1
|
Jiang H, Lu Q, Huang X, Zhang H, Zeng J, Wang M, Xu J, Yuan Z, Wei Q, Xiao E, Wang P, Huang G, Xu A. Sinomenine-glycyrrhizic acid self-assembly enhanced the anti-inflammatory effect of sinomenine in the treatment of rheumatoid arthritis. J Control Release 2025; 382:113718. [PMID: 40220871 DOI: 10.1016/j.jconrel.2025.113718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/23/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Rheumatoid arthritis (RA) is a common chronic systemic autoimmune disease that causes cartilage and bone damage in multiple joints, ultimately leading to disability. There is an urgent need to develop multidimensional strategies to treat RA. Sinomenine (SIN) has the distinctive pharmacological activity in treating RA, but its broader clinical application is limited by its exceedingly short half-life and adverse digestive tract effects. To overcome this obstacle, a self-assembled nanohydrogel (S-G hydrogel) was designed and produced with sinomenine (SIN) and glycyrrhizic acid (GA) without carriers or catalysts through noncovalent bonding. The S-G hydrogel could promote the absorption of SIN probably by protecting SIN from releasing and degrading in the acid circumstances. Oral intake of the S-G hydrogel significantly suppressed the overactivation of neutrophil via the Nf-κb and Mapk pathways in mice with RA. Furthermore, the S-G hydrogel regulated neutrophil activity by reversing apoptosis delay and decreasing autophagy-dependent NET formation. In summary, this study presents a self-assembled hydrogel with promising potential for clinical application, and offers a novel strategy to develop new drugs from the existing patent medicine composed of compounds from traditional Chinese medicine, as well as a special insight to elucidate the herb-matching mechanism in decoction prescriptions.
Collapse
Affiliation(s)
- Haixu Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China; School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Honglin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Zeng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mengdan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhihua Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuzhu Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Enfan Xiao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China.
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China; Hong Kong Institute of Advanced Studies, Sun Yat-sen University, Hong Kong, China.
| |
Collapse
|
2
|
Han Y, Chen S, Liu C, Sun H, Jia Z, Shi J, Li J, Chang Y. A comprehensive review of natural products in rheumatoid arthritis: therapeutic potential and mechanisms. Front Immunol 2025; 16:1501019. [PMID: 40406100 PMCID: PMC12094977 DOI: 10.3389/fimmu.2025.1501019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/11/2025] [Indexed: 05/26/2025] Open
Abstract
Rheumatoid arthritis (RA) is a classic autoimmune disease caused by a combination of genetic and environmental factors. The multiple and comprehensive pathologies involving the whole body's immune system and local organs and tissues make it challenging to control or cure them clinically. Fortunately, there are increasing reports that multiple non-toxic or low-toxicity natural products and their derivatives (NP&TDs) have positive therapeutic effects on RA. This review focuses on the potential mechanisms of NP&TDs against RA and aims to provide constructive information for developing rational clinical therapies. Active components of NP&TDs can play therapeutic and palliative roles in RA through multiple biological mechanisms. These mechanisms primarily involve immunosuppressive, anti-inflammatory, autophagic, and apoptotic pathways. Multiple targets- and receptor-coupled signal transduction can directly or indirectly modulates the nuclear transcription factors NF-κB, NFATc1, STAT3, and HIF-1α, which in turn regulate the production of several downstream pro-inflammatory cytokines, chemokines, immunocytes maturation and differentiation, immune complexes, proliferation, and apoptosis regulatory genes. Among these NP&TDs, the tripterygium-type ingredients, the artemisinin-type ingredients, and the paeony-type ingredients have been reported to be the mainstay in treating RA. Mechanistically, immunosuppression and anti-inflammation are still the primary therapeutic mechanisms. Nevertheless, the direct binding targets and pharmacodynamic mechanisms require further in-depth studies.
Collapse
Affiliation(s)
- Yuli Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Changqing Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huihui Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaoyu Jia
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaxin Shi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Guo WY, Wu QM, Zeng HF, Chen YL, Xu J, Yu ZY, Shu YK, Yang XN, Zhang CH, He XZ, Mi JN, Chen S, Chen XM, Wu JQ, Yao HQ, Liu L, Pan HD. A sinomenine derivative alleviates bone destruction in collagen-induced arthritis mice by suppressing mitochondrial dysfunction and oxidative stress via the NRF2/HO-1/NQO1 signaling pathway. Pharmacol Res 2025; 215:107686. [PMID: 40088961 DOI: 10.1016/j.phrs.2025.107686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/09/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Bone destruction in rheumatoid arthritis (RA) leads to significant disability, yet effective treatments are limited. Sinomenine (Sino) demonstrates anti-arthritic and bone-protective effects but requires high doses. In this study, we developed a Sino derivative, SINX, and evaluated its efficacy in RA. Safety assessments in mice confirmed its suitability for further study. In vitro, SINX inhibited osteoclast differentiation by reducing TRAP-positive cells, disrupting F-actin ring formation, and suppressing bone resorption pits, alongside downregulating osteoclast-specific genes. It also showed strong anti-inflammatory properties by reducing inflammatory cytokine levels. In vivo, using a collagen-induced arthritis (CIA) mouse model, SINX improved bone integrity by reducing joint inflammation, maintaining trabecular bone density, and preventing erosion. Histological and micro-CT analyses confirmed its effects, including suppressed osteoclast activity and reduced bone resorption-related gene expression. Mechanistically, SINX ameliorated mitochondrial dysfunction, decreased ROS levels, and activated the NRF2/HO-1/NQO1 pathway, enhancing antioxidant defenses. Compared to Sino, SINX achieved similar results at lower doses. These findings highlight the potential of SINX as a safe, effective treatment for RA-related bone destruction.
