a target gene of miR-146b. Further analysis shows that miR-146b restored the abundance of goblet cells by regulating Notch1 signaling pathway. CONCLUSION IMP is able to induce intestinal inflammation, impairs the intestinal barrier, and affects the proliferation of goblet cells. The underlined mechanism may partially contribute to the dysregulation of miR-146b/Notch1 axis.
Collapse
Affiliation(s)
- Jiaqi Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China
| | - Yuzheng Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Wen Feng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China
| | - Qian Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Dan Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Mengyang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China
| |
Collapse
|