Collapse
Affiliation(s)
- Wan-Yi Guo
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province 510405, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao
| | - Qi-Min Wu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Jiangning District, Nanjing 211198, China
| | - Hao-Feng Zeng
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province 510405, China
| | - Yu-Lian Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province 510405, China
| | - Jie Xu
- State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao
| | - Zhen-Yi Yu
- State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao
| | - Yong-Kang Shu
- State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao
| | - Xiao-Nan Yang
- State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao
| | - Chuan-Hai Zhang
- State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao
| | - Xi-Zi He
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province 510405, China
| | - Jia-Ning Mi
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province 510405, China
| | - Si Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province 510405, China
| | - Xiao-Man Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province 510405, China
| | - Jia-Qi Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province 510405, China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao
| | - He-Quan Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Jiangning District, Nanjing 211198, China
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province 510405, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao
| | - Hu-Dan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province 510405, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao.
| |
Collapse
|
4
|
Li D, Zhong Z, Ko CN, Tian T, Yang C. From mundane to classic: Sinomenine as a multi-therapeutic agent. Br J Pharmacol 2025; 182:2159-2180. [PMID: 37846470 DOI: 10.1111/bph.16267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/10/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023] Open
Abstract
Sinomenine is an active substance extracted from the traditional Chinese medicine Sinomenium acutum. Sinomenine has been shown to mediate a wide range of pharmacological actions and is known to possess good anti-inflammatory, immunosuppressive, antitumor, neuroprotective, antiarrhythmic and other pharmacological effects. Understanding the underlying mechanisms and the association between the targets and the pharmaceutical effects on different diseases is crucial to the discovery and design of new treatment strategies. In this review, we aim to give a systematic and comprehensive overview of the research progress of sinomenine over the past 20 years. We first describe the metabolism of sinomenine in vivo and then summarize the pharmacological actions of sinomenine on different diseases. Furthermore, the potential binding properties of sinomenine and the potential of developing new sinomenine-based drugs are also reviewed. LINKED ARTICLES: This article is part of a themed issue Natural Products and Cancer: From Drug Discovery to Prevention and Therapy. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.10/issuetoc.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Chung-Nga Ko
- The International Eye Research Institute of The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Tiantian Tian
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China
| | - Chao Yang
- National Engineering Research Center For Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
5
|
Xiao T, Zhao H, Wang Y, Chen M, Wang C, Qiao C. Shionone Inhibits Glomerular Fibirosis by Suppressing NLRP3 Related Inflammasome though SESN2-NRF2/ HO-1 Pathway. Diabetes Metab J 2025; 49:34-48. [PMID: 39192821 PMCID: PMC11788555 DOI: 10.4093/dmj.2024.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/16/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGRUOUND Diabetic nephropathy (DN) is the most common and serious complication of diabetes mellitus. Shionone (SH), an important triterpenoid compound in the root extract of Aster, might exert a protective effect in DN mice and high glucose cultivated glomerular podocytes. The current study aimed to unravel the underlying mechanism by which SH mitigates DN. We postulate that SH stimulates the expression of sestrin-2 (SESN2), a pivotal stress-inducible protein in the anti-inflammasome machinery. METHODS We utilized high-fat diet combined with streptozotocin (55 mg/kg intraperitoneal) for DN mice model, and high glucose (30 mM, 48 hours) cultured glomerular podocytes for DN cell model to evaluate the effect of SH. We also preformed experimentation on SESN2 deficiency models (SESN2 knockout mice and SESN2 siRNA in cells) to further prove our hypothesis. RESULTS The results demonstrated that SH effectively suppressed glomerular fibrosis, induced adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, and inhibited NLR family pyrin domain containing 3 (NLRP3) activation. Furthermore, our findings revealed that SH exerted its anti-inflammatory effect through Sesn2-dependent nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and subsequent activation of its downstream target heme oxygenase-1 (HO-1). CONCLUSION In summary, our findings suggest that SH serves as a promising therapeutic agent for the treatment of DN-related glomerular fibrosis. SH enhances the expression of SESN2, attenuates α-smooth muscle actin accumulation, and suppresses NLRP3-related inflammation through the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Tian Xiao
- China Pharmaceutical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanzhen Zhao
- China Pharmaceutical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yucong Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengyin Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Cong Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Chen Qiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Ding C, Wu Y, Zhan C, Naseem A, Chen L, Li H, Yang B, Liu Y. Research progress on the role and inhibitors of Keap1 signaling pathway in inflammation. Int Immunopharmacol 2024; 141:112853. [PMID: 39159555 DOI: 10.1016/j.intimp.2024.112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Inflammation is a protective mechanism against endogenous and exogenous pathogens. It is a typical feature of numerous chronic diseases and their complications. Keap1 is an essential target in oxidative stress and inflammatory diseases. Among them, the Keap1-Nrf2-ARE pathway (including Keap1-Nrf2-HO-1) is the most significant pathway of Keap1 targets, which participates in the control of inflammation in multiple organs (including renal inflammation, lung inflammation, liver inflammation, neuroinflammation, etc.). Identifying new Keap1 inhibitors is crucial for new drug discovery. However, most drugs have specificity issues as they covalently bind to cysteine residues of Keap1, causing off-target effects. Therefore, direct inhibition of Keap1-Nrf2 PPIs is a new research idea. Through non-electrophilic and non-covalent binding, its inhibitors have better specificity and ability to activate Nrf2, and targeting therapy against Keap1-Nrf2 PPIs has become a new method for drug development in chronic diseases. This review summarizes the members and downstream genes of the Keap1-related pathway and their roles in inflammatory disease models. In addition, we summarize all the research progress of anti-inflammatory drugs targeting Keap1 from 2010 to 2024, mainly describing their biological functions, molecular mechanisms of action, and therapeutic roles in inflammatory diseases.
Collapse
Affiliation(s)
- Chao Ding
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Ying Wu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Chaochao Zhan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Anam Naseem
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
7
|
Ma K, Miao L, Li B, Yu W, Liu F, Liu K, Li Y, Huang C, Yang Z. Mechanism of action of Nrf2 and its related natural regulators in rheumatoid arthritis. J Orthop Surg Res 2024; 19:759. [PMID: 39543632 PMCID: PMC11566362 DOI: 10.1186/s13018-024-05221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovitis that can lead to joint deformities. To date, more than 18 million individuals worldwide have been diagnosed with RA, making it one of the most prevalent autoimmune diseases globally and posing a significant threat to public health and safety. Due to the complex pathogenesis of the disease, which involves autoimmunity, genetics, inflammation and oxidative stress in the body's tissues, the current drug therapy generally targets a single molecule, and effective and efficient drugs involving multiple levels and targets are lacking; thus, there is an urgent need for high-quality research and treatment in this field. Nuclear transcription factor erythroid 2-associated factor 2 (Nrf2) plays a crucial role in cellular resistance to oxidative stress and electrophilic attacks and is a potential pharmacological target for chronic disease treatment. While currently no drugs that target Nrf2 have been approved specifically for RA treatment, such an approach holds great significance. In recent years, the use of natural products to treat RA and other chronic conditions has become increasingly widespread because of their superior efficacy and minimal side effects. Therefore, this article provides a review of the mechanism of Nrf2 in RA and summarizes natural products that target Nrf2 and its associated pathways in the treatment of RA, aiming to offer new insights and strategies for the prevention and management of RA.
Collapse
Affiliation(s)
- Ke Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Lili Miao
- Department of Experiment Center, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Bo Li
- Department of Orthopaedics, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Wenfei Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Fengzhao Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Kun Liu
- Department of Orthopaedics, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Yang Li
- Department of Orthopaedics, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Chengcheng Huang
- Department of Endocrinology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Zhenguo Yang
- Department of Orthopaedics, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China.
| |
Collapse
|
8
|
Singh E, Matada GSP, Dhiwar PS, Patil RB, Pal R. In-silico based discovery of potential Keap1 inhibitors using the strategies of pharmacophore screening, molecular docking, and MD simulation studies. BIOIMPACTS : BI 2024; 15:30335. [PMID: 40256239 PMCID: PMC12008509 DOI: 10.34172/bi.30335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/30/2024] [Accepted: 04/30/2024] [Indexed: 04/22/2025]
Abstract
Introduction The main objective of this research is to identify potential leads for developing potent Keap1 inhibitors. Methods In the current research article, in-silico methods have been employed to discover potential Keap1 inhibitors. 3D-QSAR was generated using the ChemBL database of Keap1 inhibitors with IC50. The best pharmacophore was selected for the screening of three different libraries namely Asinex, MiniMaybridge, and Zinc. The molecules screened from the databases were filtered through druggability rules and molecular docking studies. The best binding molecules obtained after docking studies were subjected to physicochemical properties toxicity determination by in-silico methods. The best hits were studied for stability in the cavity of Keap1 by molecular dynamic simulations. Results The virtual screening of different databases was carried out separately and three leads, were obtained. These lead molecules ASINEX 508, MiniMaybridgeHTS_01719, and ZINC 0000952883 showed the best binding in the Keap1 cavity. The molecular dynamic simulations of the binding complexes of the leads support the docking analysis. The leads (ASINEX 508, MiniMaybridgeHTS_01719, and ZINC 0000952883) were stabilized in the Keap1 binding cavity throughout 100 ns simulation, with average RMSD values of 0.100, 0.114, and 0.106 nm, respectively. Conclusion This research proposes three lead molecules as potential Keap1 inhibitors based on high throughput screening, docking, and MD simulation studies. These hit molecules can be used for further design and development of Keap1 inhibitors. This research provides the preliminary data for discovering novel Keap1 inhibitors. It opens new avenues for medicinal chemists to explore antioxidant-stimulating molecules targeting the Keap1-Nrf2 pathway.
Collapse
Affiliation(s)
- Ekta Singh
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
- Aditya Bangalore Institute of Pharmacy Education and Research, Department of Pharmaceutical Chemistry, 560064, Karnataka, India
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Prasad Sanjay Dhiwar
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Rajesh B. Patil
- Sinhgad Technical Education Society’s, Sinhgad College of Pharmacy, Department of Pharmaceutical Chemistry, Off Sinhgad Road, Vadgaon (Bk), Pune 411041, Maharashtra, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| |
Collapse
|
9
|
Xu WD, Yang C, Huang AF. The role of Nrf2 in immune cells and inflammatory autoimmune diseases: a comprehensive review. Expert Opin Ther Targets 2024; 28:789-806. [PMID: 39256980 DOI: 10.1080/14728222.2024.2401518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Nrf2 regulates mild stress, chronic inflammation, and metabolic changes by regulating different immune cells via downstream signaling. Collection of information about the role of Nrf2 in inflammatory autoimmune diseases will better understand the therapeutic potential of targeting Nrf2 in these diseases. AREAS COVERED In this review, we comprehensively discussed biological function of Nrf2 in different immune cells, including Nrf2 preventing oxidative tissue injury, affecting apoptosis of immune cells and inflammatory cytokine production. Moreover, we discussed the role of Nrf2 in the development of inflammatory autoimmune diseases. EXPERT OPINION Nrf2 binds to downstream signaling molecules and then provides durable protection against different cellular and organ stress. It has emerged as an important target for inflammatory autoimmune diseases. Development of Nrf2 modulator drugs needs to consider factors such as target specificity, short/long term safety, disease indication identification, and the extent of variation in Nrf2 activity. We carefully discussed the dual role of Nrf2 in some diseases, which helps to better target Nrf2 in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Chan Yang
- Preventive Health Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
10
|
Li S, Ren W, Zheng J, Li S, Zhi K, Gao L. Role of O-linked N-acetylglucosamine protein modification in oxidative stress-induced autophagy: a novel target for bone remodeling. Cell Commun Signal 2024; 22:358. [PMID: 38987770 PMCID: PMC11238385 DOI: 10.1186/s12964-024-01734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
O-linked N-acetylglucosamine protein modification (O-GlcNAcylation) is a dynamic post-translational modification (PTM) involving the covalent binding of serine and/or threonine residues, which regulates bone cell homeostasis. Reactive oxygen species (ROS) are increased due to oxidative stress in various pathological contexts related to bone remodeling, such as osteoporosis, arthritis, and bone fracture. Autophagy serves as a scavenger for ROS within bone marrow-derived mesenchymal stem cells, osteoclasts, and osteoblasts. However, oxidative stress-induced autophagy is affected by the metabolic status, leading to unfavorable clinical outcomes. O-GlcNAcylation can regulate the autophagy process both directly and indirectly through oxidative stress-related signaling pathways, ultimately improving bone remodeling. The present interventions for the bone remodeling process often focus on promoting osteogenesis or inhibiting osteoclast absorption, ignoring the effect of PTM on the overall process of bone remodeling. This review explores how O-GlcNAcylation synergizes with autophagy to exert multiple regulatory effects on bone remodeling under oxidative stress stimulation, indicating the application of O-GlcNAcylation as a new molecular target in the field of bone remodeling.
Collapse
Affiliation(s)
- Shengqian Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Jingjing Zheng
- Department of Endodontics, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
- Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
- Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
11
|
Li J, Cao J, Chen Q, Liu D, Li R. Investigating the therapeutic potential of sinomenine in rheumatoid arthritis: anti-inflammatory, antioxidant, and immunomodulatory mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3945-3958. [PMID: 37991542 DOI: 10.1007/s00210-023-02810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023]
Abstract
An autoimmune disease, rheumatoid arthritis (RA) is characterized by the onset of inflammation and subsequent damage to the joints. Although several therapies are available for RA, none are effective, and many have undesirable side effects. The roots of Sinomenium acutum produce an alkaloid called Sinomenine (SIN), which has been used for centuries in Chinese medicine to treat arthritis due to its anti-inflammatory properties. This study aimed to explore the potential therapeutic benefits of SIN through oral administration following RA induction using Freund's complete adjuvant (FCA) injections. The study monitored changes in the arthritic index, hind paw volume, inflammation and oxidative stress markers. Results demonstrated that SIN effectively inhibited the activity of NF-κB and IKKβ in knee joint tissues, which led to a decrease in tissue levels of TNF-α, IL-6, IL-1β, and iNOS in RA-induced rats. The production of anti-inflammatory cytokines such as IL-10, Arg-1, and Fizz1 also increased. In rat knee joints, SIN elevated the expression of TIMP-1 and TIMP-3 and decreased the expression of MMP-2 and MMP-9. Additionally, SIN modulated the RANK/RANKL/OPG pathway in RA-induced rat knee joint tissues, reducing RANKL expression and increasing OPG. SIN also effectively decreased MDA, NO, and elevated antioxidant enzymes (SOD, CAT, GPx, and GSH) in RA-induced rats via Nrf2/Keap 1 signaling pathway activation. In conclusion, this study suggests that SIN possesses potential therapeutic benefits for treating RA by modulating the RANK/RANKL/OPG pathway, which may impact osteoclast activity, oxidative stress, and inflammation in knee joint tissues.
Collapse
Affiliation(s)
- Juan Li
- The First Ward of Rheumatology and Immunology, Xi'an No. 5 Hospital, Xi'an, 710000, China
| | - Junjie Cao
- Laboratory medicine department, Xi'an No. 5 Hospital, Xi'an, 710000, China
| | - Qingping Chen
- The First Ward of Rheumatology and Immunology, Xi'an No. 5 Hospital, Xi'an, 710000, China
| | - Dan Liu
- Rheumatology and Immunology Department, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710000, China
| | - Rui Li
- The First Ward of Rheumatology and Immunology, Xi'an No. 5 Hospital, Xi'an, 710000, China.
| |
Collapse
|
12
|
Xiao HX, Yu L, Xia Y, Chen K, Li WM, Ge GR, Zhang W, Zhang Q, Zhang HT, Geng DC. Sinomenine increases osteogenesis in mice with ovariectomy-induced bone loss by modulating autophagy. World J Stem Cells 2024; 16:486-498. [PMID: 38817333 PMCID: PMC11135257 DOI: 10.4252/wjsc.v16.i5.486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/01/2024] [Accepted: 04/07/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND A decreased autophagic capacity of bone marrow mesenchymal stromal cells (BMSCs) has been suggested to be an important cause of decreased osteogenic differentiation. A pharmacological increase in autophagy of BMSCs is a potential therapeutic option to increase osteoblast viability and ameliorate osteoporosis. AIM To explore the effects of sinomenine (SIN) on the osteogenic differentiation of BMSCs and the underlying mechanisms. METHODS For in vitro experiments, BMSCs were extracted from sham-treated mice and ovariectomized mice, and the levels of autophagy markers and osteogenic differentiation were examined after treatment with the appropriate concentrations of SIN and the autophagy inhibitor 3-methyladenine. In vivo, the therapeutic effect of SIN was verified by establishing an ovariectomy-induced mouse model and by morphological and histological assays of the mouse femur. RESULTS SIN reduced the levels of AKT and mammalian target of the rapamycin (mTOR) phosphorylation in the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling pathway, inhibited mTOR activity, and increased autophagy ability of BMSCs, thereby promoting the osteogenic differentiation of BMSCs and effectively alleviating bone loss in ovariectomized mice in vivo. CONCLUSION The Chinese medicine SIN has potential for the treatment of various types of osteoporosis, bone homeostasis disorders, and autophagy-related diseases.
Collapse
Affiliation(s)
- Hai-Xiang Xiao
- Department of Orthopedics, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Centre of Soochow University, Suzhou 215006, Jiangsu Province, China
- Department of Orthopedics, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, Jiangsu Province, China
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Yu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Kai Chen
- Department of Orthopedics, Hai'an People's Hospital, Hai'an 226600, Jiangsu Province, China
| | - Wen-Ming Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Gao-Ran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Wei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Qing Zhang
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an Second People's Hospital, Xuzhou 223002, Jiangsu Province, China
| | - Hong-Tao Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - De-Chun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China.
| |
Collapse
|
13
|
Saha S. An Overview of Therapeutic Targeting of Nrf2 Signaling Pathway in Rheumatoid Arthritis. ACS OMEGA 2024; 9:10049-10057. [PMID: 38463248 PMCID: PMC10918843 DOI: 10.1021/acsomega.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Rheumatoid arthritis (RA), an autoimmune condition that has a significant inflammatory component and is exacerbated by dysregulated redox-dependent signaling pathways. In RA, the corelationship between oxidative stress and inflammation appears to be regulated by the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Furthermore, it has been shown that transcriptional pathways involving Nrf2 and NFκB significantly interact under conditions of oxidative stress and inflammation. Because pathologic cells in RA have a higher chance of surviving, Nrf2's influence on concomitant pathologic mechanisms in the disease is explained by its interaction with key redox-sensitive inflammatory pathways. The current review not only updates knowledge about Nrf2's function in RA but also highlights the complex interactions between Nrf2 and other redox-sensitive transcription factors, which are essential to the self-sustaining inflammatory processes that define RA. This paper also reviews the candidates for treating RA through Nrf2 activation. Finally, future directions for pharmacologic Nrf2 activation in RA are suggested.
Collapse
Affiliation(s)
- Sarmistha Saha
- Department of Biotechnology,
Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, Uttar Pradesh, India
| |
Collapse
|
14
|
Hou W, Huang L, Huang H, Liu S, Dai W, Tang J, Chen X, Lu X, Zheng Q, Zhou Z, Zhang Z, Lan J. Bioactivities and Mechanisms of Action of Sinomenine and Its Derivatives: A Comprehensive Review. Molecules 2024; 29:540. [PMID: 38276618 PMCID: PMC10818773 DOI: 10.3390/molecules29020540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Sinomenine, an isoquinoline alkaloid extracted from the roots and stems of Sinomenium acutum, has been extensively studied for its derivatives as bioactive agents. This review concentrates on the research advancements in the biological activities and action mechanisms of sinomenine-related compounds until November 2023. The findings indicate a broad spectrum of pharmacological effects, including antitumor, anti-inflammation, neuroprotection, and immunosuppressive properties. These compounds are notably effective against breast, lung, liver, and prostate cancers, exhibiting IC50 values of approximately 121.4 nM against PC-3 and DU-145 cells, primarily through the PI3K/Akt/mTOR, NF-κB, MAPK, and JAK/STAT signaling pathways. Additionally, they manifest anti-inflammatory and analgesic effects predominantly via the NF-κB, MAPK, and Nrf2 signaling pathways. Utilized in treating rheumatic arthritis, these alkaloids also play a significant role in cardiovascular and cerebrovascular protection, as well as organ protection through the NF-κB, Nrf2, MAPK, and PI3K/Akt/mTOR signaling pathways. This review concludes with perspectives and insights on this topic, highlighting the potential of sinomenine-related compounds in clinical applications and the development of medications derived from natural products.
Collapse
Affiliation(s)
- Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Lejun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou 341000, China;
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Shenglan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Wei Dai
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Jianhong Tang
- Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou 341000, China;
| | - Xiangzhao Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Xiaolu Lu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Qisheng Zheng
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Zhinuo Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Ziyun Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Jinxia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
15
|
Li JM, Yao YD, Luo JF, Liu JX, Lu LL, Liu ZQ, Dong Y, Xie Y, Zhou H. Pharmacological mechanisms of sinomenine in anti-inflammatory immunity and osteoprotection in rheumatoid arthritis: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155114. [PMID: 37816287 DOI: 10.1016/j.phymed.2023.155114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Sinomenine (SIN) is the main pharmacologically active component of Sinomenii Caulis and protects against rheumatoid arthritis (RA). In recent years, many studies have been conducted to elucidate the pharmacological mechanisms of SIN in the treatment of RA. However, the molecular mechanism of SIN in RA has not been fully elucidated. PURPOSE To summarize the pharmacological effects and molecular mechanisms of SIN in RA and clarify the most valuable regulatory mechanisms of SIN to provide clues and a basis for basic research and clinical applications. METHODS We systematically searched SciFinder, Web of Science, PubMed, China National Knowledge Internet (CNKI), the Wanfang Databases, and the Chinese Scientific Journal Database (VIP). We organized our work based on the PRISMA statement and selected studies for review based on predefined selection criteria. OUTCOME After screening, we identified 201 relevant studies, including 88 clinical trials and 113 in vivo and in vitro studies on molecular mechanisms. Among these studies, we selected key results for reporting and analysis. CONCLUSIONS We found that most of the known pharmacological mechanisms of SIN are indirect effects on certain signaling pathways or proteins. SIN was manifested to reduce the release of inflammatory cytokines such as Tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), and IL-1β, thereby reducing the inflammatory response, and apparently blocking the destruction of bone and cartilage. The regulatory effects on inflammation and bone destruction make SIN a promising drug to treat RA. More notably, we believe that the modulation of α7nAChR and the regulation of methylation levels at specific GCG sites in the mPGES-1 promoter by SIN, and its mechanism of directly targeting GBP5, certainly enriches the possibilities and the underlying rationale for SIN in the treatment of inflammatory immune-related diseases.
Collapse
Affiliation(s)
- Juan-Min Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yun-Da Yao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Jin-Fang Luo
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guian District, Guiyang, Guizhou, China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lin-Lin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhong-Qiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510405, China.
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
16
|
Balendran T, Lim K, Hamilton JA, Achuthan AA. Targeting transcription factors for therapeutic benefit in rheumatoid arthritis. Front Immunol 2023; 14:1196931. [PMID: 37457726 PMCID: PMC10339812 DOI: 10.3389/fimmu.2023.1196931] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is a destructive inflammatory autoimmune disease that causes pain and disability. Many of the currently available drugs for treating RA patients are aimed at halting the progression of the disease and alleviating inflammation. Further, some of these treatment options have drawbacks, including disease recurrence and adverse effects due to long-term use. These inefficiencies have created a need for a different approach to treating RA. Recently, the focus has shifted to direct targeting of transcription factors (TFs), as they play a vital role in the pathogenesis of RA, activating key cytokines, chemokines, adhesion molecules, and enzymes. In light of this, synthetic drugs and natural compounds are being explored to target key TFs or their signaling pathways in RA. This review discusses the role of four key TFs in inflammation, namely NF-κB, STATs, AP-1 and IRFs, and their potential for being targeted to treat RA.
Collapse
Affiliation(s)
- Thivya Balendran
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Keith Lim
- Department of Medicine, Western Health, The University of Melbourne, St Albans, VIC, Australia
| | - John A. Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Adrian A. Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
17
|
Zhu M, Ding Q, Lin Z, Fu R, Zhang F, Li Z, Zhang M, Zhu Y. New Targets and Strategies for Rheumatoid Arthritis: From Signal Transduction to Epigenetic Aspect. Biomolecules 2023; 13:biom13050766. [PMID: 37238636 DOI: 10.3390/biom13050766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that can lead to joint damage and even permanent disability, seriously affecting patients' quality of life. At present, the complete cure for RA is not achievable, only to relieve the symptoms to reduce the pain of patients. Factors such as environment, genes, and sex can induce RA. Presently, non-steroidal anti-inflammatory drugs, DRMADs, and glucocorticoids are commonly used in treating RA. In recent years, some biological agents have also been applied in clinical practice, but most have side effects. Therefore, finding new mechanisms and targets for treating RA is necessary. This review summarizes some potential targets discovered from the perspective of epigenetics and RA mechanisms.
Collapse
Affiliation(s)
- Menglin Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Zhongxiao Lin
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Rong Fu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Fuyuan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Zhaoyi Li
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Mei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
18
|
Wang S, Zhang L, Zhou Y, Huang J, Zhou Z, Liu Z. A review on pharmacokinetics of sinomenine and its anti-inflammatory and immunomodulatory effects. Int Immunopharmacol 2023; 119:110227. [PMID: 37119677 DOI: 10.1016/j.intimp.2023.110227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Autoimmune diseases (ADs), with significant effects on morbidity and mortality, are a broad spectrum of disorders featured by body's immune responses being directed against its own tissues, resulting in chronic inflammation and tissue damage. Sinomenine (SIN) is an alkaloid isolated from the root and stem of Sinomenium acutum which is mainly used to treat pain, inflammation and immune disorders for centuries in China. Its potential anti-inflammatory role for treating immune-related disorders in experimental animal models and in some clinical applications have been reported widely, suggesting an inspiring application prospect of SIN. In this review, the pharmacokinetics, drug delivery systems, pharmacological mechanisms of action underlying the anti-inflammatory and immunomodulatory effects of SIN, and the possibility of SIN as adjuvant to disease-modifying anti-rheumatic drugs (DMARDs) therapy were summarized and evaluated. This paper aims to reveal the potential prospects and limitations of SIN in the treatment of inflammatory and immune diseases, and to provide ideas for compensating its limitations and reducing the side effects, and thus to make SIN better translate to the clinic.
Collapse
Affiliation(s)
- Siwei Wang
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China; Honghu Hospital of Traditional Chinese Medicine, Honghu 433299, Hubei Province, China
| | - Lvzhuo Zhang
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Yanhua Zhou
- Honghu Hospital of Traditional Chinese Medicine, Honghu 433299, Hubei Province, China
| | - Jiangrong Huang
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China; Jingzhou Central Hospital Affiliated to Yangtze University, Jingzhou 434020, Hubei Province, China.
| | - Zushan Zhou
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China; Honghu Hospital of Traditional Chinese Medicine, Honghu 433299, Hubei Province, China.
| | - Zhenzhen Liu
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China.
| |
Collapse
|
19
|
Zhang W, Geng X, Dong Q, Li X, Ye P, Lin M, Xu B, Jiang H. Crosstalk between autophagy and the Keap1-Nrf2-ARE pathway regulates realgar-induced neurotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115776. [PMID: 36191662 DOI: 10.1016/j.jep.2022.115776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Realgar, the main component of which is As2S2 or As4S4 (≥90%), is a traditional Chinese natural medicine that has been used to treat carbuncles, furuncles, snake and insect bites, abdominal pain caused by parasitic worms, and epilepsy in China for many years. Because realgar contains arsenic, chronic or excessive use of single-flavor realgar and realgar-containing Chinese patent medicine can lead to drug-induced arsenic poisoning, but the exact mechanism underlying its toxicity to the central nervous system is unclear. AIM OF THE STUDY The aim of this study was to clarify the mechanism of realgar-induced neurotoxicity and to investigate the effects of realgar on autophagy and the Keap1-Nrf2-ARE pathway. MATERIALS AND METHODS We used rats treated with the autophagy inhibitor 3-methyladenine (3-MA) or adeno-associated virus (AAV2/9-r-shRNA-Sqstm1, sh-p62) to investigate realgar-induced neurotoxicity and explore the specific relationship between autophagy and the Keap1-Nrf2-ARE pathway (the Nrf2 pathway) in the cerebral cortex. Molecular docking analysis was used to assess the interactions among the Nrf2, p62 and Keap1 proteins. RESULTS Our results showed that arsenic from realgar accumulated in the brain and blood to cause neuronal and synaptic damage, decrease exploratory behavior and spontaneous movement, and impair memory ability in rats. The mechanism may have involved realgar-mediated autophagy impairment and continuous activation of the Nrf2 pathway via the LC3-p62-Keap1-Nrf2 axis. However, because this activation of the Nrf2 pathway was not sufficient to counteract oxidative damage, apoptosis was aggravated in the cerebral cortex. CONCLUSIONS This study revealed that autophagy, the Nrf2 pathway, and apoptosis are involved in realgar-induced central nervous system toxicity and identified p62 as the hub of the LC3-p62-Keap1-Nrf2 axis in the regulation of autophagy, the Nrf2 pathway, and apoptosis.
Collapse
Affiliation(s)
- Weiwei Zhang
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Liaoning, PR China.
| | - Xu Geng
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Qing Dong
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Xiuhan Li
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Ping Ye
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Mengyuan Lin
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Bin Xu
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Hong Jiang
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Liaoning, PR China.
| |
Collapse
|
20
|
Yue H, Jin T, Shao S, Jin G. Design, Synthesis and Study of a Novel Antitumor Active Sinomeninylethylenesulfamide. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162023010302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Chen X, Lu C, Duan Y, Huang Y. Recent Advancements in Drug Delivery of Sinomenine, A Disease-Modifying Anti-Rheumatic Drug. Pharmaceutics 2022; 14:pharmaceutics14122820. [PMID: 36559313 PMCID: PMC9781253 DOI: 10.3390/pharmaceutics14122820] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Sinomenine (SIN) is a benzyltetrahydroisoquinoline-type alkaloid isolated from the dried plant root and stem of Sinomenium acutum (Thumb.) Rehd.et Wils, which shows potent anti-inflammatory and analgesic effects. As a transforming disease-modifying anti-rheumatic drug, SIN has been used to treat rheumatoid arthritis over twenty-five years in China. In recent years, SIN is also in development for use against other disorders, including colitis, pain, traumatic brain injury, and uveitis. However, its commercial hydrochloride (SIN-HCl) shows low oral bioavailability and certain allergic reactions in patients, due to the release of histamine. Therefore, a large number of pharmaceutical strategies have been explored to address these liabilities, such as prolonging release behaviors, enhancing skin permeation and adsorption for transdermal delivery, targeted SIN delivery using new material or conjugates, and co-amorphous technology. This review discusses these different delivery strategies and approaches employed to overcome the limitations of SIN for its efficient delivery, in order to achieve improved bioavailability and reduced side effects. The potential advantages and limitations of SIN delivery strategies are elaborated along with discussions of potential future SIN drug development strategies.
Collapse
Affiliation(s)
- Xin Chen
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China
| | - Chengcheng Lu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha 410013, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha 410011, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha 410011, China
- Correspondence:
| |
Collapse
|
22
|
Zhang C, Zhang S, Liao J, Gong Z, Chai X, Lyu H. Towards Better Sinomenine-Type Drugs to Treat Rheumatoid Arthritis: Molecular Mechanisms and Structural Modification. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248645. [PMID: 36557779 PMCID: PMC9781648 DOI: 10.3390/molecules27248645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Sinomenine is the main component of the vine Sinomenium acutum. It was first isolated in the early 1920s and has since attracted special interest as a potential anti-rheumatoid arthritis (RA) agent, owing to its successful application in traditional Chinese medicine for the treatment of neuralgia and rheumatoid diseases. In the past few decades, significant advances have broadened our understanding of the molecular mechanisms through which sinomenine treats RA, as well as the structural modifications necessary for improved pharmacological activity. In this review, we summarize up-to-date reports on the pharmacological properties of sinomenine in RA treatment, document their underlying mechanisms, and provide an overview of promising sinomenine derivatives as potential RA drug therapies.
Collapse
Affiliation(s)
- Cuili Zhang
- School of Medicine, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Shujie Zhang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Liao
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Xin Chai
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (X.C.); (H.L.)
| | - Haining Lyu
- School of Medicine, Huanghe Science and Technology College, Zhengzhou 450006, China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (X.C.); (H.L.)
| |
Collapse
|
23
|
Gao F, Dai Z, Zhang T, Gu Y, Cai D, Lu M, Zhang Z, Zeng Q, Shang B, Xu B, Lei H. Synthesis and biological evaluation of novel sinomenine derivatives as anti-inflammatory and analgesic agent. RSC Adv 2022; 12:30001-30007. [PMID: 36321084 PMCID: PMC9582731 DOI: 10.1039/d2ra05558a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Sinomenine (SIN) has long been known as an anti-inflammatory drug, while poor efficiency and large-dose treatment had limited its further application. A series of novel SIN derivatives 1–26 were designed and synthesized to improve its anti-inflammatory activity. The anti-inflammatory activity evaluation showed most of the derivatives exhibited enhanced anti-inflammatory activity in vitro compared to SIN. Compound 17 significantly inhibited LPS-induced secretion of pro-inflammatory factors NO (IC50 = 30.28 ± 1.70 μM), and suppressed the expression of iNOS, IL-6 and TNF-α in RAW264.7 cells. Moreover, compound 17 showed excellent anti-inflammatory in mouse paw edema. Immunohistochemistry results revealed that compound 17 exerted anti-inflammatory activity by inhibiting the pro-inflammatory cytokine TNF-α. Furthermore, compound 17 exhibited an analgesic effect in vivo. The results attained in this study indicated that compound 17 had the potential to be developed into an anti-inflammation and analgesic agent. A series of novel sinomenine derivatives were designed and synthesized. Among them, compound 17 showed strong anti-inflammatory and analgesic activities.![]()
Collapse
Affiliation(s)
- Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| | - Ziqi Dai
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| | - Tong Zhang
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| | - Yuhao Gu
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| | - Desheng Cai
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| | - Mingjun Lu
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| | - Zijie Zhang
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| | - Qi Zeng
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| | - Bingxian Shang
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| |
Collapse
|
24
|
Li H, Li Y, Zou J, Yang Y, Han R, Zhang J. Sinomenine Inhibits Orthodontic Tooth Movement and Root Resorption in Rats and Enhances Osteogenic Differentiation of PDLSCs. Drug Des Devel Ther 2022; 16:2949-2965. [PMID: 36090955 PMCID: PMC9462521 DOI: 10.2147/dddt.s379468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate the effects of sinomenine on orthodontic tooth movement and root resorption in rats, as well as the effect of sinomenine on the osteogenesis of periodontal ligament stem cells (PDLSCs). Methods Fifty-four male Wistar rats were randomly divided into 3 groups: control group, 20 mg/kg sinomenine group and 40 mg/kg sinomenine group. Fifty-gram orthodontic force was applied to all groups. Each group was injected intraperitoneally with corresponding concentration of sinomenine every day. After 14 days, all rats were sacrificed. Micro-computed tomography (micro-CT) scan was used to analyze tooth movement, root resorption and alveolar bone changes. The effect on periodontal tissue was analyzed by Masson, tartrate-resistant acid phosphatase (TRAP) and immunohistochemical staining. In vitro, PDLSCs were extracted and identified. The effect of sinomenine on proliferation was determined by cell-counting kit-8. The effect of sinomenine on osteogenesis was investigated by alkaline phosphatase (ALP) activity and alizarin red staining. qPCR and Western blotting were performed to explore the effects of sinomenine on the expression levels of ALP, runt-related transcription factor 2 (RUNX2), receptor activator of nuclear factor kappaB ligand (RANKL) and osteoprotegerin (OPG). Results The tooth movement and root resorption of sinomenine groups were reduced. Sinomenine decreased trabecular spacing on compression side and increased alveolar bone volume and trabecular thickness on tension side. TRAP-positive cells in sinomenine groups decreased significantly. The expressions of TNF-α and RANKL were decreased, while the expressions of OPG, RUNX2 and osteocalcin were up-regulated. In vitro, 0.1 M and 0.5 M sinomenine enhanced ALP activity, mineral deposition and the expression of ALP, RUNX2 and OPG, and reduced the expression of RANKL. Conclusion Sinomenine could inhibit tooth movement, reduce root resorption, and exert a positive effect on bone formation in rats. Moreover, sinomenine promoted the osteogenesis of PDLSCs.
Collapse
Affiliation(s)
- Hongkun Li
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Yilin Li
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jinghua Zou
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Yanran Yang
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Ruiqi Han
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jun Zhang
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Correspondence: Jun Zhang, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No. 44-1 Wenhua Road West, Jinan, 250012, People’s Republic of China, Tel +86 139 5310 9816, Email
| |
Collapse
|
25
|
Chen X, Li D, Duan Y, Huang Y. Characterization of co-amorphous sinomenine-tranilast systems with strong intermolecular interactions and sustained release profiles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Lian CY, Chu BX, Xia WH, Wang ZY, Fan RF, Wang L. Persistent activation of Nrf2 in a p62-dependent non-canonical manner aggravates lead-induced kidney injury by promoting apoptosis and inhibiting autophagy. J Adv Res 2022; 46:87-100. [PMID: 37003700 PMCID: PMC10105071 DOI: 10.1016/j.jare.2022.04.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/10/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Lead (Pb) is an environmental toxicant that poses severe health risks to humans and animals, especially renal disorders. Pb-induced nephrotoxicity has been attributed to oxidative stress, in which apoptosis and autophagy are core events. OBJECTIVES Nuclear factor erythroid 2-related factor 2 (Nrf2) acts as a major contributor to counteract oxidative damage, while hyperactivation or depletion of Nrf2 pathway can cause the redox imbalance to induce tissue injury. This study was performed to clarify the function and mechanism of Nrf2 in Pb-triggered kidney injury. METHODS AND RESULTS First, data showed that Pb exposure activates Nrf2 pathway in primary rat proximal tubular cells. Next, Pb-induced Nrf2 activation was effectively regulated by pharmacological modulation or siRNA-mediated knockdown in vitro and in vivo assays. Notably, Pb-triggered cytotoxicity, renal injury and concomitant apoptosis were improved by Nrf2 downregulation, confirming that Pb-induced persistent Nrf2 activation contributes to nephrotoxicity. Additionally, Pb-triggered autophagy blockage was relieved by Nrf2 downregulation. Mechanistically, we found that Pb-induced persistent Nrf2 activation is attributed to reduced Nrf2 ubiquitination and nuclear-cytoplasmic loss of Keap1 in a p62-dependent manner. CONCLUSIONS In conclusion, these findings highlight the dark side of persistent Nrf2 activation and potential crosstalk among Pb-induced persistent Nrf2 activation, apoptosis and autophagy blockage in Pb-triggered nephrotoxicity.
Collapse
Affiliation(s)
- Cai-Yu Lian
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Bing-Xin Chu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Wei-Hao Xia
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| |
Collapse
|
27
|
Feng Y, Ju Y, Yan Z, Ji M, Yang M, Wu Q, Wang L, Sun G. Protective role of wogonin following traumatic brain injury by reducing oxidative stress and apoptosis via the PI3K/Nrf2/HO‑1 pathway. Int J Mol Med 2022; 49:53. [PMID: 35179214 PMCID: PMC8904077 DOI: 10.3892/ijmm.2022.5109] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/25/2022] [Indexed: 01/15/2023] Open
Abstract
Traumatic brain injury (TBI) is usually caused by accidental injuries and traffic accidents, with a very high mortality rate. Treatment and management following TBI are essential to reduce patient injury and help improve long‑term prognosis. Wogonin is a flavonoid compound with an antioxidant effect extracted from Scutellaria baicalensis Georgi. However, the function and mechanism of wogonin in protecting brain injury remain to be elucidated. The present study established a TBI model of Sprague‑Dawley rats and treated them with wogonin following trauma. The results showed that wogonin treatment significantly reduced neurobehavioral disorders, brain edema and hippocampal neuron damage caused by TBI. It was found that in TBI rats, administration of wogonin increased the levels of antioxidant factors glutathione, superoxide dismutase and catalase in the CA1 region of the hippocampus and significantly inhibited the production of malondialdehyde and reactive oxygen species. western blotting data showed that wogonin exerted antioxidant activity by downregulating the level of NOX2 protein. In inhibiting cell apoptosis, wogonin upregulated the expression of Bcl‑2 protein in the hippocampal CA1 region of TBI rats and inhibited caspase‑3 and Bax proteins. Additionally, wogonin inhibited the progression of injury following TBI through the PI3K/Akt/nuclear factor‑erythroid factor 2‑related factor 2 (Nrf2)/heme oxygenase‑1 (HO‑1) signaling pathway. Wogonin increased the expression of phosphorylated Akt, Nrf2 and HO‑1 in the hippocampus of TBI rats. Following the administration of PI3K inhibitor LY294002, the upregulation of these proteins by wogonin was partly reversed. In addition, LY294002 partially reversed the regulation of wogonin on NOX2, caspase‑3, Bax and Bcl‑2 proteins. Therefore, wogonin exerts antioxidant and anti‑apoptotic properties to prevent hippocampal damage following TBI, which is accomplished through the PI3K/Akt/Nrf2/HO‑1 pathway.
Collapse
Affiliation(s)
- Yan Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yaru Ju
- Department of Obstetrics, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| | - Zhongjie Yan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Mingjun Ji
- Department of Critical Care Medical, Linxi County People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Ming Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Qiang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Liqun Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
28
|
Zhu L, Mei J, peng C, Zhao Y, Liu Y, Cui L, Zhang K, Ma Y. Pharmacokinetics, tissue distribution, plasma protein binding rate and excretion of sinoacutine following intravenous administration in female and male Sprague-Dawley rats. Xenobiotica 2022; 52:91-98. [DOI: 10.1080/00498254.2022.2036390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Liyuan Zhu
- Yunnan Xinxing Occupations Institute, Kunming, 650500, China
| | - Jiahua Mei
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
- Yunnan Key Laboratory of Dai and Yi medicines, Kunming, 650500, China
| | - Chaorui peng
- Yunnan Xinxing Occupations Institute, Kunming, 650500, China
| | - Yuancui Zhao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yunkuan Liu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Lili Cui
- School of pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210064, China
| | - Kun Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yunshu Ma
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
- The Key Laboratory of External Drug Delivery System and Preparation Technology in University of Yunnan Province, Kunming, 650500, China
- Yunnan Key Laboratory of Southern Medicinal Resource, Kunming, 650500, China
| |
Collapse
|